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In the last decade stochastic frontiers traditional models (see Kumbhakar and Lovell, 2000 for a detailed
introduction to frontier analysis) have been extended with the aim to take into account firm specific hetero-
geneity (see e.g. Greene, 2004, Greene, 2005b, Greene, 2005a). If firm specific heterogeneity is not accounted,
in fact, a considerable bias in the inefficiency estimates can be endogenously created.

ssfa package allows to include heterogeneity in a different way with respect to traditional techniques:
"instead of identifying ex-ante a multitude of determinants, often statistically and economically difficult to
detect [...] this approach allow the evaluation of the conjoint effect of a multitude of determinants” (Fusco
and Vidoli, 2013) considering spatial proximities; more particularly ssfa package implements the Spatial
Stochastic Frontier Analysis (SSFA), an original method introduced by Fusco and Vidoli (2013) with the aim
to test and depurate the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models by splitting the
inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each
single unit operates, the second one related to the specific production features and the third one representing
the error term.

The main idea is that spatial dependence refers to how much the level of technical inefficiency of farm 4
depends on the levels set by other farms j = 1, ..., n, under the assumption that part of the farm 7 inefficiency
(u;) is linked to the neighbour DMU j’s performances (j # i).

Denoting y; as the single output of producer i, x; the inputs vector and f a generic parametric function, the
Normal / Half-Normal cross-sectional production frontier model can be respectively written®:

log(ys) = log(f(xs; Bi)) + vi — us
=log(f(xs;B)) +vi — (1 — pri,)_lﬁi

where

v; ~ N(0,02)
u; ~ NT(0, (1 — pri_)da%) (1)

u; and v; are independently distributed of each other,
and of the regressors

i ~ N(0,03)

w;. is a standardized row of the spatial weights matrix

p is the spatial lag parameter (p € [0, 1])

IFor simplicity’s sake and to make the notation more consistent with the SFA literature, we did not write the model in
matrix form, but for each company 3.



ssfa package allows to estimate both the "production" form (as shown in equation (1) and the "cost"
form of the frontier i.e.:

log(C;) = log(f(yi, ws; Bi)) + vi + us

where

C; is the cost
w; are the input prices.

Introducing a variable sc that defines the form of the frontier:
{ 1 for production function (3)

—1 for cost function

ssfa model can be written as:

log(y:) = log(f(x; i) + vi — sc- u; (4)

In order to estimate the ssfa model we have to install and load the package:

> #install.packages("ssfa")
> library(ssfa)

In this package, the SSFA_example_data and Italian_W datasets have been included in order to better
illustrate and comment the model.

e The first dataset contains the simulated data used by Fusco and Vidoli (2013) to test the model. Data
Generating Process (DGP) follows the construction criteria proposed by Banker and Natarajan (2008),
also used by Johnson and Kuosmanen (2011), with the addition of a strong spatial correlation (p = 0.80)
in the inefficiency term through a spatial lag parameter and the contiguity matrix Italian_W.

e The second dataset is the Italian provinces contiguity matrix for the year 2008 containing 107 x 107
row-standardized distances.

> data(SSFA_example_data)
> data(Italian_W)
> names (SSFA_example_data)

[1] "DMU" “log_y" "log_x“

The variable log_y is the log-transformed output, log_x is the log-transformed input and DMU is the Decision
Making Unit name.
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Figure 1: Example simulated data

ssfa package allows to easily compare the Spatial Stochastic Frontier (SSFA) with the classical Stochastic
Frontier (SFA) by setting the parameter par_rho as TRUE to estimate the SSFA or FALSE to estimate the
classical SFA.

In order to compare the SSFA estimation versus the SFA one, a standard SFA production frontier has been
first estimate by setting, into the ssfa function, command form="production" and par_rho="FALSE":

> sfa <- ssfa(log_y ~ log_x , data = SSFA_example_data, data_w=Italian_W,
+ form = "production", par_rho=FALSE)
> summary (sfa)

Stochastic frontier analysis model

Estimate Std. Error z value Pr(>|z|)
Intercept 1.185847  0.441450 2.68626 0.007226 *x
log_x 1.273394  0.301340 4.22577 2.4e-05 *x*x
sigmau2 1.319261 0.892472 1.47821 0.139352
sigmav2 0.779320 0.307384 2.53533 0.011234 *

Signif. codes: 0 '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
sigma2 = 2.098581

Inefficiency parameter Lambda (sigmau/sigmav): 1.30109

Moran I statistic: 0.457094



Mean efficiency: 0.485295

LR-test: sigmau2 = 0 (inefficiency has no influence to the model)
HO: sigmau2 = 0 (beta_ssfa = beta_ols)

Value Log-Lik
ssfa -163.6215
ols -164.1653

Value LR-Test: 1.088 p-value 0.148

AIC: 335.2431, (AIC for 1m: 332.3306)

In the standard SFA framework (par_rho="FALSE"), ssfa function returns, in addition to the intercept and
the log_x coefficient, the estimation of the variance of the two error components sigmau2 and sigmav2.
Other useful information about efficiency estimation are reported:

e sigma2: the estimate of the total variance where 0% = 02 + 02;

e lambda: the ratio of the standard deviation of the inefficiency term to the standard deviation of the

Tu

stochastic term i.e. o
e the mean of efficiency estimated;

e the results of the test on the influence of the inefficiency on the model. This is a test of the null
hypothesis Hy : 02 = 0 against the alternative hypotheses H; : 02 > 0. If the null hypothesis is true,
the stochastic frontier model is reduced to an OLS model with normal errors. For this example, the
output shows LR = 1.088 with a p-value of 0.148. There are several possible reasons for the failure to
this test, including for example the uncontrolled spatial dependence of the inefficiency term.

In addition to previous statistics, summary function displays information about the spatial autocorrelation
of the SFA residuals, the Moran’s I statistic. For example, in this application I = 0.457 showing a positive
and significant (p — value < 2.2e — 16) global autocorrelation among residuals.

> moran.test(residuals(sfa), listw=sfa$list_w)

Moran I test under randomisation

data: residuals(sfa)
weights: sfa$list_w

Moran I statistic standard deviate = 8.3329, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance
0.457093892 -0.009433962 0.003134475

Autocorrelation among residuals can be tested also locally thanks to plot_moran function that enables you
to assess how similar an observed value is to its neighbouring observations; its horizontal axis is based on
the values of the observations and is also known as the response axis, while the vertical Y axis is based on
the weighted average or spatial lag of the corresponding observation on the horizontal X axis. This function
need a neighbours list: it can be easily calculate thanks to the nb2listw function of spdep package from the
contiguity matrix Italian_W.



> plot_moran(sfa, listw=sfa$list_w)

Moran scatterplot

Spatially lagged residuals ( sfa )

Residuals ( sfa)

Figure 2: SFA Moran scatterplot

Finally, summary function reports the AIC value for the ssfa model and the 1m model.
Having estimated the SFA model as baseline, the spatial production frontier SSFA can be carried on by

setting command form="production" and par_rho="TRUE":

> ssfa <- ssfa(log_y ~ log_x , data = SSFA_example_data, data_w=Italian_W,
+ form = '"production'", par_rho=TRUE)
> summary (ssfa)

Spatial Stochastic frontier analysis model

Estimate Std. Error z value Pr(>|z]|)
Intercept  3.445040 1.855917 1.85625 0.063418 .
log_x 1.633247 0.226941 7.19679 < 2e-16 **x
sigmau2_dmu 0.596074 0.604825 0.98553 0.324363
sigmav2 0.474248 0.203866 2.32627 0.020004 x*
Signif. codes: 0 '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Pay attention:
1 - classical SFA sigmau2 = sigmau2_dmu + sigmau2_sar: 0.882803 where sigmau2_sar: 0.286729
2 - sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2: 1.357051

Inefficiency parameter Lambda = sigmau_dmu/sigmav: 1.256882



Spatial parameter Rho: 0.778393
Moran I statistic: -0.189043
Mean efficiency: 0.571884

LR-test: sigmau2_dmu = O (inefficiency has no influence to the model)
HO: sigmau2_dmu = 0 (beta_ssfa = beta_ols)

Value Log-Lik
ssfa -138.9479
ols -164.1653

Value LR-Test: 50.435 p-value 0

AIC: 297.8958, (AIC for 1lm: 332.3306)

The output of ssfa (with par_rho="FALSE") returns the intercept, the log_x coefficient and the estimation
of the variance of the two error components not spatially correlated i.e. sigmau2_dmu and sigmav2.

In this case, the model decomposes the inefficiency variance sigmau2 into sigmau2_dmu and sigmau2_sar,
respectively the part of inefficiency variance due to DMU’s specificities and to the spatial dependence, i.e.
o2 = agdmu + UZSM. Consequently, the total variance is given by o2 = o2 ot o +o2

% Usar
In this application, (lambda = 1.257) is smaller than the SFA one (lambda = 1.301) because the production

unit inefficiency is sterilized from the influence of the neighbourhood performances.

In addition, the summary function reports the estimated spatial parameter p that in this case is 0.778 very
close to the true simulation parameter (0.80); Moran’s I = —0.189 is no more significant (p—value = 0.9993).

> moran.test(residuals(ssfa), listw=ssfa$list_w)

Moran I test under randomisation

data: residuals(ssfa)
weights: ssfa$list_w

Moran I statistic standard deviate = -3.2046, p-value = 0.9993

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance
-0.189042898 -0.009433962 0.003141349

> plot_moran(ssfa, listw=sfa$list_w)
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Figure 3: SSFA Moran scatterplot

In this application it can be easily note that the likelihood-ratio test is highly significant (LR = 50.435 with
a p-value = 0.000); these findings, support the conclusion that the SSFA model is able to correctly estimate
the inefficiency component of the error term.

Other functions are available into ssfa package:

e fitted.ssfa: this function calculates the fitted values of the original data used to estimate the SSFA
model.

> ssfa_fitted <- fitted.ssfa(ssfa)
> sfa_fitted <- fitted.ssfa(sfa)

e plot_fitted: plots the original data, the SSFA fitted frontier and optionally the SFA fitted frontier
with the aim to compare models colouring points according to the efficiency values.

> plot_fitted(SSFA_example_data$log_x, SSFA_example_data$log_y, ssfa, pch=16, cex=0.5,
xlab="X", ylab="Y", cex.axis=0.8 )
points(SSFA_example_data$log_x, SSFA_example_data$log_y, pch=16, cex=0.5,
col= ifelse(eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.20) , "#D7191C",
ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.20)
&eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.4) ,"#FF8C00",
ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.4)
&eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 0.6) ,"#FFFF00",
ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.6)
&eff.ssfa(ssfa)<quantile(eff.ssfa(ssfa), 0.8) ,"#ADFF2F",
ifelse(eff.ssfa(ssfa)>quantile(eff.ssfa(ssfa), 0.8)
&eff.ssfa(ssfa)<=quantile(eff.ssfa(ssfa), 1),"#008B00", "#2F4F4F"))))))
lines(sort (SSFA_example_data$log_x),sfa_fitted[order (SSFA_example_data$log_x)],
col="red")

+ vV + 4+ + 4+ ++++ 4+ Vv 4+
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Figure 4: Plot data, SSFA and SSFA frontiers

e residuals.ssfa: calculates the SSFA model residuals.

> ssfa_residuals <- residuals.ssfa(ssfa)
> sfa_residuals <- residuals.ssfa(sfa)

With residuals estimation we can compare SFA and SSFA results, for example, with maps like the
following;:

O under -1.9
O -19--13 O -16--11
O -13--1 o o -11--07
@ -1--03 @ -07--04

O under -1.6

| -03-03 ®| -04-01
MW over0.3 . W over0.1

(a) SFA (b) SSFA

Figure 5: Spatial residuals distribution by method



Figure 5 shows that the spatial dependence present in SFA residuals (a) is fully neutralized by the
SSFA model (b).

e eff.ssfa: calculates the efficiency (Battese and Coelli (1988) formulation) and inefficiency (Jondrow
et al. (1982) formulation) estimated.

ssfa_eff <- eff.ssfa(ssfa)
#sfa_eff <- eff.ssfa(sfa)

#summary (sfa_eff)
#summary (ssfa_eff)

ssfa_u <- u.ssfa(ssfa)
#sfa_u <- u.ssfa(sfa)

#summary (ssfa_u)
#summary (sfa_u)
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