Package 'regrap'

October 14, 2022

Title Reverse Graphical Approaches

Version 1.0.1

Date 2020-06-22

Description The graphical approach is proposed as a general framework for clinical trial designs involving multiple hypotheses, where decisions are made only based on the observed marginal p-values. A reverse graphical approach starts from a set of singleton graphs, and gradually add vertices into graphs until rejection of a set of hypotheses is made. See Gou, J. (2020). Reverse graphical approaches for multiple test procedures. Technical Report.

License GPL-3

Encoding UTF-8

LazyData true

Imports mvtnorm, stats

RoxygenNote 7.1.0.9000

NeedsCompilation no

Author Jiangtao Gou [aut, cre],

Fengqing Zhang [aut]

Maintainer Jiangtao Gou <gouRpackage@gmail.com>

Repository CRAN

Date/Publication 2020-07-03 11:00:06 UTC

R topics documented:

checkConditionW	2
conditionCheck	3
ga2h	4
ga3h	5
graphUpdate	6
graphUpdateOne	6
randomGraph	7
rga2h	8
rga2pwr	9
rga3h	10

Index

checkConditionW Condition check for weak FWER control in RGA

Description

Check the sufficient condition in RGA for the weak FWER control.

Usage

checkConditionW(w, G)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights

Details

The conditions verified here are sufficient conditions. If a logical value TRUE is returned, then the weak control of the FWER is guaranteed. The weak control of the FWER may still hold even if the output is FALSE.

Value

a logical value indicating whether the RGA's conditions are satisfied or not for the weak FWER control

Author(s)

Jiangtao Gou

Fengqing Zhang

Examples

```
w <- c(0.31, 0.33, 0.36)
G <- matrix(c(0,0.4,0.6, 0.7,0,0.3, 0.5,0.5,0),nrow=3,byrow=TRUE)
checkConditionW(w=w,G=G)
w <- c(0.5,0.5,0)
G <- matrix(c(0,1,0, 0.25,0,0.75, 1,0,0), nrow=3, byrow=TRUE)
checkConditionW(w=w,G=G)
```

12

conditionCheck

Description

Check the sufficient condition in RGA for the strong FWER control.

Usage

conditionCheck(w, G)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights

Details

The conditions verified here are sufficient conditions. If a logical value TRUE is returned, then the strong control of the FWER is guaranteed. The strong control of the FWER may still hold even if the output is FALSE.

Value

a logical value indicating whether the RGA's conditions are satisfied or not for the strong FWER control

Author(s)

Jiangtao Gou

Examples

```
w <- c(0.1,0.2,0.3,0.4)
G <- matrix(c(0,0.3,0.3,0.4, 0.6,0,0.2,0.2, 0.5,0.2,0,0.3, 0.3,0.4,0.3,0),nrow=4,byrow=TRUE)
conditionCheck(w=w,G=G)</pre>
```

ga2h

Description

Graphical approach for two hypotheses

Usage

ga2h(w, G, p, alpha)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights
р	a vector of p-values
alpha	a number of significance level

Value

a logical vector indicating whether the hypothesis is rejected: TRUE = rejected, FALSE = accepted

References

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. Statistics in Medicine 28, 586–604. <doi:10.1002/sim.3495>

Examples

w <- c(0.3,0.7) G <- matrix(c(0,1,1,0),nrow=2,byrow=TRUE) p <- c(0.032, 0.038) alpha <- 0.05 ga2h(w=w,G=G,p=p, alpha=alpha) ga3h

Description

Graphical approach for three hypotheses

Usage

ga3h(w, G, p, alpha)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights
р	a vector of p-values
alpha	a number of significance level

Value

a logical vector indicating whether the hypothesis is rejected: TRUE = rejected, FALSE = accepted

Author(s)

Jiangtao Gou

References

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. Statistics in Medicine 28, 586–604. <doi:10.1002/sim.3495>

Examples

w <- c(0.3,0.5,0.2) G <- matrix(c(0,1/3,2/3, 1/2,0,1/2, 1/5,4/5,0),nrow=3,byrow=TRUE) p <- c(0.012, 0.051, 0.021) p <- c(0.012, 0.051, 0.019) alpha <- 0.05 ga3h(w=w,G=G,p=p, alpha=alpha) graphUpdate

Description

Update the graph by removing a set of vertices

Usage

graphUpdate(w, G, vec01)

Arguments

W	a numeric vector of vertex weights
G	a matrix of transition weights
vec01	a binary vector indicating the set of vertices planned to be removed: the vertex corresponding to the zeros in this vector will be removed

Value

a list of one updated vertex weight vector, one updated transition weight matrix, and a binory TRUE/FALSE indicater to show whether a node has been removed

Author(s)

Jiangtao Gou

Examples

```
w <- c(0.1,0.2,0.3,0.4)
G <- matrix(c(0,0.3,0.3,0.4, 0.6,0,0.2,0.2, 0.5,0.2,0,0.3, 0.3,0.4,0.3,0),nrow=4,byrow=TRUE)
vec01 <- c(1,0,0,1)
graphUpdate(w=w,G=G,vec01=vec01)
```

graphUpdateOne Single Step Graph Update

Description

Update the graph by removing one vertex

Usage

graphUpdateOne(w, G, vec01)

randomGraph

Arguments

W	a numeric vector of vertex weights
G	a matrix of transition weights
vec01	a binary vector indicating the set of vertices planned to be removed: the vertex corresponding to the first zero in this vector will be removed

Value

a list of one updated vertex weight vector, one updated transition weight matrix, one updated indicator vector, and a binory TRUE/FALSE indicater to show whether a node has been removed

Author(s)

Jiangtao Gou

Examples

```
w <- c(0.1,0.2,0.3,0.4)
G <- matrix(c(0,0.3,0.3,0.4, 0.6,0,0.2,0.2, 0.5,0.2,0,0.3, 0.3,0.4,0.3,0),nrow=4,byrow=TRUE)
vec01 <- c(1,0,0,1)
graphUpdateOne(w=w,G=G,vec01=vec01)
```

randomGraph Generate a Random Graph

Description

Generate a random graph from uniform distribution

Usage

```
randomGraph(n, seed = as.numeric(Sys.time()), wlim = c(0, 1), Glim = c(0, 1))
```

Arguments

n	an integer: number of vertices
seed	an integer: a seed for random number generator
wlim	a vector of two numbers: range of vertex weights
Glim	a vector of two numbers: range of transition weights

Value

A list of one vector for vertex weights and one matrix for transition weights

Author(s)

Jiangtao Gou Fengqing Zhang

Examples

wG <- randomGraph(n=5)

rga2h

reverse graphical approach for two hypotheses

Description

reverse graphical approach for two hypotheses

Usage

rga2h(w, G, p, alpha)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights
р	a vector of p-values
alpha	a number of significance level

Value

a logical vector indicating whether the hypothesis is rejected: TRUE = rejected, FALSE = accepted

Author(s)

Jiangtao Gou

References

Gou, J. (2020). Reverse graphical approaches for multiple test procedures. Technical Report.

Examples

```
w <- c(0.3,0.7)
G <- matrix(c(0,1,1,0),nrow=2,byrow=TRUE)
p <- c(0.032, 0.038)
alpha <- 0.05
rga2h(w=w,G=G,p=p, alpha=alpha)
```

rga2pwr

Description

Power Analysis for Graphical Approaches and Reverse Graphical Approaches with Two Hypotheses

Usage

rga2pwr(w, G, alpha, delta, corr, method = "rga")

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights
alpha	a number of significance level
delta	a vector of effect sizes
corr	a correlation matrix
method	a string specified the method: "rga" for Reverse Graphical Approaches and "ga" for Graphical Approaches

Value

a numerical matrix including the probabilities of four combinations of being rejected and being accepted for two hypotheses. Row indices stand for the first hypothesis, and column indices stand for the second hypothesis. The first index stands for the probability of acceptance, and the second index stands for the probability of rejection.

Author(s)

Jiangtao Gou

References

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. Statistics in Medicine 28, 586–604. <doi:10.1002/sim.3495>

Gou, J. (2020). Reverse graphical approaches for multiple test procedures. Technical Report.

Examples

```
w <- c(0.3,0.7)
G <- matrix(c(0,1,1,0),nrow=2,byrow=TRUE)
alpha <- 0.05
delta <- c(0,2)
rho <- 0.0
corr <- matrix(c(1,rho,rho,1), nrow=2)
method="rga"
rga2pwr(w=w, G=G, alpha=alpha, delta=delta, corr=corr, method=method)
```

rga3h

reverse graphical approach for three hypotheses

Description

reverse graphical approach for three hypotheses

Usage

rga3h(w, G, p, alpha)

Arguments

W	a vector of initial weights
G	a matrix of initial transaction weights
р	a vector of p-values
alpha	a number of significance level

Value

a logical vector indicating whether the hypothesis is rejected: TRUE = rejected, FALSE = accepted

Author(s)

Jiangtao Gou

References

Gou, J. (2020). Reverse graphical approaches for multiple test procedures. Technical Report.

10

rga3h

Examples

```
w <- c(0.3,0.5,0.2)
G <- matrix(c(0,1/3,2/3, 1/2,0,1/2, 1/5,4/5,0),nrow=3,byrow=TRUE)
p <- c(0.012, 0.051, 0.021)
p <- c(0.012, 0.051, 0.019)
alpha <- 0.05
rga3h(w=w,G=G,p=p, alpha=alpha)
```

Index

checkConditionW, 2
conditionCheck, 3

ga2h,4 ga3h,5 graphUpdate,6 graphUpdateOne,6

randomGraph,7 rga2h,8 rga2pwr,9 rga3h,10