tidylearn 0.1.0
Initial CRAN Release
- First release of tidylearn - a unified tidy interface to R’s machine
learning ecosystem
Features
Unified Interface
tl_model() - Single function to fit 20+ machine
learning models
- Consistent function signatures across all methods
- Tidy tibble output for all results
- Access raw model objects via
$fit for package-specific
functionality
Supervised Learning Methods
- Linear regression (stats::lm)
- Polynomial regression (stats::lm with poly)
- Logistic regression (stats::glm)
- Ridge, LASSO, elastic net (glmnet)
- Decision trees (rpart)
- Random forests (randomForest)
- Gradient boosting (gbm)
- XGBoost (xgboost)
- Support vector machines (e1071)
- Neural networks (nnet)
- Deep learning (keras, optional)
Unsupervised Learning
Methods
- Principal Component Analysis (stats::prcomp)
- Multidimensional Scaling (stats, MASS, smacof)
- K-means clustering (stats::kmeans)
- PAM clustering (cluster::pam)
- CLARA clustering (cluster::clara)
- Hierarchical clustering (stats::hclust)
- DBSCAN (dbscan)
Additional Features
tl_split() - Train/test splitting with stratification
support
tl_prepare_data() - Data preprocessing (scaling,
imputation, encoding)
tl_evaluate() - Model evaluation with multiple
metrics
tl_auto_ml() - Automated machine learning
tl_tune() - Hyperparameter tuning with grid and random
search
- Unified ggplot2-based visualization functions
- Integration workflows combining supervised and unsupervised
learning
Wrapped Packages
tidylearn wraps established R packages including: stats, glmnet,
randomForest, xgboost, gbm, e1071, nnet, rpart, cluster, dbscan, MASS,
and smacof.