
Package ‘simulist’
February 6, 2026

Title Simulate Disease Outbreak Line List and Contacts Data

Version 0.7.0

Description Tools to simulate realistic raw case data for an epidemic in
the form of line lists and contacts using a branching process.
Simulated outbreaks are parameterised with epidemiological parameters
and can have age-structured populations, age-stratified
hospitalisation and death risk and time-varying case fatality risk.

License MIT + file LICENSE

URL https://github.com/epiverse-trace/simulist,

https://epiverse-trace.github.io/simulist/

BugReports https://github.com/epiverse-trace/simulist/issues

Depends R (>= 4.2.0)

Imports checkmate, english, epiparameter (>= 0.4.0), grates,
randomNames, rlang, stats

Suggests dplyr, epicontacts (>= 1.1.3), ggplot2, incidence2 (>=
2.6.2), knitr, rmarkdown, spelling, testthat (>= 3.0.0), tidyr

VignetteBuilder knitr

Config/Needs/website epiverse-trace/epiversetheme

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.3

NeedsCompilation no

Author Joshua W. Lambert [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-5218-3046>),

Carmen Tamayo Cuartero [aut] (ORCID:
<https://orcid.org/0000-0003-4184-2864>),

Hugo Gruson [ctb, rev] (ORCID: <https://orcid.org/0000-0002-4094-1476>),
Pratik R. Gupte [ctb, rev] (ORCID:

<https://orcid.org/0000-0001-5294-7819>),

1

https://github.com/epiverse-trace/simulist
https://epiverse-trace.github.io/simulist/
https://github.com/epiverse-trace/simulist/issues
https://orcid.org/0000-0001-5218-3046
https://orcid.org/0000-0003-4184-2864
https://orcid.org/0000-0002-4094-1476
https://orcid.org/0000-0001-5294-7819

2 censor_linelist

Adam Kucharski [rev] (ORCID: <https://orcid.org/0000-0001-8814-9421>),
Chris Hartgerink [rev] (ORCID: <https://orcid.org/0000-0003-1050-6809>),
Sebastian Funk [ctb] (ORCID: <https://orcid.org/0000-0002-2842-3406>),
London School of Hygiene and Tropical Medicine, LSHTM [cph] (ROR:

<https://ror.org/00a0jsq62>)

Maintainer Joshua W. Lambert <joshua.lambert@lshtm.ac.uk>

Repository CRAN

Date/Publication 2026-02-06 11:20:02 UTC

Contents
censor_linelist . 2
create_config . 4
messy_linelist . 5
sim_contacts . 8
sim_linelist . 11
sim_outbreak . 16
truncate_linelist . 22

Index 24

censor_linelist Censor dates in line list

Description

Censor <Date> columns in line list output from sim_linelist() to a specified time interval.

This function is similar to incidence2::incidence() but does not aggregate events into an <incidence2>
object, instead it returns the same line list <data.frame> as input but with modified event dates.

Usage

censor_linelist(
linelist,
interval,
reporting_artefact = c("none", "weekend_effects"),
offset = min(linelist$date_onset, na.rm = TRUE)

)

Arguments

linelist Line list <data.frame> output from sim_linelist().

interval An integer or character string for the size of the time interval for censoring.
Valid character options are:

• "daily

https://orcid.org/0000-0001-8814-9421
https://orcid.org/0000-0003-1050-6809
https://orcid.org/0000-0002-2842-3406
https://ror.org/00a0jsq62

censor_linelist 3

• "weekly"

• "epiweek"

• "montly"

• "yearly"

See details for information of the date/period objects that are returned for each
interval type.

reporting_artefact

A character string, either "none" (default) or "weekend_effect". By de-
fault none of the dates are altered in other ways during censoring, however if
reporting_artefact = "weekend_effect" then all the dates in the $date_reporting
column that fall on a weekend are shifted to the following Monday. This artefact
is commonly referred to as the "weekend effect" (see doi:10.1186/s13104025-
07145y).

offset An integer or <Date> for the value to start counting the period from (0 is the
start of the Unix epoch). Only applicable if interval is specified as an integer.
Default date used to start counting from for the <grates_period> is the earli-
est symptom onset date ($date_onset). See grates::as_period() for more
information.
If setting reporting_artefact = "weekend_effects" the period may start or
end on a weekend.

Details

The line list columns that contain <Date> objects are stored at double point precision by default.
In other words, they are not integer values, so can be part way through a day. The exact numeric
value of the <Date> can be seen if you unclass() it.

Censoring line list dates reduces the time precision (window) of the event. Often dates of events,
such as symptom onset or hospital admission are only known to the nearest day, not hour or
minute. Other events may be more coarsely censored, for example to the nearest week or month.
censor_linelist() converts the exact double point precision event <Date> to the time interval
specified.

Depending on the interval specified, the date columns will be returned as different objects. Here
is a list of the valid input interval and the resulting class of the date column.

• integer -> <grates_period> (see grates::as_period())

• "daily" -> <Date> (see Date)

• "weekly" -> <grates_isoweek> (see grates::as_isoweek())

• "epiweek" -> <grates_epiweek> (see grates::as_epiweek())

• "monthly" -> <grates_yearmonth> (see grates::as_yearmonth())

• "yearly" -> <grates_year> (see grates::as_year())

Value

A line list <data.frame>.

https://doi.org/10.1186/s13104-025-07145-y
https://doi.org/10.1186/s13104-025-07145-y

4 create_config

Examples

set.seed(1)
linelist <- sim_linelist()
linelist_cens <- censor_linelist(linelist, interval = "daily")

censor to a 3-day period
linelist_cens <- censor_linelist(linelist, interval = 3)

no reporting of events on weekends
linelist_cens <- censor_linelist(

linelist,
interval = "daily",
reporting_artefact = "weekend_effects"

)

create_config Create a list of configuration settings for some details of
sim_linelist()

Description

Create a list of configuration settings for some details of sim_linelist()

Usage

create_config(...)

Arguments

... <dynamic-dots> Named elements to replace default settings. Only if names
match exactly are elements replaced, otherwise the function errors.
Accepted arguments and their defaults are:
last_contact_distribution A function to generate the time for last con-

tact. Default parameterisation is a Poisson distribution with a λ of 3.
first_contact_distribution A function to generate the time for the first

contact. Default parameterisation is a Poisson distribution with a λ of 3.
ct_distribution A function to generate Ct values for each confirmed case.

Default parameterisation is a Normal distribution with a mean (µ) of 25 and
a standard deviation (σ) of 2.

network A character string, either "adjusted" (default) or "unadjusted".
time_varying_death_risk By default is NULL, but can also accept a function

with two arguments, risk and time, to apply a time varying death risk
of hospitalised and non-hospitalised cases in the outbreak simulation. See
vignette("time-varying-cfr", package = "simulist").

prob_male By default is 0.5, so there is a equal probability of each case or
contact being male or female. The value must be non-negative and less
than or equal to 1. Smaller values will result in a higher probability of
female contacts and cases (1 - prob_male).

messy_linelist 5

Details

The config argument in sim_linelist() controls the small details around time windows around
infections (time of first contact and last contact with infector), and the distribution of the Cycle
threshold (Ct) value from a Real-time PCR or quantitative PCR (qPCR) for confirmed cases, the
network effect in the simulation, and if there is a time-varying death risk, as well as the probability
of a case or contact being male/female.

These parameters do not warrant their own arguments in sim_linelist() as they rarely need
to be changed from their default setting. Therefore it is not worth increasing the number of
sim_linelist() arguments to accommodate these and the config argument keeps the function
signature simpler and more readable.

The last_contact_distribution and first_contact_distribution can accept any function
that generates positive integers (e.g. discrete probability distribution, rpois() or rgeom()). The
ct_distribution can accept any function that generates real numbers (e.g. continuous or discrete
probability distribution, rnorm(), rlnorm()).

The network option controls whether to sample contacts from a adjusted or unadjusted contact
distribution. Adjusted (default) sampling uses q(n) ∼ (n + 1)p(n + 1) where p(n) is the proba-
bility density function of a distribution, e.g., Poisson or Negative binomial. Unadjusted (network =
"unadjusted") instead samples contacts directly from a probability distribution p(n).

Value

A list of settings for sim_linelist().

Examples

example with default configuration
create_config()

example with customised Ct distribution
create_config(

ct_distribution = function(n) rlnorm(n = n, meanlog = 2, sdlog = 1)
)

messy_linelist Create messy line list data

Description

Take line list output from sim_linelist() and replace elements of the <data.frame> with missing
values (e.g. NA), introduce spelling mistakes and inconsistencies, as well as coerce date types.

Usage

messy_linelist(linelist, ...)

6 messy_linelist

Arguments

linelist Line list <data.frame> output from sim_linelist().

... <dynamic-dots> Named elements to replace default settings. Only if names
match exactly are elements replaced, otherwise the function errors.
Accepted arguments and their defaults are:

prop_missing A numeric between 0 and 1 for the proportion of missing values
introduced. Default is 0.1 (10%).

missing_value A vector with the missing value(s). If multiple values are sup-
plied a missing value is randomly sampled for each cell in the line list.
Default is NA.

prop_spelling_mistakes A numeric between 0 and 1 used to specify the pro-
portion of spelling mistakes in character columns. Default is 0.1 (10%).

inconsistent_sex A logical boolean to specify whether the $sex column
uses "m" and "f", or inconsistently uses "m", "f", "M", "F", "male", "female",
"Male" or "Female". Default is TRUE so sexes are sampled from the op-
tions.

sex_as_numeric A logical boolean used to specify whether the values in the
$sex column should be encoded as numeric values (0 and 1). Default is
FALSE. sex_as_numeric cannot be TRUE if inconsistent_sex = TRUE.

numeric_as_char A logical boolean used to specify whether numeric columns
should be coerced to character. Default is TRUE.

date_as_char A logical boolean used to specify whether Date columns should
be coerced to character. Default is TRUE.

inconsistent_dates A logical boolean used to specify whether the values
in Date columns are inconsistently formatted (e.g. "%Y-%m-%d", "%Y/%m/%d",
"%d-%m-%Y", or "%d %B %Y"). Default is FALSE.

prop_int_as_word A numeric between 0 and 1 for the proportion of elements
in integer columns should that are coerced to words (see english::words()).
Default is 0.5 (50%).

prop_duplicate_row A numeric between 0 and 1 for the proportion of rows
to duplicate. Default is 0.01 (1%). If prop_duplicate_row > 0 then it is
guaranteed that at least one row will be duplicated.

inconsistent_id A logical boolean used to specify whether the $id column
has inconsistent formatting by appending random prefixes and suffixes to
a random sample (~10%) of IDs. Default is FALSE, so IDs are numbers
(numeric, characters or words depending on prop_int_as_word and
numeric_as_char).

Details

By default messy_linelist():

• Introduces 10% of values missing, i.e. converts to NA.

• Introduces spelling mistakes in 10% of character columns.

• Introduce inconsistency in the reporting of $sex.

messy_linelist 7

• Converts numeric columns (double & integer) to character.

• Converts Date columns to character.

• Converts 50% of integers to (English) words.

• Duplicates 1% of rows.

Setting missing_value to something other than NA will likely cause type coercion in the line list
<data.frame> columns, most likely to character.

When setting sex_as_numeric to TRUE, male is set to 0 and female to 1. Only one of inconsistent_sex
or sex_as_numeric can be TRUE, otherwise the function will error.

If numeric_as_char = TRUE and sex_as_numeric = TRUE then the sex encoded as 0 or 1 is con-
verted to character. If prop_spelling_mistake > 0 and numeric_as_char = TRUE the columns
that are converted from numeric to character do not have spelling mistakes introduced, be-
cause they are numeric characters stored as character strings. If prop_spelling_mistake > 0
and date_as_char = TRUE spelling mistakes are not introduced into dates.

The Date columns can be converted into an inconsistent format by setting inconsistent_dates =
TRUE and it requires date_as_char = TRUE, if the latter is FALSE the function will error.

If numeric_as_char = FALSE and prop_int_as_word > 0 then the integer columns are converted to
character string (either character numbers or words) but the other numeric columns are not co-
erced. Spelling mistakes are not introduced into integers converted to words when prop_spelling_mistakes
> 0 and prop_int_as_word > 0.

Rows are duplicated after other messy modifications so the duplicated row contains identical messy
elements.

Value

A messy line list <data.frame>.

The output <data.frame> has the same structure as the input <data.frame> from sim_linelist(),
with messy entries.

Examples

linelist <- sim_linelist()
messy_linelist <- messy_linelist(linelist)

increasing proportion of missingness to 30% with a missing value of -99
messy_linelist <- messy_linelist(

linelist,
prop_missing = 0.3,
missing_value = -99

)

increasing proportion of spelling mistakes to 50%
messy_linelist <- messy_linelist(linelist, prop_spelling_mistakes = 0.5)

encode `$sex` as `numeric`
messy_linelist <- messy_linelist(

linelist,
sex_as_numeric = TRUE,

8 sim_contacts

inconsistent_sex = FALSE
)

inconsistently formatted dates
messy_linelist <- messy_linelist(linelist, inconsistent_dates = TRUE)

sim_contacts Simulate contacts for an infectious disease outbreak

Description

Simulate contacts for an infectious disease outbreak

Usage

sim_contacts(
contact_distribution = function(x) stats::dpois(x = x, lambda = 2),
infectious_period = function(n) stats::rlnorm(n = n, meanlog = 2, sdlog = 0.5),
prob_infection = 0.5,
outbreak_start_date = as.Date("2023-01-01"),
anonymise = FALSE,
outbreak_size = c(10, 10000),
population_age = c(1, 90),
contact_tracing_status_probs = c(under_followup = 0.7, lost_to_followup = 0.2, unknown

= 0.1),
config = create_config()

)

Arguments

contact_distribution

A function or an <epiparameter> object to generate the number of contacts
per infection.
The function can be defined or anonymous. The function must have a single
argument in the form of an integer vector with elements representing the num-
ber of contacts, and return a numeric vector where each element corresponds to
the probability of observing the number of contacts in the vector passed to the
function. The index of the numeric vector returned is offset by one to the corre-
sponding probability of observing the number of contacts, i.e. the first element
of the output vector is the probability of observing zero contacts, the second
element is the probability of observing one contact, etc.
An <epiparameter> can be provided. This will be converted into a probability
mass function internally.
The default is an anonymous function with a Poisson probability mass function
(dpois()) with a mean (λ) of 2 contacts per infection.

sim_contacts 9

infectious_period

A function or an <epiparameter> object for the infectious period. This de-
fines the duration from becoming infectious to no longer infectious. In the sim-
ulation, individuals are assumed to become infectious immediately after being
infected (the latency period is assumed to be zero). The time intervals between
an infected individual and their contacts are assumed to be uniformly distributed
within the infectious period. Infectious periods must be strictly positive.
The function can be defined or anonymous. The function must return a vector of
randomly generated real numbers representing sampled infectious periods. The
function must have a single argument, the number of random infectious periods
to generate.
An <epiparameter> can be provided. This will be converted into random num-
ber generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 2 and sdlog = 0.5.

prob_infection A single numeric for the probability of a secondary contact being infected by
an infected primary contact.

outbreak_start_date

A date for the start of the outbreak.

anonymise A logical boolean for whether case names should be anonymised. Default is
FALSE.

outbreak_size A numeric vector of length 2 defining the minimum and the maximum number
of infected individuals for the simulated outbreak. Default is c(10, 1e4), so the
minimum outbreak size is 10 infected individuals, and the maximum outbreak
size is 10,000 infected individuals. Either number can be changed to increase
or decrease the maximum or minimum outbreak size to allow simulating larger
or smaller outbreaks. If the minimum outbreak size cannot be reached after
running the simulation for many iterations (internally) then the function errors,
whereas if the maximum outbreak size is exceeded the function returns the data
early and a warning stating how many cases and contacts are returned.

population_age Either a numeric vector with two elements or a <data.frame> with age struc-
ture in the population. Use a numeric vector to specific the age range of the
population, the first element is the lower bound for the age range, and and the
second is the upper bound for the age range (both inclusive, i.e. [lower, upper]).
The <data.frame> with age groups and the proportion of the population in that
group. See details and examples for more information.

contact_tracing_status_probs

A named numeric vector with the probability of each contact tracing status.
The names of the vector must be "under_followup", "lost_to_followup",
"unknown". Values of each contact tracing status must sum to one.

config A list of settings to adjust the randomly sampled delays and Ct values. See
create_config() for more information.

Value

A contacts <data.frame>.

The structure of the output is:

10 sim_contacts

from character column with name of case.

to character column with name of contacts of case.

age integer with age of infectee.

sex character column with either "m" or "f" for the sex of the contact.
date_first_contact <Date> column for the first contact between case and contacts.
date_last_contact <Date> column for the last contact between case and contacts.

was_case logical boolean column with either TRUE or FALSE for if the contact becomes a case.

status character column with the status of each contact. By default it is either "case", "under_followup"
"lost_to_followup", or "unknown".

Author(s)

Joshua W. Lambert, Carmen Tamayo

Examples

quickly simulate contact tracing data using the function defaults
contacts <- sim_contacts()
head(contacts)

to simulate more realistic contact tracing data load epiparameters from
{epiparameter}
library(epiparameter)
contact_distribution <- epiparameter(

disease = "COVID-19",
epi_name = "contact distribution",
prob_distribution = create_prob_distribution(
prob_distribution = "pois",
prob_distribution_params = c(mean = 2)

)
)

infectious_period <- epiparameter(
disease = "COVID-19",
epi_name = "infectious period",
prob_distribution = create_prob_distribution(

prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)

)
)

contacts <- sim_contacts(
contact_distribution = contact_distribution,
infectious_period = infectious_period,
prob_infection = 0.5

)

sim_linelist 11

sim_linelist Simulate a line list

Description

The line list is simulated using a branching process and parameterised with epidemiological param-
eters.

Usage

sim_linelist(
contact_distribution = function(x) stats::dpois(x = x, lambda = 2),
infectious_period = function(n) stats::rlnorm(n = n, meanlog = 2, sdlog = 0.5),
prob_infection = 0.5,
onset_to_hosp = function(n) stats::rlnorm(n = n, meanlog = 1.5, sdlog = 0.5),
onset_to_death = function(n) stats::rlnorm(n = n, meanlog = 2.5, sdlog = 0.5),
onset_to_recovery = NULL,
reporting_delay = NULL,
hosp_risk = 0.2,
hosp_death_risk = 0.5,
non_hosp_death_risk = 0.05,
outbreak_start_date = as.Date("2023-01-01"),
anonymise = FALSE,
outbreak_size = c(10, 10000),
population_age = c(1, 90),
case_type_probs = c(suspected = 0.2, probable = 0.3, confirmed = 0.5),
config = create_config()

)

Arguments

contact_distribution

A function or an <epiparameter> object to generate the number of contacts
per infection.
The function can be defined or anonymous. The function must have a single
argument in the form of an integer vector with elements representing the num-
ber of contacts, and return a numeric vector where each element corresponds to
the probability of observing the number of contacts in the vector passed to the
function. The index of the numeric vector returned is offset by one to the corre-
sponding probability of observing the number of contacts, i.e. the first element
of the output vector is the probability of observing zero contacts, the second
element is the probability of observing one contact, etc.
An <epiparameter> can be provided. This will be converted into a probability
mass function internally.
The default is an anonymous function with a Poisson probability mass function
(dpois()) with a mean (λ) of 2 contacts per infection.

12 sim_linelist

infectious_period

A function or an <epiparameter> object for the infectious period. This de-
fines the duration from becoming infectious to no longer infectious. In the sim-
ulation, individuals are assumed to become infectious immediately after being
infected (the latency period is assumed to be zero). The time intervals between
an infected individual and their contacts are assumed to be uniformly distributed
within the infectious period. Infectious periods must be strictly positive.
The function can be defined or anonymous. The function must return a vector of
randomly generated real numbers representing sampled infectious periods. The
function must have a single argument, the number of random infectious periods
to generate.
An <epiparameter> can be provided. This will be converted into random num-
ber generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 2 and sdlog = 0.5.

prob_infection A single numeric for the probability of a secondary contact being infected by
an infected primary contact.

onset_to_hosp A function or an <epiparameter> object for the onset-to-hospitalisation delay
distribution. onset_to_hosp can also be set to NULL to not simulate hospitali-
sation (admission) dates.
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the onset-to-hospitalisation delay. The function must
have a single argument.
An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 1.5 and sdlog = 0.5.
If onset_to_hosp is set to NULL then hosp_risk and hosp_death_risk will be
automatically set to NULL if not manually specified.

onset_to_death A function or an <epiparameter> object for the onset-to-death delay distri-
bution. onset_to_death can also be set to NULL to not simulate dates for indi-
viduals that died.
The function can be defined or anonymous. The function must return a vector
of numerics for the length of the onset-to-death delay. The function must have
a single argument.
An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 2.5 and sdlog = 0.5.
If onset_to_death is set to NULL then non_hosp_death_risk and hosp_death_risk
will be automatically set to NULL if not manually specified.
For hospitalised cases, the function ensures the onset-to-death time is greater
than the onset-to-hospitalisation time. After many (1000) attempts, if an onset-
to-death time (from onset_to_death) cannot be sampled that is greater than a
onset-to-hospitalisation time (from onset_to_hosp) then the function will error.
Due to this conditional sampling, the onset-to-death times in the line list may not
resemble the distributional form input into the function.

sim_linelist 13

onset_to_recovery

A function or an <epiparameter> object for the onset-to-recovery delay dis-
tribution. onset_to_recovery can also be NULL to not simulate dates for indi-
viduals that recovered.
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the onset-to-recovery delay. The function must have
a single argument.
An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is NULL so by default cases that recover get an NA in the $date_outcome
line list column.
For hospitalised cases, the function ensures the onset-to-recovery time is greater
than the onset-to-hospitalisation time. After many (1000) attempts, if an onset-
to-recovery time (from onset_to_recovery) cannot be sampled that is greater
than a onset-to-hospitalisation time (from onset_to_hosp) then the function
will error. Due to this conditional sampling, the onset-to-recovery times in the
line list may not resemble the distributional form input into the function.

reporting_delay

A function or an <epiparameter> object for the reporting delay distribution.
reporting_delay can also be NULL to not simulate delays from symptom onset
to date of reporting, in which case the date of reporting will be assumed to be
equal to the date of onset. The (random) number generating function creates
delays between the time of symptom onset ($date_onset) and the case being
reported ($date_reporting).
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the reporting delay. The function must have a single
argument.
The default is NULL so by default there is no reporting delay, and the $date_reporting
line list column is identical to the $date_onset column.

hosp_risk Either a single numeric for the hospitalisation risk of everyone in the popula-
tion, or a <data.frame> with age specific hospitalisation risks. Default is 20%
hospitalisation (0.2) for the entire population. If the onset_to_hosp argument
is set to NULL this argument will automatically be set to NULL if not specified or
can be manually set to NULL. See details and examples for more information.

hosp_death_risk

Either a single numeric for the death risk for hospitalised individuals across
the population, or a <data.frame> with age specific hospitalised death risks
Default is 50% death risk in hospitals (0.5) for the entire population. If the
onset_to_death argument is set to NULL this argument will automatically be set
to NULL if not specified or can be manually set to NULL. See details and examples
for more information. The hosp_death_risk can vary through time if specified
in the time_varying_death_risk element of config, see vignette("time-varying-cfr",
package = "simulist") for more information.

non_hosp_death_risk

Either a single numeric for the death risk for outside of hospitals across the
population, or a <data.frame> with age specific death risks outside of hospi-
tals. Default is 5% death risk outside of hospitals (0.05) for the entire pop-
ulation. If the onset_to_death argument is set to NULL this argument will

14 sim_linelist

automatically be set to NULL if not specified or can be manually set to NULL.
See details and examples for more information. The non_hosp_death_risk
can vary through time if specified in the time_varying_death_risk element
of config, see vignette("time-varying-cfr", package = "simulist") for
more information.

outbreak_start_date

A date for the start of the outbreak.

anonymise A logical boolean for whether case names should be anonymised. Default is
FALSE.

outbreak_size A numeric vector of length 2 defining the minimum and the maximum number
of infected individuals for the simulated outbreak. Default is c(10, 1e4), so the
minimum outbreak size is 10 infected individuals, and the maximum outbreak
size is 10,000 infected individuals. Either number can be changed to increase
or decrease the maximum or minimum outbreak size to allow simulating larger
or smaller outbreaks. If the minimum outbreak size cannot be reached after
running the simulation for many iterations (internally) then the function errors,
whereas if the maximum outbreak size is exceeded the function returns the data
early and a warning stating how many cases and contacts are returned.

population_age Either a numeric vector with two elements or a <data.frame> with age struc-
ture in the population. Use a numeric vector to specific the age range of the
population, the first element is the lower bound for the age range, and and the
second is the upper bound for the age range (both inclusive, i.e. [lower, upper]).
The <data.frame> with age groups and the proportion of the population in that
group. See details and examples for more information.

case_type_probs

A named numeric vector with the probability of each case type. The names of
the vector must be "suspected", "probable", "confirmed". Values of each
case type must sum to one.

config A list of settings to adjust the randomly sampled delays and Ct values. See
create_config() for more information.

Details

For age-stratified hospitalised and death risks a <data.frame> will need to be passed to the hosp_risk
and/or hosp_death_risk arguments. This <data.frame> should have two columns:

• age_limit: a column with one numeric per cell for the lower bound (minimum) age of the
age group (inclusive).

• risk: a column with one numeric per cell for the proportion (or probability) of hospitalisation
for that age group. Should be between 0 and 1.

For an age-structured population, a <data.frame> with two columns:

• age_limit: a column with one numeric per cell for the lower bound (minimum) age of the
age group (inclusive), except the last element which is the upper bound (maximum) of the
population.

• proportion: a column with the proportion of the population that are in that age group. Pro-
portions must sum to one.

sim_linelist 15

Value

A line list <data.frame>

The structure of the output is:

case_name character column with name of case.

case_type character column with type of case. By default it is either "confirmed", "probable",
or "suspected".

sex character column with either "m" or "f" for the sex of the case.

age integer with age of case.
date_onset <Date> column for date of symptom onset.
date_reporting <Date> column for the date of reporting (i.e. entry into line list).
date_admission <Date> column for date of hospital admission.

outcome character column with the outcome status of each case. Either "recovered" or "died".
date_outcome <Date> column for the date of outcome.
date_first_contact <Date> column for the first contact between infector and infectee (case).
date_last_contact <Date> column for the last contact between infector and infectee (case).

ct_value numeric column with the Cycle threshold (Ct) value from qPCR for confirmed cases.

Author(s)

Joshua W. Lambert, Carmen Tamayo

Examples

quickly simulate a line list using the function defaults
linelist <- sim_linelist()
head(linelist)

to simulate a more realistic line list load epiparameters from
{epiparameter}
library(epiparameter)
contact_distribution <- epiparameter(

disease = "COVID-19",
epi_name = "contact distribution",
prob_distribution = create_prob_distribution(
prob_distribution = "pois",
prob_distribution_params = c(mean = 2)

)
)

infectious_period <- epiparameter(
disease = "COVID-19",
epi_name = "infectious period",
prob_distribution = create_prob_distribution(

prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)

)
)

16 sim_outbreak

onset_to_hosp <- epiparameter(
disease = "COVID-19",
epi_name = "onset to hospitalisation",
prob_distribution = create_prob_distribution(
prob_distribution = "lnorm",
prob_distribution_params = c(meanlog = 1, sdlog = 0.5)

)
)

get onset to death from {epiparameter} database
onset_to_death <- epiparameter_db(

disease = "COVID-19",
epi_name = "onset to death",
single_epiparameter = TRUE

)
example with single hospitalisation risk for entire population
linelist <- sim_linelist(

contact_distribution = contact_distribution,
infectious_period = infectious_period,
prob_infection = 0.5,
onset_to_hosp = onset_to_hosp,
onset_to_death = onset_to_death,
hosp_risk = 0.5

)
head(linelist)

example with age-stratified hospitalisation risk
20% for over 80s
10% for under 5s
5% for the rest
age_dep_hosp_risk <- data.frame(

age_limit = c(1, 5, 80),
risk = c(0.1, 0.05, 0.2)

)
linelist <- sim_linelist(

contact_distribution = contact_distribution,
infectious_period = infectious_period,
prob_infection = 0.5,
onset_to_hosp = onset_to_hosp,
onset_to_death = onset_to_death,
hosp_risk = age_dep_hosp_risk

)
head(linelist)

sim_outbreak Simulate a line list and a contacts table

Description

The line list and contacts are simulated using a branching process and parameterised with epidemi-
ological parameters.

sim_outbreak 17

Usage

sim_outbreak(
contact_distribution = function(x) stats::dpois(x = x, lambda = 2),
infectious_period = function(n) stats::rlnorm(n = n, meanlog = 2, sdlog = 0.5),
prob_infection = 0.5,
onset_to_hosp = function(n) stats::rlnorm(n = n, meanlog = 1.5, sdlog = 0.5),
onset_to_death = function(n) stats::rlnorm(n = n, meanlog = 2.5, sdlog = 0.5),
onset_to_recovery = NULL,
reporting_delay = NULL,
hosp_risk = 0.2,
hosp_death_risk = 0.5,
non_hosp_death_risk = 0.05,
outbreak_start_date = as.Date("2023-01-01"),
anonymise = FALSE,
outbreak_size = c(10, 10000),
population_age = c(1, 90),
case_type_probs = c(suspected = 0.2, probable = 0.3, confirmed = 0.5),
contact_tracing_status_probs = c(under_followup = 0.7, lost_to_followup = 0.2, unknown

= 0.1),
config = create_config()

)

Arguments

contact_distribution

A function or an <epiparameter> object to generate the number of contacts
per infection.
The function can be defined or anonymous. The function must have a single
argument in the form of an integer vector with elements representing the num-
ber of contacts, and return a numeric vector where each element corresponds to
the probability of observing the number of contacts in the vector passed to the
function. The index of the numeric vector returned is offset by one to the corre-
sponding probability of observing the number of contacts, i.e. the first element
of the output vector is the probability of observing zero contacts, the second
element is the probability of observing one contact, etc.
An <epiparameter> can be provided. This will be converted into a probability
mass function internally.
The default is an anonymous function with a Poisson probability mass function
(dpois()) with a mean (λ) of 2 contacts per infection.

infectious_period

A function or an <epiparameter> object for the infectious period. This de-
fines the duration from becoming infectious to no longer infectious. In the sim-
ulation, individuals are assumed to become infectious immediately after being
infected (the latency period is assumed to be zero). The time intervals between
an infected individual and their contacts are assumed to be uniformly distributed
within the infectious period. Infectious periods must be strictly positive.
The function can be defined or anonymous. The function must return a vector of
randomly generated real numbers representing sampled infectious periods. The

18 sim_outbreak

function must have a single argument, the number of random infectious periods
to generate.
An <epiparameter> can be provided. This will be converted into random num-
ber generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 2 and sdlog = 0.5.

prob_infection A single numeric for the probability of a secondary contact being infected by
an infected primary contact.

onset_to_hosp A function or an <epiparameter> object for the onset-to-hospitalisation delay
distribution. onset_to_hosp can also be set to NULL to not simulate hospitali-
sation (admission) dates.
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the onset-to-hospitalisation delay. The function must
have a single argument.
An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 1.5 and sdlog = 0.5.
If onset_to_hosp is set to NULL then hosp_risk and hosp_death_risk will be
automatically set to NULL if not manually specified.

onset_to_death A function or an <epiparameter> object for the onset-to-death delay distri-
bution. onset_to_death can also be set to NULL to not simulate dates for indi-
viduals that died.
The function can be defined or anonymous. The function must return a vector
of numerics for the length of the onset-to-death delay. The function must have
a single argument.
An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is an anonymous function with a lognormal distribution random
number generator (rlnorm()) with meanlog = 2.5 and sdlog = 0.5.
If onset_to_death is set to NULL then non_hosp_death_risk and hosp_death_risk
will be automatically set to NULL if not manually specified.
For hospitalised cases, the function ensures the onset-to-death time is greater
than the onset-to-hospitalisation time. After many (1000) attempts, if an onset-
to-death time (from onset_to_death) cannot be sampled that is greater than a
onset-to-hospitalisation time (from onset_to_hosp) then the function will error.
Due to this conditional sampling, the onset-to-death times in the line list may not
resemble the distributional form input into the function.

onset_to_recovery

A function or an <epiparameter> object for the onset-to-recovery delay dis-
tribution. onset_to_recovery can also be NULL to not simulate dates for indi-
viduals that recovered.
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the onset-to-recovery delay. The function must have
a single argument.

sim_outbreak 19

An <epiparameter> can be provided. This will be converted into a random
number generator internally.
The default is NULL so by default cases that recover get an NA in the $date_outcome
line list column.
For hospitalised cases, the function ensures the onset-to-recovery time is greater
than the onset-to-hospitalisation time. After many (1000) attempts, if an onset-
to-recovery time (from onset_to_recovery) cannot be sampled that is greater
than a onset-to-hospitalisation time (from onset_to_hosp) then the function
will error. Due to this conditional sampling, the onset-to-recovery times in the
line list may not resemble the distributional form input into the function.

reporting_delay

A function or an <epiparameter> object for the reporting delay distribution.
reporting_delay can also be NULL to not simulate delays from symptom onset
to date of reporting, in which case the date of reporting will be assumed to be
equal to the date of onset. The (random) number generating function creates
delays between the time of symptom onset ($date_onset) and the case being
reported ($date_reporting).
The function can be defined or anonymous. The function must return a vector of
numerics for the length of the reporting delay. The function must have a single
argument.
The default is NULL so by default there is no reporting delay, and the $date_reporting
line list column is identical to the $date_onset column.

hosp_risk Either a single numeric for the hospitalisation risk of everyone in the popula-
tion, or a <data.frame> with age specific hospitalisation risks. Default is 20%
hospitalisation (0.2) for the entire population. If the onset_to_hosp argument
is set to NULL this argument will automatically be set to NULL if not specified or
can be manually set to NULL. See details and examples for more information.

hosp_death_risk

Either a single numeric for the death risk for hospitalised individuals across
the population, or a <data.frame> with age specific hospitalised death risks
Default is 50% death risk in hospitals (0.5) for the entire population. If the
onset_to_death argument is set to NULL this argument will automatically be set
to NULL if not specified or can be manually set to NULL. See details and examples
for more information. The hosp_death_risk can vary through time if specified
in the time_varying_death_risk element of config, see vignette("time-varying-cfr",
package = "simulist") for more information.

non_hosp_death_risk

Either a single numeric for the death risk for outside of hospitals across the
population, or a <data.frame> with age specific death risks outside of hospi-
tals. Default is 5% death risk outside of hospitals (0.05) for the entire pop-
ulation. If the onset_to_death argument is set to NULL this argument will
automatically be set to NULL if not specified or can be manually set to NULL.
See details and examples for more information. The non_hosp_death_risk
can vary through time if specified in the time_varying_death_risk element
of config, see vignette("time-varying-cfr", package = "simulist") for
more information.

outbreak_start_date

A date for the start of the outbreak.

20 sim_outbreak

anonymise A logical boolean for whether case names should be anonymised. Default is
FALSE.

outbreak_size A numeric vector of length 2 defining the minimum and the maximum number
of infected individuals for the simulated outbreak. Default is c(10, 1e4), so the
minimum outbreak size is 10 infected individuals, and the maximum outbreak
size is 10,000 infected individuals. Either number can be changed to increase
or decrease the maximum or minimum outbreak size to allow simulating larger
or smaller outbreaks. If the minimum outbreak size cannot be reached after
running the simulation for many iterations (internally) then the function errors,
whereas if the maximum outbreak size is exceeded the function returns the data
early and a warning stating how many cases and contacts are returned.

population_age Either a numeric vector with two elements or a <data.frame> with age struc-
ture in the population. Use a numeric vector to specific the age range of the
population, the first element is the lower bound for the age range, and and the
second is the upper bound for the age range (both inclusive, i.e. [lower, upper]).
The <data.frame> with age groups and the proportion of the population in that
group. See details and examples for more information.

case_type_probs

A named numeric vector with the probability of each case type. The names of
the vector must be "suspected", "probable", "confirmed". Values of each
case type must sum to one.

contact_tracing_status_probs

A named numeric vector with the probability of each contact tracing status.
The names of the vector must be "under_followup", "lost_to_followup",
"unknown". Values of each contact tracing status must sum to one.

config A list of settings to adjust the randomly sampled delays and Ct values. See
create_config() for more information.

Details

For age-stratified hospitalised and death risks a <data.frame> will need to be passed to the hosp_risk
and/or hosp_death_risk arguments. This <data.frame> should have two columns:

• age_limit: a column with one numeric per cell for the lower bound (minimum) age of the
age group (inclusive).

• risk: a column with one numeric per cell for the proportion (or probability) of hospitalisation
for that age group. Should be between 0 and 1.

For an age-structured population, a <data.frame> with two columns:

• age_limit: a column with one numeric per cell for the lower bound (minimum) age of the
age group (inclusive), except the last element which is the upper bound (maximum) of the
population.

• proportion: a column with the proportion of the population that are in that age group. Pro-
portions must sum to one.

sim_outbreak 21

Value

A list with two elements:

1. A line list <data.frame> (see sim_linelist() for <data.frame> structure)

2. A contacts <data.frame> (see sim_contacts() for <data.frame> structure)

Author(s)

Joshua W. Lambert

Examples

quickly simulate an outbreak using the function defaults
outbreak <- sim_outbreak()
head(outbreak$linelist)
head(outbreak$contacts)

to simulate a more realistic outbreak load epiparameters from
{epiparameter}
library(epiparameter)
contact_distribution <- epiparameter(

disease = "COVID-19",
epi_name = "contact distribution",
prob_distribution = create_prob_distribution(
prob_distribution = "pois",
prob_distribution_params = c(mean = 2)

)
)

infectious_period <- epiparameter(
disease = "COVID-19",
epi_name = "infectious period",
prob_distribution = create_prob_distribution(

prob_distribution = "gamma",
prob_distribution_params = c(shape = 1, scale = 1)

)
)

onset_to_hosp <- epiparameter(
disease = "COVID-19",
epi_name = "onset to hospitalisation",
prob_distribution = create_prob_distribution(

prob_distribution = "lnorm",
prob_distribution_params = c(meanlog = 1, sdlog = 0.5)

)
)

get onset to death from {epiparameter} database
onset_to_death <- epiparameter_db(

disease = "COVID-19",
epi_name = "onset to death",
single_epiparameter = TRUE

22 truncate_linelist

)

outbreak <- sim_outbreak(
contact_distribution = contact_distribution,
infectious_period = infectious_period,
prob_infection = 0.5,
onset_to_hosp = onset_to_hosp,
onset_to_death = onset_to_death

)

truncate_linelist Adjust or subset a line list to account for right truncation

Description

Adjust or subset the line list <data.frame> by removing cases that have not been reported by the
truncation time and setting hospitalisation admission or outcome dates that are after the truncation
point to NA.

This is to replicate real-time outbreak data where recent cases or outcomes are not yet observed or
reported (right truncation). It implies an assumption that symptom onsets are reported with a delay
but hospitalisations are reported instantly.

Usage

truncate_linelist(
linelist,
truncation_day = 14,
unit = c("days", "weeks", "months", "years"),
direction = c("backwards", "forwards")

)

Arguments

linelist Line list <data.frame> output from sim_linelist().
truncation_day A single numeric specifying the number of days (default), weeks, months or

years before the end of the outbreak (default) or since the start of the outbreak
(see direction argument) to truncate the line list at. By default it is 14 days
before the end of the outbreak.
Alternatively, truncation_day can accept a <Date> and this is used as the
truncation_day and the unit and direction is ignored.

unit A character string, either "days" (default), "weeks", "months", or "years",
specifying the units of the truncation_day argument.
Years are assumed to be 365.25 days and months are assumed to be 365.25 / 12
days (same as lubridate).

direction A character string, either "backwards" (default) or "forwards". direction
= backwards defines the truncation_day as the time before the end of the out-
break. direction = forwards defines the truncation_day as the time since
the start of the outbreak.

truncate_linelist 23

Details

The day on which the line list is truncated is the same for all individuals in the line list, and is
specified by the truncation_day and unit arguments.

Value

A line list <data.frame>.

The output <data.frame> has the same structure as the input <data.frame> from sim_linelist(),
but can be a subset and dates after truncation set to NA.

Examples

set.seed(1)
linelist <- sim_linelist()
linelist_trunc <- truncate_linelist(linelist)

set truncation point 3 weeks before the end of outbreak
linelist_trunc <- truncate_linelist(

linelist,
truncation_day = 3,
unit = "weeks"

)

set truncation point to 2 months since the start of outbreak
linelist_trunc <- truncate_linelist(

linelist,
truncation_day = 2,
unit = "months",
direction = "forwards"

)

set truncation point to 2023-03-01
linelist_trunc <- truncate_linelist(

linelist,
truncation_day = as.Date("2023-03-01")

)

Index

censor_linelist, 2
create_config, 4
create_config(), 9, 14, 20

Date, 3
dpois(), 8, 11, 17

english::words(), 6

grates::as_epiweek(), 3
grates::as_isoweek(), 3
grates::as_period(), 3
grates::as_year(), 3
grates::as_yearmonth(), 3

incidence2::incidence(), 2

messy_linelist, 5

rgeom(), 5
rlnorm(), 5, 9, 12, 18
rnorm(), 5
rpois(), 5

sim_contacts, 8
sim_contacts(), 21
sim_linelist, 11
sim_linelist(), 2, 4–7, 21–23
sim_outbreak, 16

truncate_linelist, 22

unclass(), 3

24

	censor_linelist
	create_config
	messy_linelist
	sim_contacts
	sim_linelist
	sim_outbreak
	truncate_linelist
	Index

