
Package ‘tinyplot’
June 3, 2025

Type Package

Title Lightweight Extension of the Base R Graphics System

Version 0.4.1

Date 2025-06-02

Description Lightweight extension of the base R graphics system, with support
for automatic legends, facets, themes, and various other enhancements.

License Apache License (>= 2)

Depends R (>= 4.0.0)

Imports graphics, grDevices, stats, tools, utils

Suggests altdoc (>= 0.5.0), fontquiver, png, rsvg, svglite (>= 2.2.0),
tinytest, tinysnapshot (>= 0.0.3), knitr

Encoding UTF-8

RoxygenNote 7.3.2

URL https://grantmcdermott.com/tinyplot/

BugReports https://github.com/grantmcdermott/tinyplot/issues

NeedsCompilation no

Author Grant McDermott [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7883-8573>),

Vincent Arel-Bundock [aut] (ORCID:
<https://orcid.org/0000-0003-1995-6531>),

Achim Zeileis [aut] (ORCID: <https://orcid.org/0000-0003-0918-3766>),
Etienne Bacher [ctb]

Maintainer Grant McDermott <gmcd@amazon.com>

Repository CRAN

Date/Publication 2025-06-03 02:10:02 UTC

1

https://grantmcdermott.com/tinyplot/
https://github.com/grantmcdermott/tinyplot/issues
https://orcid.org/0000-0001-7883-8573
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0003-0918-3766

2 draw_legend

Contents

draw_legend . 2
get_saved_par . 5
tinylabel . 7
tinyplot . 8
tinyplot_add . 21
tinytheme . 22
tpar . 25
type_abline . 28
type_area . 30
type_barplot . 31
type_boxplot . 32
type_density . 34
type_errorbar . 36
type_function . 37
type_glm . 38
type_histogram . 39
type_jitter . 41
type_lines . 42
type_lm . 42
type_loess . 43
type_points . 44
type_polygon . 44
type_polypath . 45
type_qq . 46
type_rect . 46
type_ridge . 47
type_rug . 51
type_segments . 53
type_spineplot . 53
type_spline . 55
type_summary . 57
type_text . 58
type_violin . 59

Index 61

draw_legend Calculate placement of legend and draw it

Description

Function used to calculate the placement of (including outside the plotting area) and drawing of
legend.

draw_legend 3

Usage

draw_legend(
legend = NULL,
legend_args = NULL,
by_dep = NULL,
lgnd_labs = NULL,
type = NULL,
pch = NULL,
lty = NULL,
lwd = NULL,
col = NULL,
bg = NULL,
cex = NULL,
gradient = FALSE,
lmar = NULL,
has_sub = FALSE,
new_plot = TRUE,
draw = TRUE

)

Arguments

legend Legend placement keyword or list, passed down from tinyplot.

legend_args Additional legend arguments to be passed to legend.

by_dep The (deparsed) "by" grouping variable name.

lgnd_labs The labels passed to legend(legend = ...).

type Plotting type(s), passed down from tinyplot.

pch Plotting character(s), passed down from tinyplot.

lty Plotting linetype(s), passed down from tinyplot.

lwd Plotting line width(s), passed down from tinyplot.

col Plotting colour(s), passed down from tinyplot.

bg Plotting character background fill colour(s), passed down from tinyplot.

cex Plotting character expansion(s), passed down from tinyplot.

gradient Logical indicating whether a continuous gradient swatch should be used to rep-
resent the colors.

lmar Legend margins (in lines). Should be a numeric vector of the form c(inner,
outer), where the first number represents the "inner" margin between the legend
and the plot, and the second number represents the "outer" margin between the
legend and edge of the graphics device. If no explicit value is provided by the
user, then reverts back to tpar("lmar") for which the default values are c(1.0,
0.1).

has_sub Logical. Does the plot have a sub-caption. Only used if keyword position is
"bottom!", in which case we need to bump the legend margin a bit further.

new_plot Logical. Should we be calling plot.new internally?

4 draw_legend

draw Logical. If FALSE, no legend is drawn but the sizes are returned. Note that
a new (blank) plot frame will still need to be started in order to perform the
calculations.

Value

No return value, called for side effect of producing a(n empty) plot with a legend in the margin.

Examples

oldmar = par("mar")

draw_legend(
legend = "right!", ## default (other options incl, "left(!)", ""bottom(!)", etc.)
legend_args = list(title = "Key", bty = "o"),
lgnd_labs = c("foo", "bar"),
type = "p",
pch = 21:22,
col = 1:2

)

The legend is placed in the outer margin...
box("figure", col = "cyan", lty = 4)
... and the plot is proportionally adjusted against the edge of this
margin.
box("plot")
You can add regular plot objects per normal now
plot.window(xlim = c(1,10), ylim = c(1,10))
points(1:10)
points(10:1, pch = 22, col = "red")
axis(1); axis(2)
etc.

Important: A side effect of draw_legend is that the inner margins have been
adjusted. (Here: The right margin, since we called "right!" above.)
par("mar")

To reset you should call `dev.off()` or just reset manually.
par(mar = oldmar)

Note that the inner and outer margin of the legend itself can be set via
the `lmar` argument. (This can also be set globally via
`tpar(lmar = c(inner, outer))`.)
draw_legend(

legend_args = list(title = "Key", bty = "o"),
lgnd_labs = c("foo", "bar"),
type = "p",
pch = 21:22,
col = 1:2,
lmar = c(0, 0.1) ## set inner margin to zero

)
box("figure", col = "cyan", lty = 4)

get_saved_par 5

par(mar = oldmar)

Continuous (gradient) legends are also supported
draw_legend(

legend = "right!",
legend_args = list(title = "Key"),
lgnd_labs = LETTERS[1:5],
col = hcl.colors(5),
gradient = TRUE ## enable gradient legend

)

par(mar = oldmar)

get_saved_par Retrieve the saved graphical parameters

Description

Convenience function for retrieving the graphical parameters (i.e., the full list of tag = value pairs
held in par) from either immediately before or immediately after the most recent tinyplot call.

Usage

get_saved_par(when = c("before", "after", "first"))

Arguments

when character. From when should the saved parameters be retrieved? Either "before"
(the default) or "after" the preceding tinyplot call.

Details

A potential side-effect of tinyplot is that it can change a user’s par settings. For example, it may ad-
just the inner and outer plot margins to make space for an automatic legend; see draw_legend. While
it is possible to immediately restore the original par settings upon exit via the tinyplot(...,
restore.par = TRUE) argument, this is not the default behaviour. The reason being that we need
to preserve the adjusted parameter settings in case users want to add further graphical annotations
to their plot (e.g., abline, text, etc.) Nevertheless, it may still prove desirable to recall and reset
these original graphical parameters after the fact (e.g., once all these extra annotations have been
added). That is the purpose of this get_saved_par function.

Of course, users may prefer to manually capture and reset graphical parameters, as per the standard
method described in the par documentation. For example:

op = par(no.readonly = TRUE) # save current par settings
<do lots of (tiny)plotting>
par(op) # reset original pars

6 get_saved_par

This standard manual approach may be safer than get_saved_par because it offers more precise
control. Specifically, the value of get_saved_par itself will be reset after ever new tinyplot call; i.e.
it may inherit an already-changed set of parameters. Users should bear these trade-offs in mind
when deciding which approach to use. As a general rule, get_saved_par offers the convenience of
resetting the original par settings even if a user forgot to save them beforehand. But one should
avoid invoking it after a series of consecutive tinyplot calls.

Finally, note that users can always call dev.off to reset all par settings to their defaults.

Value

A list of par settings.

Examples

#
Contrived example where we draw a grouped scatterplot with a legend and
manually add corresponding best fit lines for each group...
#

First draw the grouped scatterplot
tinyplot(Sepal.Length ~ Petal.Length | Species, iris)

Preserving adjusted par settings is good for adding elements to our plot
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)

)
}

Get saved par from before the preceding tinyplot call (but don't use yet)
sp = get_saved_par("before")

Note the changed margins will affect regular plots too, which is probably
not desirable
plot(1:10)

Reset the original parameters (could use `par(sp)` here)
tpar(sp)
Redraw our simple plot with our corrected right margin
plot(1:10)

#
Quick example going the other way, "correcting" for par.restore = TRUE...
#

tinyplot(Sepal.Length ~ Petal.Length | Species, iris, restore.par = TRUE)
Our added best lines will be wrong b/c of misaligned par
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s), lty = 2

tinylabel 7

)
}
grab the par settings from the _end_ of the preceding tinyplot call to fix
tpar(get_saved_par("after"))
now the best lines are correct
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)

)
}

reset again to original saved par settings before exit
tpar(sp)

tinylabel Format labels

Description

Function for formatting label appearance, e.g. axis ticks labels. This is what the top-level xaxl and
yaxl arguments from tinyplot ultimately get passed to.

Usage

tinylabel(x, labeller = NULL)

Arguments

x a numeric or character vector

labeller a formatting function to be applied to x, e.g. format, toupper, abs, or other
custom function (including from the popular scales package). Can also be one
of the following convenience strings (symbols), for which common formatting
transformations are provided: "percent" ("%"), "comma" (","), "log" ("l"),
"dollar" ("$"), "euro" ("=C"), or "sterling" ("£").

Examples

x = 1e4
tinylabel(x, "comma")
tinylabel(x, ",") # same
tinylabel(x, "$") # or "dollar"

pass to xaxl/yaxl for adjusting axes tick labels in a tinyplot call
tinyplot(I(mpg/hp) ~ hp, data = mtcars, yaxl = "%")

log example (combined with axis scaling)
tinyplot(x = 10^c(10:0), y = 0:10, type = "b", log = "x", xaxl = "log")

8 tinyplot

combine with `x/yaxb` to adjust the actual tick marks ("break points")
at the same time
tinyplot(x = 10^c(10:0), y = 0:10, type = "b", log = "x", xaxl = "log",

xaxb = 10^c(1,3,5,7,9))

#
custom function examples

example I: date formatting

dat = data.frame(
date = seq(as.Date("2000/1/1"), by = "month", length.out = 12),
trend = 1:12 + rnorm(12, sd = 1)

)

tinyplot(trend ~ date, data = dat, xaxl = function(x) format(x, "%b, %Y"))

example II: string wrapping

create a "vectorised" version of `base::strwrap` that breaks long
strings into new lines every 18 characters
strwrap18 = function(x) sapply(

strwrap(x, width = 18, simplify = FALSE),
paste,
collapse = "\n"

)

now demonstrate on a dataset with long y-tick labels
dat2 = data.frame(

x = rep(rnorm(100), 3),
y = c(
"tinyplot is a lightweight extension of the base R graphics system.",
"R is a language for statistical computing.",
"Data visualization is an essential skill."

)
)

tinytheme("bw")
tinyplot(y ~ x, data = dat2, type = "j", yaxl = strwrap18)
tinytheme()

tinyplot Lightweight extension of the base R plotting function

Description

Enhances the base plot function. Supported features include automatic legends and facets for
grouped data, additional plot types, theme customization, and so on. Users can call either tinyplot(),
or its shorthand alias plt().

tinyplot 9

Usage

tinyplot(x, ...)

Default S3 method:
tinyplot(
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
by = NULL,
facet = NULL,
facet.args = NULL,
data = NULL,
type = NULL,
legend = NULL,
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
xlim = NULL,
ylim = NULL,
axes = TRUE,
xaxt = NULL,
yaxt = NULL,
xaxs = NULL,
yaxs = NULL,
xaxb = NULL,
yaxb = NULL,
xaxl = NULL,
yaxl = NULL,
log = "",
flip = FALSE,
frame.plot = NULL,
grid = NULL,
palette = NULL,
pch = NULL,
lty = NULL,
lwd = NULL,
col = NULL,
bg = NULL,
fill = NULL,
alpha = NULL,
cex = 1,
add = FALSE,
draw = NULL,

10 tinyplot

empty = FALSE,
restore.par = FALSE,
file = NULL,
width = NULL,
height = NULL,
asp = NA,
...

)

S3 method for class 'formula'
tinyplot(
x = NULL,
data = parent.frame(),
facet = NULL,
facet.args = NULL,
type = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xlim = NULL,
ylim = NULL,
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
axes = TRUE,
frame.plot = NULL,
asp = NA,
grid = NULL,
pch = NULL,
col = NULL,
lty = NULL,
lwd = NULL,
restore.par = FALSE,
formula = NULL,
subset = NULL,
na.action = NULL,
drop.unused.levels = TRUE,
...

)

S3 method for class 'density'
tinyplot(x = NULL, type = c("l", "area"), ...)

plt(x, ...)

tinyplot 11

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any rea-
sonable way of defining the coordinates is acceptable; most likely the names of
existing vectors or columns of data frames. See the ’Examples’ section below,
or the function xy.coords for details. If supplied separately, x and y must be of
the same length.

... other graphical parameters. If type is a character specification (such as "hist")
then any argument names that match those from the corresponding type_*()
function (such as type_hist) are passed on to that. All remaining arguments
from ... can be further graphical parameters, see par).

xmin, xmax, ymin, ymax
minimum and maximum coordinates of relevant area or interval plot types.
Only used when the type argument is one of "rect" or "segments" (where
all four min-max coordinates are required), or "pointrange", "errorbar", or
"ribbon" (where only ymin and ymax required alongside x). In the formula
method the arguments can be specified as ymin = var if var is a variable in
data.

by grouping variable(s). The default behaviour is for groups to be represented in
the form of distinct colours, which will also trigger an automatic legend. (See
legend below for customization options.) However, groups can also be pre-
sented through other plot parameters (e.g., pch or lty) by passing an appropriate
"by" keyword; see Examples. Note that continuous (i.e., gradient) colour leg-
ends are also supported if the user passes a numeric or integer to by. To group
by multiple variables, wrap them with interaction.

facet the faceting variable(s) that you want arrange separate plot windows by. Can be
specified in various ways:

• In "atomic" form, e.g. facet = fvar. To facet by multiple variables in
atomic form, simply interact them, e.g. interaction(fvar1, fvar2) or
factor(fvar1):factor(fvar2).

• As a one-sided formula, e.g. facet = ~fvar. Multiple variables can be
specified in the formula RHS, e.g. ~fvar1 + fvar2 or ~fvar1:fvar2. Note
that these multi-variable cases are all treated equivalently and converted
to interaction(fvar1, fvar2, ...) internally. (No distinction is made
between different types of binary operators, for example, and so f1+f2 is
treated the same as f1:f2, is treated the same as f1*f2, etc.)

• As a two-side formula, e.g. facet = fvar1 ~ fvar2. In this case, the facet
windows are arranged in a fixed grid layout, with the formula LHS defining
the facet rows and the RHS defining the facet columns. At present only
single variables on each side of the formula are well supported. (We don’t
recommend trying to use multiple variables on either the LHS or RHS of
the two-sided formula case.)

• As a special "by" convenience keyword, in which case facets will match
the grouping variable(s) passed to by above.

facet.args an optional list of arguments for controlling faceting behaviour. (Ignored if
facet is NULL.) Supported arguments are as follows:

12 tinyplot

• nrow, ncol for overriding the default "square" facet window arrangement.
Only one of these should be specified, but nrow will take precedence if both
are specified together. Ignored if a two-sided formula is passed to the main
facet argument, since the layout is arranged in a fixed grid.

• free a logical value indicating whether the axis limits (scales) for each
individual facet should adjust independently to match the range of the data
within that facet. Default is FALSE. Separate free scaling of the x- or y-axis
(i.e., whilst holding the other axis fixed) is not currently supported.

• fmar a vector of form c(b,l,t,r) for controlling the base margin between
facets in terms of lines. Defaults to the value of tpar("fmar"), which
should be c(1,1,1,1), i.e. a single line of padding around each individual
facet, assuming it hasn’t been overridden by the user as part their global
tpar settings. Note some automatic adjustments are made for certain lay-
outs, and depending on whether the plot is framed or not, to reduce excess
whitespace. See tpar for more details.

• cex, font, col, bg, border for adjusting the facet title text and background.
Default values for these arguments are inherited from tpar (where they take
a "facet." prefix, e.g. tpar("facet.cex")). The latter function can also be
used to set these features globally for all tinyplot plots.

data a data.frame (or list) from which the variables in formula should be taken. A
matrix is converted to a data frame.

type character string or call to a type_*() function giving the type of plot desired.

• NULL (default): Choose a sensible type for the type of x and y inputs (i.e.,
usually "p").

• 1-character values supported by plot:
– "p" Points
– "l" Lines
– "b" Both points and lines
– "c" Empty points joined by lines
– "o" Overplotted points and lines
– "s" Stair steps
– "S" Stair steps
– "h" Histogram-like vertical lines
– "n" Empty plot over the extent of the data

• tinyplot-specific types. These fall into several categories:
– Shapes:

* "area" / type_area(): Plots the area under the curve from y = 0 to
y = f(x).

* "errorbar" / type_errorbar(): Adds error bars to points; requires
ymin and ymax.

* "pointrange" / type_pointrange(): Combines points with error
bars.

* "polygon" / type_polygon(): Draws polygons.

* "polypath" / type_polypath(): Draws a path whose vertices are
given in x and y.

tinyplot 13

* "rect" / type_rect(): Draws rectangles; requires xmin, xmax, ymin,
and ymax.

* "ribbon" / type_ribbon(): Creates a filled area between ymin and
ymax.

* "segments" / type_segments(): Draws line segments between pairs
of points.

* "text" / type_text(): Add text annotations.
– Visualizations:

* "barplot" / type_barplot(): Creates a bar plot.

* "boxplot" / type_boxplot(): Creates a box-and-whisker plot.

* "density" / type_density(): Plots the density estimate of a vari-
able.

* "histogram" / type_histogram(): Creates a histogram of a single
variable.

* "jitter" / type_jitter(): Jittered points.

* "qq" / type_qq(): Creates a quantile-quantile plot.

* "ridge" / type_ridge(): Creates a ridgeline (aka joy) plot.

* "rug" / type_rug(): Adds a rug to an existing plot.

* "spineplot" / type_spineplot(): Creates a spineplot or spino-
gram.

* "violin" / type_violin(): Creates a violin plot.
– Models:

* "loess" / type_loess(): Local regression curve.

* "lm" / type_lm(): Linear regression line.

* "glm" / type_glm(): Generalized linear model fit.

* "spline" / type_spline(): Cubic (or Hermite) spline interpola-
tion.

– Functions:

* type_abline(): line(s) with intercept and slope.

* type_hline(): horizontal line(s).

* type_vline(): vertical line(s).

* type_function(): arbitrary function.

* type_summary(): summarize y by unique values of x.

legend one of the following options:

• NULL (default), in which case the legend will be determined by the group-
ing variable. If there is no group variable (i.e., by is NULL) then no legend
is drawn. If a grouping variable is detected, then an automatic legend is
drawn to the outer right of the plotting area. Note that the legend title and
categories will automatically be inferred from the by argument and under-
lying data.

• A convenience string indicating the legend position. The string should cor-
respond to one of the position keywords supported by the base legend
function, e.g. "right", "topleft", "bottom", etc. In addition, tinyplot sup-
ports adding a trailing exclamation point to these keywords, e.g. "right!",

14 tinyplot

"topleft!", or "bottom!". This will place the legend outside the plotting area
and adjust the margins of the plot accordingly. Finally, users can also turn
off any legend printing by specifying "none".

• Logical value, where TRUE corresponds to the default case above (same
effect as specifying NULL) and FALSE turns the legend off (same effect as
specifying "none").

• A list or, equivalently, a dedicated legend() function with supported leg-
end arguments, e.g. "bty", "horiz", and so forth.

main a main title for the plot, see also title.

sub a subtitle for the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

axes logical or character. Should axes be drawn (TRUE or FALSE)? Or alternatively
what type of axes should be drawn: "standard" (with axis, ticks, and labels;
equivalent to TRUE), "none" (no axes; equivalent to FALSE), "ticks" (only ticks
and labels without axis line), "labels" (only labels without ticks and axis line),
"axis" (only axis line and labels but no ticks). To control this separately for the
two axes, use the character specifications for xaxt and/or yaxt.

xaxt, yaxt character specifying the type of x-axis and y-axis, respectively. See axes for the
possible values.

xaxs, yaxs character specifying the style of the interval calculation used for the x-axis and
y-axis, respectively. See par for the possible values.

xaxb, yaxb numeric vector (or character vector, if appropriate) giving the break points at
which the axis tick-marks are to be drawn. Break points outside the range of the
data will be ignored if the associated axis variable is categorical, or an explicit
x/ylim range is given.

xaxl, yaxl a function or a character keyword specifying the format of the x- or y-axis tick
labels. Note that this is a post-processing step that affects the appearance of
the tick labels only; use in conjunction with x/yaxb if you would like to ad-
just the position of the tick marks too. In addition to user-supplied formatting
functions (e.g., format, toupper, abs, or other custom function), several conve-
nience keywords (or their symbol equivalents) are available for common format-
ting transformations: "percent" ("%"), "comma" (","), "log" ("l"), "dollar"
("$"), "euro" ("=C"), or "sterling" ("£"). See the tinylabel documentation
for examples.

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

flip logical. Should the plot orientation be flipped, so that the y-axis is on the hori-
zontal plane and the x-axis is on the vertical plane? Default is FALSE.

tinyplot 15

frame.plot a logical indicating whether a box should be drawn around the plot. Can also
use frame as an acceptable argument alias. The default is to draw a frame if
both axis types (set via axes, xaxt, or yaxt) include axis lines.

grid argument for plotting a background panel grid, one of either:

• a logical (i.e., TRUE to draw the grid), or
• a panel grid plotting function like grid(). Note that this argument replaces

the panel.first and panel.last arguments from base plot() and tries to
make the process more seamless with better default behaviour. The default
behaviour is determined by (and can be set globally through) the value of
tpar("grid").

palette one of the following options:

• NULL (default), in which case the palette will be chosen according to the
class and cardinality of the "by" grouping variable. For non-ordered fac-
tors or strings with a reasonable number of groups, this will inherit directly
from the user’s default palette (e.g., "R4"). In other cases, including or-
dered factors and high cardinality, the "Viridis" palette will be used instead.
Note that a slightly restricted version of the "Viridis" palette—where ex-
treme color values have been trimmed to improve visual perception—will
be used for ordered factors and continuous variables. In the latter case of a
continuous grouping variable, we also generate a gradient legend swatch.

• A convenience string corresponding to one of the many palettes listed by
either palette.pals() or hcl.pals(). Note that the string can be case-
insensitive (e.g., "Okabe-Ito" and "okabe-ito" are both valid).

• A palette-generating function. This can be "bare" (e.g., palette.colors)
or "closed" with a set of named arguments (e.g., palette.colors(palette
= "Okabe-Ito", alpha = 0.5)). Note that any unnamed arguments will be
ignored and the key n argument, denoting the number of colours, will auto-
matically be spliced in as the number of groups.

• A vector or list of colours, e.g. c("darkorange", "purple", "cyan4"). If
too few colours are provided for a discrete (qualitative) set of groups, then
the colours will be recycled with a warning. For continuous (sequential)
groups, a gradient palette will be interpolated.

pch plotting "character", i.e., symbol to use. Character, integer, or vector of length
equal to the number of categories in the by variable. See pch. In addition, users
can supply a special pch = "by" convenience argument, in which case the char-
acters will automatically loop over the number groups. This automatic looping
will begin at the global character value (i.e., par("pch")) and recycle as neces-
sary.

lty line type. Character, integer, or vector of length equal to the number of cate-
gories in the by variable. See lty. In addition, users can supply a special lty =
"by" convenience argument, in which case the line type will automatically loop
over the number groups. This automatic looping will begin at the global line
type value (i.e., par("lty")) and recycle as necessary.

lwd line width. Numeric scalar or vector of length equal to the number of categories
in the by variable. See lwd. In addition, users can supply a special lwd = "by"
convenience argument, in which case the line width will automatically loop over

16 tinyplot

the number of groups. This automatic looping will be centered at the global line
width value (i.e.,

col plotting color. Character, integer, or vector of length equal to the number of cat-
egories in the by variable. See col. Note that the default behaviour in tinyplot
is to vary group colors along any variables declared in the by argument. Thus,
specifying colors manually should not be necessary unless users wish to override
the automatic colors produced by this grouping process. Typically, this would
only be done if grouping features are deferred to some other graphical parameter
(i.e., passing the "by" keyword to one of pch, lty, lwd, or bg; see below.)

bg background fill color for the open plot symbols 21:25 (see points.default),
as well as ribbon and area plot types. Users can also supply either one of two
special convenience arguments that will cause the background fill to inherit the
automatic grouped coloring behaviour of col:

• bg = "by" will insert a background fill that inherits the main color mappings
from col.

• by = <numeric[0,1]> (i.e., a numeric in the range [0,1]) will insert a
background fill that inherits the main color mapping(s) from col, but with
added alpha-transparency.

For both of these convenience arguments, note that the (grouped) bg mappings
will persist even if the (grouped) col defaults are themselves overridden. This
can be useful if you want to preserve the grouped palette mappings by back-
ground fill but not boundary color, e.g. filled points. See examples.

fill alias for bg. If non-NULL values for both bg and fill are provided, then the
latter will be ignored in favour of the former.

alpha a numeric in the range [0,1] for adjusting the alpha channel of the color palette,
where 0 means transparent and 1 means opaque. Use fractional values, e.g. 0.5
for semi-transparency.

cex character expansion. A numerical vector (can be a single value) giving the
amount by which plotting characters and symbols should be scaled relative to the
default. Note that NULL is equivalent to 1.0, while NA renders the characters
invisible.

add logical. If TRUE, then elements are added to the current plot rather than draw-
ing a new plot window. Note that the automatic legend for the added elements
will be turned off. See also tinyplot_add, which provides a convenient wrapper
around this functionality for layering on top of an existing plot without having
to repeat arguments.

draw a function that draws directly on the plot canvas (before x and y are plotted). The
draw argument is primarily useful for adding common elements to each facet
of a faceted plot, e.g. abline or text. Note that this argument is somewhat
experimental and that no internal checking is done for correctness; the provided
argument is simply captured and evaluated as-is. See Examples.

empty logical indicating whether the interior plot region should be left empty. The
default is FALSE. Setting to TRUE has a similar effect to invoking type = "n"
above, except that any legend artifacts owing to a particular plot type (e.g., lines
for type = "l" or squares for type = "area") will still be drawn correctly along-
side the empty plot. In contrast,type = "n" implicitly assumes a scatterplot and
so any legend will only depict points.

tinyplot 17

restore.par a logical value indicating whether the par settings prior to calling tinyplot
should be restored on exit. Defaults to FALSE, which makes it possible to add
elements to the plot after it has been drawn. However, note the the outer margins
of the graphics device may have been altered to make space for the tinyplot
legend. Users can opt out of this persistent behaviour by setting to TRUE in-
stead. See also get_saved_par for another option to recover the original par
settings, as well as longer discussion about the trade-offs involved.

file character string giving the file path for writing a plot to disk. If specified, the
plot will not be displayed interactively, but rather sent to the appropriate exter-
nal graphics device (i.e., png, jpeg, pdf, or svg). As a point of convenience,
note that any global parameters held in (t)par are automatically carried over
to the external device and don’t need to be reset (in contrast to the conventional
base R approach that requires manually opening and closing the device). The
device type is determined by the file extension at the end of the provided path,
and must be one of ".png", ".jpg" (".jpeg"), ".pdf", or ".svg". (Other file types
may be supported in the future.) The file dimensions can be controlled by the
corresponding width and height arguments below, otherwise will fall back to
the "file.width" and "file.height" values held in tpar (i.e., both default-
ing to 7 inches, and where the default resolution for bitmap files is also specified
as 300 DPI).

width numeric giving the plot width in inches. Together with height, typically used
in conjunction with the file argument above, overriding the default values held
in tpar("file.width", "file.height"). If either width or height is spec-
ified, but a corresponding file argument is not provided as well, then a new
interactive graphics device dimensions will be opened along the given dimen-
sions. Note that this interactive resizing may not work consistently from within
an IDE like RStudio that has an integrated graphics windows.

height numeric giving the plot height in inches. Same considerations as width (above)
apply, e.g. will default to tpar("file.height") if not specified.

asp the y/xy/x aspect ratio, see plot.window.
formula a formula that optionally includes grouping variable(s) after a vertical bar, e.g.

y ~ x | z. One-sided formulae are also permitted, e.g. ~ y | z. Only a single
y and x variable (if any) must be specified but multiple grouping variables can
be included in different ways, e.g. y ~ x | z1:z2 or y ~ x | z1 + z2. (These two
representations are treated as equivalent; both are parsed as interaction(z1,
z2) internally.) If arithmetic operators are used for transforming variables, they
should be wrapped in I(), e.g., I(y1/y2) ~ x. Note that the formula and x
arguments should not be specified in the same call.

subset, na.action, drop.unused.levels
arguments passed to model.frame when extracting the data from formula and
data.

Details

Disregarding the enhancements that it supports, tinyplot tries as far as possible to mimic the
behaviour and syntax logic of the original base plot function. Users should therefore be able to
swap out existing plot calls for tinyplot (or its shorthand alias plt), without causing unexpected
changes to the output.

18 tinyplot

Value

No return value, called for side effect of producing a plot.

Examples

aq = transform(
airquality,
Month = factor(Month, labels = month.abb[unique(Month)])

)

In most cases, `tinyplot` should be a drop-in replacement for regular
`plot` calls. For example:

op = tpar(mfrow = c(1, 2))
plot(0:10, main = "plot")
tinyplot(0:10, main = "tinyplot")
tpar(op) # restore original layout

Aside: `tinyplot::tpar()` is a (near) drop-in replacement for `par()`

Unlike vanilla plot, however, tinyplot allows you to characterize groups
using either the `by` argument or equivalent `|` formula syntax.

with(aq, tinyplot(Day, Temp, by = Month)) ## atomic method
tinyplot(Temp ~ Day | Month, data = aq) ## formula method

(Notice that we also get an automatic legend.)

You can also use the equivalent shorthand `plt()` alias if you'd like to
save on a few keystrokes

plt(Temp ~ Day | Month, data = aq) ## shorthand alias

Use standard base plotting arguments to adjust features of your plot.
For example, change `pch` (plot character) to get filled points and `cex`
(character expansion) to increase their size.

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2

)

We can add alpha transparency for overlapping points

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2,
alpha = 0.3

tinyplot 19

)

To get filled points with a common solid background color, use an
appropriate plotting character (21:25) and combine with one of the special
`bg` convenience arguments.
tinyplot(

Temp ~ Day | Month,
data = aq,
pch = 21, # use filled circles
cex = 2,
bg = 0.3, # numeric in [0,1] adds a grouped background fill with transparency
col = "black" # override default color mapping; give all points a black border

)

Converting to a grouped line plot is a simple matter of adjusting the
`type` argument.

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l"

)

Similarly for other plot types, including some additional ones provided
directly by tinyplot, e.g. density plots or internal plots (ribbons,
pointranges, etc.)

tinyplot(
~ Temp | Month,
data = aq,
type = "density",
fill = "by"

)

Facet plots are supported too. Facets can be drawn on their own...

tinyplot(
Temp ~ Day,
facet = ~Month,
data = aq,
type = "area",
main = "Temperatures by month"

)

... or combined/contrasted with the by (colour) grouping.

aq = transform(aq, Summer = Month %in% c("Jun", "Jul", "Aug"))
tinyplot(

Temp ~ Day | Summer,
facet = ~Month,
data = aq,
type = "area",
palette = "dark2",

20 tinyplot

main = "Temperatures by month and season"
)

Users can override the default square window arrangement by passing `nrow`
or `ncol` to the helper facet.args argument. Note that we can also reduce
axis label repetition across facets by turning the plot frame off.

tinyplot(
Temp ~ Day | Summer,
facet = ~Month, facet.args = list(nrow = 1),
data = aq,
type = "area",
palette = "dark2",
frame = FALSE,
main = "Temperatures by month and season"

)

Use a two-sided formula to arrange the facet windows in a fixed grid.
LHS -> facet rows; RHS -> facet columns

aq$hot = ifelse(aq$Temp >= 75, "hot", "cold")
aq$windy = ifelse(aq$Wind >= 15, "windy", "calm")
tinyplot(

Temp ~ Day,
facet = windy ~ hot,
data = aq

)

To add common elements to each facet, use the `draw` argument

tinyplot(
Temp ~ Day,
facet = windy ~ hot,
data = aq,
draw = abline(h = 75, lty = 2, col = "hotpink")

)

The (automatic) legend position and look can be customized using
appropriate arguments. Note the trailing "!" in the `legend` position
argument below. This tells `tinyplot` to place the legend _outside_ the plot
area.

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l",
legend = legend("bottom!", title = "Month of the year", bty = "o")

)

The default group colours are inherited from either the "R4" or "Viridis"
palettes, depending on the number of groups. However, all palettes listed
by `palette.pals()` and `hcl.pals()` are supported as convenience strings,
or users can supply a valid palette-generating function for finer control

tinyplot_add 21

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l",
palette = "tableau"

)

It's possible to customize the look of your plots by setting graphical
parameters (e.g., via `(t)par`)... But a more convenient way is to just use
built-in themes (see `?tinytheme`).

tinytheme("clean2")
tinyplot(

Temp ~ Day | Month,
data = aq,
type = "b",
alpha = 0.5,
main = "Daily temperatures by month",
sub = "Brought to you by tinyplot"

)
reset the theme
tinytheme()

For more examples and a detailed walkthrough, please see the introductory
tinyplot tutorial available online:
https://grantmcdermott.com/tinyplot/vignettes/introduction.html

tinyplot_add Add new elements to the current tinyplot

Description

This convenience function grabs the preceding tinyplot call and updates it with any new argu-
ments that have been explicitly provided by the user. It then injects add=TRUE and evaluates the
updated call, thereby drawing a new layer on top of the existing plot. plt_add() is a shorthand
alias for tinyplot_add().

Usage

tinyplot_add(...)

plt_add(...)

Arguments

... All named arguments override arguments from the previous calls. Arguments
not supplied to tinyplot_add remain unchanged from the previous call.

22 tinytheme

Value

No return value, called for side effect of producing a plot.

Limitations

• tinyplot_add() works reliably only when adding to a plot originally created using the
tinyplot.formula method with a valid data argument. We cannot guarantee correct be-
havior if the original plot was created with the atomic tinyplot.default method, due to
potential environment mismatches. (An exception is when the original plot arguments—x, y,
etc.—are located in the global environment.)

• There are two important limitations when adding layers to faceted plots:
– Avoid resizing the graphics window after the first layer is drawn, since it will lead to any

subsequent layers being misaligned. This is a limitation of base R’s graphics engine and
cannot be reliably preempted or corrected by tinyplot. Note that resizing non-faceted
plots is always fine, though. See: https://github.com/grantmcdermott/tinyplot/
issues/313

– On Positron, specifically, alignment issues may occur even without resizing. A warning
will be triggered when (i) Positron is detected and (ii) a user attempts to add layers to a
faceted plot. Again, this issue is not present for non-faceted plots. See the upstream bug
report: https://github.com/posit-dev/positron/issues/7316

• Automatic legends for the added elements will be turned off.

Examples

tinyplot(Sepal.Width ~ Sepal.Length | Species,
facet = ~Species,
data = iris)

tinyplot_add(type = "lm") ## or : plt_add(type = "lm")

Note: the previous function is equivalent to (but much more convenient
than) re-writing the full call with the new type and `add=TRUE`:

tinyplot(Sepal.Width ~ Sepal.Length | Species,
facet = ~Species,
data = iris,
type = "lm",
add = TRUE)

tinytheme Set or Reset Plot Themes for tinyplot

Description

The tinytheme function sets or resets the theme for plots created with tinyplot. Themes control
the appearance of plots, such as text alignment, font styles, axis labels, and even dynamic margin
adjustment to reduce whitespace.

https://github.com/grantmcdermott/tinyplot/issues/313
https://github.com/grantmcdermott/tinyplot/issues/313
https://github.com/posit-dev/positron/issues/7316

tinytheme 23

Usage

tinytheme(
theme = c("default", "basic", "clean", "clean2", "bw", "classic", "minimal", "ipsum",

"dark", "ridge", "ridge2", "tufte", "void"),
...

)

Arguments

theme A character string specifying the name of the theme to apply. Themes are ar-
ranged in an approximate hierarchy, adding or subtracting elements in the order
presented below. Note that several themes are dynamic, in the sense that they
attempt to reduce whitespace in a way that is responsive to the length of axes
labels, tick marks, etc. These dynamic plots are marked with an asterisk (*)
below.

• "default": inherits the user’s default base graphics settings.
• "basic": light modification of "default", only adding filled points, a

panel background grid, and light gray background to facet titles.
• "clean" (*): builds on "basic" by moving the subtitle above the plotting

area, adding horizontal axis labels, employing tighter default plot margins
and title gaps to reduce whitespace, and setting different default palettes
("Tableau 10" for discrete colors and "agSunset" for gradient colors). The
first of our dynamic themes and the foundation for several derivative themes
that follow below.

• "clean2" (*): removes the plot frame (box) from "clean".
• "classic" (*): connects the axes in a L-shape, but removes the other top

and right-hand edges of the plot frame (box). Also sets the "Okabe-Ito"
palette as a default for discrete colors. Inspired by the ggplot2 theme of the
same name.

• "bw" (*): similar to "clean", except uses thinner lines for the plot frame
(box), solid grid lines, and sets the "Okabe-Ito" palette as a default for dis-
crete colors. Inspired by the ggplot2 theme of the same name.

• "minimal" (*): removes the plot frame (box) from "bw", as well as the
background for facet titles. Inspired by the ggplot2 theme of the same
name.

• "ipsum" (*): similar to "minimal", except subtitle is italicised and axes
titles are aligned to the far edges. Inspired by the hrbrthemes theme of the
same name for ggplot2.

• "dark" (*): similar to "minimal", but set against a dark background with
foreground and a palette colours lightened for appropriate contrast.

• "ridge" (*): a specialized theme for ridge plots (see type_ridge()). Builds
off of "clean", but adds ridge-specific tweaks (e.g. default "Zissou 1"
palette for discrete colors, solid horizontal grid lines, and minor adjust-
ments to y-axis labels). Not recommended for non-ridge plots.

• "ridge2" (*): removes the plot frame (box) from "ridge", but retains the
x-axis line. Again, not recommended for non-ridge plots.

24 tinytheme

• "tufte": floating axes and minimalist plot artifacts in the style of Edward
Tufte.

• "void": switches off all axes, titles, legends, etc.

... Named arguments to override specific theme settings. These arguments are
passed to tpar() and take precedence over the predefined settings in the se-
lected theme.

Details

Sets a list of graphical parameters using tpar()

To reset the theme to default settings (no customization), call tinytheme() without arguments.

Caveat emptor: Themes are a somewhat experimental feature of tinyplot. While we feel confi-
dent that themes should work as expected for most "standard" cases, there may be some sharp edges.
Please report any unexpected behaviour to our GitHub repo: https://github.com/grantmcdermott/
tinyplot/issues

Known current limitations include:

• Themes do not work well when legend = "top!".

• Dynamic margin spacing does not account for multi-line strings (e.g., axes or main titles that
contain "\n").

Value

The function returns nothing. It is called for its side effects.

See Also

tpar which does the heavy lifting under the hood.

Examples

Reusable plot function
p = function() tinyplot(

lat ~ long | depth, data = quakes,
main = "Earthquakes off Fiji",
sub = "Data courtesy of the Harvard PRIM-H project"

)
p()

Set a theme
tinytheme("bw")
p()

Try a different theme
tinytheme("dark")
p()

Customize the theme by overriding default settings
tinytheme("bw", fg = "green", font.main = 2, font.sub = 3, family = "Palatino")
p()

https://github.com/grantmcdermott/tinyplot/issues
https://github.com/grantmcdermott/tinyplot/issues

tpar 25

Another custom theme example
tinytheme("bw", font.main = 2, col.axis = "darkcyan", family = "HersheyScript")
p()

Aside: One or two specialized themes are only meant for certain plot types
tinytheme("ridge2")
tinyplot(I(cut(lat, 10)) ~ depth, data = quakes, type = "ridge")

Reset the theme
tinytheme()
p()

Themes showcase
We'll use a slightly more intricate plot (long y-axis labs and facets)
to demonstrate dynamic margin adjustment etc.

thms = eval(formals(tinytheme)$theme)

for (thm in thms) {
tinytheme(thm)
tinyplot(

I(Sepal.Length*1e4) ~ Petal.Length | Species, facet = "by", data = iris,
main = "Demonstration of tinyplot themes",
sub = paste0('tinytheme("', thm, '")')

)
}

Reset
tinytheme()

tpar Set or query graphical parameters

Description

Extends par, serving as a (near) drop-in replacement for setting or querying graphical parameters.
The key differences is that, beyond supporting the standard group of R graphical parameters in par,
tpar also supports additional graphical parameters that are provided by tinyplot. Similar to par,
parameters are set by passing appropriate key = value argument pairs, and multiple parameters can
be set or queried at the same time.

Usage

tpar(..., hook = FALSE)

26 tpar

Arguments

... arguments of the form key = value. This includes all of the parameters typi-
cally supported by par, as well as the tinyplot-specific ones described in the
’Graphical Parameters’ section below.

hook Logical. If TRUE, base graphical parameters persist across plots via a hook ap-
plied before each new plot (see ?setHook).

Details

The tinyplot-specific parameters are saved in an internal environment called .tpar for perfor-
mance and safety reasons. However, they can also be set at package load time via options, which
may prove convenient for users that want to enable different default behaviour at startup (e.g.,
through an .Rprofile file). These options all take a tinyplot_* prefix, e.g. options(tinyplot_grid
= TRUE, tinyplot_facet.bg = "grey90").

For their part, any "base" graphical parameters are caught dynamically and passed on to par as ap-
propriate. Technically, only parameters that satisfy par(..., no.readonly = TRUE) are evaluated.

However, note the important distinction: tpar only evaluates parameters from par if they are passed
explicitly by the user. This means that tpar should not be used to capture the (invisible) state of a
user’s entire set of graphics parameters, i.e. tpar() != par(). If you want to capture the all existing
graphics settings, then you should rather use par() instead.

Value

When parameters are set, their previous values are returned in an invisible named list. Such a list
can be passed as an argument to tpar to restore the parameter values.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

Additional Graphical Parameters

• adj.xlab: Numeric value between 0 and 1 controlling the alignment of the x-axis label.

• adj.ylab: Numeric value between 0 and 1 controlling the alignment of the y-axis label.

• cairo: Logical indicating whether cairo_pdf should be used when writing plots to PDF. If
FALSE, then pdf will be used instead, with implications for embedding (non-standard) fonts.
Only used if tinyplot(..., file = "<filename>.pdf") is called. Defaults to the value of
capabilities("cairo").

• dynmar: Logical indicating whether tinyplot should attempt dynamic adjustment of margins
to reduce whitespace and/or account for spacing of text elements (e.g., long horizontal y-axis
labels). Note that this parameter is tightly coupled to internal tinythemes() logic and should
not be adjusted manually unless you really know what you are doing or don’t mind risking
unintended consequences to your plot.

tpar 27

• facet.bg: Character or integer specifying the facet background colour. If an integer, will
correspond to the user’s default colour palette (see palette). Passed to rect. Defaults to
NULL (none).

• facet.border: Character or integer specifying the facet border colour. If an integer, will
correspond to the user’s default colour palette (see palette). Passed to rect. Defaults to NA
(none).

• facet.cex: Expansion factor for facet titles. Defaults to 1.

• facet.col: Character or integer specifying the facet text colour. If an integer, will correspond
to the user’s default global colour palette (see palette). Defaults to NULL, which is equivalent
to "black".

• facet.font: An integer corresponding to the desired font face for facet titles. For most font
families and graphics devices, one of four possible values: 1 (regular), 2 (bold), 3 (italic), or 4
(bold italic). Defaults to NULL, which is equivalent to 1 (i.e., regular).

• file.height: Numeric specifying the height (in inches) of any plot that is written to disk
using the tinyplot(..., file = X) argument. Defaults to 7.

• file.res: Numeric specifying the resolution (in dots per square inch) of any plot that is
written to disk in bitmap format (i.e., PNG or JPEG) using the tinyplot(..., file = X)
argument. Defaults to 300.

• file.width: Numeric specifying the width (in inches) of any plot that is written to disk using
the tinyplot(..., file = X) argument. Defaults to 7.

• fmar: A numeric vector of form c(b,l,t,r) for controlling the (base) margin padding, in
terms of lines, between the individual facets in a faceted plot. Defaults to c(1,1,1,1). If
more than three facets are detected, the fmar parameter is scaled by 0.75 to reduce excess
whitespace. For 2x2 plots, the padding better matches the cex expansion logic of base graph-
ics.

• grid.col: Character or (integer) numeric that specifies the color of the panel grid lines. De-
faults to "lightgray".

• grid.lty: Character or (integer) numeric that specifies the line type of the panel grid lines.
Defaults to "dotted".

• grid.lwd: Non-negative numeric giving the line width of the panel grid lines. Defaults to 1.

• grid: Logical indicating whether a background panel grid should be added to plots automati-
cally. Defaults to NULL, which is equivalent to FALSE.

• lmar: A numeric vector of form c(inner, outer) that gives the margin padding, in terms of
lines, around the automatic tinyplot legend. Defaults to c(1.0, 0.1). The inner margin is
the gap between the legend and the plot region, and the outer margin is the gap between the
legend and the edge of the graphics device.

• palette.qualitative: Palette for qualitative colors. See the palette argument in ?tinyplot.

• palette.sequential: Palette for sequential colors. See the palette argument in ?tinyplot.

• ribbon.alpha: Numeric factor in the range [0,1] for modifying the opacity alpha of "ribbon"
and "area" type plots. Default value is 0.2.

28 type_abline

See Also

graphics::par which tpar builds on top of. get_saved_par is a convenience function for retriev-
ing graphical parameters at different stages of a tinyplot call (and used for internal accounting
purposes). tinytheme allows users to easily set a group of graphics parameters in a single function
call, according to a variety of predefined themes.

Examples

Return a list of existing base and tinyplot graphic params
tpar("las", "pch", "facet.bg", "facet.cex", "grid")

Simple facet plot with these default values
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)

Set params to something new. Similar to graphics::par(), note that we save
the existing values at the same time by assigning to an object.
op = tpar(

las = 1,
pch = 2,
facet.bg = "grey90",
facet.cex = 2,
grid = TRUE

)

Re-plot with these new params
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)

Reset back to original values
tpar(op)

Important: tpar() only evalutes parameters that have been passed explicitly
by the user. So it it should not be used to query and set (restore)
parameters that weren't explicitly requested, i.e. tpar() != par().

Note: The tinyplot-specific parameters can also be be set via `options`
with a `tinyplot_*` prefix, which can be convenient for enabling
different default behaviour at startup time (e.g., via an .Rprofile
file). Example:
options(tinyplot_grid = TRUE, tinyplot_facet.bg = "grey90")

type_abline Add straight lines to a plot

Description

These functions add straight line(s) through the current plot.

type_abline 29

Usage

type_abline(a = 0, b = 1)

type_hline(h = 0)

type_vline(v = 0)

Arguments

a, b the intercept (default: a = 0) and slope (default: b = 1) terms. Numerics of
length 1 or equal to the number of facets.

h y-value(s) for horizontal line(s). Numeric of length 1 or equal to the number of
facets.

v x-value(s) for vertical line(s). Numeric of length 1 or equal to the number of
facets.

Details

Unlike most tinyplot types, type_abline, type_hline, and type_vline cannot be called as a base
plot layer. Instead they must called as a subsequent layer via tinyplot_add.

Examples

#
abline

tinyplot(x = -10:10, y = rnorm(21) + -10:10, grid = TRUE)
tinyplot_add(type = "abline")
same as...
tinyplot_add(type = type_abline(a = 0, b = 1))

customize by passing bespoke intercept and slope values
tinyplot_add(type = type_abline(a = -1, b = -0.5))

#
hline and vline

Base plot layer
tinyplot(mpg ~ hp | cyl, facet = "by", data = mtcars, ylim = c(0, 40))

Add horizontal lines at the (default) 0 y-intercept
tinyplot_add(type = "hline", col = "grey")

Note that group+facet aesthetics will be inherited. We can use this to
add customized lines (here: the mean `mpg` for each `cyl` group)
tinyplot_add(type = type_hline(with(mtcars, tapply(mpg, cyl, mean))), lty = 2)

Similar idea for vline
tinyplot_add(type = type_vline(with(mtcars, tapply(hp, cyl, mean))), lty = 2)

30 type_area

type_area Ribbon and area plot types

Description

Type constructor functions for producing polygon ribbons, which define a y interval (usually span-
ning from ymin to ymax) for each x value. Area plots are a special case of ribbon plot where ymin
is set to 0 and ymax is set to y.

Usage

type_area(alpha = NULL)

type_ribbon(alpha = NULL)

Arguments

alpha numeric value between 0 and 1 specifying the opacity of ribbon shading If
no alpha value is provided, then will default to tpar("ribbon.alpha") (i.e.,
probably 0.2 unless this has been overridden by the user in their global settings.)

Examples

x = 1:100/10
y = sin(x)

#
Ribbon plots

"ribbon" convenience string
tinyplot(x = x, ymin = y-1, ymax = y+1, type = "ribbon")
Same result with type_ribbon()
tinyplot(x = x, ymin = y-1, ymax = y+1, type = type_ribbon())

y will be added as a line if it is specified
tinyplot(x = x, y = y, ymin = y-1, ymax = y+1, type = "ribbon")

#
Area plots

"area" type convenience string
tinyplot(x, y, type = "area")

Same result with type_area()
tinyplot(x, y, type = type_area())

Area plots are often used for time series charts
tinyplot(AirPassengers, type = "area")

type_barplot 31

type_barplot Barplot type

Description

Type function for producing barplots. For formulas of type ~ x (without left-hand side) the barplot
visualizes the counts (absolute frequencies) of the levels of x. For formulas of type y ~ x the value of
y within each level of x is visualized, if necessary aggregated using some function (default: mean).

Usage

type_barplot(
width = 5/6,
beside = FALSE,
center = FALSE,
FUN = NULL,
xlevels = NULL,
xaxlabels = NULL,
drop.zeros = FALSE

)

Arguments

width numeric, optional vector of bar widths. (The distance between the midpoints of
the bars is always 1.)

beside logical. In case of a by grouping variable, should bars be juxtaposed? Default is
to use stacked bars instead.

center logical or numeric. In case of stacked barplots (beside = FALSE) should the
bars be centered (or all start at zero, default)? If set to TRUE the center is at the
mid-point of the middle category (in case of uneven number of categories) or
between the two middle categories (in case of an even number). Additionally it
is possible to set center = 2 or center = 2.5 to indicate that centering should
be after the second category or the mid-way in the third category, respectively.

FUN a function to compute the summary statistic for y within each group of x in case
of using a two-sided formula y ~ x (default: mean).

xlevels a character or numeric vector specifying in which order the levels of the x vari-
able should be plotted.

xaxlabels a character vector with the axis labels for the x variable, defaulting to the levels
of x.

drop.zeros logical. Should bars with zero height be dropped? If set to FALSE (default) a
zero height bar is still drawn for which the border lines will still be visible.

32 type_boxplot

Examples

Basic examples of frequency tables (without y variable)
tinyplot(~ cyl, data = mtcars, type = "barplot")
tinyplot(~ cyl | vs, data = mtcars, type = "barplot")
tinyplot(~ cyl | vs, data = mtcars, type = "barplot", beside = TRUE)
tinyplot(~ cyl | vs, data = mtcars, type = "barplot", beside = TRUE, fill = 0.2)

Note: Above we used automatic argument passing for `beside`. But this
wouldn't work for `width`, since it would conflict with the top-level
`tinyplot(..., width = <width>)` argument. It's safer to pass these args
through the `type_barplot()` functional equivalent.
tinyplot(~ cyl | vs, data = mtcars, fill = 0.2,

type = type_barplot(beside = TRUE, drop.zeros = TRUE, width = 0.65))

tinytheme("clean2")

Example for numeric y aggregated by x (default: FUN = mean) + facets
tinyplot(extra ~ ID | group, facet = "by", data = sleep,

type = "barplot", fill = 0.6)

Fancy frequency table:
tinyplot(Freq ~ Sex | Survived, facet = ~ Class, data = as.data.frame(Titanic),

type = "barplot", facet.args = list(nrow = 1), flip = TRUE, fill = 0.6)

Centered barplot for conditional proportions of hair color (black/brown vs.
red/blond) given eye color and sex
tinytheme("clean2", palette.qualitative = c("black", "sienna", "indianred", "goldenrod"))
hec = as.data.frame(proportions(HairEyeColor, 2:3))
tinyplot(Freq ~ Eye | Hair, facet = ~ Sex, data = hec, type = "barplot",

center = TRUE, flip = TRUE, facet.args = list(ncol = 1), yaxl = "percent")

tinytheme()

type_boxplot Boxplot type

Description

Type function for producing box-and-whisker plots. Arguments are passed to boxplot, although
tinyplot scaffolding allows added functionality such as grouping and faceting. Box-and-whisker
plots are the default plot type if x is a factor and y is numeric.

Usage

type_boxplot(
range = 1.5,
width = NULL,
varwidth = FALSE,

type_boxplot 33

notch = FALSE,
outline = TRUE,
boxwex = 0.8,
staplewex = 0.5,
outwex = 0.5

)

Arguments

range this determines how far the plot whiskers extend out from the box. If range is
positive, the whiskers extend to the most extreme data point which is no more
than range times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of
two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

Examples

"boxplot" type convenience string
tinyplot(count ~ spray, data = InsectSprays, type = "boxplot")

Note: Specifying the type here is redundant. Like base plot, tinyplot
automatically produces a boxplot if x is a factor and y is numeric
tinyplot(count ~ spray, data = InsectSprays)

Grouped boxplot example
tinyplot(len ~ dose | supp, data = ToothGrowth, type = "boxplot")

Use `type_boxplot()` to pass extra arguments for customization
tinyplot(

len ~ dose | supp, data = ToothGrowth, lty = 1,
type = type_boxplot(boxwex = 0.3, staplewex = 0, outline = FALSE)

)

34 type_density

type_density Density plot type

Description

Type function for density plots.

Usage

type_density(
bw = "nrd0",
joint.bw = c("mean", "full", "none"),
adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"cosine", "optcosine"),
n = 512,
alpha = NULL

)

Arguments

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below.)
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.
The default, "nrd0", has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also Venables and Ripley (2002).
The specified (or computed) value of bw is multiplied by adjust.

joint.bw character string indicating whether (and how) the smoothing bandwidth should
be computed from the joint data distribution when there are multiple subgroups.
The options are "mean" (the default), "full", and "none". Also accepts a log-
ical argument, where TRUE maps to "mean" and FALSE maps to "none". See
the "Bandwidth selection" section below for a discussion of practical consider-
ations.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify values
like ‘half the default’ bandwidth.

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and may be
abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual ’cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

type_density 35

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft is
used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

alpha numeric value between 0 and 1 specifying the opacity of ribbon shading If
no alpha value is provided, then will default to tpar("ribbon.alpha") (i.e.,
probably 0.2 unless this has been overridden by the user in their global settings.)

Details

The algorithm used in density.default disperses the mass of the empirical distribution function
over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this ap-
proximation with a discretized version of the kernel and then uses linear approximation to evaluate
the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always = 1

for our kernels (and hence the bandwidth bw is the standard deviation of the kernel) and R(K) =∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is scale in-
variant and for our kernels equal to R(K). This value is returned when give.Rkern = TRUE. See
the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density estimate is
of the sub-density on (-Inf, +Inf).

Bandwidth selection

While the choice of smoothing bandwidth will always stand to affect a density visualization, it
gains an added importance when multiple densities are drawn simultaneously (e.g., for subgroups
with respect to by or facet). Allowing each subgroup to compute its own separate bandwidth
independently offers greater flexibility in capturing the unique characteristics of each subgroup,
particularly when distributions differ substantially in location and/or scale. However, this approach
may overemphasize small random variations and make it harder to visually compare densities across
subgroups. Hence, it is often useful to employ the same ("joint") bandwidth across all subgroups.
The following strategies are available via the joint.bw argument:

• The default joint.bw = "mean" first computes the individual bandwidths for each group but
then computes their mean, weighted by the number of observations in each group. This will
work well when all groups have similar amounts of scatter (similar variances), even when
they have potentially rather different locations. The weighted averaging stabilizes potential
fluctuations in the individual bandwidths, especially when some subgroups are rather small.

• Alternatively, joint.bw = "full" can be used to compute the joint bandwidth from the full
joint distribution (merging all groups). This will yield an even more robust bandwidth, espe-
cially when the groups overlap substantially (i.e., have similar locations and scales). However,
it may lead to too large bandwidths and thus too much smoothing, especially when the loca-
tions of the groups differ substantially.

• Finally, joint.bw = "none" disables the joint bandwidth so that each group just employs its
individual bandwidth. This is often the best choice if the amounts of scatter differ substantially
between the groups, thus necessitating different amounts of smoothing.

36 type_errorbar

Titles

This tinyplot method for density plots differs from the base plot.density function in its treatment
of titles. The x-axis title displays only the variable name, omitting details about the number of
observations and smoothing bandwidth. Additionally, the main title is left blank by default for a
cleaner appearance.

Examples

"density" type convenience string
tinyplot(~Sepal.Length, data = iris, type = "density")

grouped density example
tinyplot(~Sepal.Length | Species, data = iris, type = "density")

use `bg = "by"` (or, equivalent `fill = "by"`) to get filled densities
tinyplot(~Sepal.Length | Species, data = iris, type = "density", fill = "by")

use `type_density()` to pass extra arguments for customization
tinyplot(

~Sepal.Length | Species, data = iris,
type = type_density(bw = "SJ"),
main = "Bandwidth computed using Sheather & Jones (1991)"

)

The default for grouped density plots is to use the mean of the
individual subgroup bandwidths (weighted by group size) as the
joint bandwidth. Alternatively, the bandwidth from the "full"
data or separate individual bandwidths ("none") can be used.
tinyplot(~Sepal.Length | Species, data = iris,

ylim = c(0, 1.25), type = "density") # mean (default)
tinyplot_add(joint.bw = "full", lty = 2) # full data
tinyplot_add(joint.bw = "none", lty = 3) # none (individual)
legend("topright", c("Mean", "Full", "None"), lty = 1:3, bty = "n", title = "Joint BW")

type_errorbar Error bar and pointrange plot types

Description

Type function(s) for producing error bar and pointrange plots.

Usage

type_errorbar(length = 0.05)

type_pointrange()

type_function 37

Arguments

length length of the edges of the arrow head (in inches).

Examples

mod = lm(mpg ~ wt * factor(am), mtcars)
coefs = data.frame(names(coef(mod)), coef(mod), confint(mod))
colnames(coefs) = c("term", "est", "lwr", "upr")

op = tpar(pch = 19)

"errorbar" and "pointrange" type convenience strings
tinyplot(est ~ term, ymin = lwr, ymax = upr, data = coefs, type = "errorbar")
tinyplot(est ~ term, ymin = lwr, ymax = upr, data = coefs, type = "pointrange")

Use `type_errorbar()` to pass extra arguments for customization
tinyplot(est ~ term, ymin = lwr, ymax = upr, data = coefs, type = type_errorbar(length = 0.2))

tpar(op)

type_function Plot a function

Description

Plot a function

Usage

type_function(fun = dnorm, args = list(), n = 101, ...)

Arguments

fun Function of x to plot. Defaults to dnorm.

args List of additional arguments to be passed to fun.

n Number of points to interpolate on the x axis.

... Additional arguments are passed to the lines() function, ex: type="p", col="pink".

Details

When using type_function() in a tinyplot() call, the x value indicates the range of values to
plot on the x-axis.

38 type_glm

Examples

Plot the normal density (default function)
tinyplot(x = -4:4, type = "function")
tinyplot(x = -4:4, type = type_function()) # same

Customize by passing explicit arguments to your function
tinyplot(x = -1:10, type = type_function(

fun = dnorm, args = list(mean = 3)
))

Additional arguments are passed to the `lines()` function.
tinyplot(x = -4:4, type = type_function(

fun = dnorm,
col = "pink", type = "p", pch = 3

))

Custom function example
(Here using `function(x)`, but you could also use the shorter `\(x)`
anonymous function syntax introduced in R 4.1.0)
tinyplot(x = -4:4, type = type_function(fun = function(x) 0.5 * exp(-abs(x))))

type_glm Generalized linear model plot type

Description

Type function for plotting a generalized model fit. Arguments are passed to glm.

Usage

type_glm(family = "gaussian", se = TRUE, level = 0.95, type = "response")

Arguments

family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

se logical. If TRUE, confidence intervals are drawn.

level the confidence level required.

type character, partial matching allowed. Type of weights to extract from the fitted
model object. Can be abbreviated.

type_histogram 39

Examples

"glm" type convenience string
tinyplot(am ~ mpg, data = mtcars, type = "glm")

Use `type_glm()` to pass extra arguments for customization
tinyplot(am ~ mpg, data = mtcars, type = type_glm(family = "binomial"))

type_histogram Histogram plot type

Description

Type function for histogram plots. type_hist is an alias for type_histogram.

Usage

type_histogram(
breaks = "Sturges",
freq = NULL,
right = TRUE,
free.breaks = FALSE,
drop.zeros = TRUE

)

type_hist(
breaks = "Sturges",
freq = NULL,
right = TRUE,
free.breaks = FALSE,
drop.zeros = TRUE

)

Arguments

breaks Passed to hist. One of:

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’ of hist),
• a function to compute the number of cells. In the last three cases the number

is a suggestion only; as the breakpoints will be set to pretty values, the
number is limited to 1e6 (with a warning if it was larger). If breaks is a
function, the x vector is supplied to it as the only argument (and the number
of breaks is only limited by the amount of available memory).

40 type_histogram

freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities, component
density, are plotted (so that the histogram has a total area of one). Defaults
to TRUE if and only if breaks are equidistant (and probability is not speci-
fied).

right logical; if TRUE, the histogram cells are right-closed (left open) intervals.

free.breaks Logical indicating whether the breakpoints should be computed separately for
each group or facet? Default is FALSE, meaning that the breakpoints are com-
puted from the full dataset; thus ensuring common bin widths across each group/facet.
Can also use free as an acceptable argument alias. Ignored if there are no
groups and/or facets.

drop.zeros Logical indicating whether bins with zero counts should be dropped before plot-
ting. Default is TRUE. Note that switching to FALSE may interfere with faceted
plot behaviour if facet.args = list(free), since the x variable is effectively
recorded over the full range of the x-axis (even if it does not extend over this
range for every group).

Examples

"histogram"/"hist" type convenience string(s)
tinyplot(Nile, type = "histogram")

Use `type_histogram()` to pass extra arguments for customization
tinyplot(Nile, type = type_histogram(breaks = 30))
tinyplot(Nile, type = type_histogram(breaks = 30, freq = FALSE))
etc.

Grouped histogram example
tinyplot(

~Petal.Width | Species,
type = "histogram",
data = iris

)

Faceted version
tinyplot(

~Petal.Width, facet = ~Species,
type = "histogram",
data = iris

)

For visualizing faceted histograms across varying scales, you may also wish
to impose free histogram breaks too (i.e., calculate breaks separately for
each group). Compare:

free facet scales + shared histogram breaks, versus...
tinyplot(

~Petal.Width, facet = ~Species,
facet.args = list(free = TRUE),
type = type_histogram(),
data = iris

type_jitter 41

)
... free facet scales + free histogram breaks
tinyplot(

~Petal.Width, facet = ~Species,
facet.args = list(free = TRUE),
type = type_histogram(free = TRUE),
data = iris

)

type_jitter Jittered points plot type

Description

Type function for plotting jittered points. Arguments are passed to jitter.

Usage

type_jitter(factor = 1, amount = NULL)

Arguments

factor numeric.

amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default is
factor * z/50.
Default (NULL): factor * d/5 where d is about the smallest difference between
x values.

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the amount argument
(if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either provided
as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference between
adjacent unique (apart from fuzz) x values.

Examples

"jitter" type convenience string
tinyplot(Sepal.Length ~ Species, data = iris, type = "jitter")

Use `type_jitter()` to pass extra arguments for customization
tinyplot(Sepal.Length ~ Species, data = iris, type = type_jitter(factor = 0.5))

42 type_lm

type_lines Lines plot type

Description

Type function for plotting lines.

Usage

type_lines(type = "l")

Arguments

type 1-character string giving the type of plot desired. The following values are pos-
sible, for details, see plot: "p" for points, "l" for lines, "b" for both points and
lines, "c" for empty points joined by lines, "o" for overplotted points and lines,
"s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n"
does not produce any points or lines.

Examples

"l" type convenience character string
tinyplot(circumference ~ age | Tree, data = Orange, type = "l")

Use `type_lines()` to pass extra arguments for customization
tinyplot(circumference ~ age | Tree, data = Orange, type = type_lines(type = "s"))

type_lm Linear model plot type

Description

Type function for plotting a linear model fit. Arguments are passed to lm.

Usage

type_lm(se = TRUE, level = 0.95)

Arguments

se logical. If TRUE, confidence intervals are drawn.

level the confidence level required.

type_loess 43

Examples

"lm" type convenience string
tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = "lm")

Grouped model fits (here: illustrating an example of Simpson's paradox)
tinyplot(Sepal.Width ~ Petal.Width | Species, data = iris, type = "lm")
tinyplot_add(type = "p")

Use `type_lm()` to pass extra arguments for customization
tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = type_lm(level = 0.8))

type_loess Local polynomial regression plot type

Description

Type function for plotting a LOESS (LOcal regrESSion) fit. Arguments are passed to loess.

Usage

type_loess(
span = 0.75,
degree = 2,
family = "gaussian",
control = loess.control(),
se = TRUE,
level = 0.95

)

Arguments

span the parameter α which controls the degree of smoothing.
degree the degree of the polynomials to be used, normally 1 or 2. (Degree 0 is also

allowed, but see the ‘Note’.)
family if "gaussian" fitting is by least-squares, and if "symmetric" a re-descending

M estimator is used with Tukey’s biweight function. Can be abbreviated.
control control parameters: see loess.control.
se logical. If TRUE (the default), confidence intervals are drawn.
level the confidence level required if se = TRUE. Default is 0.95.

Examples

"loess" type convenience string
tinyplot(dist ~ speed, data = cars, type = "loess")

Use `type_loess()` to pass extra arguments for customization
tinyplot(dist ~ speed, data = cars, type = type_loess(span = 0.5, degree = 1))

44 type_polygon

type_points Points plot type

Description

Type function for plotting points, i.e. a scatter plot.

Usage

type_points()

Examples

"p" type convenience character string
tinyplot(Sepal.Length ~ Petal.Length, data = iris, type = "p")

Same result with type_points()
tinyplot(Sepal.Length ~ Petal.Length, data = iris, type = type_points())

Note: Specifying the type here is redundant. Like base plot, tinyplot
automatically produces a scatter plot if x and y are numeric
tinyplot(Sepal.Length ~ Petal.Length, data = iris)

Grouped scatter plot example
tinyplot(Sepal.Length ~ Petal.Length | Species, data = iris)

Continuous grouping (with gradient legend)
tinyplot(Sepal.Length ~ Petal.Length | Sepal.Width, data = iris, pch = 19)

type_polygon Polygon plot type

Description

Type function for plotting polygons. Arguments are passed to polygon.

Usage

type_polygon(density = NULL, angle = 45)

Arguments

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading
nor filling whereas negative values and NA suppress shading (and so allow color
filling).

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

type_polypath 45

Examples

"polygon" type convenience character string
tinyplot(1:9, c(2,1,2,1,NA,2,1,2,1), type = "polygon")

Use `type_polygon()` to pass extra arguments for customization
tinyplot(1:9, c(2,1,2,1,NA,2,1,2,1), type = type_polygon(density = c(10, 20)))

type_polypath Polypath polygon type

Description

Type function for plotting polygons. Arguments are passed to polypath.

Usage

type_polypath(rule = "winding")

Arguments

rule character value specifying the path fill mode: either "winding" or "evenodd".

Examples

"polypath" type convenience character string
tinyplot(

c(.1, .1, .6, .6, NA, .4, .4, .9, .9),
c(.1, .6, .6, .1, NA, .4, .9, .9, .4),
type = "polypath", fill = "grey"

)

Use `type_polypath()` to pass extra arguments for customization
tinyplot(

c(.1, .1, .6, .6, NA, .4, .4, .9, .9),
c(.1, .6, .6, .1, NA, .4, .9, .9, .4),
type = type_polypath(rule = "evenodd"), fill = "grey"

)

46 type_rect

type_qq Quantile-Quantile plot (QQ)

Description

Plots the theoretical quantiles of x on the horizontal axis against observed values of x on the vertical
axis.

Usage

type_qq(distribution = qnorm)

Arguments

distribution Distribution function to use.

Examples

tinyplot(~mpg, data = mtcars, type = type_qq())

suppress the line
tinyplot(~mpg, data = mtcars, lty = 0, type = type_qq())

type_rect Rectangle plot type

Description

Type function for plotting rectangles.

Usage

type_rect()

Details

Contrary to base rect, rectangles in tinyplot must be specified using the xmin, ymin,xmax, and ymax
arguments.

type_ridge 47

Examples

i = 4*(0:10)

"rect" type convenience character string
tinyplot(

xmin = 100+i, ymin = 300+i, xmax = 150+i, ymax = 380+i,
by = i, fill = 0.2,
type = "rect"

)

Same result with type_rect()
tinyplot(

xmin = 100+i, ymin = 300+i, xmax = 150+i, ymax = 380+i,
by = i, fill = 0.2,
type = type_rect()

)

type_ridge Ridge plot type

Description

Type function for producing ridge plots (also known as joy plots), which display density distri-
butions for multiple groups with vertical offsets. This function uses tinyplot scaffolding, which
enables added functionality such as grouping and faceting.

The line color is controlled by the col argument in the tinyplot() call. The fill color is controlled
by the bg argument in the tinyplot() call.

Usage

type_ridge(
scale = 1.5,
joint.max = c("all", "facet", "by"),
breaks = NULL,
probs = NULL,
ylevels = NULL,
bw = "nrd0",
joint.bw = c("mean", "full", "none"),
adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"cosine", "optcosine"),
n = 512,
gradient = FALSE,
raster = FALSE,
col = NULL,
alpha = NULL

)

48 type_ridge

Arguments

scale Numeric. Controls the scaling factor of each plot. Values greater than 1 means
that plots overlap.

joint.max character indicating how to scale the maximum of the densities: The default
"all" indicates that all densities are scaled jointly relative to the same maxi-
mum so that the areas of all densities are comparable. Alternatively, "facet"
indicates that the maximum is computed within each facet so that the areas of
the densities are comparable within each facet but not necessarily across facets.
Finally, "by" indicates that each row (in each facet) is scaled separately, so that
the areas of the densities for by groups in the same row are comparable but not
necessarily across rows.

breaks Numeric. If a color gradient is used for shading, the breaks between the colors
can be modified. The default is to use equidistant breaks spanning the range of
the x variable.

probs Numeric. Instead of specifying the same breaks on the x-axis for all groups, it is
possible to specify group-specific quantiles at the specified probs. The quantiles
are computed based on the density (rather than the raw original variable). Only
one of breaks or probs must be specified.

ylevels a character or numeric vector specifying in which order the levels of the y-
variable should be plotted.

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below.)
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.
The default, "nrd0", has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also Venables and Ripley (2002).
The specified (or computed) value of bw is multiplied by adjust.

joint.bw character string indicating whether (and how) the smoothing bandwidth should
be computed from the joint data distribution. The default of "mean" will com-
pute the joint bandwidth as the mean of the individual subgroup bandwidths
(weighted by their number of observations). Choosing "full" will result in a
joint bandwidth computed from the full distribution (merging all subgroups).
For "none" the individual bandwidth will be computed independently for each
subgroup. Also accepts a logical argument, where TRUE maps to "mean" and
FALSE maps to "none". See type_density for some discussion of practical
considerations.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify values
like ‘half the default’ bandwidth.

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and may be
abbreviated to a unique prefix (single letter).

type_ridge 49

"cosine" is smoother than "optcosine", which is the usual ’cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft is
used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

gradient Logical or character. Should a gradient fill be used to shade the area under the
density? If a character specification is used, then it can either be of length 1 and
specify the palette to be used with gradient = TRUE corresponding to gradient
= "viridis". If a character vector of length greater than 1 is used, then it should
specify the colors in the palette, e.g., gradient = hcl.colors(512).

raster Logical. Should the gradient fill be drawn using rasterImage? Defaults to
FALSE, in which case the gradient fill will instead be drawn using polygon.
See the Technical note on gradient fills section below.

col Character string denoting the outline (border) color for all of the ridge densi-
ties. Note that a singular value is expected; if multiple colors are provided then
only the first will be used. This argument is mostly useful for the aesthetic ef-
fect of drawing a common outline color in combination with gradient fills. See
Examples.

alpha Numeric in the range [0,1] for adjusting the alpha transparency of the density
fills. In most cases, will default to a value of 1, i.e. fully opaque. But for some by
grouped plots (excepting the special cases where by==y or by==x), will default
to 0.6.

Technical note on gradient fills

tinyplot uses two basic approaches for drawing gradient fills in ridge line plots, e.g., if type_ridge(gradient
= TRUE).

The first (and default) polygon-based approach involves dividing up the main density region into
many smaller polygons along the x-axis. Each of these smaller polygons inherits a different color
"segment" from the underlying palette swatch, which in turn creates the effect of a continuous gra-
dient when they are all plotted together. Internally, this polygon-based approach is vectorized (i.e.,
all of the sub-polygons are plotted simultaneously). It is thus efficient from a plotting perspective
and generally also performs well from an aesthetic perspective. However, it can occasionally pro-
duce undesirable plotting artifacts on some graphics devices—e.g., thin but visible vertical lines—if
alpha transparency is being used at the same time.

For this reason, we also offer an alternative raster-based approach for gradient fills that users can
invoke via type_ridge(gradient = TRUE, raster = TRUE). The essential idea is that we coerce
the density polygon into a raster representation (using rasterImage) and achieve the gradient effect
via color interpolation. The trade-off this time is potential smoothness artifacts around the top of
the ridge densities at high resolutions, since we have converted a vector object into a raster object.

Again, we expect that the choice between these two approaches will only matter for ridge plots that
combine gradient fills with alpha transparency (and on certain graphics devices). We recommend
that users experiment to determine which approach is optimal for their device.

50 type_ridge

Examples

aq = transform(
airquality,
Month = factor(month.abb[Month], levels = month.abb[5:9]),
Month2 = factor(month.name[Month], levels = month.name[5:9]),
Late = ifelse(Day > 15, "Late", "Early")
)

default ridge plot (using the "ridge" convenience string)
tinyplot(Month ~ Temp, data = aq, type = "ridge")

for ridge plots, we recommend pairing with the dedicated theme(s), which
facilitate nicer y-axis labels, grid lines, etc.

tinytheme("ridge")
tinyplot(Month ~ Temp, data = aq, type = "ridge")

tinytheme("ridge2") # removes the plot frame (but keeps x-axis line)
tinyplot(Month ~ Temp, data = aq, type = "ridge")

the "ridge(2)" themes are especially helpful for long y labels, due to
dyanmic plot adjustment
tinyplot(Month2 ~ Temp, data = aq, type = "ridge")

pass customization arguments through type_ridge()... for example, use
the scale argument to change/avoid overlap of densities (more on scaling
further below)

tinyplot(Month ~ Temp, data = aq, type = type_ridge(scale = 1))

by grouping is also supported. two special cases of interest:

1) by == y (color by y groups)
tinyplot(Month ~ Temp | Month, data = aq, type = "ridge")

2) by == x (gradient coloring along x)
tinyplot(Month ~ Temp | Temp, data = aq, type = "ridge")

aside: pass explicit `type_ridge(col = <col>)` arg to set a different
border color
tinyplot(Month ~ Temp | Temp, data = aq, type = type_ridge(col = "white"))

gradient coloring along the x-axis can also be invoked manually without
a legend (the next two tinyplot calls are equivalent)

tinyplot(Month ~ Temp, data = aq, type = type_ridge(gradient = "agsunset"))
tinyplot(Month ~ Temp, data = aq, type = type_ridge(gradient = TRUE))

aside: when combining gradient fill with alpha transparency, it may be
better to use the raster-based approach (test on your graphics device)

tinyplot(Month ~ Temp, data = aq,

type_rug 51

type = type_ridge(gradient = TRUE, alpha = 0.5),
main = "polygon fill (default)")

tinyplot(Month ~ Temp, data = aq,
type = type_ridge(gradient = TRUE, alpha = 0.5, raster = TRUE),
main = "raster fill")

highlighting only the center 50% of the density (i.e., 25%-75% quantiles)
tinyplot(Month ~ Temp, data = aq, type = type_ridge(

gradient = hcl.colors(3, "Dark Mint")[c(2, 1, 2)],
probs = c(0.25, 0.75), col = "white"))

highlighting the probability distribution by color gradient
(darkest point = median)
tinyplot(Month ~ Temp, data = aq, type = type_ridge(

gradient = hcl.colors(250, "Dark Mint")[c(250:1, 1:250)],
probs = 0:500/500))

faceting also works, although we recommend switching (back) to the "ridge"
theme for faceted ridge plots

tinytheme("ridge")
tinyplot(Month ~ Ozone, facet = ~ Late, data = aq,

type = type_ridge(gradient = TRUE))

use the joint.max argument to vary the maximum density used for
determining relative scaling...

jointly across all densities (default) vs. per facet
tinyplot(Month ~ Temp, facet = ~ Late, data = aq,

type = type_ridge(scale = 1))
tinyplot(Month ~ Temp, facet = ~ Late, data = aq,

type = type_ridge(scale = 1, joint.max = "facet"))

jointly across all densities (default) vs. per by row
tinyplot(Month ~ Temp | Late, data = aq,

type = type_ridge(scale = 1))
tinyplot(Month ~ Temp | Late, data = aq,

type = type_ridge(scale = 1, joint.max = "by"))

restore the default theme
tinytheme()

type_rug Add a rug to a plot

Description

Adds a rug representation (1-d plot) of the data to the plot.

52 type_rug

Usage

type_rug(
ticksize = 0.03,
side = 1,
quiet = getOption("warn") < 0,
jitter = FALSE,
amount = NULL

)

Arguments

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom) or 3
(top).

quiet logical indicating if there should be a warning about clipped values.

jitter Logical. Add jittering to separate ties? Default is FALSE.

amount Numeric. Amount of jittering (see jitter). Only used if jitter is TRUE.

Details

This function should only be used as part of tinyplot_add(), i.e. adding to an existing plot.

In most cases, determining which variable receives the rug representation will be based on the side
argument (i.e., x-variable if side is 1 or 3, and y-variable if side is 2 or 4). An exception is if the
preceding plot type was either "density" or "histogram"; for these latter cases, the x-variable
will always be used. See Examples.

Examples

tinyplot(~wt | am, data = mtcars, type = "density", facet = "by", fill = "by")
tinyplot_add(type = "rug")
use type_rug() to pass extra options
tinyplot_add(type = type_rug(side = 3, ticksize = 0.05))

For ties, use jittering
tinyplot(eruptions ~ waiting, data = faithful, type = "lm")
tinyplot_add(type = type_rug(jitter = TRUE, amount = 0.3))
tinyplot_add(type = type_rug(jitter = TRUE, amount = 0.1, side = 2))
Add original points just for reference
tinyplot_add(type = "p")

type_segments 53

type_segments Line segments plot type

Description

Type function for plotting line segments.

Usage

type_segments()

Details

Contrary to base segments, line segments in tinyplot must be specified using the xmin, ymin,xmax,
and ymax arguments.

Examples

"segments" type convenience character string
tinyplot(

xmin = c(0,.1), ymin = c(.2,1), xmax = c(1,.9), ymax = c(.75,0),
type = "segments"

)

Same result with type_segments()
tinyplot(

xmin = c(0,.1), ymin = c(.2,1), xmax = c(1,.9), ymax = c(.75,0),
type = type_segments()

)

type_spineplot Spineplot and spinogram types

Description

Type function(s) for producing spineplots and spinograms, which are modified versions of his-
tograms or mosaic plots, and particularly useful for visualizing factor variables. Note that tinyplot
defaults to type_spineplot() if y is a factor variable.

54 type_spineplot

Usage

type_spineplot(
breaks = NULL,
tol.ylab = 0.05,
off = NULL,
ylevels = NULL,
col = NULL,
xaxlabels = NULL,
yaxlabels = NULL,
weights = NULL

)

Arguments

breaks if the explanatory variable is numeric, this controls how it is discretized. breaks
is passed to hist and can be a list of arguments.

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

off vertical offset between the bars (in per cent). It is fixed to 0 for spinograms and
defaults to 2 for spine plots.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

col a vector of fill colors of the same length as levels(y). The default is to call
gray.colors.

xaxlabels, yaxlabels
character vectors for annotation of x and y axis. Default to levels(y) and
levels(x), respectively for the spine plot. For xaxlabels in the spinogram,
the breaks are used.

weights numeric. A vector of frequency weights for each observation in the data. If
NULL all weights are implicitly assumed to be 1. If x is already a 2-way table,
the weights are ignored.

Examples

"spineplot" type convenience string
tinyplot(Species ~ Sepal.Width, data = iris, type = "spineplot")

Aside: specifying the type is redundant for this example, since tinyplot()
defaults to "spineplot" if y is a factor (just like base plot).
tinyplot(Species ~ Sepal.Width, data = iris)

Use `type_spineplot()` to pass extra arguments for customization
tinyplot(Species ~ Sepal.Width, data = iris, type = type_spineplot(breaks = 4))

p = palette.colors(3, "Pastel 1")
tinyplot(Species ~ Sepal.Width, data = iris, type = type_spineplot(breaks = 4, col = p))
rm(p)

type_spline 55

More idiomatic tinyplot way of drawing the previous plot: use y == by
tinyplot(

Species ~ Sepal.Width | Species, data = iris, type = type_spineplot(breaks = 4),
palette = "Pastel 1", legend = FALSE

)

Grouped and faceted spineplots

ttnc = as.data.frame(Titanic)

tinyplot(
Survived ~ Sex, facet = ~ Class, data = ttnc,
type = type_spineplot(weights = ttnc$Freq)

)

For grouped "by" spineplots, it's better visually to facet as well
tinyplot(

Survived ~ Sex | Class, facet = "by", data = ttnc,
type = type_spineplot(weights = ttnc$Freq)

)

Fancier version. Note the smart inheritance of spacing etc.
tinyplot(

Survived ~ Sex | Class, facet = "by", data = ttnc,
type = type_spineplot(weights = ttnc$Freq),
palette = "Dark 2", facet.args = list(nrow = 1), axes = "t"

)

Note: It's possible to use "by" on its own (without faceting), but the
overlaid result isn't great. We will likely overhaul this behaviour in a
future version of tinyplot...
tinyplot(Survived ~ Sex | Class, data = ttnc,

type = type_spineplot(weights = ttnc$Freq), alpha = 0.3
)

type_spline Spline plot type

Description

Type function for plotting a cubic (or Hermite) spline interpolation. Arguments are passed to
spline; see this latter function for default argument values.

Usage

type_spline(
n = NULL,
method = "fmm",
xmin = NULL,

56 type_spline

xmax = NULL,
xout = NULL,
ties = mean

)

Arguments

n if xout is left unspecified, interpolation takes place at n equally spaced points
spanning the interval [xmin, xmax].

method specifies the type of spline to be used. Possible values are "fmm", "natural",
"periodic", "monoH.FC" and "hyman". Can be abbreviated.

xmin, xmax left-hand and right-hand endpoint of the interpolation interval (when xout is
unspecified).

xout an optional set of values specifying where interpolation is to take place.

ties handling of tied x values. The string "ordered" or a function (or the name of
a function) taking a single vector argument and returning a single number or a
length-2 list of both, see approx and its ‘Details’ section, and the example
below.

Details

The inputs can contain missing values which are deleted, so at least one complete (x, y) pair is
required. If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact
cubic is fitted through the four points at each end of the data, and this is used to determine the end
conditions). Natural splines are used when method = "natural", and periodic splines when method
= "periodic".

The method "monoH.FC" computes a monotone Hermite spline according to the method of Fritsch
and Carlson. It does so by determining slopes such that the Hermite spline, determined by (xi, yi,mi),
is monotone (increasing or decreasing) iff the data are.

Method "hyman" computes a monotone cubic spline using Hyman filtering of an method = "fmm"
fit for strictly monotonic inputs.

These interpolation splines can also be used for extrapolation, that is prediction at points outside
the range of x. Extrapolation makes little sense for method = "fmm"; for natural splines it is linear
using the slope of the interpolating curve at the nearest data point.

Examples

"spline" type convenience string
tinyplot(dist ~ speed, data = cars, type = "spline")

Use `type_spline()` to pass extra arguments for customization
tinyplot(dist ~ speed, data = cars, type = type_spline(method = "natural", n = 25),

add = TRUE, lty = 2)

type_summary 57

type_summary Plot summary values of y at unique values of x

Description

Applies a summary function to y along unique values of x. For example, plot the mean y value for
each x value. Internally, type_summary() applies a thin wrapper around ave and then passes the
result to type_lines for drawing.

Usage

type_summary(fun = mean, ...)

Arguments

fun summarizing function. Should be compatible with ave. Defaults to mean.

... Additional arguments are passed to the lines() function, ex: type="p", col="pink".

See Also

ave which performs the summarizing (averaging) behind the scenes.

Examples

Plot the mean chick weight over time
tinyplot(weight ~ Time, data = ChickWeight, type = "summary")

Note: "mean" is the default function, so these are also equivalent:
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary())
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary(mean))

Plot the median instead
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary(median))

Works with groups and/or facets too
tinyplot(weight ~ Time | Diet, facet = "by", data = ChickWeight, type = "summary")

Custom/complex function example
tinyplot(

weight ~ Time | Diet, facet = "by", data = ChickWeight,
type = type_summary(function(y) quantile(y, probs = 0.9)/max(y))

)

58 type_text

type_text Text annotations plot type

Description

Type function for adding text annotations to a plot. This function allows you to draw text at specified
(x,y) coordinates.

Usage

type_text(
labels,
adj = NULL,
pos = NULL,
offset = 0.5,
vfont = NULL,
font = NULL

)

Arguments

labels Character vector of length 1 or of the same length as the number of x,y coordi-
nates.

adj one or two values in [0, 1] which specify the x (and optionally y) adjustment
(‘justification’) of the labels, with 0 for left/bottom, 1 for right/top, and 0.5 for
centered. On most devices values outside [0, 1] will also work. See below.

pos a position specifier for the text. If specified this overrides any adj value given.
Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above
and to the right of the specified (x,y) coordinates.

offset when pos is specified, this value controls the distance (‘offset’) of the text label
from the specified coordinate in fractions of a character width.

vfont NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored if labels is an expression.

font Font to be used, following graphics::par()

Examples

tinyplot(mpg ~ hp | factor(cyl),
data = mtcars,
type = type_text(

labels = row.names(mtcars),
font = 2,
adj = 0))

type_violin 59

type_violin Violin plot type

Description

Type function for violin plots, which are an alternative to box plots for visualizing continuous
distributions (by group) in the form of mirrored densities.

Usage

type_violin(
bw = "nrd0",
joint.bw = c("mean", "full", "none"),
adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"cosine", "optcosine"),
n = 512,
trim = FALSE,
width = 0.9

)

Arguments

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below.)
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.
The default, "nrd0", has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also Venables and Ripley (2002).
The specified (or computed) value of bw is multiplied by adjust.

joint.bw character string indicating whether (and how) the smoothing bandwidth should
be computed from the joint data distribution when there are multiple subgroups.
The options are "mean" (the default), "full", and "none". Also accepts a log-
ical argument, where TRUE maps to "mean" and FALSE maps to "none". See
the "Bandwidth selection" section below for a discussion of practical consider-
ations.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify values
like ‘half the default’ bandwidth.

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and may be
abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual ’cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

60 type_violin

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft is
used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

trim logical indicating whether the violins should be trimmed to the range of the data.
Default is FALSE.

width numeric (ideally in the range [0, 1], although this isn’t enforced) giving the
normalized width of the individual violins.

Details

See type_density for more details and considerations related to bandwidth selection and kernel
types.

Examples

"violin" type convenience string
tinyplot(count ~ spray, data = InsectSprays, type = "violin")

aside: to match the defaults of `ggplot2::geom_violin()`, use `trim = TRUE`
and `joint.bw = FALSE`
tinyplot(count ~ spray, data = InsectSprays, type = "violin",

trim = TRUE, joint.bw = FALSE)

use flip = TRUE to reorient the axes
tinyplot(count ~ spray, data = InsectSprays, type = "violin", flip = TRUE)

for flipped plots with long group labels, it's better to use a theme for
dynamic plot resizing
tinytheme("clean")
tinyplot(weight ~ feed, data = chickwts, type = "violin", flip = TRUE)

you can group by the x var to add colour (here with the original orientation)
tinyplot(weight ~ feed | feed, data = chickwts, type = "violin", legend = FALSE)

dodged grouped violin plot example (different dataset)
tinyplot(len ~ dose | supp, data = ToothGrowth, type = "violin", fill = 0.2)

note: above we relied on `...` argument passing alongside the "violin"
type convenience string. But this won't work for `width`, since it will
clash with the top-level `tinyplot(..., width = <width>)` arg. To ensure
correct arg passing, it's safer to use the formal `type_violin()` option.
tinyplot(len ~ dose | supp, data = ToothGrowth, fill = 0.2,

type = type_violin(width = 0.8))

reset theme
tinytheme()

Index

abline, 5, 16
abs, 7, 14
approx, 35, 49, 56, 60
ave, 57

boxplot, 32
boxplot.stats, 33
bw.nrd, 34, 48, 59

cairo_pdf, 26

dev.off, 6
dnorm, 37
draw_legend, 2, 5

family, 38
fft, 35, 49, 60
format, 7, 14
formula, 17

get_saved_par, 5, 5, 6, 17, 28
glm, 38
graphics::par, 28
graphics::par(), 58
gray.colors, 54

Hershey, 58
hist, 39, 54

interaction, 11

jitter, 41, 52
jpeg, 17

legend, 3
list, 56
lm, 42
loess, 43
loess.control, 43

mean, 57

options, 26

palette, 15
par, 5, 6, 11, 14, 17, 25, 26
pdf, 17, 26
plot, 8, 12, 17, 42
plot.density, 36
plt (tinyplot), 8
plt_add (tinyplot_add), 21
png, 17
polygon, 44, 49
polypath, 45

rasterImage, 49
rect, 46

segments, 53
spline, 55
svg, 17

text, 5, 16
tinylabel, 7, 14
tinyplot, 3, 5–7, 8, 46, 53
tinyplot.default, 22
tinyplot.formula, 22
tinyplot_add, 16, 21, 21, 29
tinyplot_add(), 52
tinytheme, 22, 28
toupper, 7, 14
tpar, 12, 17, 24, 25
type_abline, 28
type_abline(), 13
type_area, 30
type_area(), 12
type_barplot, 31
type_barplot(), 13
type_boxplot, 32
type_boxplot(), 13
type_density, 34, 48, 60
type_density(), 13

61

62 INDEX

type_errorbar, 36
type_errorbar(), 12
type_function, 37
type_function(), 13
type_glm, 38
type_glm(), 13
type_hist, 11
type_hist (type_histogram), 39
type_histogram, 39
type_histogram(), 13
type_hline (type_abline), 28
type_hline(), 13
type_jitter, 41
type_jitter(), 13
type_lines, 42, 57
type_lm, 42
type_lm(), 13
type_loess, 43
type_loess(), 13
type_pointrange (type_errorbar), 36
type_pointrange(), 12
type_points, 44
type_polygon, 44
type_polygon(), 12
type_polypath, 45
type_polypath(), 12
type_qq, 46
type_qq(), 13
type_rect, 46
type_rect(), 13
type_ribbon (type_area), 30
type_ribbon(), 13
type_ridge, 47
type_ridge(), 13, 23
type_rug, 51
type_rug(), 13
type_segments, 53
type_segments(), 13
type_spineplot, 53
type_spineplot(), 13
type_spline, 55
type_spline(), 13
type_summary, 57
type_summary(), 13
type_text, 58
type_text(), 13
type_violin, 59
type_violin(), 13

type_vline (type_abline), 28
type_vline(), 13

xy.coords, 11

	draw_legend
	get_saved_par
	tinylabel
	tinyplot
	tinyplot_add
	tinytheme
	tpar
	type_abline
	type_area
	type_barplot
	type_boxplot
	type_density
	type_errorbar
	type_function
	type_glm
	type_histogram
	type_jitter
	type_lines
	type_lm
	type_loess
	type_points
	type_polygon
	type_polypath
	type_qq
	type_rect
	type_ridge
	type_rug
	type_segments
	type_spineplot
	type_spline
	type_summary
	type_text
	type_violin
	Index

