
Package ‘rib’
February 7, 2026

Title An Implementation of 'Interactive Brokers' API

Version 0.30.4

Description Allows interaction with 'Interactive Brokers' 'Trader Workstation'
<https://interactivebrokers.github.io/tws-api/>.
Handles the connection over the network and the exchange of messages.
Data is encoded and decoded between user and wire formats.
Data structures and functionality closely mirror the official implementations.

Depends R (>= 3.4)

Imports R6 (>= 2.4), RProtoBuf

License GPL-3

Encoding UTF-8

URL https://github.com/lbilli/rib

BugReports https://github.com/lbilli/rib/issues

NeedsCompilation no

Author Luca Billi [aut, cre]

Maintainer Luca Billi <noreply.section+dev@gmail.com>

Repository CRAN

Date/Publication 2026-02-07 21:20:02 UTC

Contents
enums . 2
factory . 2
IBClient . 3
IBWrap . 5
structs . 6

Index 8

1

https://interactivebrokers.github.io/tws-api/
https://github.com/lbilli/rib
https://github.com/lbilli/rib/issues

2 factory

enums Enumerated Types

Description

Enumerated types are used in few places across the API. These are types that can have only a limited
set of named constant values.

These functions facilitate the conversion between integer value and string representation.

Usage

map_enum2int(enum, name)

map_int2enum(enum, value)

Arguments

enum name of the enumeration type: e.g. "Condition", "FaDataType", "MarketData",
"PriceTrigger".

name string representation of value.
value integer representation of name.

Value

map_enum2int returns the corresponding value.

map_int2enum returns the corresponding name.

Examples

map_enum2int("MarketData", "DELAYED") # -> 3

map_int2enum("MarketData", 3) # -> "DELAYED"

factory Helpers

Description

Helper functions that simplify the customization of common data structures.

Usage

IBContract(...)

IBOrder(...)

fCondition(type)

IBClient 3

Arguments

... Any combination of named arguments whose names are valid for Contract or
Order respectively.

type Type of condition: one of "Price", "Time", "Margin", "Execution", "Volume"
or "PercentChange".

Details

The same result is achieved by making a copy of the respective structures and explicitly reassigning
values to the desired fields. The two approaches can be complementary.

Value

IBContract returns a Contract.

IBOrder returns an Order.

fCondition returns a Condition.

See Also

Contract, Order.

Examples

stock <- IBContract(symbol="GOOG", secType="STK", exchange="SMART", currency="USD")

Equivalent to
stock <- Contract
stock$symbol <- "GOOG"
stock$secType <- "STK"
stock$exchange <- "SMART"
stock$currency <- "USD"

order <- IBOrder(action="BUY", totalQuantity=10, orderType="LMT", lmtPrice=99)

condition <- fCondition("Time")
condition$is_more <- TRUE
condition$value <- "20221114-12:00"

IBClient Client Connection Class

Description

This is the main class that manages the connection with the ’Trader Workstation’, sends requests
and handles responses.

4 IBClient

Methods

• IBClient$new(): creates a new instance.

• $connect(host="localhost", port, clientId, connectOptions=""): connects to host:port
and performs the initial handshake using client identifier clientId and additional options
connectOptions.

• $checkMsg(wrap, timeout=0.2): waits for and process server messages. When available,
messages are decoded and handed over to the appropriate callback defined in wrap, which
must be an instance of a child of IBWrap. If wrap is missing, messages are read and immedi-
ately discarded. Returns the number of messages processed.

This methods blocks up to timeout seconds. Needs to be called regularly.

• $disconnect(): terminates the connection.

This class is modeled after the class EClient from the official IB API implementations. In addition
to the methods shown above, several others exist that are used to send requests to the server.

Refer to the official documentation for a comprehensive list of the possible requests, including their
signatures and descriptions.

See Also

IBWrap.

EClient definition from the official documentation.

Examples

Not run:
Instantiate a wrapper
wrap <- IBWrapSimple$new()

Create a client and connect to a server
ic <- IBClient$new()
ic$connect(port=4002, clientId=1)

Make a request
stock <- IBContract(symbol="GOOG", secType="STK", exchange="SMART", currency="USD")
ic$reqContractDetails(11, stock)

Process responses
ic$checkMsg(wrap)

Disconnect
ic$disconnect()

End(Not run)

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html

IBWrap 5

IBWrap Callbacks Wrapper Class

Description

As the communication with the server is asynchronous, the way to control how inbound messages
are processed is via callback functions. The class IBWrap is merely a container for these functions.

Being a base class, its methods are just stubs whose only action is to raise a warning when called.

Customized functionality is provided by defining a child class of IBWrap and overriding the appro-
priate methods to perform the desired tasks.

These methods are never called directly by the user program, rather they are implicitly invoked
within IBClient$checkMsg() when it processes the server responses.

Details

IBWrap is modeled after EWrapper from the official IB API implementations.

The official documentation provides a comprehensive list and description of the available methods,
their signatures and usage.

The customization process follows this template:

Class derivation:
IBWrapSimple <- R6::R6Class("IBWrapSimple",
class= FALSE,
cloneable= FALSE,
lock_class= TRUE,

inherit= IBWrap,

public= list(

Customized methods:
error= function(id, errorCode, errorString, advancedOrderRejectJson){

Code to handle error messages
},

nextValidId= function(orderId) {

Code to handle the next order ID
},

contractDetails= function(reqId, contractDetails) {

Code to handle Contract description
},

6 structs

etc.
)

)

Class instantiation:
wrap <- IBWrapSimple$new()

Use when processing server messages by a client:
ic <- IBClient$new()

ic$checkMsg(wrap)

See Also

IBClient.

EWrapper definition from the official documentation.

structs Data Structures

Description

The data structures used by the API are implemented as R named lists, possibly nested. Templates
filled with default values are defined within the package. In order to instantiate them, no elaborate
contructor is required but a simple copy will do.

Still, helper functions are available for Contract and Order.

Usage

ComboLeg

Contract

DeltaNeutralContract

ExecutionFilter

Order

OrderCancel

ScannerSubscription

SoftDollarTier

WshEventData

https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html

structs 7

See Also

IBContract, IBOrder.

Examples

stock <- Contract

stock$symbol <- "GOOG"
stock$secType <- "STK"
stock$exchange <- "SMART"
stock$currency <- "USD"

Index

ComboLeg (structs), 6
Contract, 3
Contract (structs), 6

DeltaNeutralContract (structs), 6

enums, 2
ExecutionFilter (structs), 6

factory, 2
fCondition (factory), 2

helper functions, 6

IBClient, 3, 6
IBContract, 7
IBContract (factory), 2
IBOrder, 7
IBOrder (factory), 2
IBWrap, 4, 5

map_enum2int (enums), 2
map_int2enum (enums), 2

Order, 3
Order (structs), 6
OrderCancel (structs), 6

ScannerSubscription (structs), 6
SoftDollarTier (structs), 6
structs, 6

WshEventData (structs), 6

8

	enums
	factory
	IBClient
	IBWrap
	structs
	Index

