
Package ‘tirt’
February 6, 2026

Title Testlet Item Response Theory

Version 0.1.3

Description Implementation of Testlet Item Response Theory (tirt).
A light-version yet comprehensive and streamlined framework for psychometric analysis using
unidimensional
Item Response Theory (IRT; Baker & Kim (2004) <doi:10.1201/9781482276725>) and
Testlet Response Theory (TRT; Wainer et al., (2007) <doi:10.1017/CBO9780511618765>).
Designed for researchers, this package supports the estimation of item and person
parameters for a wide variety of models, including binary (i.e., Rasch, 2-Parameter Logistic, 3-
Parameter Logistic)
and polytomous (Partial Credit Model, Generalized Partial Credit Model, Graded Re-
sponse Model) formats. It also supports the estimation of Testlet models (Rasch Testlet, 2-
Parameter Logistic Testlet, 3-Parameter Logistic Testlet, Bifactor, Partial Credit Model Test-
let, Graded Response), allowing users to account for local item dependence in bun-
dled items. A key feature is the specialized support for combination use and joint estima-
tion of item response model and testlet response model in one calibration.
Beyond standard estimation via Marginal Maximum Likelihood with Expectation-
Maximization (EM) or Joint
Maximum Likelihood, the package offers robust tools for scale linking and
equating (Mean-Mean, Mean-Sigma, Stocking-Lord) to ensure comparability
across mixed-format test forms. It also facilitates fixed-parameter calibration,
enabling users to estimate person abilities with known item parameters or
vice versa, which is essential for pre-equating studies and item bank
maintenance. Comprehensive data simulation functions are included to generate
synthetic datasets with complex structures, including mixed-model blocks and
specific testlet effects, aiding in methodological research and study design
validation. Researchers can try multiple simulation situations.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Depends R (>= 4.1.0)

Imports dplyr, tidyr, purrr, gtools, stats, utils

Suggests knitr, rmarkdown

1

https://doi.org/10.1201/9781482276725
https://doi.org/10.1017/CBO9780511618765

2 binary_irt

VignetteBuilder knitr

NeedsCompilation no

Author Jiawei Xiong [aut, cre],
Cheng Tang [ctb],
Qidi Liu [ctb]

Maintainer Jiawei Xiong <jiawei.xiong@uga.edu>

Repository CRAN

Date/Publication 2026-02-06 20:00:08 UTC

Contents
binary_irt . 2
ela1 . 4
ela2 . 4
equate_irt . 5
fixed_item . 8
fix_person . 10
irt_trt . 12
mixed_irt . 14
polytomous_irt . 17
sim_irt . 19
sim_trt . 20
trt_binary . 22
trt_poly . 24

Index 28

binary_irt Binary (Dichotomous) Item Response Theory Estimation

Description

Estimates item and person parameters for binary item response models using either Marginal Max-
imum Likelihood or Joint Maximum Likelihood.

Usage

binary_irt(data, model = "2PL", method = "EM", control = list())

Arguments

data A N x J data.frame of dichotomous responses (0/1).

model String. "Rasch", "2PL" (2-Parameter Logistic), or "3PL" (3-Parameter Logistic).

method String. "EM" (Marginal Maximum Likelihood via Expectation-Maximization)
or "MLE" (Joint Maximum Likelihood).

binary_irt 3

control A list of control parameters for the estimation algorithm:
• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).
• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: A data frame of estimated item parameters (discrimination, difficulty, guess-
ing) and their standard errors.

• person_params: A data frame of estimated person abilities (theta) and standard errors.
• model_fit: A data frame containing fit statistics such as Akaike’s Information Criterion

(AIC), the Bayesian Information Criterion (BIC), and Log-Likelihood.
• settings: A list of control parameters used in the estimation.

Examples

Simulate data
set.seed(123)
N <- 500; J <- 10
true_theta <- rnorm(N)
true_b <- seq(-2, 2, length.out=J)
true_a <- runif(J, 0.8, 1.2)
data_mat <- matrix(NA, N, J)
for(i in 1:N) {

p <- 1 / (1 + exp(-true_a * (true_theta[i] - true_b)))
data_mat[i,] <- rbinom(J, 1, p)
}
df <- as.data.frame(data_mat)
names(df) <- paste0("Q", 1:J)
Run Function
res <- binary_irt(df, model="2PL", method="EM")
View Results
head(res$item_params)
head(res$person_params)
print(res$model_fit)

--- Example 2: With Package Data ---
data("ela1", package = "tirt")
Subset the first 30 columns (must use the object name 'data_binary')
df <- ela1[, 1:30]
Run Function on package data
real_res <- binary_irt(df, model="2PL", method="EM")
head(real_res$item_params)

4 ela2

ela1 Mixed-Format English Language Arts (ELA) Assessment Data (Form
1)

Description

A dataset containing binary and polytomous responses for demonstration.

Usage

ela1

Format

A data frame with 52417 rows and 47 columns:

• ITEM1 - ITEM30: Binary responses (0 = Incorrect, 1 = Correct).

• ITEM31 - ITEM45: Polytomous responses (scored 0-5).

• THETA: Latent ability estimates.

• COVARIATE: Person-level background variable.

Source

Tang, C., Xiong, J., & Engelhard, G. (2025). Identification of writing strategies in educational
assessments with an unsupervised learning measurement framework. Education Sciences, 15(7),
912. doi:10.3390/educsci15070912

Examples

data(ela1)
head(ela1)

ela2 Mixed-Format English Language Arts (ELA) Assessment Data (Form
2)

Description

A smaller dataset containing item responses.

Usage

ela2

https://doi.org/10.3390/educsci15070912

equate_irt 5

Format

A data frame with columns representing item responses.

• ITEM1 - ITEM7: Binary responses (0 = Incorrect, 1 = Correct).

• ITEM8: Polytomous response (scored 0-2).

• ITEM9: Polytomous response (scored 0-5).

• ITEM10: Polytomous response (scored 0-5).

Source

Tang, C., Xiong, J., & Engelhard, G. (2025). Identification of writing strategies in educational
assessments with an unsupervised learning measurement framework. Education Sciences, 15(7),
912. doi:10.3390/educsci15070912

Examples

data(ela2)
head(ela2)

equate_irt Item Response Theory Equating / Linking

Description

Conducts item response theory scale linking using Mean-Mean, Mean-Sigma, and Stocking-Lord
methods. Supports mixed formats of both dichotomous and polytomous models. Automatically
detects anchor items and validates model consistency.

Usage

equate_irt(base_params, new_params, person_params = NULL, methods = NULL)

Arguments

base_params Data frame of reference item parameters (Form X).

new_params Data frame of new item parameters to be transformed (Form Y).

person_params (Optional) Data frame of person parameters from Form Y.

methods Character vector. Options: "Mean-Mean", "Mean-Sigma", "Stocking-Lord". If
NULL, defaults to all three.

https://doi.org/10.3390/educsci15070912

6 equate_irt

Value

A list containing three data frames:

transformed_item_params

New items transformed to Base scale (with SEs).
transformed_person_params

New persons transformed to Base scale (if provided).
linking_constants

The A (slope) and B (intercept) constants for each method.

Examples

===
Example: Equating Form Y (New) to Form X (Base)
===
set.seed(123)

1. Generate "True" Base Parameters (Form X)

10 Common Items (Anchors) + 10 Unique Items
2PL and GRM mixed

gen_item_params <- function(n, type="2PL") {
if(type=="2PL") {

data.frame(
item = paste0("Item_", 1:n),
model = "2PL",
a = round(runif(n, 0.8, 1.5), 2),
b = round(rnorm(n, 0, 1), 2),
stringsAsFactors = FALSE

)
} else {

GRM with 3 thresholds
d <- t(apply(matrix(rnorm(n*3, 0, 0.5), n, 3), 1, sort))
df <- data.frame(

item = paste0("Poly_", 1:n),
model = "GRM",
a = round(runif(n, 0.8, 1.5), 2),
stringsAsFactors = FALSE

)
df <- cbind(df, setNames(as.data.frame(d), paste0("step_", 1:3)))
df

}
}

Anchors
anchor_2pl <- gen_item_params(5, "2PL")
anchor_grm <- gen_item_params(3, "GRM")
Unique Form X
unique_x <- gen_item_params(5, "2PL")
unique_x$item <- paste0("X_", unique_x$item)

equate_irt 7

base_params <- dplyr::bind_rows(anchor_2pl, anchor_grm, unique_x)

2. Generate "New" Form Y Parameters (with Scale Shift)

Scale Transformation: Theta_base = 1.2 * Theta_new + 0.5
True Constants: A = 1.2, B = 0.5
TRUE_A <- 1.2
TRUE_B <- 0.5

Transform Anchor Parameters to "New" scale (Inverse Logic)
a_new = a_base * A
b_new = (b_base - B) / A

anchor_2pl_new <- anchor_2pl
anchor_2pl_new$a <- anchor_2pl$a * TRUE_A
anchor_2pl_new$b <- (anchor_2pl$b - TRUE_B) / TRUE_A

anchor_grm_new <- anchor_grm
anchor_grm_new$a <- anchor_grm$a * TRUE_A
step_cols <- grep("step_", names(anchor_grm_new))
anchor_grm_new[, step_cols] <- (anchor_grm[, step_cols] - TRUE_B) / TRUE_A

Unique Form Y
unique_y <- gen_item_params(5, "2PL")
unique_y$item <- paste0("Y_", unique_y$item)

new_params <- dplyr::bind_rows(anchor_2pl_new, anchor_grm_new, unique_y)

3. Create Dummy Person Parameters for Form Y

person_params <- data.frame(

id = paste0("P", 1:50),
theta = rnorm(50, 0, 1),
theta_se = runif(50, 0.2, 0.5)

)

4. Perform Equating

We expect to recover A approx 1.2 and B approx 0.5
results <- equate_irt(

base_params = base_params,
new_params = new_params,
person_params = person_params,
methods = c("Mean-Mean", "Stocking-Lord")

)

5. Inspect Results

Linking Constants
print(results$linking_constants)

Transformed Items (Form Y items on Form X scale)
head(results$transformed_item_params)

8 fixed_item

Transformed Persons
head(results$transformed_person_params)

fixed_item Fixed Item Calibration

Description

Estimates unknown item parameters using Marginal Maximum Likelihood via Expectation-Maximization
Algorithm. Uses a custom Bounded Newton-Raphson solver. Supports mixed-format data contain-
ing dichotomous and polytomous responses

Usage

fixed_item(response_df, item_params_df, control = list())

Arguments

response_df A data.frame of responses. Rows=Students, Cols=Items. Data MUST be from
0-indexed (0, 1, 2...).

item_params_df A data.frame of known parameters. Required: "item", "model".

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 50).
• conv_crit: Convergence criterion for parameter change (default = 0.005).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: Estimated parameters for unknown items.

• person_params: Estimated person parameters.

• model_fit: A data frame containing number off estimated parameters and fit statistics such
as Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Log-
Likelihood.

Examples

1. TOY EXAMPLE
===
set.seed(123)
Create a very small dataset (N=50, J=4)
N_toy <- 50
df_toy <- data.frame(

I1 = rbinom(N_toy, 1, 0.5), I2 = rbinom(N_toy, 1, 0.6), # Known items
U1 = rbinom(N_toy, 1, 0.5), U2 = rbinom(N_toy, 1, 0.4) # Unknown items

fixed_item 9

)

Define the "Known" parameters for I1 and I2
known_params <- data.frame(

item = c("I1", "I2"),
model = c("2PL", "2PL"),
a = c(1.0, 1.2),
b = c(-0.5, 0.5)

)

Run Fixed Item Calibration with very low iterations
fit_toy <- fixed_item(df_toy, known_params, control=list(max_iter=2, verbose=FALSE))
print(head(fit_toy$item_params))

--- Example 2: Simulation ---
set.seed(123)
N <- 500
true_theta <- rnorm(N, 0, 1)

1. Simulation Helpers
sim_2pl <- function(theta, a, b) {
p <- 1 / (1 + exp(-1.7 * a * (theta - b)))
rbinom(N, 1, p)

}
sim_poly <- function(theta, a, steps) {

n_cat <- length(steps) + 1
probs <- matrix(0, length(theta), n_cat)
for(k in 1:n_cat) {

score <- k - 1
if(score == 0) num <- 0
else num <- a * (score * theta - sum(steps[1:score]))
probs[, k] <- exp(num)

}
probs <- probs / rowSums(probs)
apply(probs, 1, function(x) sample(0:(n_cat-1), 1, prob=x))

}

2. Generate Data (Mixed Known/Unknown Items)
Items 1-5: Known Binary (2PL)
Items 6-10: Unknown Binary (2PL)
Items 11-12: Known Poly (GPCM)
Items 13-15: Unknown Poly (GPCM)

resp_mat <- matrix(NA, N, 15)
colnames(resp_mat) <- paste0("Item_", 1:15)

Known Binary Parameters
a_bin <- c(1.0, 1.2, 0.9, 1.1, 0.8)
b_bin <- c(-1, -0.5, 0, 0.5, 1)

for(i in 1:5) resp_mat[,i] <- sim_2pl(true_theta, a_bin[i], b_bin[i])
for(i in 6:10) resp_mat[,i] <- sim_2pl(true_theta, runif(1,0.8,1.2), rnorm(1))

10 fix_person

Known Poly Parameters
a_poly <- c(1.0, 0.8)
d_poly <- list(c(-1, 1), c(-0.5, 0.5))

resp_mat[,11] <- sim_poly(true_theta, a_poly[1], d_poly[[1]])
resp_mat[,12] <- sim_poly(true_theta, a_poly[2], d_poly[[2]])
for(i in 13:15) resp_mat[,i] <- sim_poly(true_theta, 1.0, c(-0.5, 0.5))

df_resp <- as.data.frame(resp_mat)

3. Create 'Known Parameters' Dataframe
This tells the function: "Fix these, Estimate the rest"
known_df <- data.frame(

item = c(paste0("Item_", 1:5), "Item_11", "Item_12"),
model = c(rep("2PL", 5), rep("GPCM", 2)),
a = c(a_bin, a_poly),
b = c(b_bin, NA, NA), # Binary difficulty
step_1 = c(rep(NA, 5), -1, -0.5), # Poly steps
step_2 = c(rep(NA, 5), 1, 0.5),
stringsAsFactors = FALSE

)

4. Run Estimation
res <- fixed_item(df_resp, known_df, control=list(max_iter=20))

View Results
Notice Items 1-5 and 11-12 have Status "Fixed"
head(res$item_params, 12)

--- Example 2: With Package Data ---
data("ela1", package = "tirt")

Let's treat the first 5 items as "Known" with arbitrary parameters
just to demonstrate syntax.
df_real <- ela1[, 1:20]

known_real <- data.frame(
item = paste0("Q", 1:5),
model = "2PL",
a = 1.0,
b = seq(-1, 1, length.out=5)

)

Ideally, column names in df_real should match 'item' column in known_real
colnames(df_real)[1:5] <- paste0("Q", 1:5)

real_res <- fixed_item(df_real, known_real, control=list(max_iter=10))
head(real_res$item_params)

fix_person Fixed Person Calibration with or without Covariate

fix_person 11

Description

Estimates item parameters (difficulty, discrimination) given fixed person parameters (theta), with
an optional person-level covariate. Supports Rasch and 2-Parameter Logistic models.

Usage

fix_person(df, theta, model = c("Rasch", "2PL"), covariate = NULL)

Arguments

df A data frame of item responses (0/1). Columns represent items, rows represent
persons.

theta A numeric vector of person abilities (fixed parameters). Must match the number
of rows in df.

model A character string specifying the model type. Options are "Rasch" or "2PL".

covariate An optional numeric vector representing a person-level covariate (e.g., time,
group). Defaults to NULL.

Value

A data frame containing:

• Item statistics (difficulty, standard errors, z-values, p-values).

• Discrimination parameters (for 2PL model).

• Global covariate effect (if covariate is provided).

• Classical item statistics (p-value, count, point-biserial correlation).

• Mean theta per item (average ability of persons answering the item).

• Infit and Outfit statistics (for Rasch model only).

Examples

--- Example: With Selected Package Data ---
data("ela1", package = "tirt")

Subset data for a manageable example
Select the first 500 examinees and 30 item responses
df_real <- ela1[1:500, 1:30]

Extract pre-estimated latent traits and covariates
fixed_theta <- ela1$THETA[1:500]
fixed_cov <- ela1$COVARIATE[1:500]

Estimate item parameters given fixed ability levels
fitting a 2-parameter logistic (2PL) model
real_res <- fix_person(df = df_real,

theta = fixed_theta,
model = "2PL",
covariate = fixed_cov)

12 irt_trt

head(real_res)

--- Example: With Package Data ---
data("ela1", package = "tirt")

Select Item Responses (Cols 1-30)
df_real <- ela1[, 1:30]

fixed_theta <- ela1$THETA
fixed_cov <- ela1$COVARIATE

real_res <- fix_person(df = df_real,
theta = fixed_theta,
model = "2PL",
covariate = fixed_cov)

head(real_res)

irt_trt Joint Item Response Theory and Testlet Response Theory Estimation
(Dichotomous & Polytomous)

Description

Provides a unified marginal maximum likelihood estimation framework for a broad class of item re-
sponse theory and testlet response theory models. The function automatically detects data structures
to apply appropriate models, along with their testlet-effect extensions (Bradlow et al., 1999).

Usage

irt_trt(data, item_spec, method = "EM", control = list())

Arguments

data A data.frame or matrix containing item responses. Responses should be 0-
indexed integers. Missing values should be coded as NA.

item_spec A data.frame providing item metadata. Must include columns "item" (match-
ing colnames(data)) and "model". Optionally includes a "testlet" column
for TRT specifications.

method A character string specifying the estimation method. Currently supports "EM"
(Expectation-Maximization). Defaults to "EM".

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).

irt_trt 13

• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.
• fix_discrimination: Logical; default=FALSE

Details

The estimation utilizes a robust Newton-Raphson update within the M-step. For testlet models, di-
mension reduction is achieved through the integration of the nuisance testlet effect (Li et al., 2006).
The function automatically corrects model specifications if the data levels (binary vs. polytomous)
do not align with the requested model string.

Value

A list containing three components:

item_params A data frame of estimated item slopes (discrimination), difficulties/thresholds,
and guessing parameters with associated standard errors.

person_params A data frame of EAP-based ability estimates (θ) and testlet effect estimates (γ).

model_fit A data frame containing Log-Likelihood, AIC, and BIC indices.

References

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A testlet response model for multidimensionality
in item response theory. Psychometrika, 64(2), 147-168.

Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of methods for estimating secondary dimensions
in testlet-based data. Applied Psychological Measurement, 30(3), 203-223.

Examples

--- Example: Simulation (Binary + Poly + Testlets) ---
set.seed(2025)
N <- 100; J <- 20

1. Generate Parameters
theta <- rnorm(N, 0, 1)
gamma_1 <- rnorm(N, 0, 0.5) # Testlet 1 effect
gamma_2 <- rnorm(N, 0, 0.6) # Testlet 2 effect

a_true <- runif(J, 0.8, 1.5)
b_true <- seq(-1.5, 1.5, length.out = J)

resp_matrix <- matrix(NA, N, J)
colnames(resp_matrix) <- paste0("Item_", 1:J)

2. Simulate Responses
Items 1-10: Binary Independent (Model: 2PL)
for(j in 1:10) {

p <- 1 / (1 + exp(-a_true[j] * (theta - b_true[j])))
resp_matrix[,j] <- rbinom(N, 1, p)

}

14 mixed_irt

Items 11-15: Poly Independent (Model: GRM)
for(j in 11:15) {

thresh <- sort(c(b_true[j] - 0.7, b_true[j] + 0.7))
p1 <- 1 / (1 + exp(-a_true[j] * (theta - thresh[1])))
p2 <- 1 / (1 + exp(-a_true[j] * (theta - thresh[2])))
probs <- cbind(1-p1, p1-p2, p2)
resp_matrix[,j] <- apply(probs, 1, function(p) sample(0:2, 1, prob=p))

}

Items 16-17: Binary Testlet 1 (Model: 2PLT)
for(j in 16:17) {

eff_theta <- theta + gamma_1
p <- 1 / (1 + exp(-a_true[j] * (eff_theta - b_true[j])))
resp_matrix[,j] <- rbinom(N, 1, p)

}

Items 18-20: Poly Testlet 2 (Model: GRT)
for(j in 18:20) {

eff_theta <- theta + gamma_2
thresh <- sort(c(b_true[j] - 0.5, b_true[j] + 0.5))
p1 <- 1 / (1 + exp(-a_true[j] * (eff_theta - thresh[1])))
p2 <- 1 / (1 + exp(-a_true[j] * (eff_theta - thresh[2])))
probs <- cbind(1-p1, p1-p2, p2)
resp_matrix[,j] <- apply(probs, 1, function(p) sample(0:2, 1, prob=p))

}

df_sim <- as.data.frame(resp_matrix)

3. Create Item Specification
STRICT naming: Independent=2PL/GRM, Testlet=2PLT/GRT
spec <- data.frame(

item = colnames(df_sim),
model = c(rep("2PL", 10), rep("GRM", 5), rep("2PLT", 2), rep("GRT", 3)),
testlet = c(rep(NA, 15), rep("T1", 2), rep("T2", 3)),
stringsAsFactors = FALSE

)

4. Run Estimation
res <- irt_trt(df_sim, spec, method = "EM",

control = list(max_iter = 20, verbose = FALSE))

head(res$item_params)
head(res$person_params)

mixed_irt Mixed Item Response Model Estimation (Dichotomous & Polytomous)

mixed_irt 15

Description

Provides a estimation framework for a broad class of different item response theory models. This
function can model different combinations of item categories.

Usage

mixed_irt(data, model = "2PL", method = "EM", control = list())

Arguments

data A N x J data.frame. Binary items must be 0/1. Polytomous items should be
continuous integers (0, 1, 2...).

model A character vector of length J (one model per item). Supported: "Rasch",
"2PL" (2-Parameter Logistic), "3PL" (3-Parameter Logistic), "GRM" (Graded
Response Model), "GPCM" (Generalized Partial Credit Model), "PCM" (Partial
Credit Model). If a single string is provided, it is applied to all items.

method String. "EM" (Marginal Maximum Likelihood via Expectation-Maximization)
or "MLE" (Joint Maximum Likelihood).

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).
• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: Data frame of item parameters (discrimination, difficulty/thresholds, guess-
ing).

• person_params: A data frame of estimated person abilities (theta) and standard errors.

• model_fit: A data frame containing fit statistics such as Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC).

• settings: A list of control parameters used in the estimation.

Examples

--- Example 1: Simulation (Mixed 2PL + GPCM) ---
set.seed(2025)
N <- 100
n_bin <- 5
n_poly <- 2
J <- n_bin + n_poly

16 mixed_irt

1. Generate Theta (Wide range to match user request)
true_theta <- rnorm(N, mean = 0, sd = 3)

2. Simulation Helper: GPCM
sim_gpcm <- function(theta, a, steps) {

n_cat <- length(steps) + 1
probs <- matrix(0, length(theta), n_cat)
for(k in 1:n_cat) {

score <- k - 1
if(score == 0) numer <- rep(0, length(theta))
else numer <- a * (score * theta - sum(steps[1:score]))
probs[, k] <- exp(numer)

}
probs <- probs / rowSums(probs)
apply(probs, 1, function(p) sample(0:(n_cat-1), 1, prob=p))

}

3. Create Data
data_sim <- data.frame(matrix(NA, nrow = N, ncol = J))
colnames(data_sim) <- paste0("Item_", 1:J)

Binary Items (2PL)
a_bin <- runif(n_bin, 0.8, 1.5)
b_bin <- seq(-3, 3, length.out = n_bin)
for(j in 1:n_bin) {

prob <- 1 / (1 + exp(-(a_bin[j] * (true_theta - b_bin[j]))))
data_sim[, j] <- rbinom(N, 1, prob)

}

Polytomous Items (GPCM)
Item 6: 2 steps (-2, 2)
data_sim[, 6] <- sim_gpcm(true_theta, a=1.0, steps=c(-2, 2))
Item 7: 5 steps
data_sim[, 7] <- sim_gpcm(true_theta, a=1.2, steps=c(-5, -2.5, 0, 2.5, 5))

4. Run Estimation
Note: Wide theta_range needed due to SD=3 in simulation
my_models <- c(rep("2PL", n_bin), rep("GPCM", n_poly))

res <- mixed_irt(data = data_sim, model = my_models, method = "EM",
control = list(max_iter = 20, theta_range = c(-6, 6)))

head(res$item_params)
print(res$model_fit)

--- Example 2: With Package Data ---
data("ela2", package = "tirt")

Define Models (7 Binary, 3 Poly)
real_models <- c(rep("2PL", 7), rep("GRM", 3))

Run Estimation
real_res <- mixed_irt(ela2, model = real_models, method = "EM",

polytomous_irt 17

control = list(max_iter = 10))

head(real_res$item_params)
print(real_res$model_fit)

polytomous_irt Polytomous Item Response Theory Estimation

Description

Estimates item and person parameters for polytomous item response theory models using either
Marginal Maximum Likelihood or Joint Maximum Likelihood.

Usage

polytomous_irt(data, model = "GPCM", method = "EM", control = list())

Arguments

data A N x J data.frame of polytomous responses (0, 1, 2...). Missing values should
be NA. Categories must be continuous integers.

model String. "GPCM" (Generalized Partial Credit Model), "PCM" (Partial Credit
Model), or "GRM" (Graded Response Model).

method String. "EM" (Marginal Maximum Likelihood via Expectation-Maximization)
or "MLE" (Joint Maximum Likelihood).

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).
• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: Data frame of estimated parameters (a, thresholds).

• person_params: A data frame of estimated person abilities (theta) and standard errors.

• model_fit: A data frame containing fit statistics such as Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC).

• settings: A list of control parameters used in the estimation.

18 polytomous_irt

Examples

--- Example 1: Simulation (GPCM) ---
set.seed(2025)
N <- 500; J <- 5
n_cats <- c(3, 4, 3, 5, 4)

true_theta <- rnorm(N)
true_a <- runif(J, 0.8, 1.2)
true_d <- list()

Generate Thresholds
for(j in 1:J) {

steps <- sort(rnorm(n_cats[j]-1, mean = 0, sd = 1.0))
true_d[[j]] <- c(0, cumsum(steps))

}

Simulation Helper (GPCM Logic)
generate_resp <- function(theta, a, d_vec, n_cat) {

probs <- matrix(0, length(theta), n_cat)
for(k in 1:n_cat) {

z <- a * (k-1) * theta - d_vec[k]
probs[,k] <- exp(z)

}
probs <- probs / rowSums(probs)
apply(probs, 1, function(p) sample(0:(n_cat-1), 1, prob=p))

}

Create Data
sim_data <- matrix(NA, nrow = N, ncol = J)
for(j in 1:J) {

sim_data[,j] <- generate_resp(true_theta, true_a[j], true_d[[j]], n_cats[j])
}
df_sim <- as.data.frame(sim_data)

Run Estimation (GPCM to match simulation logic)
res <- polytomous_irt(df_sim, model="GPCM", method="EM",

control=list(max_iter=20, verbose=FALSE))

head(res$item_params)
print(res$model_fit)

--- Example 2: With Package Data (GRM) ---
data("ela1", package = "tirt")

Subset polytomous items (columns 31 to 45)
df_poly <- ela1[, 31:45]

Run Estimation using GRM
real_res <- polytomous_irt(df_poly, model="GRM", method="EM",

control = list(max_iter = 10))

head(real_res$item_params)

sim_irt 19

head(real_res$person_params)
print(real_res$model_fit)

sim_irt Simulate Item Response Theory Data

Description

Simulate item responses data. Support both dichotomous and polytomous responses. Provide an
easy implementation with a few default settings.

Usage

sim_irt(
n_people = 1000,
item_structure = list(),
theta = NULL,
theta_mean = 0,
theta_sd = 1

)

Arguments

n_people Integer. Number of students.

item_structure List of lists defining item blocks.

theta Numeric vector (Optional). If provided, these exact ability values are used.

theta_mean Numeric. Mean of latent trait (used if theta is NULL).

theta_sd Numeric. SD of latent trait (used if theta is NULL).

Value

A list containing:

resp data.frame of responses (rows=people, cols=items)

true_params data.frame of true item parameters

theta vector of true latent traits

Examples

1. Define the Test Blueprint
We want:
- 10 items using 2PL (medium difficulty)
- 5 items using 3PL (difficult, with guessing)
- 5 items using GPCM (4-point Likert scale)
- 5 items using GRM (5-point Likert scale)

20 sim_trt

my_test_structure <- list(
Block 1: 2PL
list(model = "2PL", n_items = 10, a = c(0.8, 1.2), b = c(-1, 1)),

Block 2: 3PL (Harder items, b from 1 to 2.5, fixing guessing at 0.2)
list(model = "3PL", n_items = 5, a = c(1.0, 1.5), b = c(1.0, 2.5), c = 0.2),

Block 3: GPCM (Polytomous, 4 categories 0-3)
list(model = "GPCM", n_items = 5, categories = 4, a = c(0.7, 1.3), b = c(-1, 1)),

Block 4: GRM (Polytomous, 5 categories 0-4)
list(model = "GRM", n_items = 5, categories = 5, a = c(1.0, 2.0))

)

2. Run the Simulation
Define N and a specific Theta vector
N <- 2000
theta_vec <- rnorm(N, 0, 2)

sim_data <- sim_irt(
n_people = N,
theta = theta_vec,
item_structure = my_test_structure

)

3. Inspect the Output
The Response Matrix
head(sim_data$resp)

The True Parameters (Useful for recovery studies)
Note how it aligns a, b, and threshold parameters (step_1, step_2...)
head(sim_data$true_params)

sim_trt Simulate Testlet Response Theory Data (Vector Supported Version)

Description

Simulate testlet responses data. Support both dichotomous and polytomous responses. Provide an
easy implementation with a few default settings.

Usage

sim_trt(
n_people = 1000,
item_structure = list(),
theta = NULL,
theta_mean = 0,
theta_sd = 1

)

sim_trt 21

Arguments

n_people Integer. Number of examinees.

item_structure List of lists defining item blocks.

theta Numeric vector (Optional). If provided, these exact ability values are used.

theta_mean Numeric. Mean of latent trait (used if theta is NULL).

theta_sd Numeric. SD of latent trait (used if theta is NULL).

Value

A list containing:

resp data.frame of responses (rows=people, cols=items)
true_item_params

data.frame of true item parameters
true_person_params

vector of true latent traits

Examples

===
Example 1: Complex Testlet Design
===
Define the Testlet Blueprint
trt_design <- list(

Testlet 1: Rasch Testlet Model (High dependence: var=0.8)
list(model = "RaschT", n_items = 5, testlet_id = "Read_A",

testlet_var = 0.8, b = c(-1, 1)),

Testlet 2: 2PL Testlet Model (Default dependence: var=0.5)
list(model = "2PLT", n_items = 5, testlet_id = "Read_B",

a = c(0.7, 1.3)),

Testlet 3: Graded Response Testlet (Polytomous, 4 categories)
list(model = "GRT", n_items = 4, testlet_id = "Survey",

categories = 4, testlet_var = 0.2)
)

Run Simulation
trt_data <- sim_trt(n_people = 500, item_structure = trt_design)

Inspect Results
1. Responses
head(trt_data$resp)

2. Item Parameters
(Notice 'testlet_loading' equals 'discrimination' for standard models)
head(trt_data$true_item_params)

3. Person Parameters (Ability + Gamma for each testlet)
head(trt_data$true_person_params)

22 trt_binary

===
Example 2: Manual Control (Theta, Gamma, and Parameters)
===

1. Manual Theta (e.g., everyone has high ability)
manual_theta <- rep(2.0, 100)

2. Manual Gamma (e.g., zero effect for T1)
manual_gamma <- rep(0, 100)

3. Item Parameters: Exact Match vs Range Sampling
custom_structure <- list(

Case A: Manual Gamma Vector
list(model = "2PLT", n_items = 5, testlet_id = "T1",

gamma_vector = manual_gamma),

Case B: Exact Parameter Match (Length of 'a' equals n_items)
list(model = "2PLT", n_items = 2, testlet_id = "T2",

a = c(0.5, 2.5)),

Case C: Range Sampling (Length of 'a' is 2, but n_items != 2)
list(model = "2PLT", n_items = 5, testlet_id = "T3",

a = c(0.5, 2.5))
)

res_custom <- sim_trt(n_people = 100, theta = manual_theta,
item_structure = custom_structure)

Verify Manual Theta
print(mean(res_custom$true_person_params$ability)) # Should be 2.0

Verify Manual Gamma (T1 should be 0)
print(head(res_custom$true_person_params$testlet_T1))

Verify Exact Match (T2 discrimination should be 0.5 and 2.5)
print(res_custom$true_item_params[res_custom$true_item_params$testlet_id == "T2",

"discrimination"])

trt_binary Unidimensional Binary (Dichotomous) Testlet Response Theory Esti-
mation

Description

Estimates item and person parameters for Unidimensional Binary (Dichotomous) Testlet response
models using Penalized Expectation-Maximization or Joint Maximum Likelihood Estimation with
stabilization.

trt_binary 23

Usage

trt_binary(
data,
group,
model = c("RaschT", "2PLT", "3PLT", "BiFT"),
method = c("EM", "MLE"),
control = list()

)

Arguments

data A data.frame of binary responses (0/1). Rows=persons, Cols=items in testlets.

group A list defining testlet structures. Example: list(c(1,2,3), c(4,5,6)).

model Character. One of "RaschT" (Rasch Testlet), "2PLT" (2-Parameter Logistic Test-
let), "3PLT" (3-Parameter Logistic Testlet), "BiFT" (Bifactor).

method Character. "EM" (Marginal Maximum Likelihood via Expectation-Maximization)
or "MLE" (Joint Maximum Likelihood).

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).
• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: Estimated item parameters.

• person_params: Estimated person abilities and testlet effects.

• model_fit: A data frame containing iterations and fit statistics such as Akaike’s Information
Criterion (AIC), the Bayesian Information Criterion (BIC), and Log-Likelihood.

Examples

--- Example: Simulation (2PLT) ---
set.seed(2025)
n_persons <- 500
n_testlets <- 3
items_per_testlet <- 3
n_items <- n_testlets * items_per_testlet

1. Generate Parameters
Discrimination (a): Varying -> 2PLT
a_true <- runif(n_items, 0.8, 1.5)

24 trt_poly

Difficulty (b)
b_true <- seq(-1, 1, length.out = n_items)
Testlet Variances (Sigma)
sigma_true <- c(1.0, 1.5, 2.0)

2. Generate Person Params
theta_true <- rnorm(n_persons, 0, 1)
gamma_matrix <- matrix(0, nrow = n_persons, ncol = n_testlets)
for(d in 1:n_testlets) {

gamma_matrix[, d] <- rnorm(n_persons, 0, sigma_true[d])
}

3. Generate Responses
resp_matrix <- matrix(0, nrow = n_persons, ncol = n_items)
colnames(resp_matrix) <- paste0("Item_", 1:n_items)
group_list <- list()

idx_counter <- 1
for(d in 1:n_testlets) {

indices <- idx_counter:(idx_counter + items_per_testlet - 1)
group_list[[d]] <- indices

for(i in indices) {
2PLT Model: a * (theta + gamma - b)
lin <- a_true[i] * (theta_true + gamma_matrix[, d] - b_true[i])
prob <- 1 / (1 + exp(-lin))
resp_matrix[, i] <- rbinom(n_persons, 1, prob)

}
idx_counter <- idx_counter + items_per_testlet

}
df_sim <- as.data.frame(resp_matrix)

4. Run Estimation
We use "2PLT" because data was generated with varying 'a'
res <- trt_binary(

data = df_sim,
group = group_list,
model = "2PLT",
method = "EM",
control = list(max_iter = 20, verbose = FALSE)

)

head(res$item_params)
head(res$person_params)

trt_poly Unidimensional Polytomous Testlet Response Theory Estimation

trt_poly 25

Description

Estimates item and person parameters for Polytomous Testlet models using Robust Newton-Raphson
optimization.

Usage

trt_poly(
data,
group,
model = c("GRT", "PCMT", "BiFT"),
method = c("MLE", "EM"),
control = list()

)

Arguments

data A data.frame of polytomous responses. Rows=persons, Cols=items in testlets.

group A list defining testlet structures. Example: list(c(1,2,3), c(4,5,6)).

model Character. "GRT" (Graded Response Model), "PCMT" (Partial Credit Model
for Testlet), or "BiFT" (Biffactor).

method Character. "EM" (Marginal Maximum Likelihood via Expectation-Maximization)
or "MLE" (Joint Maximum Likelihood).

control A list of control parameters for the estimation algorithm:

• max_iter: Maximum number of EM iterations (default = 100).
• converge_tol: Convergence criterion for parameter change (default = 1e-

4).
• theta_range: Numeric vector of length 2 specifying the integration grid

bounds (default = c(-4, 4)).
• quad_points: Number of quadrature points (default = 21).
• verbose: Logical; if TRUE, prints progress to console.

Value

A list containing:

• item_params: A data frame of estimated item parameters.

• person_params: A data frame of estimated person abilities and testlet effects .

• model_fit: A data frame containing iterations and fit statistics such as Akaike’s Information
Criterion (AIC), the Bayesian Information Criterion (BIC), and Log-Likelihood.

Examples

--- Example: Simulation (Mixed Categories GRT) ---
set.seed(42)
N <- 500; J <- 16

Define Groups (4 Testlets)

26 trt_poly

groups <- list(c(1:4), c(5:8), c(9:12), c(13:16))

Define Categories (Binary, 3-cat, 4-cat, Mixed)
Items 1-4: 2 cats; 5-8: 3 cats; 9-12: 4 cats; 13-16: mixed
cats <- c(rep(2, 4), rep(3, 4), rep(4, 4), 3, 5, 3, 5)

1. Generate Parameters
theta <- rnorm(N)
Gamma for 4 testlets (SD = 0.8)
gamma <- matrix(rnorm(N * 4, 0, 0.8), N, 4)

a <- rlnorm(J, 0, 0.2)
b_list <- vector("list", J)

Generate Thresholds based on category count
for(j in 1:J) {

n_thresh <- cats[j] - 1
if(n_thresh == 1) {

b_list[[j]] <- rnorm(1)
} else {

Spread thresholds
b_list[[j]] <- sort(rnorm(1) + seq(-1, 1, length.out=n_thresh))

}
}

2. Generate Responses (GRT Logic)
resp <- matrix(NA, N, J)
colnames(resp) <- paste0("Item_", 1:J)

for(i in 1:N) {
for(j in 1:J) {

Identify Testlet ID
tid <- which(sapply(groups, function(x) j %in% x))
eff <- theta[i] + gamma[i, tid]

Calculate Probabilities (Graded Response)
K <- cats[j]
probs <- numeric(K)
P_prev <- 1
for(k in 1:(K-1)) {

term <- a[j] * (eff - b_list[[j]][k])
P_star <- 1 / (1 + exp(-term))
probs[k] <- P_prev - P_star
P_prev <- P_star

}
probs[K] <- P_prev

Sample Response
resp[i, j] <- sample(0:(K-1), 1, prob = probs)

}
}
df_sim <- as.data.frame(resp)

trt_poly 27

3. Run Estimation
fit <- trt_poly(

data = df_sim,
group = groups,
model = "GRT",
method = "EM",
control = list(max_iter = 20, verbose = FALSE)

)

head(fit$item_params)
head(fit$person_params)

Index

∗ datasets
ela1, 4
ela2, 4

binary_irt, 2

ela1, 4
ela2, 4
equate_irt, 5

fix_person, 10
fixed_item, 8

irt_trt, 12

mixed_irt, 14

polytomous_irt, 17

sim_irt, 19
sim_trt, 20

trt_binary, 22
trt_poly, 24

28

	binary_irt
	ela1
	ela2
	equate_irt
	fixed_item
	fix_person
	irt_trt
	mixed_irt
	polytomous_irt
	sim_irt
	sim_trt
	trt_binary
	trt_poly
	Index

