
Package ‘timeplyr’
February 10, 2026

Title Fast Tidy Tools for Date and Date-Time Manipulation

Version 1.1.2

Description A set of fast tidy functions for wrangling, completing and
summarising date and date-time data. It combines 'tidyverse' syntax
with the efficiency of 'data.table' and speed of 'collapse'.

License GPL (>= 2)

BugReports https://github.com/NicChr/timeplyr/issues

Depends R (>= 4.1.0)

Imports cheapr (>= 1.3.2), cli, collapse (>= 2.0.0), cppdoubles (>=
0.2.0), data.table (>= 1.14.8), dplyr (>= 1.1.0), fastplyr (>=
0.9.9), ggplot2 (>= 3.4.0), lifecycle, lubridate (>= 1.9.0),
pillar (>= 1.7.0), rlang (>= 1.0.0), scales, stringr (>=
1.4.0), timechange (>= 0.2.0), vctrs (>= 0.6.0)

Suggests bench, knitr, nycflights13, outbreaks, rmarkdown, testthat
(>= 3.0.0), tidyr, zoo

LinkingTo cpp11, tzdb

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Nick Christofides [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9743-7342>)

Maintainer Nick Christofides <nick.christofides.r@gmail.com>

Repository CRAN

Date/Publication 2026-02-10 07:50:02 UTC

Contents
.time_units . 2
age_years . 3

1

https://github.com/NicChr/timeplyr/issues
https://orcid.org/0000-0002-9743-7342

2 .time_units

calendar . 4
get_time_delay . 5
growth . 7
growth_rate . 8
iso_week . 10
is_date . 11
is_whole_number . 12
missing_dates . 13
reset_timeplyr_options . 14
resolution . 14
roll_lag . 15
roll_na_fill . 17
roll_sum . 18
timespan . 20
time_add . 22
time_by . 23
time_cut_n . 24
time_diff . 27
time_elapsed . 28
time_episodes . 29
time_expand . 32
time_gaps . 34
time_ggplot . 35
time_grid . 37
time_id . 38
time_interval . 39
time_is_regular . 41
time_roll_sum . 42
time_seq . 46
time_seq_id . 49
transform_year_month . 50
ts_as_tbl . 51
year_month . 53

Index 55

.time_units Time units

Description

Time units

age_years 3

Usage

.time_units

.period_units

.duration_units

.extra_time_units

Format

An object of class character of length 21.

An object of class character of length 7.

An object of class character of length 11.

An object of class character of length 10.

age_years Accurate and efficient age calculation

Description

[Deprecated]

Correct calculation of ages in years using lubridate periods. Leap year calculations work as well.

Usage

age_years(start, end = if (is_date(start)) Sys.Date() else Sys.time())

age_months(start, end = if (is_date(start)) Sys.Date() else Sys.time())

Arguments

start Start date/datetime, typically date of birth.

end End date/datetime. Default is current date/datetime.

Value

Integer vector of age in years or months.

4 calendar

calendar Create a table of common time units from a date or datetime sequence.

Description

Create a table of common time units from a date or datetime sequence.

Usage

calendar(
x,
label = TRUE,
week_start = getOption("lubridate.week.start", 1),
fiscal_start = getOption("lubridate.fiscal.start", 1),
name = "time"

)

Arguments

x date or datetime vector.

label Logical. Should labelled (ordered factor) versions of week day and month be
returned? Default is TRUE.

week_start day on which week starts following ISO conventions - 1 means Monday, 7
means Sunday (default). When label = TRUE, this will be the first level of the
returned factor. You can set lubridate.week.start option to control this pa-
rameter globally.

fiscal_start Numeric indicating the starting month of a fiscal year.

name Name of date/datetime column.

Value

An object of class tibble.

Examples

library(timeplyr)
library(lubridate)

Create a calendar for the current year
from <- floor_date(today(), unit = "year")
to <- ceiling_date(today(), unit = "year", change_on_boundary = TRUE) - days(1)

my_seq <- time_seq(from, to, "day")
calendar(my_seq)

get_time_delay 5

get_time_delay Get summary statistics of time delay

Description

The output is a list containing summary statistics of time delay between two date/datetime vectors.
This can be especially useful in estimating reporting delay for example.

• data - A data frame containing the origin, end and calculated time delay.

• unit - The chosen time unit.

• num - The number of time units.

• summary - tibble with summary statistics.

• delay - tibble containing the empirical cumulative distribution function values by time delay.

• plot - A ggplot of the time delay distribution.

Usage

get_time_delay(
data,
origin,
end,
timespan = 1L,
min_delay = -Inf,
max_delay = Inf,
probs = c(0.25, 0.5, 0.75, 0.95),
.by = NULL,
include_plot = TRUE,
x_scales = "fixed",
bw = "sj",
...

)

Arguments

data A data frame.

origin Origin date variable.

end End date variable.

timespan timespan.

min_delay The minimum acceptable delay, all delays less than this are removed before
calculation. Default is min_delay = -Inf.

max_delay The maximum acceptable delay, all delays greater than this are removed before
calculation. Default is max_delay = Inf.

probs Probabilities used in the quantile summary. Default is probs = c(0.25, 0.5,
0.75, 0.95).

6 get_time_delay

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

include_plot Should a ggplot graph of delay distributions be included in the output?

x_scales Option to control how the x-axis is displayed for multiple facets. Choices are
"fixed" or "free_x".

bw The smoothing bandwidth selector for the Kernel Density estimator. If numeric,
the standard deviation of the smoothing kernel. If character, a rule to choose the
bandwidth. See ?stats::bw.nrd for more details. The default has been set to
"SJ" which implements the Sheather & Jones (1991) method, as recommended
by the R team ?stats::density. This differs from the default implemented by
stats::density() which uses Silverman’s rule-of-thumb.

... Further arguments to be passed on to ggplot2::geom_density().

Value

A list containing summary data, summary statistics and an optional ggplot.

Examples

library(timeplyr)
library(outbreaks)
library(dplyr)

ebola_linelist <- ebola_sim_clean$linelist

Incubation period distribution

95% of individuals experienced an incubation period of <= 26 days
inc_distr_days <- ebola_linelist |>

get_time_delay(date_of_infection,
date_of_onset,
time = "days")

head(inc_distr_days$data)
inc_distr_days$unit
inc_distr_days$num
inc_distr_days$summary
head(inc_distr_days$delay) # ECDF and freq by delay
inc_distr_days$plot

Can change bandwidth selector
inc_distr_days <- ebola_linelist |>

get_time_delay(date_of_infection,
date_of_onset,
time = "day",
bw = "nrd")

inc_distr_days$plot

Can choose any time units
inc_distr_weeks <- ebola_linelist |>

get_time_delay(date_of_infection,

growth 7

date_of_onset,
time = "weeks",
bw = "nrd")

inc_distr_weeks$plot

growth Rolling basic growth

Description

Calculate basic growth calculations on a rolling basis. growth() calculates the percent change
between the totals of two numeric vectors when they’re of equal length, otherwise the percent
change between the means. rolling_growth() does the same calculation on 1 numeric vec-
tor, on a rolling basis. Pairs of windows of length n, lagged by the value specified by lag are
compared in a similar manner. When lag = n then data.table::frollsum() is used, otherwise
data.table::frollmean() is used.

Usage

growth(x, y, na.rm = FALSE, log = FALSE, inf_fill = NULL)

rolling_growth(
x,
n = 1,
lag = n,
na.rm = FALSE,
partial = TRUE,
offset = NULL,
weights = NULL,
inf_fill = NULL,
log = FALSE,
...

)

Arguments

x Numeric vector.

y numeric vector

na.rm Should missing values be removed when calculating window? Defaults to FALSE.

log If TRUE Growth (relative change) in total and mean events will be calculated on
the log-scale.

inf_fill Numeric value to replace Inf values with. Default behaviour is to keep Inf
values.

n Rolling window size, default is 1.

lag Lag of basic growth comparison, default is the rolling window size.

8 growth_rate

partial Should rates be calculated outwith the window using partial windows? If TRUE
(the default), (n - 1) pairs of equally-sized rolling windows are compared, their
size increasing by 1 up to size n, at which point the rest of the window pairs are
all of size n. If FALSE all window-pairs will be of size n.

offset Numeric vector of values to use as offset, e.g. population sizes or exposure
times.

weights Importance weights. These can either be length 1 or the same length as x. Cur-
rently, no normalisation of weights occurs.

... Further arguments to be passed on to frollmean.

Value

growth returns a numeric(1) and rolling_growth returns a numeric(length(x)).

Examples

library(timeplyr)

set.seed(42)
Growth rate is 6% per day
x <- 10 * (1.06)^(0:25)

Simple growth from one day to the next
rolling_growth(x, n = 1)

Growth comparing rolling 3 day cumulative
rolling_growth(x, n = 3)

Growth comparing rolling 3 day cumulative, lagged by 1 day
rolling_growth(x, n = 3, lag = 1)

Growth comparing windows of equal size
rolling_growth(x, n = 3, partial = FALSE)

Seven day moving average growth
roll_mean(rolling_growth(x), window = 7, partial = FALSE)

growth_rate Fast Growth Rates

Description

Calculate the rate of percentage change per unit time.

Usage

growth_rate(x, na.rm = FALSE, log = FALSE, inf_fill = NULL)

growth_rate 9

Arguments

x Numeric vector.

na.rm Should missing values be removed when calculating window? Defaults to FALSE.
When na.rm = TRUE the size of the rolling windows are adjusted to the number
of non-NA values in each window.

log If TRUE then growth rates are calculated on the log-scale.

inf_fill Numeric value to replace Inf values with. Default behaviour is to keep Inf
values.

Details

It is assumed that x is a vector of values with a corresponding time index that increases regularly
with no gaps or missing values.

The output is to be interpreted as the average percent change per unit time.

For a rolling version that can calculate rates as you move through time, see roll_growth_rate.

For a more generalised method that incorporates time gaps and complex time windows, use time_roll_growth_rate.

The growth rate can also be calculated using the geometric mean of percent changes.

The below identity should always hold:

`tail(roll_growth_rate(x, window = length(x)), 1) == growth_rate(x)`

Value

numeric(1)

See Also

roll_growth_rate time_roll_growth_rate

Examples

library(timeplyr)

set.seed(42)
initial_investment <- 100
years <- 1990:2000
Assume a rate of 8% increase with noise
relative_increases <- 1.08 + rnorm(10, sd = 0.005)

assets <- Reduce(`*`, relative_increases, init = initial_investment, accumulate = TRUE)
assets

Note that this is approximately 8%
growth_rate(assets)

We can also calculate the growth rate via geometric mean

rel_diff <- exp(diff(log(assets)))

10 iso_week

all.equal(rel_diff, relative_increases)

geometric_mean <- function(x, na.rm = TRUE, weights = NULL){
exp(collapse::fmean(log(x), na.rm = na.rm, w = weights))

}

geometric_mean(rel_diff) == growth_rate(assets)

Weighted growth rate

w <- c(rnorm(5)^2, rnorm(5)^4)
geometric_mean(rel_diff, weights = w)

Rolling growth rate over the last n years
roll_growth_rate(assets)

The same but using geometric means
exp(roll_mean(log(c(NA, rel_diff))))

Rolling growth rate over the last 5 years
roll_growth_rate(assets, window = 5)
roll_growth_rate(assets, window = 5, partial = FALSE)

Rolling growth rate with gaps in time

years2 <- c(1990, 1993, 1994, 1997, 1998, 2000)
assets2 <- assets[years %in% years2]

Below does not incorporate time gaps into growth rate calculation
But includes helpful warning
time_roll_growth_rate(assets2, window = 5, time = years2)
Time step allows us to calculate correct rates across time gaps
time_roll_growth_rate(assets2, window = 5, time = years2, time_step = 1) # Time aware

iso_week Efficient, simple and flexible ISO week calculation

Description

iso_week() is a flexible function to return formatted ISO weeks, with optional ISO year and ISO
day. isoday() returns the day of the ISO week.

Usage

iso_week(x, year = TRUE, day = FALSE)

isoday(x)

is_date 11

Arguments

x Date vector.

year Logical. If TRUE then ISO Year is returned along with the ISO week.

day Logical. If TRUE then day of the week is returned with the ISO week, starting at
1, Monday, and ending at 7, Sunday.

Value

An ISO week vector of class character.

Examples

library(timeplyr)
library(lubridate)

iso_week(today())
iso_week(today(), day = TRUE)
iso_week(today(), year = FALSE, day = TRUE)
iso_week(today(), year = FALSE, day = FALSE)

is_date Utility functions for checking if date or datetime

Description

Utility functions for checking if date or datetime

Usage

is_date(x)

is_datetime(x)

is_time(x)

is_time_or_num(x)

Arguments

x Time variable.
Can be a Date, POSIXt, numeric, integer, yearmon, yearqtr, year_month or
year_quarter.

Value

A logical of length 1.

12 is_whole_number

is_whole_number Are all numbers whole numbers?

Description

Are all numbers whole numbers?

Usage

is_whole_number(x, tol = .Machine$double.eps^(2/3), na.rm = TRUE)

Arguments

x A numeric vector.

tol tolerance value.
The default is .Machine$double.eps^(2/3), an arbitrarily small tolerance.

na.rm Should NA values be ignored? Default is TRUE.

Details

This is a very efficient function that returns FALSE if any number is not a whole-number and TRUE
if all of them are.

Method:
x is defined as a whole number vector if all numbers satisfy abs(x - round(x)) < tol.

NA handling:
NA values are handled in a custom way.
If x is an integer, TRUE is always returned even if x has missing values.
If x has both missing values and decimal numbers, FALSE is always returned.
If x has missing values, and only whole numbers and na.rm = FALSE, then NA is returned.
Basically NA is only returned if na.rm = FALSE and x is a double vector of only whole numbers
and NA values.
Inspired by the discussion in this thread: check-if-the-number-is-integer

Value

A logical vector of length 1.

Examples

library(timeplyr)
library(dplyr)

Has built-in tolerance
sqrt(2)^2 %% 1 == 0
is_whole_number(sqrt(2)^2)

https://stackoverflow.com/questions/3476782/check-if-the-number-is-integer/76655734

missing_dates 13

is_whole_number(1)
is_whole_number(1.2)

x1 <- c(0.02, 0:10^5)
x2 <- c(0:10^5, 0.02)

is_whole_number(x1)
is_whole_number(x2)

Somewhat more strict than all.equal

all.equal(10^9 + 0.0001, round(10^9 + 0.0001))
is_whole_number(10^9 + 0.0001)

Can safely be used to select whole number variables
starwars |>

select(where(is_whole_number))

To reduce the size of any data frame one can use the below code

df <- starwars |>
mutate(across(where(is_whole_number), as.integer))

missing_dates Check for missing dates between first and last date

Description

Check for missing dates between first and last date

Usage

missing_dates(x)

n_missing_dates(x)

Arguments

x A Date or Date-Time vector.

Value

A Date vector.

14 resolution

reset_timeplyr_options

Reset ’timeplyr’ options

Description

Reset ’timeplyr’ options

Usage

reset_timeplyr_options()

Value

Resets the timeplyr global options (prefixed with "timeplyr."):
roll_month & roll_dst.

resolution Time resolution & granularity

Description

The definitions of resolution and granularity may evolve over time but currently the resolution de-
fines the smallest timespan that differentiates two non-fractional instances in time. The granularity
defines the smallest common time difference. A practical example would be when using dates to
record data with a monthly frequency. In this case the granularity is 1 month, whereas the resolution
of the data type Date is 1 day. Therefore the resolution depends only on the data type whereas the
granularity depends on the frequency with which the data is recorded.

Usage

resolution(x, ...)

granularity(x, ...)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

... Further arguments passed to methods.

Details

For dates and date-times, the argument exact = TRUE can be used to detect monthly/yearly granu-
larity. In some cases this can be slow and memory-intensive so it is advised to set this to FALSE in
these cases.

The default for dates is exact = TRUE whereas the default for date-times is exact = FALSE.

roll_lag 15

Value

A timespan object.

roll_lag Fast rolling grouped lags and differences

Description

Inspired by ’collapse’, roll_lag and roll_diff operate similarly to flag and fdiff.

Usage

roll_lag(x, n = 1L, ...)

Default S3 method:
roll_lag(x, n = 1L, g = NULL, fill = NULL, ...)

S3 method for class 'ts'
roll_lag(x, n = 1L, g = NULL, fill = NULL, ...)

S3 method for class 'zoo'
roll_lag(x, n = 1L, g = NULL, fill = NULL, ...)

roll_diff(x, n = 1L, ...)

Default S3 method:
roll_diff(x, n = 1L, g = NULL, fill = NULL, differences = 1L, ...)

S3 method for class 'ts'
roll_diff(x, n = 1L, g = NULL, fill = NULL, differences = 1L, ...)

S3 method for class 'zoo'
roll_diff(x, n = 1L, g = NULL, fill = NULL, differences = 1L, ...)

diff_(
x,
n = 1L,
differences = 1L,
order = NULL,
run_lengths = NULL,
fill = NULL

)

Arguments

x A vector or data frame.

16 roll_lag

n Lag. This will be recycled to match the length of x and can be negative.

... Arguments passed onto appropriate method.

g Grouping vector. This can be a vector, data frame or GRP object.

fill Value to fill the first n elements.

differences Number indicating the number of times to recursively apply the differencing al-
gorithm. If length(n) == 1, i.e the lag is a scalar integer, an optimised method
is used which avoids recursion entirely. If length(n) != 1 then simply recur-
sion is used.

order Optionally specify an ordering with which to apply the lags/differences. This is
useful for example when applying lags chronologically using an unsorted time
variable.

run_lengths Optional integer vector of run lengths that defines the size of each lag run. For
example, supplying c(5, 5) applies lags to the first 5 elements and then essen-
tially resets the bounds and applies lags to the next 5 elements as if they were an
entirely separate and standalone vector.
This is particularly useful in conjunction with the order argument to perform a
by-group lag.

Details

While these may not be as fast the ’collapse’ equivalents, they are adequately fast and efficient.
A key difference between roll_lag and flag is that g does not need to be sorted for the result to
be correct.
Furthermore, a vector of lags can be supplied for a custom rolling lag.

roll_diff() silently returns NA when there is integer overflow. Both roll_lag() and roll_diff()
apply recursively to list elements.

Value

A vector the same length as x.

Examples

library(timeplyr)

x <- 1:10

roll_lag(x) # Lag
roll_lag(x, -1) # Lead
roll_diff(x) # Lag diff
roll_diff(x, -1) # Lead diff

Using cheapr::lag_sequence()
Differences lagged at 5, first 5 differences are compared to x[1]
roll_diff(x, cheapr::lag_sequence(length(x), 5, partial = TRUE))

Like diff() but x/y instead of x-y
quotient <- function(x, n = 1L){

roll_na_fill 17

x / roll_lag(x, n)
}
People often call this a growth rate
but it's just a percentage difference
See ?roll_growth_rate for growth rate calculations
quotient(1:10)

roll_na_fill Fast grouped "locf" NA fill

Description

A fast and efficient by-group method for "last-observation-carried-forward" NA filling.

Usage

roll_na_fill(x, g = NULL, fill_limit = Inf)

Arguments

x A vector.

g An object use for grouping x This may be a vector or data frame for example.

fill_limit (Optional) maximum number of consecutive NAs to fill per NA cluster. Default
is Inf.

Details

Method:
When supplying groups using g, this method uses radixorder(g) to specify how to loop through
x, making this extremely efficient.

When x contains zero or all NA values, then x is returned with no copy made.

Value

A filled vector of x the same length as x.

18 roll_sum

roll_sum Fast by-group rolling functions

Description

An efficient method for rolling sum, mean and growth rate for many groups.

Usage

roll_sum(
x,
window = Inf,
g = NULL,
partial = TRUE,
weights = NULL,
na.rm = TRUE,
...

)

roll_mean(
x,
window = Inf,
g = NULL,
partial = TRUE,
weights = NULL,
na.rm = TRUE,
...

)

roll_geometric_mean(
x,
window = Inf,
g = NULL,
partial = TRUE,
weights = NULL,
na.rm = TRUE,
...

)

roll_harmonic_mean(
x,
window = Inf,
g = NULL,
partial = TRUE,
weights = NULL,
na.rm = TRUE,
...

roll_sum 19

)

roll_growth_rate(
x,
window = Inf,
g = NULL,
partial = TRUE,
na.rm = FALSE,
log = FALSE,
inf_fill = NULL

)

Arguments

x Numeric vector, data frame, or list.

window Rolling window size, default is Inf.

g Grouping object passed directly to collapse::GRP(). This can for example be
a vector or data frame.

partial Should calculations be done using partial windows? Default is TRUE.

weights Importance weights. Must be the same length as x. Currently, no normalisation
of weights occurs.

na.rm Should missing values be removed for the calculation? The default is TRUE.

... Additional arguments passed to data.table::frollmean and data.table::frollsum.

log For roll_growth_rate: If TRUE then growth rates are calculated on the log-
scale.

inf_fill For roll_growth_rate: Numeric value to replace Inf values with. Default
behaviour is to keep Inf values.

Details

roll_sum and roll_mean support parallel computations when x is a data frame of multiple columns.
roll_geometric_mean and roll_harmonic_mean are convenience functions that utilise roll_mean.
roll_growth_rate calculates the rate of percentage change per unit time on a rolling basis.

Value

A numeric vector the same length as x when x is a vector, or a list when x is a data.frame.

See Also

time_roll_mean

20 timespan

Examples

library(timeplyr)

x <- 1:10
roll_sum(x) # Simple rolling total
roll_mean(x) # Simple moving average
roll_sum(x, window = 3)
roll_mean(x, window = 3)
roll_sum(x, window = 3, partial = FALSE)
roll_mean(x, window = 3, partial = FALSE)

Plot of expected value of 'coin toss' over many flips
set.seed(42)
x <- sample(c(1, 0), 10^3, replace = TRUE)
ev <- roll_mean(x)
plot(ev)
abline(h = 0.5, lty = 2)

all.equal(roll_sum(iris$Sepal.Length, g = iris$Species),
ave(iris$Sepal.Length, iris$Species, FUN = cumsum))

The below is run using parallel computations where applicable
roll_sum(iris[, 1:4], window = 7, g = iris$Species)

library(data.table)
library(bench)
df <- data.table(g = sample.int(10^4, 10^5, TRUE),

x = rnorm(10^5))
mark(e1 = df[, mean := frollmean(x, n = 7,

align = "right", na.rm = FALSE), by = "g"]$mean,
e2 = df[, mean := roll_mean(x, window = 7, g = get("g"),

partial = FALSE, na.rm = FALSE)]$mean)

timespan Timespans

Description

Timespans

Usage

timespan(units, num = 1L, ...)

new_timespan(units, num = 1L)

is_timespan(x)

timespan 21

timespan_unit(x)

timespan_num(x)

Arguments

units A unit of time, e.g. "days", "3 weeks", lubridate::weeks(3), or just a nu-
meric vector.

num Number of units. E.g. units = "days" and num = 3 produces a timespan width
of 3 days.

... Further arguments passed onto methods.

x A timespan.

Details

timespan() can be used to create objects of class ’timespan’ which are used widely in timeplyr.

new_timespan() is a bare-bones version that does no checking or string parsing and is intended for
fast timespan creation.

timespan_unit() is a helper that extracts the unit of time of the timespan.

timespan_num() is a helper that extracts the number of units of time.

Value

A timespan object.

Examples

library(timeplyr)

timespan("week")
timespan("day")
timespan("decade")

Multiple units of time

timespan("10 weeks")
timespan("1.5 hours")

These are all equivalent
timespan(NULL, 3);timespan(3);timespan(NA_character_, 3)

22 time_add

time_add Add/subtract timespans to dates and date-times

Description

A very fast method of adding time units to dates and date-times.

Usage

time_add(
x,
timespan,
n = 1L,
roll_month = getOption("timeplyr.roll_month", "xlast"),
roll_dst = getOption("timeplyr.roll_dst", c("NA", "xfirst"))

)

time_subtract(
x,
timespan,
n = 1L,
roll_month = getOption("timeplyr.roll_month", "xlast"),
roll_dst = getOption("timeplyr.roll_dst", c("NA", "xfirst"))

)

time_floor(x, timespan, week_start = getOption("lubridate.week.start", 1))

time_ceiling(
x,
timespan,
week_start = getOption("lubridate.week.start", 1),
change_on_boundary = is_date(x)

)

time_round(x, timespan, week_start = getOption("lubridate.week.start", 1))

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.
n [numeric(1)] - Number of timespans. This is mostly sugar as this can easily

be specified by timespan().

roll_month See ?timechange::time_add. Additional choices include xlast (default) and
xfirst. These work conceptually similar to skipped DST intervals.

roll_dst See ?timechange::time_add.

time_by 23

week_start day on which week starts following ISO conventions - 1 means Monday, 7
means Sunday (default). When label = TRUE, this will be the first level of the
returned factor. You can set lubridate.week.start option to control this pa-
rameter globally.

change_on_boundary

?timechange::time_floor

Details

The methods are continuously being improved over time. Date arithmetic should be very fast re-
gardless of the timespan supplied. Date-time arithmetic, specifically when supplied days, weeks,
months and years, is being improved.

Value

A date, date-time, or other time-based vector.

time_by Group by a time variable at a higher time unit

Description

time_by groups a time variable by a specified time unit like for example "days" or "weeks".
It can be used exactly like dplyr::group_by.

Usage

time_by(data, time, width = NULL, .name = NULL, .add = TRUE)

time_tbl_time_col(x)

Arguments

data A data frame.

time Time variable (data-masking).
E.g., a Date, POSIXt, numeric or any time variable.

width A timespan.

.name An optional glue specification passed to stringr::glue() which can be used
to concatenate strings to the time column name or replace it.

.add Should the time groups be added to existing groups? Default is TRUE.

x A time_tbl_df.

Value

A time_tbl_df which for practical purposes can be treated the same way as a dplyr grouped_df.

24 time_cut_n

Examples

library(dplyr)
library(timeplyr)
library(fastplyr)
library(nycflights13)
library(lubridate)

Basic usage
hourly_flights <- flights |>

time_by(time_hour) # Detects time granularity

hourly_flights

monthly_flights <- flights |>
time_by(time_hour, "month")

weekly_flights <- flights |>
time_by(time_hour, "week")

monthly_flights |>
f_count()

weekly_flights |>
f_summarise(n = n(), arr_delay = mean(arr_delay, na.rm = TRUE))

To aggregate multiple variables, use `time_cut_width`

flights |>
f_count(week = time_cut_width(time_hour, months(3)))

time_cut_n Cut dates and datetimes into regularly spaced date or datetime inter-
vals

Description

Useful functions especially for when plotting time-series.

time_cut_n makes approximately n groups of equal time range. It prioritises the highest time unit
possible, making axes look less cluttered and thus prettier.

time_breaks returns only the breakpoints.

time_breakpoints is a newer and faster alternative to time_breaks which differs in that it calls
range() on the input data and therefore need only work with a vector of 2 values, unlike time_breaks
which requires more data points to create better looking breaks.

time_cut_n 25

Usage

time_cut_n(
x,
n = 5,
timespan = NULL,
from = NULL,
to = NULL,
time_floor = FALSE,
week_start = getOption("lubridate.week.start", 1)

)

time_cut_width(x, timespan = granularity(x), from = NULL, to = NULL)

time_breaks(
x,
n = 5,
timespan = NULL,
from = NULL,
to = NULL,
time_floor = FALSE,
week_start = getOption("lubridate.week.start", 1)

)

time_breakpoints(x, n = 10)

time_cut(
x,
n = 5,
timespan = NULL,
from = NULL,
to = NULL,
time_floor = FALSE,
week_start = getOption("lubridate.week.start", 1)

)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

n Number of breaks.

timespan timespan.

from Start time.

to End time.

time_floor Logical. Should the initial date/datetime be floored before building the se-
quence?

week_start day on which week starts following ISO conventions - 1 means Monday (de-
fault), 7 means Sunday. This is only used when time_floor = TRUE.

26 time_cut_n

Details

To retrieve regular time breaks that simply spans the range of x, use time_seq()to manually specify
the range and time width or time_grid() to use the range of the supplied data.

By default time_cut_n() will try to find the ’prettiest’ way of cutting the interval by trying to cut
the date/date-times into groups of the highest possible time units, starting at years and ending at
milliseconds.

time_breakpoints does the same but using a different internal method.

Value

time_breaks and time_breakpoints both return a vector of breakpoints
time_cut_n and time_cut_width returns a time_interval

Examples

library(timeplyr)
library(fastplyr)
library(cheapr)
library(lubridate)
library(ggplot2)
library(dplyr)

time_cut_n(1:10, n = 5)

Easily create custom time breaks
df <- nycflights13::flights |>

f_slice_sample(n = 100) |>
with_local_seed(.seed = 8192821) |>
f_select(time_hour) |>
fastplyr::f_arrange(time_hour) |>
mutate(date = as_date(time_hour))

time_cut_n() and time_breaks() automatically find a
suitable way to cut the data
time_cut_n(df$date) |>

interval_count()
Works with datetimes as well
time_cut_n(df$time_hour, n = 5) |>

interval_count()
time_cut_n(df$date, timespan = "month") |>

interval_count()
Just the breaks
time_breaks(df$date, n = 5, timespan = "month")

cut_dates <- time_cut_n(df$date)
date_breaks <- time_breaks(df$date)

To get exact breaks at regular intervals, use time_grid
weekly_breaks <- time_grid(

df$date, "5 weeks",
from = floor_date(min(df$date), "week", week_start = 1)

time_diff 27

)
weekly_labels <- format(weekly_breaks, "%b-%d")
df |>

time_by(date, "week", .name = "date") |>
f_count() |>
mutate(date = interval_start(date)) |>
ggplot(aes(x = date, y = n)) +
geom_bar(stat = "identity") +
scale_x_date(breaks = weekly_breaks,

labels = weekly_labels)

time_diff Time differences by any time unit

Description

The time difference between 2 date or date-time vectors.

Usage

time_diff(x, y, timespan = 1L)

Arguments

x Start date or datetime.

y End date or datetime.

timespan A timespan used to divide the difference.

Value

A numeric vector recycled to the length of max(length(x), length(y)).

Examples

library(timeplyr)
library(lubridate)
time_diff(today(), today() + days(10), "days")
time_diff(today(), today() + days((0:3) * 7), weeks(1))
time_diff(today(), today() + days(100), timespan("days", 1:100))
time_diff(1, 1 + 0:100, 3)

28 time_elapsed

time_elapsed Fast grouped time elapsed

Description

Calculate how much time has passed on a rolling or cumulative basis.

Usage

time_elapsed(
x,
timespan = granularity(x),
g = NULL,
rolling = TRUE,
fill = NA,
na_skip = TRUE

)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.

g Object to be used for grouping x, passed onto collapse::GRP().

rolling If TRUE (the default) then lagged time differences are calculated on a rolling
basis, essentially like diff().
If FALSE then time differences compared to the index (first) time are calculated.

fill When rolling = TRUE, this is the value that fills the first elapsed time. The
default is NA.

na_skip Should NA values be skipped? Default is TRUE.

Details

time_elapsed() is quite efficient when there are many groups, especially if your data is sorted in
order of those groups. In the case that g is supplied, it is most efficient when your data is sorted
by g . When na_skip is TRUE and rolling is also TRUE, NA values are simply skipped and hence
the time differences between the current value and the previous non-NA value are calculated. For
example, c(3, 4, 6, NA, NA, 9) becomes c(NA, 1, 2, NA, NA, 3).
When na_skip is TRUE and rolling is FALSE, time differences between the current value and the
first non-NA value of the series are calculated. For example, c(NA, NA, 3, 4, 6, NA, 8) becomes
c(NA, NA, 0, 1, 3, NA, 5).

Value

A numeric vector the same length as x.

time_episodes 29

Examples

library(timeplyr)
library(dplyr)
library(lubridate)

x <- time_seq(today(), length.out = 25, time = "3 days")
time_elapsed(x)
time_elapsed(x, "days", rolling = FALSE)

Grouped example
set.seed(99)
g <- sample.int(3, 25, TRUE)

time_elapsed(x, "days", g = g)

time_episodes Episodic calculation of time-since-event data

Description

This function assigns episodes to events based on a pre-defined threshold of a chosen time unit.

Usage

time_episodes(
data,
time,
time_by = NULL,
window = 1,
roll_episode = TRUE,
switch_on_boundary = TRUE,
fill = 0,
.add = FALSE,
event = NULL,
.by = NULL

)

Arguments

data A data frame.

time Date or datetime variable to use for the episode calculation. Supply the variable
using tidyselect notation.

time_by Time units used to calculate episode flags. If time_by is NULL then a heuristic
will try and estimate the highest order time unit associated with the time vari-
able. If specified, then by must be one of the three:

30 time_episodes

• string, specifying either the unit or the number and unit, e.g time_by =
"days" or time_by = "2 weeks"

• named list of length one, the unit being the name, and the number the value
of the list, e.g. list("days" = 7). For the vectorized time functions, you
can supply multiple values, e.g. list("days" = 1:10).

• Numeric vector. If by is a numeric vector and x is not a date/datetime, then
arithmetic is used, e.g time_by = 1.

window Single number defining the episode threshold. When rolling = TRUE events
with a t_elapsed >= window since the last event are defined as a new episode.
When rolling = FALSE events with a t_elapsed >= window since the first event
of the corresponding episode are defined as a new episode.
By default, window = 1 which assigns every event to a new episode.

roll_episode Logical. Should episodes be calculated using a rolling or fixed window? If
TRUE (the default), an amount of time must have passed (>= window) since the
last event, with each new event effectively resetting the time at which you start
counting.
If FALSE, the elapsed time is fixed and new episodes are defined based on how
much cumulative time has passed since the first event of each episode.

switch_on_boundary

When an exact amount of time (specified in time_by) has passed, should there
be an increment in ID?
The default is TRUE.
For example, if time_by = "days" and switch_on_boundary = FALSE, > 1 day
must have passed, otherwise >= 1 day must have passed.

fill Value to fill first time elapsed value. Only applicable when roll_episode =
TRUE.
Default is 0.

.add Should episodic variables be added to the data?
If FALSE (the default), then only the relevant variables are returned.
If TRUE, the episodic variables are added to the original data. In both cases, the
order of the data is unchanged.

event (Optional) List that encodes which rows are events, and which aren’t. By de-
fault time_episodes() assumes every observation (row) is an event but this
need not be the case.
event must be a named list of length 1 where the values of the list element rep-
resent the event. For example, if your events were coded as 0 and 1 in a variable
named "evt" where 1 represents the event, you would supply event = list(evt
= 1).

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidyselect.

Details

time_episodes() calculates the time elapsed (rolling or fixed) between successive events, and
flags these events as episodes or not based on how much time has passed.

An example of episodic analysis can include disease infections over time.

time_episodes 31

In this example, a positive test result represents an event and
a new infection represents a new episode.

It is assumed that after a pre-determined amount of time, a positive result represents a new episode
of infection.

To perform simple time-since-event analysis, which means one is not interested in episodes, simply
use time_elapsed() instead.

To find implicit missing gaps in time, set window to 1 and switch_on_boundary to FALSE. Any
event classified as an episode in this scenario is an event following a gap in time.

The data are always sorted before calculation and then sorted back to the input order.

4 Key variables will be calculated:

• ep_id - An integer variable signifying which episode each event belongs to.
Non-events are assigned NA.
ep_id is an increasing integer starting at 1. In the infections scenario, 1 are positives within
the first episode of infection, 2 are positives within the second episode of infection and so on.

• ep_id_new - An integer variable signifying the first instance of each new episode. This is an
increasing integer where 0 signifies within-episode observations and >= 1 signifies the first
instance of the respective episode.

• t_elapsed - The time elapsed since the last event.
When roll_episode = FALSE, this becomes the time elapsed since the first event of the cur-
rent episode. Time units are specified in the by argument.

• ep_start - Start date/datetime of the episode.

data.table and collapse are used for speed and efficiency.

Value

A data.frame in the same order as it was given.

See Also

time_elapsed time_seq_id

Examples

library(timeplyr)
library(dplyr)
library(nycflights13)
library(lubridate)
library(ggplot2)

Say we want to flag origin-destination pairs
that haven't seen departures or arrivals for a week

events <- flights |>
mutate(date = as_date(time_hour)) |>
group_by(origin, dest) |>
time_episodes(date, "week", window = 1)

32 time_expand

events

episodes <- events |>
filter(ep_id_new > 1)

nrow(fastplyr::f_distinct(episodes, origin, dest)) # 55 origin-destinations

As expected summer months saw the least number of
dry-periods
episodes |>

ungroup() |>
time_by(ep_start, "week", .name = "ep_start") |>
count(ep_start = interval_start(ep_start)) |>
ggplot(aes(x = ep_start, y = n)) +
geom_bar(stat = "identity")

time_expand A time based extension to tidyr::complete().

Description

A time based extension to tidyr::complete().

Usage

time_expand(
data,
time = NULL,
...,
.by = NULL,
time_by = NULL,
from = NULL,
to = NULL,
sort = TRUE

)

time_complete(
data,
time = NULL,
...,
.by = NULL,
time_by = NULL,
from = NULL,
to = NULL,
sort = TRUE,
fill = NULL

)

time_expand 33

Arguments

data A data frame.

time Time variable.

... Groups to expand.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

time_by A timespan.

from Time series start date.

to Time series end date.

sort Logical. If TRUE expanded/completed variables are sorted.

fill A named list containing value-name pairs to fill the named implicit missing
values.

Details

This works much the same as tidyr::complete(), except that you can supply an additional time
argument to allow for completing implicit time gaps and creating time sequences by group.

Value

A data.frame of expanded time by or across groups.

Examples

library(timeplyr)
library(dplyr)
library(lubridate)
library(nycflights13)

x <- flights$time_hour

time_num_gaps(x) # Missing hours

flights_count <- flights |>
fastplyr::f_count(time_hour)

Fill in missing hours
flights_count |>

time_complete(time = time_hour)

You can specify units too
flights_count |>

time_complete(time = time_hour, time_by = "hours")
flights_count |>
time_complete(time = as_date(time_hour), time_by = "days") # Nothing to complete here

Where time_expand() and time_complete() really shine is how fast they are with groups
flights |>

34 time_gaps

group_by(origin, dest) |>
time_expand(time = time_hour, time_by = dweeks(1))

time_gaps Gaps in a regular time sequence

Description

time_gaps() checks for implicit missing gaps in time for any regular date or datetime sequence.

Usage

time_gaps(
x,
timespan = granularity(x),
g = NULL,
use.g.names = TRUE,
check_time_regular = FALSE

)

time_num_gaps(
x,
timespan = granularity(x),
g = NULL,
use.g.names = TRUE,
na.rm = TRUE,
check_time_regular = FALSE

)

time_has_gaps(
x,
timespan = granularity(x),
g = NULL,
use.g.names = TRUE,
na.rm = TRUE,
check_time_regular = FALSE

)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.

g Grouping object passed directly to collapse::GRP(). This can for example be
a vector or data frame.

use.g.names Should the result include group names? Default is TRUE.

time_ggplot 35

check_time_regular

Should the time vector be checked to see if it is regular (with or without gaps)?
Default is FALSE.

na.rm Should NA values be removed? Default is TRUE.

Details

When check_time_regular is TRUE, x is passed to time_is_regular, which checks that the
time elapsed between successive values are in increasing order and are whole numbers. For more
strict checks, see ?time_is_regular.

Value

time_gaps returns a vector of time gaps.
time_num_gaps returns the number of time gaps.
time_has_gaps returns a logical(1) of whether there are gaps.

Examples

library(timeplyr)
library(fastplyr)
library(lubridate)
library(nycflights13)
missing_dates(flights$time_hour)
time_has_gaps(flights$time_hour)
time_num_gaps(flights$time_hour)
length(time_gaps(flights$time_hour))
time_num_gaps(flights$time_hour, g = flights$origin)

Number of missing hours by origin and dest
flights |>

f_group_by(origin, dest) |>
f_summarise(n_missing = time_num_gaps(time_hour, "hours"))

time_ggplot Quick time-series ggplot

Description

time_ggplot() is a neat way to quickly plot aggregate time-series data.

Usage

time_ggplot(
data,
time,
value,
group = NULL,

36 time_ggplot

facet = FALSE,
geom = ggplot2::geom_line,
...

)

Arguments

data A data frame

time Time variable using tidyselect.

value Value variable using tidyselect.

group (Optional) Group variable using tidyselect.

facet When groups are supplied, should multi-series be plotted separately or on the
same plot? Default is FALSE, or together.

geom ggplot2 ’geom’ type. Default is geom_line().

... Further arguments passed to the chosen ’geom’.

Value

A ggplot.

See Also

ts_as_tbl

Examples

library(dplyr)
library(timeplyr)
library(ggplot2)
library(lubridate)

It's as easy as this
AirPassengers |>

ts_as_tbl() |>
time_ggplot(time, value)

And this
EuStockMarkets |>

ts_as_tbl() |>
time_ggplot(time, value, group)

Converting this to monthly averages

EuStockMarkets |>
ts_as_tbl() |>
mutate(month = year_month_decimal(time)) |>
summarise(avg = mean(value),

.by = c(group, month)) |>
time_ggplot(month, avg, group)

time_grid 37

zoo example
x.Date <- as.Date("2003-02-01") + c(1, 3, 7, 9, 14) - 1
x <- zoo::zoo(rnorm(5), x.Date)
x |>

ts_as_tbl() |>
time_ggplot(time, value)

time_grid Vector date and datetime functions

Description

These are atomic vector-based functions of the tidy equivalents which all have a "v" suffix to denote
this. These are more geared towards programmers and allow for working with date and datetime
vectors.

Usage

time_grid(x, timespan = granularity(x), from = NULL, to = NULL)

time_complete_missing(x, timespan = granularity(x))

time_grid_size(x, timespan = granularity(x), from = NULL, to = NULL)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.

from Start time.

to End time.

Value

Vectors (typically the same class as x) of varying lengths depending on the arguments supplied.

Examples

library(timeplyr)
library(dplyr)
library(lubridate)
library(nycflights13)
x <- unique(flights$time_hour)

Number of missing hours
time_num_gaps(x)

38 time_id

Same as above
time_grid_size(x) - length(unique(x))

Time sequence that spans the data
length(time_grid(x)) # Automatically detects hour granularity
time_grid(x, "month")
time_grid(x, from = floor_date(min(x), "month"), to = today(),

timespan = timespan("month"))

Complete missing gaps in time using time_complete
y <- time_complete_missing(x, "hour")
identical(y[!y %in% x], time_gaps(x))

Summarise time into higher intervals
quarters <- time_cut_width(y, "quarter")
interval_count(quarters)

time_id Time ID

Description

Generate a time ID that signifies how many time steps away a time value is from the starting time
point or more intuitively, this is the time passed since the first time point.

Usage

time_id(x, timespan = granularity(x), g = NULL, na_skip = TRUE, shift = 1L)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.

g Object used for grouping x. This can for example be a vector or data frame. g is
passed directly to collapse::GRP().

na_skip Should NA values be skipped? Default is TRUE.

shift Value used to shift the time IDs. Typically this is 1 to ensure the IDs start at 1 but
can be 0 or even negative if for example your time values are going backwards
in time.

Details

This is heavily inspired by collapse::timeid but differs in 3 ways:

• The time steps need not be the greatest common divisor of successive differences

time_interval 39

• The starting time point may not necessarily be the earliest chronologically and thus time_id
can generate negative IDs.

• g can be supplied to calculate IDs by group.

time_id(c(3, 2, 1)) is not the same as collapse::timeid(c(3, 2, 1)). In general time_id(sort(x))
should be equal to collapse::timeid(sort(x)). The time difference GCD is always calculated
using all the data and not by-group.

Value

An integer vector the same length as x.

See Also

time_elapsed time_seq_id

time_interval S3-based Time Intervals (Currently very experimental and so subject
to change)

Description

Inspired by both ’lubridate’ and ’ivs’, time_interval objects are lightweight S3 objects of a fixed
width. This enables fast and flexible representation of time data such as months, weeks, and more.
They are all left closed, right open intervals.

Usage

time_interval(start = integer(), width = resolution(start))

is_time_interval(x)

new_time_interval(start, width)

interval_start(x)

interval_end(x)

interval_width(x)

interval_count(x)

interval_range(x)

40 time_interval

Arguments

start Start time.
E.g a Date, POSIXt, numeric and more.

width Interval width supplied as a timespan. By default this is the resolution of a time
vector so for example, a date’s resolution is exactly 1 day, therefore time_interval(Sys.Date())
simply represents today’s date as an interval.

x A time_interval.

Details

Currently because of limitations with the S3/S4 system, one can’t use time intervals directly with
lubridate periods. To navigate around this, timeplyr::timespan() can be used. e.g. instead
of interval / weeks(3), use interval / timespan(weeks(3)) or even interval / "3 weeks".
where interval is a time_interval.

To perform interval algebra it is advised to use the ’ivs’ package. To convert a time_interval into
an ivs_iv, use ivs::iv(interval_start(x), interval_end(x)).

Value

An object of class time_interval.
is_time_interval returns a logical of length 1.
interval_start returns the start times.
interval_end returns the end times.
interval_width returns the width of the interval as a timespan.
interval_count returns a data frame of unique intervals and their counts.
interval_range returns a the range of the interval.
new_time_interval is a bare-bones version of time_interval() that performs no checks.

See Also

interval_start

Examples

library(dplyr)
library(timeplyr)
library(lubridate)
x <- 1:10
int <- time_interval(x, 100)
int

month_start <- floor_date(today(), unit = "months")
month_int <- time_interval(month_start, "month")
month_int

interval_start(month_int)
interval_end(month_int)

Divide an interval into different time units

time_is_regular 41

time_interval(today(), years(10)) / timespan("year")

Cutting Sepal Length into blocks of width 1
int <- time_cut_width(iris$Sepal.Length, 1)
interval_count(int)

time_is_regular Is time a regular sequence? (Experimental)

Description

This function is a fast way to check if a time vector is a regular sequence, possibly for many groups.
Regular in this context means that the lagged time differences are a whole multiple of the specified
time unit.
This means x can be a regular sequence with or without gaps in time.

Usage

time_is_regular(
x,
timespan = granularity(x),
g = NULL,
use.g.names = TRUE,
na.rm = TRUE,
allow_gaps = FALSE,
allow_dups = FALSE

)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.

g Grouping object passed directly to collapse::GRP(). This can for example be
a vector or data frame.
Note that when g is supplied the output is a logical with length matching the
number of unique groups.

use.g.names Should the result include group names? Default is TRUE.

na.rm Should NA values be removed before calculation? Default is TRUE.

allow_gaps Should gaps be allowed? Default is FALSE.

allow_dups Should duplicates be allowed? Default is FALSE.

Value

A logical vector the same length as the number of supplied groups.

42 time_roll_sum

Examples

library(timeplyr)
library(lubridate)
library(dplyr)

x <- 1:5
y <- c(1, 1, 2, 3, 5)

No duplicates or gaps allowed by default
time_is_regular(x)
time_is_regular(y)

increment <- 1

duplicates and gaps allowed
time_is_regular(x, increment, allow_dups = TRUE, allow_gaps = TRUE)
time_is_regular(y, increment, allow_dups = TRUE, allow_gaps = TRUE)

No gaps allowed
time_is_regular(x, increment, allow_dups = TRUE, allow_gaps = FALSE)
time_is_regular(y, increment, allow_dups = TRUE, allow_gaps = FALSE)

Grouped
eu_stock <- ts_as_tbl(EuStockMarkets)
eu_stock <- eu_stock |>

mutate(date = as_date(
date_decimal(time)

))

time_is_regular(eu_stock$date, g = eu_stock$group, timespan = 1,
allow_gaps = TRUE)

This makes sense as no trading occurs on weekends and holidays
time_is_regular(eu_stock$date, g = eu_stock$group,

timespan = 1,
allow_gaps = FALSE)

time_roll_sum Fast time-based by-group rolling sum/mean - Currently experimental

Description

time_roll_sum and time_roll_mean are efficient methods for calculating a rolling sum and mean
respectively given many groups and with respect to a date or datetime time index.
It is always aligned "right".
time_roll_window splits x into windows based on the index.
time_roll_window_size returns the window sizes for all indices of x.
time_roll_apply is a generic function that applies any function on a rolling basis with respect to

time_roll_sum 43

a time index.

time_roll_growth_rate can efficiently calculate by-group rolling growth rates with respect to a
date/datetime index.

Usage

time_roll_sum(
x,
window = timespan(Inf),
time = NULL,
weights = NULL,
g = NULL,
partial = TRUE,
close_left_boundary = FALSE,
na.rm = TRUE,
...

)

time_roll_mean(
x,
window = timespan(Inf),
time = NULL,
weights = NULL,
g = NULL,
partial = TRUE,
close_left_boundary = FALSE,
na.rm = TRUE,
...

)

time_roll_growth_rate(
x,
window = timespan(Inf),
time = NULL,
time_step = NULL,
g = NULL,
partial = TRUE,
close_left_boundary = FALSE,
na.rm = TRUE

)

time_roll_window_size(
time,
window = timespan(Inf),
g = NULL,
partial = TRUE,
close_left_boundary = FALSE

44 time_roll_sum

)

time_roll_window(
x,
window = timespan(Inf),
time = NULL,
g = NULL,
partial = TRUE,
close_left_boundary = FALSE

)

time_roll_apply(
x,
window = timespan(Inf),
fun,
time = NULL,
g = NULL,
partial = TRUE,
unlist = FALSE,
close_left_boundary = FALSE

)

Arguments

x Numeric vector.
window Time window size as a timespan.
time (Optional) time index.

Can be a Date, POSIXt, numeric, integer, yearmon, or yearqtr vector.
weights Importance weights. Must be the same length as x. Currently, no normalisation

of weights occurs.
g Grouping object passed directly to collapse::GRP(). This can for example be

a vector or data frame.
partial Should calculations be done using partial windows? Default is TRUE.
close_left_boundary

Should the left boundary be closed? For example, if you specify window =
"day" and time = c(today(), today() + 1),
a value of FALSE would result in the window vector c(1, 1) whereas a value of
TRUE would result in the window vector c(1, 2).

na.rm Should missing values be removed for the calculation? The default is TRUE.
... Additional arguments passed to data.table::frollmean and data.table::frollsum.
time_step An optional but important argument that follows the same input rules as window.

It is currently only used only in time_roll_growth_rate.
If this is supplied, the time differences across gaps in time are incorporated into
the growth rate calculation. See details for more info.

fun A function.
unlist Should the output of time_roll_apply be unlisted with unlist? Default is

FALSE.

time_roll_sum 45

Details

It is much faster if your data are already sorted such that !is.unsorted(order(g, x)) is TRUE.

Growth rates:
For growth rates across time, one can use time_step to incorporate gaps in time into the calcula-
tion.
For example:
x <- c(10, 20)
t <- c(1, 10)
k <- Inf
time_roll_growth_rate(x, time = t, window = k) = c(1, 2) whereas
time_roll_growth_rate(x, time = t, window = k, time_step = 1) = c(1, 1.08)
The first is a doubling from 10 to 20, whereas the second implies a growth of 8% for each time
step from 1 to 10.
This allows us for example to calculate daily growth rates over the last x months, even with
missing days.

Value

A vector the same length as time.

Examples

library(timeplyr)
library(lubridate)
library(dplyr)
library(fastplyr)

time <- time_seq(today(), today() + weeks(3), "3 days")
set.seed(99)
x <- sample.int(length(time))

roll_mean(x, window = 7)
roll_sum(x, window = 7)

time_roll_mean(x, window = days(7), time = time)
time_roll_sum(x, window = days(7), time = time)

Alternatively and more verbosely
x_chunks <- time_roll_window(x, window = 7, time = time)
x_chunks
vapply(x_chunks, mean, 0)

Interval (x - 3 x]
time_roll_sum(x, window = days(3), time = time)

An example with an irregular time series

t <- today() + days(sort(sample(1:30, 20, TRUE)))
time_elapsed(t, days(1)) # See the irregular elapsed time
x <- rpois(length(t), 10)

46 time_seq

new_tbl(x, t) |>
mutate(sum = time_roll_sum(x, time = t, window = days(3))) |>
time_ggplot(t, sum)

Rolling mean example with many time series

Sparse time with duplicates
index <- sort(sample(seq(now(), now() + dyears(3), by = "333 hours"),

250, TRUE))
x <- matrix(rnorm(length(index) * 10^3),

ncol = 10^3, nrow = length(index),
byrow = FALSE)

zoo_ts <- zoo::zoo(x, order.by = index)

Normally you might attempt something like this
apply(x, 2,

function(x){
time_roll_mean(x, window = dmonths(1), time = index)

}
)
Unfortunately this is too slow and inefficient

Instead we can pivot it longer and code each series as a separate group
tbl <- ts_as_tbl(zoo_ts)

tbl |>
mutate(monthly_mean = time_roll_mean(value, window = dmonths(1),

time = time, g = group))

time_seq Time based version of base::seq()

Description

Time based version of base::seq()

Usage

time_seq(
from = NULL,
to = NULL,
time_by = NULL,
length.out = NULL,
roll_month = getOption("timeplyr.roll_month", "xlast"),

time_seq 47

roll_dst = getOption("timeplyr.roll_dst", c("NA", "xfirst"))
)

time_seq_sizes(from, to, timespan)

time_seq_v(
from,
to,
timespan,
roll_month = getOption("timeplyr.roll_month", "xlast"),
roll_dst = getOption("timeplyr.roll_dst", c("NA", "xfirst"))

)

time_seq_v2(
sizes,
from,
timespan,
roll_month = getOption("timeplyr.roll_month", "xlast"),
roll_dst = getOption("timeplyr.roll_dst", c("NA", "xfirst"))

)

Arguments

from Start time.

to End time.

time_by A timespan. This argument may be renamed in the future.

length.out Length of the sequence.

roll_month Control how impossible dates are handled when month or year arithmetic is
involved. Options are "preday", "boundary", "postday", "full" and "NA". See
?timechange::time_add for more details.

roll_dst See ?timechange::time_add for the full list of details.

timespan timespan.

sizes Time sequence sizes.

Details

This works like seq(), but using timechange for the period calculations and base::seq.POSIXT()
for the duration calculations. In many ways it is improved over seq as dates and/or datetimes can
be supplied with no errors to the start and end points. Examples like,
time_seq(now(), length.out = 10, by = "0.5 days", seq_type = "dur") and
time_seq(today(), length.out = 10, by = "0.5 days", seq_type = "dur")
produce more expected results compared to
seq(now(), length.out = 10, by = "0.5 days") or
seq(today(), length.out = 10, by = "0.5 days").

For a vectorized implementation with multiple start/end times, use time_seq_v()/time_seq_v2()

48 time_seq

time_seq_sizes() is a convenience function to calculate time sequence lengths, given start/end
times.

Value

time_seq returns a time sequence.
time_seq_sizes returns an integer vector of sequence sizes.
time_seq_v returns time sequences.
time_seq_v2 also returns time sequences.

Examples

library(timeplyr)
library(lubridate)

Dates
today <- today()
now <- now()

time_seq(today, today %m+% months(1), time = "day")
time_seq(today, length.out = 10, time = "day")
time_seq(today, length.out = 10, time = "hour")

time_seq(today, today %m+% months(1), time = timespan("days", 1)) # Alternative
time_seq(today, today + years(1), time = "week")
time_seq(today, today + years(1), time = "fortnight")
time_seq(today, today + years(1), time = "year")
time_seq(today, today + years(10), time = "year")
time_seq(today, today + years(100), time = "decade")

Datetimes
time_seq(now, now + weeks(1), time = "12 hours")
time_seq(now, now + weeks(1), time = "day")
time_seq(now, now + years(1), time = "week")
time_seq(now, now + years(1), time = "fortnight")
time_seq(now, now + years(1), time = "year")
time_seq(now, now + years(10), time = "year")
time_seq(now, today + years(100), time = "decade")

You can seamlessly mix dates and datetimes with no errors.
time_seq(now, today + days(3), time = "day")
time_seq(now, today + days(3), time = "hour")
time_seq(today, now + days(3), time = "day")
time_seq(today, now + days(3), time = "hour")

Choose between durations or periods

start <- dmy(31012020)
If time_type is left as is,
periods are used for days, weeks, months and years.
time_seq(start, time = months(1), length.out = 12)
time_seq(start, time = dmonths(1), length.out = 12)

time_seq_id 49

Notice how strange base R version is.
seq(start, by = "month", length.out = 12)

Roll forward or backward impossible dates

leap <- dmy(29022020) # Leap day
end <- dmy(01032021)
3 different options
time_seq(leap, to = end, time = "year",

roll_month = "NA")
time_seq(leap, to = end, time = "year",

roll_month = "postday")
time_seq(leap, to = end, time = "year",

roll_month = getOption("timeplyr.roll_month", "xlast"))

time_seq_id Generate a unique identifier for a regular time sequence with gaps

Description

A unique identifier is created every time a specified amount of time has passed, or in the case of
regular sequences, when there is a gap in time.

Usage

time_seq_id(
x,
timespan = granularity(x),
threshold = 1,
g = NULL,
na_skip = TRUE,
rolling = TRUE,
switch_on_boundary = FALSE

)

Arguments

x Time vector.
E.g. a Date, POSIXt, numeric or any time-based vector.

timespan timespan.
threshold Threshold such that when the time elapsed exceeds this, the sequence ID is in-

cremented by 1. For example, if timespan = "days" and threshold = 2, then
when 2 days have passed, a new ID is created. Furthermore, threshold gener-
ally need not be supplied as
timespan = "3 days" & threshold = 1
is identical to
timespan = "days" & threshold = 3.

50 transform_year_month

g Object used for grouping x. This can for example be a vector or data frame. g is
passed directly to collapse::GRP().

na_skip Should NA values be skipped? Default is TRUE.

rolling When this is FALSE, a new ID is created every time a cumulative amount of time
has passed. Once that amount of time has passed, a new ID is created, the clock
"resets" and we start counting from that point.

switch_on_boundary

When an exact amount of time (specified in time_by) has passed, should there
an increment in ID? The default is FALSE. For example, if time_by = "days"
and switch_on_boundary = FALSE, > 1 day must have passed, otherwise >= 1
day must have passed.

Details

time_seq_id() Assumes x is regular and in ascending or descending order. To check this condition
formally, use time_is_regular().

Value

An integer vector of length(x).

Examples

library(dplyr)
library(timeplyr)
library(lubridate)

Weekly sequence, with 2 gaps in between
x <- time_seq(today(), length.out = 10, time = "week")
x <- x[-c(3, 7)]
A new ID when more than a week has passed since the last time point
time_seq_id(x)
A new ID when >= 2 weeks has passed since the last time point
time_seq_id(x, threshold = 2, switch_on_boundary = TRUE)
A new ID when at least 4 cumulative weeks have passed
time_seq_id(x, timespan = "4 weeks",

switch_on_boundary = TRUE, rolling = FALSE)
A new ID when more than 4 cumulative weeks have passed
time_seq_id(x, timespan = "4 weeks",

switch_on_boundary = FALSE, rolling = FALSE)

transform_year_month Additional ggplot2 scales

Description

Additional scales and transforms for use with year_months and year_quarters in ggplot2.

ts_as_tbl 51

Usage

transform_year_month()

transform_year_quarter()

scale_x_year_month(...)

scale_x_year_quarter(...)

scale_y_year_month(...)

scale_y_year_quarter(...)

Arguments

... Arguments passed to scale_x_continuous and scale_y_continuous.

Value

A ggplot2 scale or transform.

ts_as_tbl Turn ts into a tibble

Description

While a method already exists in the tibble package, this method works differently in 2 ways:

• The time variable associated with the time-series is also returned.
• The returned tibble is always in long format, even when the time-series is multivariate.

Usage

ts_as_tbl(x, name = "time", value = "value", group = "group")

Default S3 method:
ts_as_tbl(x, name = "time", value = "value", group = "group")

S3 method for class 'mts'
ts_as_tbl(x, name = "time", value = "value", group = "group")

S3 method for class 'xts'
ts_as_tbl(x, name = "time", value = "value", group = "group")

S3 method for class 'zoo'
ts_as_tbl(x, name = "time", value = "value", group = "group")

S3 method for class 'timeSeries'
ts_as_tbl(x, name = "time", value = "value", group = "group")

52 ts_as_tbl

Arguments

x An object of class ts, mts, zoo, xts or timeSeries.

name Name of the output time column.

value Name of the output value column.

group Name of the output group column when there are multiple series.

Value

A 2-column tibble containing the time index and values for each time index. In the case where
there are multiple series, this becomes a 3-column tibble with an additional "group" column added.

See Also

time_ggplot

Examples

library(timeplyr)
library(ggplot2)
library(dplyr)

Using the examples from ?ts

Univariate
uts <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)
uts_tbl <- ts_as_tbl(uts)

Multivariate
mts <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
mts_tbl <- ts_as_tbl(mts)

uts_tbl |>
time_ggplot(time, value)

mts_tbl |>
time_ggplot(time, value, group, facet = TRUE)

zoo example
x.Date <- as.Date("2003-02-01") + c(1, 3, 7, 9, 14) - 1
x <- zoo::zoo(rnorm(5), x.Date)
ts_as_tbl(x)
x <- zoo::zoo(matrix(1:12, 4, 3), as.Date("2003-01-01") + 0:3)
ts_as_tbl(x)

year_month 53

year_month Fast methods for creating year-months and year-quarters

Description

These are experimental methods for working with year-months and year-quarters inspired by ’zoo’
and ’tsibble’.

Usage

year_month(x)

year_quarter(x)

YM(length = 0L)

year_month_decimal(x)

decimal_year_month(x)

YQ(length = 0L)

year_quarter_decimal(x)

decimal_year_quarter(x)

Arguments

x A year_month, year_quarter, or any other time-based object.

length Length of year_month or year_quarter.

Details

The biggest difference is that the underlying data is simply the number of months/quarters since
epoch. This makes integer arithmetic very simple, and allows for fast sequence creation as well as
fast coercion to year_month and year_quarter from numeric vectors.

Printing method is also fast.

Examples

library(timeplyr)
library(lubridate)

x <- year_month(today())

Adding 1 adds 1 month
x + 1

54 year_month

Adding 12 adds 1 year
x + 12
Sequence of yearmonths
x + 0:12

If you unclass, do the same arithmetic, and coerce back to year_month
The result is always the same
year_month(unclass(x) + 1)
year_month(unclass(x) + 12)

Initialise a year_month or year_quarter to the specified length
YM(0)
YQ(0)
YM(3)
YQ(3)

Index

∗ datasets
.time_units, 2

.duration_units (.time_units), 2

.extra_time_units (.time_units), 2

.period_units (.time_units), 2

.time_units, 2

age_months (age_years), 3
age_years, 3

calendar, 4

decimal_year_month (year_month), 53
decimal_year_quarter (year_month), 53
diff_ (roll_lag), 15

get_time_delay, 5
granularity (resolution), 14
growth, 7
growth_rate, 8

interval_count (time_interval), 39
interval_end (time_interval), 39
interval_range (time_interval), 39
interval_start, 40
interval_start (time_interval), 39
interval_width (time_interval), 39
is_date, 11
is_datetime (is_date), 11
is_time (is_date), 11
is_time_interval (time_interval), 39
is_time_or_num (is_date), 11
is_timespan (timespan), 20
is_whole_number, 12
iso_week, 10
isoday (iso_week), 10

logical, 11

missing_dates, 13

n_missing_dates (missing_dates), 13
new_time_interval (time_interval), 39
new_timespan (timespan), 20

reset_timeplyr_options, 14
resolution, 14, 40
roll_diff (roll_lag), 15
roll_geometric_mean (roll_sum), 18
roll_growth_rate, 9
roll_growth_rate (roll_sum), 18
roll_harmonic_mean (roll_sum), 18
roll_lag, 15
roll_mean (roll_sum), 18
roll_na_fill, 17
roll_sum, 18
rolling_growth (growth), 7

scale_x_year_month
(transform_year_month), 50

scale_x_year_quarter
(transform_year_month), 50

scale_y_year_month
(transform_year_month), 50

scale_y_year_quarter
(transform_year_month), 50

time_add, 22
time_breakpoints (time_cut_n), 24
time_breaks (time_cut_n), 24
time_by, 23
time_ceiling (time_add), 22
time_complete (time_expand), 32
time_complete_missing (time_grid), 37
time_cut (time_cut_n), 24
time_cut_n, 24
time_cut_width (time_cut_n), 24
time_diff, 27
time_elapsed, 28, 31, 39
time_episodes, 29
time_expand, 32

55

56 INDEX

time_floor (time_add), 22
time_gaps, 34
time_ggplot, 35, 52
time_grid, 37
time_grid_size (time_grid), 37
time_has_gaps (time_gaps), 34
time_id, 38
time_interval, 39, 40
time_is_regular, 41
time_num_gaps (time_gaps), 34
time_roll_apply (time_roll_sum), 42
time_roll_growth_rate, 9
time_roll_growth_rate (time_roll_sum),

42
time_roll_mean, 19
time_roll_mean (time_roll_sum), 42
time_roll_sum, 42
time_roll_window (time_roll_sum), 42
time_roll_window_size (time_roll_sum),

42
time_round (time_add), 22
time_seq, 46
time_seq_id, 31, 39, 49
time_seq_sizes (time_seq), 46
time_seq_v (time_seq), 46
time_seq_v2 (time_seq), 46
time_subtract (time_add), 22
time_tbl_time_col (time_by), 23
timespan, 5, 15, 20, 21–23, 25, 27, 28, 33, 34,

37, 38, 40, 41, 44, 47, 49
timespan_num (timespan), 20
timespan_unit (timespan), 20
transform_year_month, 50
transform_year_quarter

(transform_year_month), 50
ts_as_tbl, 36, 51

year_month, 53
year_month_decimal (year_month), 53
year_quarter (year_month), 53
year_quarter_decimal (year_month), 53
YM (year_month), 53
YQ (year_month), 53

	.time_units
	age_years
	calendar
	get_time_delay
	growth
	growth_rate
	iso_week
	is_date
	is_whole_number
	missing_dates
	reset_timeplyr_options
	resolution
	roll_lag
	roll_na_fill
	roll_sum
	timespan
	time_add
	time_by
	time_cut_n
	time_diff
	time_elapsed
	time_episodes
	time_expand
	time_gaps
	time_ggplot
	time_grid
	time_id
	time_interval
	time_is_regular
	time_roll_sum
	time_seq
	time_seq_id
	transform_year_month
	ts_as_tbl
	year_month
	Index

