
partykit: A Toolkit for Recursive Partytioning

Achim Zeileis
Universität Innsbruck

Torsten Hothorn
Universität Zürich

Abstract

The partykit package provides a flexible toolkit with infrastructure for learning, rep-
resenting, summarizing, and visualizing a wide range of tree-structured regression and
classification models. The functionality encompasses: (a) Basic infrastructure for repre-
senting trees (inferred by any algorithm) so that unified print/plot/predict methods
are available. (b) Dedicated methods for trees with constant fits in the leaves (or terminal
nodes) along with suitable coercion functions to create such tree models (e.g., by rpart,
RWeka, PMML). (c) A reimplementation of conditional inference trees (ctree, originally
provided in the party package). (d) An extended reimplementation of model-based recur-
sive partitioning (mob, also originally in party) along with dedicated methods for trees
with parametric models in the leaves. This vignette gives a brief overview of the package
and discusses in detail the generic infrastructure for representing trees (a). Items (b)–(d)
are discussed in the remaining vignettes in the package.

Keywords: recursive partitioning, regression trees, classification trees, decision trees.

1. Overview

In the more than fifty years since Morgan and Sonquist (1963) published their seminal pa-
per on “automatic interaction detection”, a wide range of methods has been suggested that
is usually termed “recursive partitioning” or “decision trees” or “tree(-structured) models”
etc. Particularly influential were the algorithms CART (classification and regression trees,
Breiman, Friedman, Olshen, and Stone 1984), C4.5 (Quinlan 1993), QUEST/GUIDE (Loh
and Shih 1997; Loh 2002), and CTree (Hothorn, Hornik, and Zeileis 2006) among many others
(see Loh 2014, for a recent overview). Reflecting the heterogeneity of conceptual algorithms, a
wide range of computational implementations in various software systems emerged: Typically
the original authors of an algorithm also provide accompanying software but many software
systems, e.g., including Weka (Witten and Frank 2005) or R (R Core Team 2026), also provide
collections of various types of trees. Within R the list of prominent packages includes rpart

(Therneau and Atkinson 2025, implementing the CART algorithm), RWeka (Hornik 2023,
containing interfaces to J4.8, M5’, LMT from Weka), and party (Hothorn, Hornik, Strobl,
and Zeileis 2025, implementing CTree and MOB) among many others. See the CRAN task
view “Machine Learning” (Hothorn 2014) for an overview.

All of these algorithms and software implementations have to deal with very similar challenges.
However, due to the fragmentation of the communities in which the corresponding research
is published – ranging from statistics over machine learning to various applied fields – many
discussions of the algorithms do not reuse established theoretical results and terminology.

2 partykit: A Toolkit for Recursive Partytioning

Similarly, there is no common “language” for the software implementations and different
solutions are provided by different packages (even within R) with relatively little reuse of
code.

The partykit tries to address the latter point and improve the computational situation by
providing a common unified infrastructure for recursive partytioning in the R system for
statistical computing. In particular, partykit provides tools for representing fitted trees along
with printing, plotting, and computing predictions. The design principles are:

• One ‘agnostic’ base class (‘party’) which can encompass an extremely wide range of
different types of trees.

• Subclasses for important types of trees, e.g., trees with constant fits (‘constparty’) or
with parametric models (‘modelparty’) in each terminal node (or leaf).

• Nodes are recursive objects, i.e., a node can contain child nodes.

• Keep the (learning) data out of the recursive node and split structure.

• Basic printing, plotting, and predicting for raw node structure.

• Customization via suitable panel or panel-generating functions.

• Coercion from existing object classes in R (rpart, J48, etc.) to the new class.

• Usage of simple/fast S3 classes and methods.

In addition to all of this generic infrastructure, two specific tree algorithms are implemented
in partykit as well: ctree() for conditional inference trees (Hothorn et al. 2006) and mob()

for model-based recursive partitioning (Zeileis, Hothorn, and Hornik 2008).

This vignette ("partykit") introduces the basic ‘party’ class and associated infrastructure
while three further vignettes discuss the tools built on top of it: "constparty" covers the
eponymous class for constant-fit trees along with suitable coercion functions, and "ctree"

and "mob" discuss the new ctree() and mob() implementations, respectively. Each of the
vignettes can be viewed within R via vignette(“name”, package = "partykit").

Normal users reading this vignette will typically be interested only in the motivating example
in Section 2 while the remaining sections are intended for programmers who want to build
infrastructure on top of partykit.

2. Motivating example

2.1. Data

To illustrate how partykit can be used to represent trees, we employ a simple artificial data
set taken from Witten and Frank (2005). It concerns the conditions suitable for playing some
unspecified game:

Achim Zeileis, Torsten Hothorn 3

data("WeatherPlay", package = "partykit")

WeatherPlay

outlook temperature humidity windy play

1 sunny 85 85 false no

2 sunny 80 90 true no

3 overcast 83 86 false yes

4 rainy 70 96 false yes

5 rainy 68 80 false yes

6 rainy 65 70 true no

7 overcast 64 65 true yes

8 sunny 72 95 false no

9 sunny 69 70 false yes

10 rainy 75 80 false yes

11 sunny 75 70 true yes

12 overcast 72 90 true yes

13 overcast 81 75 false yes

14 rainy 71 91 true no

To represent the play decision based on the corresponding weather condition variables one
could use the tree displayed in Figure 1. For now, it is ignored how this tree was inferred and
it is simply assumed to be given.

To represent this tree (or recursive partition) in partykit, two basic building blocks are used:
splits of class ‘partysplit’ and nodes of class ‘partynode’. The resulting recursive partition
can then be associated with a data set in an object of class ‘party’.

2.2. Splits

First, we employ the partysplit() function to create the three splits in the “play tree” from
Figure 1. The function takes the following arguments

partysplit(varid, breaks = NULL, index = NULL, ..., info = NULL)

where varid is an integer id (column number) of the variable used for splitting, e.g., 1L

for outlook, 3L for humidity, 4L for windy etc. Then, breaks and index determine which
observations are sent to which of the branches, e.g., breaks = 75 for the humidity split. Apart
from further arguments not shown above (and just comprised under ‘...’), some arbitrary
information can be associated with a ‘partysplit’ object by passing it to the info argument.
The three splits from Figure 1 can then be created via

sp_o <- partysplit(1L, index = 1:3)

sp_h <- partysplit(3L, breaks = 75)

sp_w <- partysplit(4L, index = 1:2)

For the numeric humidity variable the breaks are set while for the factor variables outlook

and windy the information is supplied which of the levels should be associated with which of
the branches of the tree.

4 partykit: A Toolkit for Recursive Partytioning

outlook

1

sunny overcast rainy

humidity

2

≤ 75 > 75

yes
3

no
4

yes
5

windy

6

false true

yes
7

no
8

Figure 1: Decision tree for play decision based on weather conditions in WeatherPlay data.

2.3. Nodes

Second, we use these splits in the creation of the whole decision tree. In partykit a tree is
represented by a ‘partynode’ object which is recursive in that it may have “kids” that are
again ‘partynode’ objects. These can be created with the function

partynode(id, split = NULL, kids = NULL, ..., info = NULL)

where id is an integer identifier of the node number, split is a ‘partysplit’ object, and
kids is a list of ‘partynode’ objects. Again, there are further arguments not shown (...)
and arbitrary information can be supplied in info. The whole tree from Figure 1 can then
be created via

pn <- partynode(1L, split = sp_o, kids = list(

partynode(2L, split = sp_h, kids = list(

partynode(3L, info = "yes"),

partynode(4L, info = "no"))),

partynode(5L, info = "yes"),

partynode(6L, split = sp_w, kids = list(

partynode(7L, info = "yes"),

partynode(8L, info = "no")))))

Achim Zeileis, Torsten Hothorn 5

where the previously created ‘partysplit’ objects are used as splits and the nodes are simply
numbered (depth first) from 1 to 8. For the terminal nodes of the tree there are no kids and
the corresponding play decision is stored in the info argument. Printing the ‘partynode’
object reflects the recursive structure stored.

pn

[1] root

| [2] V1 in (-Inf,1]

| | [3] V3 <= 75 *

| | [4] V3 > 75 *

| [5] V1 in (1,2] *

| [6] V1 in (2, Inf]

| | [7] V4 <= 1 *

| | [8] V4 > 1 *

However, the displayed information is still rather raw as it has not yet been associated with
the WeatherPlay data set.

2.4. Trees (or recursive partitions)

Therefore, in a third step the recursive tree structure stored in pn is coupled with the corre-
sponding data in a ‘party’ object.

py <- party(pn, WeatherPlay)

print(py)

[1] root

| [2] outlook in sunny

| | [3] humidity <= 75: yes

| | [4] humidity > 75: no

| [5] outlook in overcast: yes

| [6] outlook in rainy

| | [7] windy in false: yes

| | [8] windy in true: no

Now, Figure 1 can easily be created by

plot(py)

In addition to print() and plot(), the predict() method can now be applied, yielding the
predicted terminal node IDs.

predict(py, head(WeatherPlay))

1 2 3 4 5 6

4 4 5 7 7 8

6 partykit: A Toolkit for Recursive Partytioning

In addition to the ‘partynode’ and the ‘data.frame’, the function party() takes several
further arguments

party(node, data, fitted = NULL, terms = NULL, ..., info = NULL)

i.e., fitted values, a terms object, arbitrary additional info, and again some further argu-
ments comprised in

2.5. Methods and other utilities

The main idea about the ‘party’ class is that tedious tasks such as print(), plot(),
predict() do not have to be reimplemented for every new kind of decision tree but can
simply be reused. However, in addition to these three basic tasks (as already illustrated
above) developers of tree model software also need further basic utiltities for working with
trees: e.g., functions for querying or subsetting the tree and for customizing printed/plotted
output. Below, various utilities provided by the partykit package are introduced.

For querying the dimensions of the tree, three basic functions are available: length() gives
the number of kid nodes of the root node, depth() the depth of the tree and width() the
number of terminal nodes.

length(py)

[1] 8

width(py)

[1] 5

depth(py)

[1] 2

As decision trees can grow to be rather large, it is often useful to inspect only subtrees. These
can be easily extracted using the standard [or [[operators:

py[6]

[6] root

| [7] windy in false: yes

| [8] windy in true: no

The resulting object is again a full valid ‘party’ tree and can hence be printed (as above) or
plotted (via plot(py[6]), see the left panel of Figure 2). Instead of using the integer node
IDs for subsetting, node labels can also be used. By default thise are just (character versions
of) the node IDs but other names can be easily assigned:

Achim Zeileis, Torsten Hothorn 7

py2 <- py

names(py2)

[1] "1" "2" "3" "4" "5" "6" "7" "8"

names(py2) <- LETTERS[1:8]

py2

[A] root

| [B] outlook in sunny

| | [C] humidity <= 75: yes

| | [D] humidity > 75: no

| [E] outlook in overcast: yes

| [F] outlook in rainy

| | [G] windy in false: yes

| | [H] windy in true: no

The function nodeids() queries the integer node IDs belonging to a ‘party’ tree. By default
all IDs are returned but optionally only the terminal IDs (of the leaves) can be extracted.

nodeids(py)

[1] 1 2 3 4 5 6 7 8

nodeids(py, terminal = TRUE)

[1] 3 4 5 7 8

Often functions need to be applied to certain nodes of a tree, e.g., for extracting information.
This is accomodated by a new generic function nodeapply() that follows the style of other R

functions from the apply family and has methods for ‘party’ and ‘partynode’ objects. Fur-
thermore, it needs a set of node IDs (often computed via nodeids()) and a function FUN that
is applied to each of the requested ‘partynode’ objects, typically for extracting/formatting
the info of the node.

nodeapply(py, ids = c(1, 7), FUN = function(n) n$info)

$`1`

NULL

##

$`7`

[1] "yes"

nodeapply(py, ids = nodeids(py, terminal = TRUE),

FUN = function(n) paste("Play decision:", n$info))

8 partykit: A Toolkit for Recursive Partytioning

$`3`

[1] "Play decision: yes"

##

$`4`

[1] "Play decision: no"

##

$`5`

[1] "Play decision: yes"

##

$`7`

[1] "Play decision: yes"

##

$`8`

[1] "Play decision: no"

Similar to the functions applied in a nodeapply(), the print(), predict(), and plot()

methods can be customized through panel function that format certain parts of the tree
(such as header, footer, node, etc.). Hence, the same kind of panel function employed above
can also be used for predictions:

predict(py, FUN = function(n) paste("Play decision:", n$info))

1 2 3

"Play decision: no" "Play decision: no" "Play decision: yes"

4 5 6

"Play decision: yes" "Play decision: yes" "Play decision: no"

7 8 9

"Play decision: yes" "Play decision: no" "Play decision: yes"

10 11 12

"Play decision: yes" "Play decision: yes" "Play decision: yes"

13 14

"Play decision: yes" "Play decision: no"

As a variation of this approach, an extended formatting with multiple lines can be easily
accomodated by supplying a character vector in every node:

print(py, terminal_panel = function(n)

c(", then the play decision is:", toupper(n$info)))

[1] root

| [2] outlook in sunny

| | [3] humidity <= 75, then the play decision is:

| | YES

| | [4] humidity > 75, then the play decision is:

| | NO

| [5] outlook in overcast, then the play decision is:

Achim Zeileis, Torsten Hothorn 9

| YES

| [6] outlook in rainy

| | [7] windy in false, then the play decision is:

| | YES

| | [8] windy in true, then the play decision is:

| | NO

The same type of approach can also be used in the default plot() method (with the main dif-
ference that the panel function operates on the info directly rather than on the ‘partynode’).

plot(py, tp_args = list(FUN = function(i)

c("Play decision:", toupper(i))))

See the right panel of Figure 2 for the resulting graphic. Many more elaborate panel func-
tions are provided in partykit, especially for not only showing text in the visualizations but
also statistical graphics. Some of these are briefly illustrated in this and the other package
vignettes. Programmers that want to write their own panel functions are advised to inspect
the corresponding R source code to see how flexible (but sometimes also complicated) these
panel functions are.

Finally, an important utility function is nodeprune() which allows to prune ‘party’ trees. It
takes a vector of node IDs and prunes all of their kids, i.e., making all the indicated node IDs
terminal nodes.

nodeprune(py, 2)

[1] root

| [2] outlook in sunny: *

| [3] outlook in overcast: yes

| [4] outlook in rainy

| | [5] windy in false: yes

| | [6] windy in true: no

nodeprune(py, c(2, 6))

[1] root

| [2] outlook in sunny: *

| [3] outlook in overcast: yes

| [4] outlook in rainy: *

Note that for the pruned versions of this particular ‘party’ tree, the new terminal nodes are
displayed with a * rather than the play decision. This is because we did not store any play
decisions in the info of the inner nodes of py. We could have of course done so initially, or
could do so now, or we might want to do so automatically. For the latter, we would have to
know how predictions should be obtained from the data and this is briefly discussed at the end
of this vignette and in more detail in vignette("constparty", package = "partykit").

10 partykit: A Toolkit for Recursive Partytioning

3. Technical details

3.1. Design principles

To facilitate reading of the subsequent sections, two design principles employed in the creation
of partykit are briefly explained.

1. Many helper utilities are encapsulated in functions that follow a simple naming conven-
tion. To extract/compute some information foo from splits, nodes, or trees, partykit pro-
vides foo_split, foo_node, foo_party functions (that are applicable to ‘partysplit’,
‘partynode’, and ‘party’ objects, repectively).

An example for the information foo might be kidids or info. Hence, in the printing
example above using info_node(n) rather than n$info for a node n would have been
the preferred syntax; at least when programming new functionality on top of partykit.

2. As already illustrated above, printing and plotting relies on panel functions that visualize
and/or format certain aspects of the resulting display, e.g., that of inner nodes, terminal
nodes, headers, footers, etc. Furthermore, arguments like terminal_panel can also take
panel-generating functions, i.e., functions that produce a panel function when applied
to the ‘party’ object.

3.2. Splits

Overview

A split is basically a function that maps data – or more specifically a partitioning variable
– to daugther nodes. Objects of class ‘partysplit’ are designed to represent such functions
and are set up by the partysplit() constructor. For example, a binary split in the numeric
partitioning variable humidity (the 3rd variable in WeatherPlay) at the breakpoint 75 can
be created (as above) by

sp_h <- partysplit(3L, breaks = 75)

class(sp_h)

[1] "partysplit"

The internal structure of class ‘partysplit’ contains information about the partitioning vari-
able, the splitpoints (or cutpoints or breakpoints), the handling of splitpoints, the treatment
of observations with missing values and the kid nodes to send observations to:

unclass(sp_h)

$varid

[1] 3

##

Achim Zeileis, Torsten Hothorn 11

$breaks

[1] 75

##

$index

NULL

##

$right

[1] TRUE

##

$prob

NULL

##

$info

NULL

Here, the splitting rule is humidity f 75:

character_split(sp_h, data = WeatherPlay)

$name

[1] "humidity"

##

$levels

[1] "<= 75" "> 75"

This representation of splits is completely abstract and, most importantly, independent of
any data. Now, data comes into play when we actually want to perform splits:

kidids_split(sp_h, data = WeatherPlay)

[1] 2 2 2 2 2 1 1 2 1 2 1 2 1 2

For each observation in WeatherPlay the split is performed and the number of the kid node
to send this observation to is returned. Of course, this is a very complicated way of saying

as.numeric(!(WeatherPlay$humidity <= 75)) + 1

[1] 2 2 2 2 2 1 1 2 1 2 1 2 1 2

Mathematical notation

To explain the splitting strategy more formally, we employ some mathematical notation.
partykit considers a split to represent a function f mapping an element x = (x1, . . . , xp) of a
p-dimensional sample space X into a set of k daugther nodes D = {d1, . . . , dk}. This mapping
is defined as a composition f = h ◦ g of two functions g : X → I and h : I → D with index
set I = {1, . . . , l}, l g k.

12 partykit: A Toolkit for Recursive Partytioning

Let µ = (−∞, µ1, . . . , µl−1, ∞) denote the split points ((µ1, . . . , µl−1) = breaks). We are
interested to split according to the information contained in the i-th element of x (i = varid).
For numeric xi, the split points are also numeric. If xi is a factor at levels 1, . . . , K, the default
split points are µ = (−∞, 1, . . . , K − 1, ∞).

The function g essentially determines, which of the intervals (defined by µ) the value xi is
contained in (I denotes the indicator function here):

x 7→ g(x) =
l∑

j=1

jIA(j)(xi)

where A(j) = (µj−1, µj] for right = TRUE except A(l) = (µl−1, ∞). If right = FALSE, then
A(j) = [µj−1, µj) except A(1) = (−∞, µ1). Note that for a categorical variable xi and default
split points, g is simply the identity.

Now, h maps from the index set I into the set of daugther nodes:

f(x) = h(g(x)) = dσg(x)

where σ = (σ1, . . . , σl) ∈ {1, . . . , k}l (index). By default, σ = (1, . . . , l) and k = l.

If xi is missing, then f(x) is randomly drawn with P(f(x) = dj) = πj , j = 1, . . . , k for a
discrete probability distribution π = (π1, . . . , πk) over the k daugther nodes (prob).

In the simplest case of a binary split in a numeric variable xi, there is only one split point µ1

and, with σ = (1, 2), observations with xi f µ1 are sent to daugther node d1 and observations
with xi > µ1 to d2. However, this representation of splits is general enough to deal with
more complicated set-ups like surrogate splits, where typically the index needs modification,
for example σ = (2, 1), categorical splits, i.e., there is one data structure for both ordered
and unordered splits, multiway splits, and functional splits. The latter can be implemented
by defining a new artificial splitting variable xp+1 by means of a potentially very complex
function of x later used for splitting.

Further examples

Consider a split in a categorical variable at three levels where the first two levels go to the
left daugther node and the third one to the right daugther node:

sp_o2 <- partysplit(1L, index = c(1L, 1L, 2L))

character_split(sp_o2, data = WeatherPlay)

$name

[1] "outlook"

##

$levels

[1] "sunny, overcast" "rainy"

table(kidids_split(sp_o2, data = WeatherPlay), WeatherPlay$outlook)

##

sunny overcast rainy

1 5 4 0

2 0 0 5

Achim Zeileis, Torsten Hothorn 13

The internal structure of this object contains the index slot that maps levels to kid nodes.

unclass(sp_o2)

$varid

[1] 1

##

$breaks

NULL

##

$index

[1] 1 1 2

##

$right

[1] TRUE

##

$prob

NULL

##

$info

NULL

This mapping is also useful with splits in ordered variables or when representing multiway
splits:

sp_o <- partysplit(1L, index = 1L:3L)

character_split(sp_o, data = WeatherPlay)

$name

[1] "outlook"

##

$levels

[1] "sunny" "overcast" "rainy"

For a split in a numeric variable, the mapping to daugther nodes can also be changed by
modifying index:

sp_t <- partysplit(2L, breaks = c(69.5, 78.8), index = c(1L, 2L, 1L))

character_split(sp_t, data = WeatherPlay)

$name

[1] "temperature"

##

$levels

[1] "(-Inf,69.5] | (78.8, Inf]" "(69.5,78.8]"

14 partykit: A Toolkit for Recursive Partytioning

table(kidids_split(sp_t, data = WeatherPlay),

cut(WeatherPlay$temperature, breaks = c(-Inf, 69.5, 78.8, Inf)))

##

(-Inf,69.5] (69.5,78.8] (78.8, Inf]

1 4 0 4

2 0 6 0

Further comments

The additional argument prop can be used to specify a discrete probability distribution over
the daugther nodes that is used to map observations with missing values to daugther nodes.
Furthermore, the info argument and slot can take arbitrary objects to be stored with the
split (for example split statistics). Currently, no specific structure of the info is used.

Programmers that employ this functionality in their own functions/packages should access
the elements of a ‘partysplit’ object by the corresponding accessor function (and not just
the $ operator as the internal structure might be changed/extended in future release).

3.3. Nodes

Overview

Inner and terminal nodes are represented by objects of class ‘partynode’. Each node has a
unique identifier id. A node consisting only of such an identifier (and possibly additional
information in info) is a terminal node:

n1 <- partynode(id = 1L)

is.terminal(n1)

[1] TRUE

print(n1)

[1] root *

Inner nodes have to have a primary split split and at least two daugther nodes. The daugther
nodes are objects of class ‘partynode’ itself and thus represent the recursive nature of this
data structure. The daugther nodes are pooled in a list kids.

In addition, a list of ‘partysplit’ objects offering surrogate splits can be supplied in argument
surrogates. These are used in case the variable needed for the primary split has missing
values in a particular data set.

The IDs in a ‘partynode’ should be numbered “depth first” (sometimes also called “infix”
or “pre-order traversal”). This simply means that the root node has identifier 1; the first
kid node has identifier 2, whose kid (if present) has identifier 3 and so on. If other IDs are
desired, then one can simply set names() (see above) for the tree; however, internally the

Achim Zeileis, Torsten Hothorn 15

depth-first numbering needs to be used. Note that the partynode() constructor also allows
to create ‘partynode’ objects with other ID schemes as this is necessary for growing the tree.
If one wants to assure the a given ‘partynode’ object has the correct IDs, one can simply
apply as.partynode() once more to assure the right order of IDs.

Finally, let us emphasize that ‘partynode’ objects are not directly connected to the actual
data (only indirectly through the associated ‘partysplit’ objects).

Examples

Based on the binary split sp_h defined in the previous section, we set up an inner node with
two terminal daugther nodes and print this stump (the data is needed because neither split
nor nodes contain information about variable names or levels):

n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))

print(n1, data = WeatherPlay)

[1] root

| [2] outlook in sunny *

| [3] outlook in overcast *

| [4] outlook in rainy *

Now that we have defined this simple tree, we want to assign observations to terminal nodes:

fitted_node(n1, data = WeatherPlay)

[1] 2 2 3 4 4 4 3 2 2 4 2 3 3 4

Here, the ids of the terminal node each observations falls into are returned. Alternatively,
we could compute the position of these daugther nodes in the list kids:

kidids_node(n1, data = WeatherPlay)

[1] 1 1 2 3 3 3 2 1 1 3 1 2 2 3

Furthermore, the info argument and slot takes arbitrary objects to be stored with the node
(predictions, for example, but we will handle this issue later). The slots can be extracted by
means of the corresponding accessor functions.

Methods

A number of methods is defined for ‘partynode’ objects: is.partynode() checks if the
argument is a valid ‘partynode’ object. is.terminal() is TRUE for terminal nodes and
FALSE for inner nodes. The subset method [returns the ‘partynode’ object corresponding
to the i-th kid.

The as.partynode() and as.list() methods can be used to convert flat list structures into
recursive ‘partynode’ objects and vice versa. As pointed out above, as.partynode() applied

16 partykit: A Toolkit for Recursive Partytioning

to ‘partynode’ objects also renumbers the recursive nodes starting with root node identifier
from.

Furthermore, many of the methods defined for the class ‘party’ illustrated above also work
for plain ‘partynode’ objects. For example, length() gives the number of kid nodes of the
root node, depth() the depth of the tree and width() the number of terminal nodes.

3.4. Trees

Although tree structures can be represented by ‘partynode’ objects, a tree is more than a
number of nodes and splits. More information about (parts of the) corresponding data is
necessary for high-level computations on trees.

Trees and data

First, the raw node/split structure needs to be associated with a corresponding data set.

t1 <- party(n1, data = WeatherPlay)

t1

[1] root

| [2] outlook in sunny: *

| [3] outlook in overcast: *

| [4] outlook in rainy: *

Note that the data may have zero rows (i.e., only contain variable names/classes but not the
actual data) and all methods that do not require the presence of any learning data still work
fine:

party(n1, data = WeatherPlay[0,])

[1] root

| [2] outlook in sunny: *

| [3] outlook in overcast: *

| [4] outlook in rainy: *

Response variables and regression relationships

Second, for decision trees (or regression and classification trees) more information is required:
namely, the response variable and its fitted values. Hence, a ‘data.frame’ can be supplied in
fitted that has at least one variable (fitted) containing the terminal node numbers of data
used for fitting the tree. For representing the dependence of the response on the partitioning
variables, a terms object can be provided that is leveraged for appropriately preprocessing
new data in predictions. Finally, any additional (currently unstructured) information can be
stored in info again.

Achim Zeileis, Torsten Hothorn 17

t2 <- party(n1,

data = WeatherPlay,

fitted = data.frame(

"(fitted)" = fitted_node(n1, data = WeatherPlay),

"(response)" = WeatherPlay$play,

check.names = FALSE),

terms = terms(play ~ ., data = WeatherPlay),

)

The information that is now contained in the tree t2 is sufficient for all operations that should
typically be performed on constant-fit trees. For this type of trees there is also a dedicated
class ‘constparty’ that provides some further convenience methods, especially for plotting
and predicting. If a suitable ‘party’ object like t2 is already available, it just needs to be
coerced:

t2 <- as.constparty(t2)

t2

##

Model formula:

play ~ outlook + temperature + humidity + windy

##

Fitted party:

[1] root

| [2] outlook in sunny: no (n = 5, err = 40%)

| [3] outlook in overcast: yes (n = 4, err = 0%)

| [4] outlook in rainy: yes (n = 5, err = 40%)

##

Number of inner nodes: 1

Number of terminal nodes: 3

As pointed out above, ‘constparty’ objects have enhanced plot() and predict() methods.
For example, plot(t2) now produces stacked bar plots in the leaves (see Figure 3) as t2 is
a classification tree For regression and survival trees, boxplots and Kaplan-Meier curves are
employed automatically, respectively.

As there is information about the response variable, the predict() method can now produce
more than just the predicted node IDs. The default is to predict the "response", i.e., a
factor for a classification tree. In this case, class probabilities ("prob") are also available in
addition to the majority votings.

nd <- data.frame(outlook = factor(c("overcast", "sunny"),

levels = levels(WeatherPlay$outlook)))

predict(t2, newdata = nd, type = "response")

1 2

yes no

Levels: yes no

18 partykit: A Toolkit for Recursive Partytioning

predict(t2, newdata = nd, type = "prob")

yes no

1 1.0 0.0

2 0.4 0.6

predict(t2, newdata = nd, type = "node")

1 2

3 2

More details on how ‘constparty’ objects and their methods work can be found in the
corresponding vignette("constparty", package = "partykit").

4. Summary

This vignette ("partykit") introduces the package partykit that provides a toolkit for com-
puting with recursive partytions, especially decision/regression/classification trees. In this
vignette, the basic ‘party’ class and associated infrastructure are discussed: splits, nodes,
and trees with functions for printing, plotting, and predicting. Further vignettes in the pack-
age discuss in more detail the tools built on top of it.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees.
Wadsworth, California.

Hornik K (2023). RWeka: R/Weka Interface. doi:10.32614/CRAN.package.RWeka. R pack-
age version 0.4-46.

Hothorn T (2014). “CRAN Task View: Machine Learning & Statistical Learning.” Ver-
sion 2014-08-30, URL https://CRAN.R-project.org/view=MachineLearning.

Hothorn T, Hornik K, Strobl C, Zeileis A (2025). party: A Laboratory for Recursive Party-
tioning. doi:10.32614/CRAN.package.party. R package version 1.3-18.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional
Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674.
doi:10.1198/106186006X133933.

Loh WY (2002). “Regression Trees with Unbiased Variable Selection and Interaction Detec-
tion.” Statistica Sinica, 12, 361–386.

Loh WY (2014). “Fifty Years of Classification and Regression Trees.” International Statistical
Review, 82(3), 329–348. doi:10.1111/insr.12016.

https://doi.org/10.32614/CRAN.package.RWeka
https://CRAN.R-project.org/view=MachineLearning
https://doi.org/10.32614/CRAN.package.party
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1111/insr.12016

Achim Zeileis, Torsten Hothorn 19

Loh WY, Shih YS (1997). “Split Selection Methods for Classification Trees.” Statistica Sinica,
7, 815–840.

Morgan JN, Sonquist JA (1963). “Problems in the Analysis of Survey Data, and a Proposal.”
Journal of the American Statistical Association, 58, 415–434.

Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo.

R Core Team (2026). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

Therneau T, Atkinson B (2025). rpart: Recursive Partitioning and Regression Trees. doi:

10.32614/CRAN.package.rpart. R package version 4.1.24.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd edition. Morgan Kaufmann, San Francisco.

Zeileis A, Hothorn T, Hornik K (2008). “Model-Based Recursive Partitioning.” Journal of
Computational and Graphical Statistics, 17(2), 492–514. doi:10.1198/106186008X319331.

Affiliation:

Achim Zeileis
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org

URL: https://www.zeileis.org/

Torsten Hothorn
Institut für Epidemiologie, Biostatistik und Prävention
Universität Zürich
Hirschengraben 84
CH-8001 Zürich, Switzerland
E-mail: Torsten.Hothorn@R-project.org

URL: https://user.math.uzh.ch/hothorn/

https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.32614/CRAN.package.rpart
https://doi.org/10.32614/CRAN.package.rpart
https://doi.org/10.1198/106186008X319331
mailto:Achim.Zeileis@R-project.org
https://www.zeileis.org/
mailto:Torsten.Hothorn@R-project.org
https://user.math.uzh.ch/hothorn/

20 partykit: A Toolkit for Recursive Partytioning

windy

6

false true

yes
7

no
8

outlook

1

sunny overcast rainy

humidity

2

≤ 75 > 75

Play decision:
YES

3
Play decision:

NO

4

Play decision:
YES

5

windy

6

false true

Play decision:
YES

7
Play decision:

NO

8

Figure 2: Visualization of subtree (left) and tree with custom text in terminal nodes (right).

Achim Zeileis, Torsten Hothorn 21

outlook

1

sunny overcast rainy

Node 2 (n = 5)

no
ye

s

0

0.2

0.4

0.6

0.8

1
Node 3 (n = 4)

no
ye

s

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 5)

no
ye

s

0

0.2

0.4

0.6

0.8

1

Figure 3: Constant-fit tree for play decision based on weather conditions in WeatherPlay

data.

	Overview
	Motivating example
	Data
	Splits
	Nodes
	Trees (or recursive partitions)
	Methods and other utilities

	Technical details
	Design principles
	Splits
	Overview
	Mathematical notation
	Further examples
	Further comments

	Nodes
	Overview
	Examples
	Methods

	Trees
	Trees and data
	Response variables and regression relationships

	Summary

