Package ‘spectral’

October 14, 2022

Type Package

Title Common Methods of Spectral Data Analysis

Version 2.0

Author Martin Seilmayer

Maintainer Martin Seilmayer <martin.seilmayer@gmail.com>

Description On discrete data spectral analysis is performed by Fourier and Hilbert
transforms as well as with model based analysis called Lomb-Scargle method.
Fragmented and irregularly spaced data can be processed in almost all methods. Both,
FFT as well as LOMB methods take multivariate data and return standardized PSD.
For didactic reasons an analytical approach for deconvolution of noise spectra and
sampling function is provided.

A user friendly interface helps to interpret the results.

License GPL-2

Depends rasterImage,lattice, RhpcBLASctl,pbapply, R (>=3.5.0)
LazyData FALSE

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2021-03-29 09:30:02 UTC

R topics documented:

OonAttach . . . L L L e 2
.onDetach e 3
AMAX . . . v v e 3
analyticFunction 4
BP . e e 5
deconvolve e e e e e 7
envelope L e 9
filter.fft e e e e 11
filterdlomb 12
glmb . .o e e 13

2 .onAttach

P 14
interpolate.fft L 14
Imb . . . e 15
plotfft . . . L 15
plotlomb 16
print.fft . . oL e e 17
printlomb e e e 18
specdft. . ..o 19
speclomb . . . Lo 23
summary.fft 27
summary.lomb 28
waterfall L 29
WINLCOS .« o o ittt s e e e e e e e 31
winhann.o oL 32
R4 0 8 110 L 32
wintukey 33
Windowfunctions L 34
Index 35
.onAttach Setting up multithread BLAS library
Description

The number of used cores is set to RhpcBLASctl: :get_num_cores() on the attach event of the
package.

Usage

.onAttach(libname, pkgname)

Arguments
libname a character string giving the library directory where the package defining the
namespace was found.
pkgname a character string giving the name of the package.
Details

The algebra system of R relies on a BLAS library which can be set to use many threads / cores.
This feature is considered as experimental since there are many differences across the operat-
ing systems R is running on. If there is an issue and there is a need to run R in multi-thread
mode, consider to install a different optimized version of BLAS. If necessary, the number of
cores required can also be changed manually by calling blas_set_num_threads(nCores) and
omp_set_num_threads(nCores).

This function is invoked automatically

.onDetach 3

.onDetach Reset multithread BLAS to default

Description

This function is invoked automatically

Usage
.onDetach(libpath)

Arguments

libpath a character string giving the complete path to the package.

amax Local Maxima

Description

Determines all local maxima from a real valued vector.

Usage

amax (x)

Arguments

X numeric vector

Details

The purpose is to detect all local maxima in a real valued 1D vector. If the first element x[1] is the
global maximum, it is ignored, because there is no information about the previous element. If there
is a plateau, the first edge is detected.

Value

returns the indicies of local maxima. If x[1] = max, then it is ignored.

Examples

a<-c(,2,3,2,1,5,5,4)
amax(a) # 3, 6

4 analyticFunction

analyticFunction Analytic function

Description

In general a causal real valued signal in time has negative frequencies, when a Fourier transform
is applied. To overcome this, a complex complement can be calculated to compensate the negative
frequency spectrum. The result is called analytic signal or analytic function, which provides a one
sided spectrum.

Usage

analyticFunction(x)
Arguments

X real valued data vector
Details

An analytic function xa is composed of the real valued signal representation y and its Hilber trans-
form H (y) as the complex complement

za(t) = z(t) +iH(z(t))

. In consequence, the analytic function has a one sided spectrum, which is more natural. Calculating
the discrete Fourier transform of such a signal will give a complex vector, which is only non zero
until the half of the length. Every component higher than the half of the sampling frequency is zero.
Still, the analytic signal and its spectrum are a unique representation of the original signal z(t). The
new properties enables us to do certain filtering and calculations more efficient in the spectral space
compared to the standard FFT approach. Some examples are:

Filtering because the spectrum is one sided, the user must only modifiy values in the lower half of
the vector. This strongly reduces mistakes in indexing. See filter.fft

Envelope functions Since the Hilbert transform is a perfect phase shifter by pi/2, the envelope of
a band limited signal can be calculated. See envelope

Calculations Deriving and integrating on band limited discrete data becomes possible, without
taking the symmetry of the discrete Fourier transform into account. The secound example of
the spec. fft function calculates the derivative as well, but plays with a centered spectrum
and its corresponding "true" negative frequencies

A slightly different approach on the analytic signal can be found in R. Hoffmann "Signalanalyse
und -erkennung” (Chap. 6.1.2). Here the signal x(t) is split into the even and odd part. According
to Marko (1985) and Fritzsche (1995) this two parts can be composed to the analytic signal, which
lead to the definition with the Hilbert transform above.

BP 5

Value

Complex valued analytic function

References

R. Hoffmann, Signalanalyse und -erkennung: eine Einfuehrung fuer Informationstechniker, Berlin;
Heidelberg: Springer, 1998.

H. Marko, Systemtheorie: Methoden und Anwendungen fuer ein- und mehrdimensionale Systeme.
3. Aufl., Berlin: Springer, 1995.

G. Fritzsche, Signale und Funktionaltransformationen - Informationselektronik. Berlin: VEB Ver-
lag Technik, 1985

BP Simple bandpass function

Description
This function represents a simple weightening procedure for spectral filtering accoring to the type
("poly"”, "sinc", "bi-cubic"”, "gauss") provided.

Usage
BP(f, fc, BW, n = 3, type = "poly")

Arguments
f vector of frequencies
fc center frequency
BW bandwidth, with w[abs(f - fc) >BW] ==min
n degree of the polynom, n can be real, e.g. n = 1.6 as sinc alike
type Type of weightening function: "poly", "sinc", "bi-cubic", "exp", can be abbrevi-
ated
Details

The band pass is represented troughout a function in the form of four different types:
1. polynominial function
w=1—[((f = fe)/BW)["

with the degree n. The parameter fc controlls the center frequency and desired band width BW.
Outside the band width
|f — fc| > BW

the result is forced to zero. With n = 1.6 a quasi sinc-filter without side bands can be constructed.
A quasi rectangular window can be gained by setting n > 5.

2. sinc function corresponds to a rectangular observation window in time domain with
AT 1/BW

. It values ALL frequencies according to the si(x) function. Calculation speed might be reduced.

3. bi-cubic encounters 2nd order interpolation kernel, providing a quasi rectangular observation
window.

4. exponential Gauss curve. Here the band width is defined as the value of 90

Value

This function returns a weight vector [0..1], which is to apply to the frequency vector f in a top
level function

Examples

f <- seq(-50,50,by = 1e-2)
fc <- 0.3
BW <- 0.75

par(mfrow = c(2,1))

curve(BP(x,fc = fc, BW = BW, type = "p"), -2,2, ylim = c(-0.2,1)
,main = "Filter weights”
,xlab = "fx",ylab = "w"

)

curve(BP(x,fc = fc, BW = BW, type = "s"), add = TRUE, 1ty = 2)
curve(BP(x,fc = fc, BW = BW, type = "b"), add = TRUE, 1ty = 3)
curve(BP(x,fc = fc, BW = BW, type = "g"), add = TRUE, 1ty = 4)

abline(v = c(fc,fc+BW,fc-BW), 1ty = 3, col = "grey")
the corresponding Fourier-Transforms

ty <= c("p"."s","b" "g")
A <- integrate(BP,fc = fc, BW = BW, type = "s”,lower = -2,upper = 2)$value

plot(NA,NA,xlab = "x", ylab = "|A|"
,main = "corresponding convolution kernels”
,x1lim = 2*%c(-1,1),ylim = c(@, sqrt(2)*A0/(length(f)*BWxmin(diff(f))))
)
for(i in 1:length(ty))
{
FT <- spec.fft(y = BP(f,fc,BW,type = ty[il))
lines(FT$fx * length(FT$fx) / diff(range(f)),Mod(FT$A),1ty = i)

deconvolve 7

deconvolve Deconvolve Sampling Spectrum for Equidistant Sampling

Description

The function removes the probable alias peaks in the power spectral density. These projections
originate from correlated gaps, missing values and interactions with noise. The function should be
considered as *experimental* but with didactic background.

Usage
deconvolve(x, y, SNR.enable = T, SNR.level = 1)

Arguments

X sampling instances

y values

SNR.enable binary value, include or exclude the noise

SNR.level theshold in the sense of a multiple of mean() noise level
Details

In the special case of a non complete equidistant grid containing the data and missing values (NA),
this function performs the deconvolution of Y = fft(y) from the sampling spectrum of the aquisi-
tion series x. The data is assumed to exist on a equidistant grid with missing values and gaps.

Given a one dimensional vector y of data this function reverses the spectral convolution of Y =
Sx X+ N, if * describes the convolution operation and Y = F(y) denotes the discrete Fourier trans-
form via the operator F'(.). If, the sampling series x is considered to be purely deterministic, which
should be the case for captured data, or the distortions (missing values, gaps) are *correlated* (see
example), then there exists an analytic inversion of the convolution. Given the general definition of
power spectral density |Y'|? = |S* X + N|? the challenge is to prove |S* X +N|? |S|?*| X |>+|N |2
Here N describes a stochastic term of gaussian noise. This issue is solved in correlation space,
where convolution becomes a multiplitation. The auto correlation function (acf) of y is given by
Ry = F(]Y|?). As aremark, IF we consider the special case of equispaced sampling, modeled by
the Diraq distribution 4(x), it is easy to show that the correlation function of a product is the product
of individual correaltaion functions, F'(|S * X|?) = F(|S]?).F(|X|?).

The aim is, to approximate S as the "true" spectrum. To the cost of the phase information, the
result is the standardized power spectral density. The spectral noise term F' (V) is approximated by
a theshold in Fourier space. Here SNR. level sets the factor of mean(fft(y)) below which noise
level is assumed. Above this value, the signal should be present. As a parameter to play with,
SNR.enable enables or disables the noise term. This parameter was introduced to be consistent
with present approaches, not considering the presence of noise.

Value

list of frequency f and spectral density function S

8 deconvolve

Examples

Deconvolution

we define a test function with gaps and noise

we show:

- the aliased Fourier spectrum and for comparison Lomb Spectrum
- the corrected spectrum

ETE T T T S

definition of the sampling series
x <- seq(@,pi/2,by = 5e-3)
n <- rnorm(length(x),sd = 0.1)

definition of the test function
with 2 frequencies
yf <- function(x)
{
cos(2xpi*x5.123*x) +
cos (2xpi*17*x)

}

y <= yf(x)
y <=y - mean(y)

define strongly correlated gaps
i <= NULL

i <= c(i,which(sin(2*pi / @.3 * x) - 0.5 > 0))
i <= c(i,which(sin(2*pi / 0.04 * x + 1.123) - 0.5 > 0))
i <- sort(unique(i))

Xs <- X
ys <- yf(xs) + n # add some noise
ys[i] <- NA

for comparison we calculate a Lomb-Spectrum
LT <- spec.lomb(x = xs,y = ys
,f = seq(0,250,by = 0.02)
,mode = "generalized”

)

WS <- deconvolve(x = xs, y = ys,SNR.enable = 1,SNR.level = 1)

FT <- spec.fft(x = xs, y = ys,center = FALSE)

FTS <- spec.fft(x = xs, y = is.na(ys),center = FALSE)

LTS <- spec.lomb(x = xs, y = is.na(ys),f = seq(0,250,by = 0.02))

results #it#

#

- signal spectrum (solid) dominant peaks at around f@
- (minor) alias peaks (grey line, FFT dots) at f@ +/- fs

{5, 17}

envelope

- sampling spectrum (dashed) with fs = {3.3, 25} (dominant modes)

- deconvolved spectrum (solid black) rejects the aliases and sampling
#

#

time series

par(mfrow = c(1,1),mar = c(4,4,3,0.3))
curve(yf,0,max(x), col = "grey"”,n = 1000
,x1im = c(0,max(x)),ylim = c(-2,3)
,xlab = "Time", ylab = "y(t)"
,main = "Fragmented Time Series”
)
points(xs,ys)
points(xs[is.na(ys)],yf(xs[is.na(ys)]1),pch = 16,cex = 0.5)

legend("topright”,c("y(t)","y(tn) + n(tn)",”"NA's")
,1ty = c(1,NA,NA)

,lwd = c(1,NA,NA)

,pch = c(NA,1,16)

,col = c("darkgrey"”,"black"”,"black")
,bg = "white”

,cex = 0.8

)

plot spectra
par(mfrow = c(1,1),mar = c(4,4,3,0.3))
with(FT,plot(fx,PSD,type="p",log = "x"
,col="grey"
,xlim = ¢(1,100),ylim = c(1e-2,0.75)
,xlab = "f" ylab = "PSD"

,pch =1
,lwd =1
,main = "Spectra”

)

with(LT,lines(f,PSD,col = "grey”,lwd = 4))

with(WS,lines(f,S, lwd = 2, col = "black"))

with(LTS,lines(f,PSD,1ty = 2))

abline(h = ¢(1,0.5),1ty = 3)

legend("topright”,c("Fourier”,”Lomb", "Decon.","Sampling")
,1ty = c¢(NA,1,1,2)

,lwd = ¢(2,2,2,2)

,pch = c(1,NA,NA,NA)

,col = c("black”,"grey","black"”, "black")
,bg = "white"”

,cex = 0.8

,ncol = 2

envelope Calculates the envelope of a band limited signal

10 envelope

Description

The envelope of an amplitude modulated signal can be calculated by using the Hilbert transform
H (y) of the signal or the analytic signal.

Usage

envelope(y)

Arguments

y numeric vector of the signal

Details

An amplitude modulated function y(z) = A(z) * cos(w *) can be demodulated as follows:

A(w)? = y(2)* + H(y(x))®

If the signal is not band limited, strange things can happen. See the ripple at the edges in the
example below. Pay attention, that the envelope is always the real part of the returned value.

Value

real valued envelope function of the signal

Examples

noisy signal with amplitude modulation
x <- seq(@0,1, length.out=2e2)

original data
y <- (abs(x-0.5))*sin(20*2*pi*x)

ye <- base::Re(envelope(y))

plot results
plot(x,y,type="1",1wd=1,col="darkgrey",1ty=2,ylab="y" ,main="Spectral filtering")
lines(x,ye)

legend("bottomright”,c("modulated”, "envelope”),col=c("grey”, "black"),lty=c(2,1))

filter.fft 11

filter.fft Filter in the frequency domain

Description

This function provides a method to band pass filter in the frequency domain.

Usage

filter.fft(
y = stop("y-value is missing"”),

x = NULL,
fc =0,
BW = 0,
n =3,
type = "poly”
)
Arguments
y numeric data vector
X optional x-coordinate
fc center frequency of the bandpass
BW bandwith of the bandpass
n parameter to control the stiffness of the bandpass
type type of weightening function: "poly", "sinc", "bi-cubic","gauss", can be abbre-
viated
Details

A signal y is meant to be equaly spaced and causal, which means it starts at ¢ = 0. For times
y < 0 the signal is not defined. The filtering itself takes place with the analytic function of y
which provides an one sided spectrum. Applying the Fourier transform, all properties of y will be
preserved.

The band pass is represented throughout a function in the form of four different types, i.e. "poly-
nom", "sin(x)/x", "bi-cubic", "gauss". A detailed description about these types can be found in
BP.

Setting fc = @ one can achieve a low pass filter.

Examples

noisy signal with amplitude modulation
x <- seq(@,1, length.out=500)

original data

12 filter.lomb

y_org <- (1+sin(2*2*pixx))*sin(20*2*pi*x)

overlay some noise
y_noise <- y_org+rnorm(length(x),sd=0.2)

filter the noisy data
y_filt <- filter.fft(y_noise,x,fc=20,BW=4,6n=50)

plot results

plot(x,y_noise,type="1",1wd=1,col="darkgrey"”,1ty=2,ylab="y" main="Spectral filtering")

lines(x,y_org,lwd=5,col="grey")

lines(x,y_filt)

legend("topright”,c("org"”, "noisy”,"filtered"”),col=c("grey", "darkgrey”,"black”)
,1ty=c(1,2,1),1wd=c(5,1,1))

filter.lomb Filter and reconstruction of data analysed via spec.lomb

Description

Given an object of class 1omb, this function allows the reconstruction of the input signal using (a) a
frequency selection of single or multiple frequency (ranges), and/or (b) the most significant peaks
in the periodogram.

Usage

filter.lomb(
1 = stop(”"No Lomb-Data"),

newx = NULL,
threshold = 6,
filt = NULL,
phase = "nextnb”
)
Arguments
1 lomb object
newx vector of new values at which the restored function is to be evaluated
threshold statistical threshold in terms of a standard deaviation of the amplidudes. It de-
termines which frequencies are used. Lower values give more frequencies.
filt vector or matix of frequencies (ranges) in which to select the frequencies

phase set the method to determine the phase at a given frequency

gLmb 13

Details

To properly reconstruct the signal out of the calculated lomb-object, three different methods are
available, which are controlled by the filt-argument.

1. If filt=NULL, the most significant values in the (dense) spectrum are used.

2. If filt=c(f1, .., fn), the given frequencies are used. The corresponding phase is approxi-
mated.

3. If class(filt)=="matrix", each row of the 2 X n matrix defines a frequency range. With in
each range the "significant" frequencies are selected for reconstruction.

Prior to the reconstruction the filter.lomb-function calculates the most significant amplitudes and
corresponding phases. As a measure to select the "correct” frequencies, the threshold argument
can be adjusted. The corresponding phases of the underlying sine/cosine-waves are estimated by
one of the four following methods.

1. phase=="nextnb"... use the phase of the bin of nearest neighbour.

2. phase=="1in"... linear interpolation between the two closest bins.

3. phase=="1lockin"... principle of lock-in amplification, also known as quadrature-demodulation
technique.

4. phase=="fit"... non-linear least squares fit with stats::nls

Value

This function returns a list which contains the reconstruction according to the 1omb-object and newx
for the given data x and y. The returned object contains the following:

X,y reconstructed signal

f,A,phi used parameters from the 1lomb-object

p corresponding significance values

glLmb generalized Lomb-Scargle estimation function

Description

calculates the generalized Lomb-Scargle estimation after Zechmeister et al. (2009)

Usage
glmb(f, dat, w, Y, hYY)

Arguments
f frequency
dat spatial vector including locations and values
w vector of weights
Y weighted sum of values

hyy weighted sum of squared values

14 interpolate.fft

Details

This method is based on the generalized approach
y(t) = a*cos(wxt) + bx* sin(wxt) + ¢

which contains the floating average value c of the model function above. The calculation is vector-
ized to enhance calculation speed.

H The Hilbert transformation

Description

The Hilbert transform is a phase shifter, which represents the complex complement to a real vauled
signal. It is calculated in the complex frequency space of the signal by using the Fourier transform.
Finally, calculating f = y + @ x H(y) gives the analytic signal, with a one sided spectrum. (See
analyticFunction)

Usage
H(x)

Arguments

X real valued time series

Value

A numeric real valued vector is returned

interpolate.fft interpolates data using the Fourier back transform

Description

There are two ways to interpolate data from a given spectrum. Frist, one can do zero padding to
cover n new data points. Or, secound the complex amplitude with the associated frequency is taken
and evaluated at given points xout. Doing that for all frequencies and amplitudes will give the
interpolation. The result is compared to linear approximation for didactic reasons.

Usage

interpolate.fft(y, x = NULL, n = NULL, xout = NULL)

Imb 15

Arguments
y numeric data vector to be interpolated
numeric data vector with reference points
n number of new points
xout a vector new points
Value

A list with a x and y component is returned. The e99 value evaluates the error of the interpolation
with respect to linear approximation with the approx() function.

1mb Lomb-Scargle estimation function

Description
calculates the standard Lomb-Scargle estimation. The calculation is vectorized to enhance calcula-
tion speed.

Usage
Imb(f, dat, var_val)

Arguments
f frequency
dat spatial vector including locations and values
var_val variance of the data
plot.fft Plot fft-objects
Description

This is a wrapper function to plot fft-class objects.

Usage
S3 method for class 'fft'
plot(x, ...)

Arguments
X Object of the class fft

further arguments to the plot functions

16

See Also

spec.fft

Examples

See spec.fft

plot.lomb

plot.lomb

plot method for Lomb-Scargle periodograms

Description

This method plots a standard Lomb-Scargle periodogram, which contains the normalized power
spectra PSD and the corresponding false alarm probability p. For more details refer to Zechmeister
et al. (2009).

Usage

S3 method for class 'lomb'

plot(
X,
FAPcol
FAP1wd
FAPlty
FAPLim
FAPlab

legend.
legend.
legend.
legend.
legend.
legend.
legend.

xlab =
ylab =
main =

Arguments

X
FAPcol
FAP1wd
FAP1ty
FAPlim

=1,
=1,

= "dashed”,

= c(1, 0.001),

= "FAP",

pos = "topleft”,
cex =1,

on =T,

text = c("Spectrum”, "False Alarm Probability"),

lwd = NULL,
1ty = NULL,
col = NULL,
"Frequency”,
"Normalized PSD",

nn
’

object of class 1omb

color of the FAP line

line width of the FAP line
line type for the FAP graph
limits to the FAP

print.fft 17

FAPlab label of the right vertical axis

legend. pos position of the legend

legend. cex cex value for the legend

legend.on logical, wheater to draw a legend or not

legend. text legend text

legend. 1wd line width

legend.1lty line type

legend.col color vector of the legend elements

xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
main setting the title of the plot

further parameters to the plot function

Details

The plot.lomb function is a wrapper function for R’s standard scatter plot To switch off certain
properties, simply overwrite the parameter. For example log = "" will reset the plot axis back to
non-log scale.

References

M. Zechmeister and M. Kurster, "The generalised Lomb-Scargle periodogram. A new formalism for
the floating-mean and Keplerian periodograms", Astronomy & Astrophysics, 496(2), pp. 577-584,
2009.

See Also

spec.lomb

Examples

See spec.lomb

print.fft FFT-Plotting Function

Description

It calls the summary function.

Usage

S3 method for class 'fft'
print(x, ...)

18 print.lomb
Arguments

X lomb object

not used

Value

This function returns nothing
Examples

see summary.lomb() function

print.lomb Lomb-Plotting Function

Description

It calls the summary function.
Usage

S3 method for class 'lomb'

print(x, ...)
Arguments

X lomb object

not used

Value

This function returns nothing
Examples

see summary.lomb() function

spec.fft 19

spec.fft 1D/2D/nD (multivariate) spectrum of the Fourier transform

Description
This function calculates the Fourier spectrum and power spectral density of a given data object. The
dimension of the array can be of arbitary size e. g. 3D or 4D.

Usage

spec.fft(y = NULL, x = NULL, z = NULL, center =T)

Arguments
y 1D data vector, y coordinate of a 2D matrix, nD (even 2D) array or object of
class fft
X x-coordinate of the data in y or z. If y is an array, x must be a named list x =
list(x=...,y=...).
z optional 2D matrix
center logical vector, indicating which axis to center in frequency space
Details

The function returns an user friendly object, which contains as much frequency vectors as ordinates
of the array. spec.fft provides the ability to center the spectrum along multiple axis. The am-
plitude output is already normalized to the sample count and the frequencies are given in terms of
1/Az-units.

Value

An object of the type fft is returned. It contains the spectrum A, with "reasonable" frequency
vectors along each ordinate. psd represents the standardized power spectral density, [0,1]. The
false alarm probability (FAP) p is given similar to the Lomb-Scargle method, see spec.lomb.

Missing Values

Given a regualar grid x; = dz -7 there might be missing values marked with NA, which are treated by
the function as 0’s. This "zero-padding" leads to a loss of signal energy being roughly proportional
to the number of missing values. The correction factor is then (1 — Nna/N) as long as Nna/N <
0.2. If the locations of missing values are randomly distributed the implemented procedure workes
quite robust. If correalted gaps are present, the proposed correction is faulty and scales wrong. This
is because a convolution of the incomplete sampling vector with the the signal takes place. An
aliasing effect takes place distorting the spectral content.

To be compatible with the underlying Fourier transform, the amplitudes are not affected by this
rescaling. Only the power spectral density (PSD) is corrected in terms of the energy content, which
is experimental for the moment.

20 spec.fft

See Also

plot.fft

Examples

1D Example with two frequencies
IR

x <- seq(@, 1, length.out = T1e3)

y <= sin(4 x 2 x pi * x) + 0.5 *x sin(20 * 2 *x pi * X)
FT <- spec.fft(y, x)

par(mfrow = c(2, 1))

plot(x, y, type = "1", main = "Signal")

plot(
FT,
ylab = "Amplitude”,
xlab = "Frequency"”,
type = "1",
xlim = c(-30, 30),
main = "Spectrum”

)

summary (FT)

2D example with a propagating wave
HHHHHHEEEE A

x <- seq(@, 1, length.out = 50)
y <- seq(@, 1, length.out = 50)

calculate the data
m <- matrix(@, length(x), length(y))
for (i in 1:length(x))
for (j in 1:length(y))
mli, j1 <- sin(4 * 2 * pi *x x[i] + 10 * 2 x pi * y[j1)

calculate the spectrum
FT <- spec.fft(x = x, y =y, z=m)

plot
par(mfrow = c(2, 1))
rasterImage2(x = x,

y=y,
z=m,
main = "Propagating Wave")
plot(
FT,
main = "2D Spectrum”,

palette = "wb"

xlim = c(-20, 20),
ylim = c(-20, 20),
zlim = c(0@, 0.51)

spec.fft 21

xlab = "fx",

ylab = "fy",
zlab = "A",
ndz = 3,
z.adj = c(0, 0.5)
z.cex =1
)
summary (FT)

3D example with a propagating wave
B

sampling vector

x <- list(x = seq(0,2,by = 0.1)[-1]
,y = seq(@,1, by = 0.1)[-1]
,Z = seq(@,1, by = 0.1)[-1]

)

initializing array
m <- array(data = 0,dim = sapply(x, length))

for(i in 1:length(x$x))
for(j in 1:length(x$y))
for(k in 1:1length(x$z))
mli,j, k] <= cos(2*xpix(1xx$x[i] + 2xx$y[j] + 2*x$z[k]1)) + sin(2*pix(1.5xx$x[i]))*2

FT <- spec.fft(x = x, y = m, center = c(TRUE, TRUE,FALSE))

par(mfrow = c(2,2))

plotting m = @

rasterImage2(x = FT$fx
,y = FT$fy
,z = abs(FT$AL,,11)
,zlim = ¢(0,0.5)
,main="m = @"

)

plotting m = 1

rasterImage2(x = FT$fx
,y = FT$fy
,z = abs(FT$AL,,2]1)
,zlim = ¢(0,0.5)
,main="m = 1"

)

plotting m = 2

rasterImage2(x = FT$fx
,y = FT$fy
,z = abs(FT$AL,,31)
,zlim = ¢(0,0.5)
,main="m = 2"

22

)

rasterImage2(x = FT$fx
,y = FT$fy
,z = abs(FT$AL,,41)
,zlim = ¢(0,0.5)
,main="m = 3"

)

summary (FT)

calculating the derivative with the help of FFT
B
#

Remember, a signal has to be band limited.

11! You must use a window function !!!
#

preparing the data

x <- seq(-2, 2, length.out = 1e4)

dx <- mean(diff(x))

y <- win.tukey(x) * (-x * 3 + 3 * x)

calcualting spectrum

FT <- spec.fft(y =y, center = TRUE)
calculating the first derivative
FT$A <- FT$A x 2 x pi * 1i * FT$fx
back transform

dm <- spec.fft(FT)

plot
par(mfrow=c(1,1))
plot(

X,

c(o, diff(y) 7/ dx),

type = "1",

col = "grey"”,

1ty = 2,

ylim = c(-4, 3)
)

add some points to the line for the numerical result
points(approx(x, Re(dm$y) / dx, n = 100))
analytical result
curve(-3 * x * 2 + 3,
add = TRUE,
1ty = 3,
n = length(x))

legend(
"topright”,
c("analytic”, "numeric", "spectral”),
title = "diff",
1ty = c(3, 2, NA),

spec.fft

spec.lomb

23

pch = c(NA, NA, 1),
col=c("black"”,"grey","black")

)

title(expression(d / dx ~ (-x * 3 + 3 * x)))

spec. lomb

Lomb-Scargle Periodigram

Description

The Lomb-Scargle periodigram represents a statistical estimator for the amplitude and phase at a
given frequency. This function takes also multivariate (n-dimensional) input data.

Usage
spec. lomb(
x = NULL,
y = stop("Missing y-Value"),
f = NULL,
ofac = 1,
w = NULL,
mode = "normal”,
maxMem = 8,
cl = NULL
)
Arguments
X sampling vector or data frame data.frame(x1, x2, x3, ...)
y input data vector or data frame data. frame(x1, x2, ..., val)
f optional frequency vector / data frame. If not supplied f is calculated.
ofac in case f=NULL this value controlls the amount of frequency oversampling.
w weights for data. It must be a 1D vector.
mode "normal” calculates the normal Lomb-Scargle periodogram; "generalized”
calculates the generalized Lomb-Scargle periodogram including floating aver-
age and weights.
maxMem sets the amount of memory (in MB) to utilize, as a rough approximate.
cl if numeric, it defines the number of workers to use, or provides a cluster defini-

tion of class cluster or SocketCluster from parallel package

24 spec.lomb

Details

Since the given time series does not need to be evenly sampled, the data mainly consists of data
pairs x1, x2, x3, ... (sampling points) and (one) corresponding value y, which stores the realisa-
tion/measurement data. As can be seen from the data definition above, multivariate (n-dimensional)
input data is allowed and properly processed.

Two different methods are implemented: the standard Lomb-Scargle method with

y(t) = a* cos(w(t — 7)) + b* sin(w(t — 7))

as model function and the generalized Lomb-Scargle (after Zechmeister 2009) method with
y(t) = a * cos(wt) + b * sin(wt) + ¢

as model function, which investigates a floating average parameter c as well.

Both methods can be supplied by an artifical dense frequency vector f. In conjunction with the
resulting phase information the user might be able to build a "Fourier"-like spectrum to reconstruct
or interpolate the timeseries in equally spaced sampling. Remind the band limitation which must
be fulfilled for this.

f The frequencies should be stored in a 1D vector or — in case of multivariate analysis — in a
data. frame structure to preserve variable names

ofac If the user does not provide a corresponding frequency vector, the of ac parameter causes the
function to estimate

nf = ofac x length(z)/2
equidistant frequencies.

p-value The p-value (aka false alarm probability FAP) gives the probability, wheter the estimated
amplitude is NOT significant. However, if p tends to zero the amplidutde is significant. The
user must decide which maximum value is acceptable, until an amplitude is not valid.

If missing values NA or NaN appear in any column, the corresponding row is excluded from calcula-
tion.

Value

The spec. lomb function returns an object of the class lomb, which is a 1ist containg the following
information:

A A vector with amplitude spectrum

f corresponding frequency vector

phi phase vector

PSD power spectral density normalized to the sample variance

floatAvg floating average value only in case of mode == "generalized”

w if, mode == "generalized” contains the weighting vector

X,y original data

p p-value False Alarm Probability

spec.lomb 25

Speed Up

In general the function calculates everything in a vectorized manner, which speeds up the procedure.
If the memory requirement is more than maxMem, the calculation is split into chunks which fit in the
memory (cache). Depending on the problem size (number of frequencies and data size) a tuning of
this value enhances speed.

Please consider to replpace the BLAS library by a multithreaded version. For example https://

prs.ism.ac. jp/~nakama/SurviveGotoBLAS2/binary/windows/x64/ is hosting some Windows

RBlas.dll files. Referto https://mattstats.wordpress.com/2016/02/07/r-with-gotoblas-on-windows-10/
for further information.

The parameter cl controls a possible cluster, which can be invoked. It takes an integer number of
workers (i. e. cl = 4), a list with node names c("localhost”,...) oran object of class 'cluster'
or similar. The first two options cause the function to create the cluster internally. This takes time
due to the initialization. The faster way is to provide an already initialized cluster to the function.

References

A. Mathias, F. Grond, R. Guardans, D. Seese, M. Canela, H. H. Diebner, and G. Baiocchi, "Al-
gorithms for spectral analysis of irregularly sampled time series", Journal of Statistical Software,
11(2), pp. 1-30, 2004.

J. D. Scargle, "Studies in astronomical time series analysis. II - Statistical aspects of spectral anal-
ysis of unevenly spaced data", The Astrophysical Journal, 263, pp. 835-853, 1982.

M. Zechmeister and M. Kurster, "The generalised Lomb-Scargle periodogram. A new formalism for
the floating-mean and Keplerian periodograms", Astronomy & Astrophysics, 496(2), pp. 577-584,
2009.

See Also

filter.lomb

Examples

create two sin-functions
x_orig <- seq(@,1,by=1e-2)
y_orig <- 2xsin(10*2*xpixx_orig) + 1.5%sin(2*2*pi*x_orig)

make a 10% gap

i <= round(length(x_orig)*0.2) : round(length(x_orig)*0.3)
x <- x_orig

y <- y_orig

x[i] <= NA

y[i]l <- NA

calculating the lomb periodogram
1 <- spec.lomb(x = x, y = y,ofac = 20,mode = "normal")

select a frequency range
<- rbind(c(9,11))
select and reconstruct the most significant component

3

https://prs.ism.ac.jp/~nakama/SurviveGotoBLAS2/binary/windows/x64/
https://prs.ism.ac.jp/~nakama/SurviveGotoBLAS2/binary/windows/x64/
https://mattstats.wordpress.com/2016/02/07/r-with-gotoblas-on-windows-10/

26

spec.lomb

12 = filter.lomb(l, x_orig, filt = m)

plot everything

par(mfrow=c(2,1),mar = c(4,4,2,4))

plot(x,y,"1l"”, main = "Gapped signal”)

lines(12$x, 12%y,lty=2)

legend("bottomleft”,c("gapped”,"10Hz component”),lty=c(1,2))

plot(l,main = "Spectrum”)
summary (1)

Multivariate -- 3D Expample #i##
require(lattice)

fx <- 8.1

fy <- 5

fz <- 2

creating frequency space
f <- expand.grid(fx = seq(-10,10,by = 0.5)
,fy = seq(-10,10,by = 0.5)

,fz = 0:3

)

creating spatial space

pts <- expand.grid(x = seq(@,1,by = 0.02)
,y = seq(@,1,by = 0.02)
,Z = seq(0,1,by = 0.02)

gapping 30%
i <- sample(1:dim(pts)[1]1,0.7*dim(pts)[1])
pts <- pts[i,]

caluculating function
pts$val <- cos(2xpix(fxxpts$x
+ fy*xptss$y
+ fzxpts$z
) + pi/4
) +
0.5 * cos(2*pix(- 0.5 * fx*pts$x
+ 0.5%xfyxpts$y
+ 1 % pts$z
) + pi/4
)

display with lattice
levelplot(val~x+y,pts,subset = z == @,main = "with z = 0")

calculating lomb takes a while

or we sample only a few points

which enlarges the noise but accelerates the calculation
1 <- spec.lomb(y = pts[sample(1:dim(pts)[1],2e3),]

summary.fft 27

f=f
,mode = "generalized”

)

name the stripes
1$fz_lev <- factor(x = paste("fz =",1%$fz)
)

display output
levelplot (PSD~fx+fy|fz_lev,1)

the result is an oversampled spectrum of a non equidistant
sampled function. We recognize a 3D analysis in all provided

spatial directions x, y, z.

summary (1)

summary . fft Summarize FFT objects

Description

The function summarizes properties from the class(fft) object.

Usage
S3 method for class 'fft'
summary(object, p@ = 0.01, ...)
Arguments
object lomb object
po False Alarm Probability (FAP) threshold, default 1%
not used
Details

The false alarm probability threshold p@ value can be changed to modify the amount of significant
peaks.

Value

a list of significant values of the spectral analysis

Examples

see spec.fft() example

28 summary.lomb

summary . lomb Summarize Lomb objects

Description

The function summarizes properties from the Lomb object.

Usage
S3 method for class 'lomb'
summary(object, po = 0.01, ...)
Arguments
object lomb object
po False Alarm Probability threshold, default 1%
not used
Details

The false alarm probability threshold p@ value will adjust the number of peaks.

The effectiveBandWidth describes the coverage of processed frequencies by the spec. lomb func-
tion. If the ratio to averageSampling is almost 2, then the Nyquist criterion can be assumed to be
fullfilled. If the ratio is much less than 2 then only a fraction of information is analysed.

The minFreqStep is an estimate of the minimum frequency step determined from the Lomb-Object.
Average sampling is calculated from the median distance between two spatial points.

The possible frequency resolution originates also from the spatial (temporal) input databy 1/ (diff (range(x))),
if x is the spatial (temporal) coordinate.

Value

a list of significant values of the spectral analysis

Examples

see spec.lomb() example

waterfall 29

waterfall Estimate the local frequencies

Description

A waterfall-diagramm displays the local frequency in dependence of or spatial vector. One can
then locate an event in time or space.

Usage
waterfall(
y = stop("y value is missing"”),
x = NULL,
nf = 3,
type = n bll ,
width = 7
)
Arguments
y numeric real valued data vector
X numeric real valued spatial vector. (time or space)
nf steepness of the bandpass filter, degree of the polynomial.
type type of weightening function: "poly", "sinc", "bi-cubic","gauss", can be abbre-
viated
width normalized maximum "inverse" width of the bandpass bw = fc/width.
Details

Each frequency is evaluated by calculating the amplitude demodulation, which is equivalent to the
envelope function of the band pass filtered signal. The frequency of interest defines automatically
the center frequency fc of the applied band pass with the bandwidth BW:

BW = fe/width, BW < width— > BW = width, BW > width— > BW = fc/width

The frequency is normalized so the minimal frequency is 1. With increasing frequency the band-
width becomes wider, which lead to a variable resolution in space and frequency. This is comparable
to the wavelet (or Gabor) transform, which scales the wavelet (window) according to the frequency.
However, the necessary bandwidth is changed by frequency to take the uncertainty principle into
account. Slow oscillating events are measured precisely in frequency and fast changing processes
can be determined more exact in space. This means for a signal with steady increasing frequency
the waterfall function will produce a diagonally stripe. See the examples below.

Value

a special fft-object is returned. It has mode "waterfall" and x and fx present, so it is only plotable.

30 waterfall

Missing values

Given a regualar grid x; = dx -4 there might be missing values marked with NA, which are treated by
the function as 0’s. This "zero-padding" leads to a loss of signal energy being roughly proportional
to the number of missing values. The correction factor is then (1 — Nna/N) as long as Nna/N <
0.2. As long as the locations of missing values are randomly distributed the implemented procedure
workes quite robust. If, in any case, the distribution becomes correlated the proposed correction is
faulty and projects the wrong energies.

The amplitudes and PSD values are compensated to show up an estimate of the "correct” value.
Therefore this method is experimental

Examples

noisy signal with amplitude modulation

x <- seq(@,3, length.out = 1000)

original data

extended example from envelope function

y <= I1x(abs(x-1.5))*sin(10*x2*pi*x) + ifelse(x > 1.5,sin(15x(1+0.25*%(x - 1.5))*2*pi*x),0)
ye <- base::Re(envelope(y))

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))

plot results

plot(x,y,type="1",1wd=1,col="darkgrey",1ty=2,ylab="y" ,main="0Original Data",xaxt="n",6xlab="")
lines(x,ye)

legend("bottomright”,c("modulated”, "envelope”),col=c("grey”, "black"),1lty=c(2,1))

par(mar=c(3.5,3.5,2,0))

wf <- waterfall(y,x,nf = 3)

rasterImage2(x = wf$x, y = wf$fx, z = wf$A
,ylim = ¢(0,60))

plot(wf,ylim=c(@,40),main="Waterfall")

uncertainty principle ##i##

take a look at the side effects
at [0,30] and [1,0]

With a large steepness e.g. n = 50 you will gain
artefacts.

if frequency is not stationary
PSD becomes > 1 depending on the type of band filter.

Hod B O O o O

HEHHHHHREEHHEEHEEHRHEHEHREBERH
x <- seq(@,1, length.out=1500)
y <= sin(100*x*x)

FT <- spec.fft(x = x, y =y)
wf <- waterfall(y,x)

win.cos 31

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
plot results
plot(x,y,type="1",1wd=1,col="darkgrey",1ty=2,ylab="y" ,main="0riginal Data"”,xaxt="n",xlab="")

par(mar=c(3.5,3.5,2,0))
plot(wf
,ylim=c(0,40),main="Waterfall”
)
abline(h = 25, 1ty = 3, lwd = 3, col = "grey")
range (wf$PSD,na.rm = TRUE)
range (wf$A)

#itHH#H effect of missing values #iHtt#

10% random missing values cause a
distortion and a miss scaling of

the PSD value, which becomes >1 now.
This depends on the type of band pass
filter selected.

T TR

S HEHHHE A HHE R
x <- seq(0,5, length.out=500)
y <= sin(2*pi * 15 * x + 2*x1*cos(2*pi*0.5%x))

delete 10% of the data
y[sample(length(y),size = 50)] <- NA

wf <- waterfall(y,x,type = "b")

par(mfrow=c(2,1),mar=c(1,3.5,3,3),mgp=c(2.5,1,0))
plot results
plot(x,y, type="1",1lwd=1,col="darkgrey"”,1ty=2,ylab="y" ,main="0riginal Data”,xaxt="n",xlab="")

par(mar=c(3.5,3.5,2,0))
plot(wf
,ylim=c(10,20),main="Waterfall”

)
abline(h = 25, 1ty = 3, 1lwd = 3, col = "grey")

check the PSD range
range (wf$PSD)
range (wf$A)

win.cos Cosine window function

Description

This window function returns a vector of weights with means of a cosine window

32 win.nutt

Usage

win.cos(n)

Arguments

n data vector to be windowed

See Also

Windowfunctions

win.hann Hanning window function

Description

This window function returns a vector of weights with means of a generlized Hann-window.

Usage

win.hann(n, a = 2)

Arguments

n data vector to be windowed

a order of the window, default a = 2

See Also

Windowfunctions

win.nutt Nuttall window function

Description

This window function returns a vector of weights with means of a Nuttall-window.

Usage
win.nutt(n, a = c(0.355768, 0.487396, 0.144232, 0.012604, 0))

Arguments

n data vector to be windowed
a coefficients default a = c(0.355768, 0.487396, 0.144232, 0.012604,0)

win.tukey 33

Details

This window function provides a continuous first derivative everywhere, like the Hann window.
Adopted from the idea of Hann this window consists of up to 5 trigonometric polynominial terms,
i.e.

wy, = a1 — ag cos(2mn/M) + az cos(dmn/M) — a4 cos(67n/M) + as cos(8wn /M)

Different sets of coefficients:

Nuttall(Default) c(0.355768, 0.487396, 0.144232, 0.012604,0)
Blackman-Nuttall c(0.3635819, 0.4891775, 0.1365995, 0.0106411,0)
Blackman-Harris c¢(0.35875, 0.48829, 0.14128, 0.01168,0)

Flat-Top c(0.211557895, 0.41663158, ©.277263158, 0.083578947, 0.006947368)
See Also
Windowfunctions
win. tukey Tukey window function
Description

This window function returns a vector of weights with means of a Tukey-window. In contrast to a
cosine window this function is more steep at the beginning and the end. And it is 1 in the middle.

Usage

win.tukey(n, a = 0.5)

Arguments

n data vector to be windowed

a width of the rising and falling edge as ratio of the total data length
See Also

Windowfunctions

34 Windowfunctions

Windowfunctions Windowfunctions

Description

Some typical windowfunctions are defined below:

Details

win.cos() cosine window
win. tukey() Tukey window
win.hann() Hann window
win.nutt() Nutt window

A window function weights a given dataset in a way, that the new data set is coerced to be periodic.
This method reduces the leakage effects of the discrete Fourier transform.

Value

All window functions return a wighting vector with the same length as the provided data vector.

Examples

y <- 1:100

y_cos <- y * win.cos(y)
y_tuk <=y *x win.tukey(y)
y_han <=y * win.hann(y)

Plot the original data

plot(y,main="Effect of window functions"”)
legend("topleft”,c("original”,"cos", "tukey"”,"han"),pch=c(1,16,17,18))
points(y_cos,pch=16)

points(y_tuk,pch=17)

points(y_han,pch=18)

Index

* Fourier Transform
spec.fft, 19
* Lomb Scargle
spec. lomb, 23
* Periodogram
spec. lomb, 23
* convolution
deconvolve, 7
x deconvolution
deconvolve, 7
* power spectral density
deconvolve, 7
.onAttach, 2
.onDetach, 3

amax, 3
analyticFunction, 4, 14

BP, 5,11
deconvolve, 7
envelope, 4,9

filter.fft, 4,11
filter.lomb, 12, 25

glmb, 13

H, 14
interpolate.fft, 14
Imb, 15

plot.fft, 15,20
plot.lomb, 16
print.fft, 17
print.lomb, 18

spec.fft, 4, 16, 19
spec.lomb, 17, 19,23

35

summary.fft, 27
summary . lomb, 28

waterfall, 29
win.cos, 31

win.hann, 32
win.nutt, 32
win. tukey, 33

Windowfunctions, 32, 33, 34

	.onAttach
	.onDetach
	amax
	analyticFunction
	BP
	deconvolve
	envelope
	filter.fft
	filter.lomb
	gLmb
	H
	interpolate.fft
	lmb
	plot.fft
	plot.lomb
	print.fft
	print.lomb
	spec.fft
	spec.lomb
	summary.fft
	summary.lomb
	waterfall
	win.cos
	win.hann
	win.nutt
	win.tukey
	Windowfunctions
	Index

