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Abstract

This vignette describes the new reimplementation of conditional inference trees (CTree)
in the R package partykit. CTree is a non-parametric class of regression trees embedding
tree-structured regression models into a well defined theory of conditional inference pro-
cedures. It is applicable to all kinds of regression problems, including nominal, ordinal,
numeric, censored as well as multivariate response variables and arbitrary measurement
scales of the covariates. The vignette comprises a practical guide to exploiting the flexi-
ble and extensible computational tools in partykit for fitting and visualizing conditional
inference trees.
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1. Overview

This vignette describes conditional inference trees (Hothorn, Hornik, and Zeileis 2006) along
with its new and improved reimplementation in package partykit. Originally, the method was
implemented in the package party almost entirely in C while the new implementation is now
almost entirely in R. In particular, this has the advantage that all the generic infrastructure
from partykit can be reused, making many computations more modular and easily extensible.
Hence, partykit::ctree is the new reference implementation that will be improved and
developed further in the future.

In almost all cases, the two implementations will produce identical trees. In exceptional cases,
additional parameters have to be specified in order to ensure backward compatibility. These
and novel features in ctree:partykit are introduced in Section 7.

2. Introduction

The majority of recursive partitioning algorithms are special cases of a simple two-stage
algorithm: First partition the observations by univariate splits in a recursive way and second
fit a constant model in each cell of the resulting partition. The most popular implementations
of such algorithms are ‘CART’ (Breiman, Friedman, Olshen, and Stone 1984) and ‘C4.5’
(Quinlan 1993). Not unlike AID, both perform an exhaustive search over all possible splits
maximizing an information measure of node impurity selecting the covariate showing the best
split. This approach has two fundamental problems: overfitting and a selection bias towards
covariates with many possible splits. With respect to the overfitting problem Mingers (1987)
notes that the algorithm
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[. . . ] has no concept of statistical significance, and so cannot distinguish between
a significant and an insignificant improvement in the information measure.

With conditional inference trees (see Hothorn et al. 2006, for a full description of its method-
ological foundations) we enter at the point where White and Liu (1994) demand for

[. . . ] a statistical approach [to recursive partitioning] which takes into account the
distributional properties of the measures.

We present a unified framework embedding recursive binary partitioning into the well defined
theory of permutation tests developed by Strasser and Weber (1999). The conditional distri-
bution of statistics measuring the association between responses and covariates is the basis
for an unbiased selection among covariates measured at different scales. Moreover, multiple
test procedures are applied to determine whether no significant association between any of
the covariates and the response can be stated and the recursion needs to stop.

3. Recursive binary partitioning

We focus on regression models describing the conditional distribution of a response variable
Y given the status of m covariates by means of tree-structured recursive partitioning. The
response Y from some sample space Y may be multivariate as well. The m-dimensional
covariate vector X = (X1, . . . , Xm) is taken from a sample space X = X1 × · · · × Xm. Both
response variable and covariates may be measured at arbitrary scales. We assume that the
conditional distribution D(Y|X) of the response Y given the covariates X depends on a
function f of the covariates

D(Y|X) = D(Y|X1, . . . , Xm) = D(Y|f(X1, . . . , Xm)),

where we restrict ourselves to partition based regression relationships, i.e., r disjoint cells
B1, . . . , Br partitioning the covariate space X =

⋃r
k=1 Bk. A model of the regression relation-

ship is to be fitted based on a learning sample Ln, i.e., a random sample of n independent
and identically distributed observations, possibly with some covariates Xji missing,

Ln = {(Yi, X1i, . . . , Xmi); i = 1, . . . , n}.

A generic algorithm for recursive binary partitioning for a given learning sample Ln can be
formulated using non-negative integer valued case weights w = (w1, . . . , wn). Each node of a
tree is represented by a vector of case weights having non-zero elements when the correspond-
ing observations are elements of the node and are zero otherwise. The following algorithm
implements recursive binary partitioning:

1. For case weights w test the global null hypothesis of independence between any of the
m covariates and the response. Stop if this hypothesis cannot be rejected. Otherwise
select the covariate Xj∗ with strongest association to Y.

2. Choose a set A∗ ¢ Xj∗ in order to split Xj∗ into two disjoint sets A∗ and Xj∗ \ A∗. The
case weights wleft and wright determine the two subgroups with wleft,i = wiI(Xj∗i ∈ A∗)
and wright,i = wiI(Xj∗i ̸∈ A∗) for all i = 1, . . . , n (I(·) denotes the indicator function).
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3. Recursively repeat steps 1 and 2 with modified case weights wleft and wright, respectively.

The separation of variable selection and splitting procedure into steps 1 and 2 of the algorithm
is the key for the construction of interpretable tree structures not suffering a systematic
tendency towards covariates with many possible splits or many missing values. In addition,
a statistically motivated and intuitive stopping criterion can be implemented: We stop when
the global null hypothesis of independence between the response and any of the m covariates
cannot be rejected at a pre-specified nominal level α. The algorithm induces a partition
{B1, . . . , Br} of the covariate space X , where each cell B ∈ {B1, . . . , Br} is associated with a
vector of case weights.

4. Recursive partitioning by conditional inference

In the main part of this section we focus on step 1 of the generic algorithm. Unified tests for
independence are constructed by means of the conditional distribution of linear statistics in the
permutation test framework developed by Strasser and Weber (1999). The determination of
the best binary split in one selected covariate and the handling of missing values is performed
based on standardized linear statistics within the same framework as well.

4.1. Variable selection and stopping criteria

At step 1 of the generic algorithm given in Section 3 we face an independence problem. We
need to decide whether there is any information about the response variable covered by any
of the m covariates. In each node identified by case weights w, the global hypothesis of
independence is formulated in terms of the m partial hypotheses H

j
0 : D(Y|Xj) = D(Y)

with global null hypothesis H0 =
⋂m

j=1 H
j
0 . When we are not able to reject H0 at a pre-

specified level α, we stop the recursion. If the global hypothesis can be rejected, we measure
the association between Y and each of the covariates Xj , j = 1, . . . , m, by test statistics or

P -values indicating the deviation from the partial hypotheses H
j
0 .

For notational convenience and without loss of generality we assume that the case weights wi

are either zero or one. The symmetric group of all permutations of the elements of (1, . . . , n)
with corresponding case weights wi = 1 is denoted by S(Ln, w). A more general notation
is given in the Appendix. We measure the association between Y and Xj , j = 1, . . . , m, by
linear statistics of the form

Tj(Ln, w) = vec

(

n
∑

i=1

wigj(Xji)h(Yi, (Y1, . . . , Yn))¦

)

∈ R
pjq (1)

where gj : Xj → R
pj is a non-random transformation of the covariate Xj . The transformation

may be specified using the xtrafo argument (Note: this argument is currently not imple-
mented in partykit::ctree but is available from party::ctree). The influence function

h : Y × Yn → R
q depends on the responses (Y1, . . . , Yn) in a permutation symmetric way.

Section 5 explains how to choose gj and h in different practical settings. A pj × q matrix
is converted into a pjq column vector by column-wise combination using the ‘vec’ operator.
The influence function can be specified using the ytrafo argument.

The distribution of Tj(Ln, w) under H
j
0 depends on the joint distribution of Y and Xj , which

is unknown under almost all practical circumstances. At least under the null hypothesis
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one can dispose of this dependency by fixing the covariates and conditioning on all possible
permutations of the responses. This principle leads to test procedures known as permutation

tests. The conditional expectation µj ∈ R
pjq and covariance Σj ∈ R

pjq×pjq of Tj(Ln, w)
under H0 given all permutations σ ∈ S(Ln, w) of the responses are derived by Strasser and
Weber (1999):

µj = E(Tj(Ln, w)|S(Ln, w)) = vec

((

n
∑

i=1

wigj(Xji)

)

E(h|S(Ln, w))¦

)

,

Σj = V(Tj(Ln, w)|S(Ln, w))

=
w·

w· − 1
V(h|S(Ln, w)) ¹

(

∑

i

wigj(Xji) ¹ wigj(Xji)
¦

)

(2)

−
1

w· − 1
V(h|S(Ln, w)) ¹

(

∑

i

wigj(Xji)

)

¹

(

∑

i

wigj(Xji)

)¦

where w· =
∑n

i=1 wi denotes the sum of the case weights, ¹ is the Kronecker product and
the conditional expectation of the influence function is

E(h|S(Ln, w)) = w
−1
·

∑

i

wih(Yi, (Y1, . . . , Yn)) ∈ R
q

with corresponding q × q covariance matrix

V(h|S(Ln, w)) = w
−1
·

∑

i

wi (h(Yi, (Y1, . . . , Yn)) − E(h|S(Ln, w)))

(h(Yi, (Y1, . . . , Yn)) − E(h|S(Ln, w)))¦ .

Having the conditional expectation and covariance at hand we are able to standardize a
linear statistic T ∈ R

pq of the form (1) for some p ∈ {p1, . . . , pm}. Univariate test statistics c

mapping an observed multivariate linear statistic t ∈ R
pq into the real line can be of arbitrary

form. An obvious choice is the maximum of the absolute values of the standardized linear
statistic

cmax(t, µ, Σ) = max
k=1,...,pq

∣

∣

∣

∣

∣

(t − µ)k
√

(Σ)kk

∣

∣

∣

∣

∣

utilizing the conditional expectation µ and covariance matrix Σ. The application of a qua-
dratic form cquad(t, µ, Σ) = (t − µ)Σ+(t − µ)¦ is one alternative, although computationally
more expensive because the Moore-Penrose inverse Σ+ of Σ is involved.

The type of test statistic to be used can be specified by means of the ctree_control function,
for example

ctree_control(teststat = "max")

uses cmax and
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ctree_control(teststat = "quad")

takes cquad (the default).

It is important to note that the test statistics c(tj , µj , Σj), j = 1, . . . , m, cannot be directly
compared in an unbiased way unless all of the covariates are measured at the same scale,
i.e., p1 = pj , j = 2, . . . , m. In order to allow for an unbiased variable selection we need to
switch to the P -value scale because P -values for the conditional distribution of test statistics
c(Tj(Ln, w), µj , Σj) can be directly compared among covariates measured at different scales.
In step 1 of the generic algorithm we select the covariate with minimum P -value, i.e., the
covariate Xj∗ with j∗ = argminj=1,...,m Pj , where

Pj = P
H

j

0

(c(Tj(Ln, w), µj , Σj) g c(tj , µj , Σj)|S(Ln, w))

denotes the P -value of the conditional test for H
j
0 . So far, we have only addressed testing

each partial hypothesis H
j
0 , which is sufficient for an unbiased variable selection. A global

test for H0 required in step 1 can be constructed via an aggregation of the transformations
gj , j = 1, . . . , m, i.e., using a linear statistic of the form

T(Ln, w) = vec

(

n
∑

i=1

wi

(

g1(X1i)
¦, . . . , gm(Xmi)

¦
)¦

h(Yi, (Y1, . . . , Yn))¦

)

.

However, this approach is less attractive for learning samples with missing values. Universally
applicable approaches are multiple test procedures based on P1, . . . , Pm. Simple Bonferroni-
adjusted P -values (the adjustment 1 − (1 − Pj)m is used), available via

ctree_control(testtype = "Bonferroni")

or a min-P -value resampling approach (Note: resampling is currently not implemented in
partykit::ctree) are just examples and we refer to the multiple testing literature (e.g.,
Westfall and Young 1993) for more advanced methods. We reject H0 when the minimum
of the adjusted P -values is less than a pre-specified nominal level α and otherwise stop the
algorithm. In this sense, α may be seen as a unique parameter determining the size of the
resulting trees.

4.2. Splitting criteria

Once we have selected a covariate in step 1 of the algorithm, the split itself can be established
by any split criterion, including those established by Breiman et al. (1984) or Shih (1999).
Instead of simple binary splits, multiway splits can be implemented as well, for example
utilizing the work of O’Brien (2004). However, most splitting criteria are not applicable to
response variables measured at arbitrary scales and we therefore utilize the permutation test
framework described above to find the optimal binary split in one selected covariate Xj∗ in
step 2 of the generic algorithm. The goodness of a split is evaluated by two-sample linear
statistics which are special cases of the linear statistic (1). For all possible subsets A of the
sample space Xj∗ the linear statistic

T
A
j∗(Ln, w) = vec

(

n
∑

i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . , Yn))¦

)

∈ R
q
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induces a two-sample statistic measuring the discrepancy between the samples {Yi|wi >

0 and Xji ∈ A; i = 1, . . . , n} and {Yi|wi > 0 and Xji ̸∈ A; i = 1, . . . , n}. The conditional
expectation µA

j∗ and covariance ΣA
j∗ can be computed by (2). The split A∗ with a test statistic

maximized over all possible subsets A is established:

A∗ = argmax
A

c(tA
j∗ , µA

j∗ , ΣA
j∗). (3)

The statistics c(tA
j∗ , µA

j∗ , ΣA
j∗) are available for each node with and can be used to depict a

scatter plot of the covariate Xj∗ against the statistics (Note: this feature is currently not
implemented in partykit).

Note that we do not need to compute the distribution of c(tA
j∗ , µA

j∗ , ΣA
j∗) in step 2. In order

to anticipate pathological splits one can restrict the number of possible subsets that are
evaluated, for example by introducing restrictions on the sample size or the sum of the case
weights in each of the two groups of observations induced by a possible split. For example,

ctree_control(minsplit = 20)

requires the sum of the weights in both the left and right daughter node to exceed the value
of 20.

4.3. Missing values and surrogate splits

If an observation Xji in covariate Xj is missing, we set the corresponding case weight wi to
zero for the computation of Tj(Ln, w) and, if we would like to split in Xj , in T

A
j (Ln, w) as

well. Once a split A∗ in Xj has been implemented, surrogate splits can be established by
searching for a split leading to roughly the same division of the observations as the original
split. One simply replaces the original response variable by a binary variable I(Xji ∈ A∗)
coding the split and proceeds as described in the previous part. The number of surrogate
splits can be controlled using

ctree_control(maxsurrogate = 3)

4.4. Fitting and inspecting a tree

For the sake of simplicity, we use a learning sample

ls <- data.frame(y = gl(3, 50, labels = c("A", "B", "C")),

x1 = rnorm(150) + rep(c(1, 0, 0), c(50, 50, 50)),

x2 = runif(150))

in the following illustrations. In partykit::ctree, the dependency structure and the vari-
ables may be specified in a traditional formula based way

library("partykit")

ctree(y ~ x1 + x2, data = ls)
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Case counts w may be specified using the weights argument. Once we have fitted a condi-
tional tree via

ct <- ctree(y ~ x1 + x2, data = ls)

we can inspect the results via a print method

ct

##

## Model formula:

## y ~ x1 + x2

##

## Fitted party:

## [1] root

## | [2] x1 <= 0.82552: C (n = 96, err = 57.3%)

## | [3] x1 > 0.82552: A (n = 54, err = 42.6%)

##

## Number of inner nodes: 1

## Number of terminal nodes: 2

or by looking at a graphical representation as in Figure 1.

Each node can be extracted by its node number, i.e., the root node is

ct[1]

##

## Model formula:

## y ~ x1 + x2

##

## Fitted party:

## [1] root

## | [2] x1 <= 0.82552: C (n = 96, err = 57.3%)

## | [3] x1 > 0.82552: A (n = 54, err = 42.6%)

##

## Number of inner nodes: 1

## Number of terminal nodes: 2

This object is an object of class

class(ct[1])

## [1] "constparty" "party"

and we refer to the manual pages for a description of those elements. The predict function
computes predictions in the space of the response variable, in our case a factor
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plot(ct)
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Figure 1: A graphical representation of a classification tree.

predict(ct, newdata = ls)

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

## A A A A C A C A C C A A C A A A A

## 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

## C A C A A A C A A A C C A A C A A

## 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

## C A A C C C A A C C C C A A A A A

## 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

## A C C C C A C C A C C C C C C A A

## 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

## A A A C C A C A C C C C C C C C C

## 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

## C C C A C A C A C C C C C C C C A

## 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

## C C C A C C A C C C C C C C A C C

## 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

## C C C C C C C C C C C C C C C C C

## 137 138 139 140 141 142 143 144 145 146 147 148 149 150

## C A C C C C A C C A C A C A
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## Levels: A B C

When we are interested in properties of the conditional distribution of the response given the
covariates, we use

predict(ct, newdata = ls[c(1, 51, 101),], type = "prob")

## A B C

## 1 0.5740741 0.2592593 0.1666667

## 51 0.5740741 0.2592593 0.1666667

## 101 0.1979167 0.3750000 0.4270833

which, in our case, is a data frame with conditional class probabilities. We can determine the
node numbers of nodes some new observations are falling into by

predict(ct, newdata = ls[c(1,51,101),], type = "node")

## 1 51 101

## 3 3 2

Finally, the sctest method can be used to extract the test statistics and p-values computed
in each node. The function sctest is used because for the mob algorithm such a method
(for structural change tests) is also provided. To make the generic available, the strucchange

package needs to be loaded (otherwise sctest.constparty would have to be called directly).

if (require("strucchange"))

print(sctest(ct))

## $`1`

## x1 x2

## statistic 2.299131e+01 4.0971294

## p.value 2.034833e-05 0.2412193

##

## $`2`

## x1 x2

## statistic 2.6647107 4.3628130

## p.value 0.4580906 0.2130228

##

## $`3`

## x1 x2

## statistic 2.1170497 2.8275567

## p.value 0.5735483 0.4272879

Here, we see that x1 leads to a significant test result in the root node and is hence used for
splitting. In the kid nodes, no more significant results are found and hence splitting stops. For
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other data sets, other stopping criteria might also be relevant (e.g., the sample size restrictions
minsplit, minbucket, etc.). In case, splitting stops due to these, the test results may also
be NULL.

5. Examples

5.1. Univariate continuous or discrete regression

For a univariate numeric response Y ∈ R, the most natural influence function is the identity
h(Yi, (Y1, . . . , Yn)) = Yi. In case some observations with extremely large or small values
have been observed, a ranking of the observations may be appropriate: h(Yi, (Y1, . . . , Yn)) =
∑n

k=1 wkI(Yk f Yi) for i = 1, . . . , n. Numeric covariates can be handled by the identity
transformation gji(x) = x (ranks are possible, too). Nominal covariates at levels 1, . . . , K

are represented by gji(k) = eK(k), the unit vector of length K with kth element being
equal to one. Due to this flexibility, special test procedures like the Spearman test, the
Wilcoxon-Mann-Whitney test or the Kruskal-Wallis test and permutation tests based on
ANOVA statistics or correlation coefficients are covered by this framework. Splits obtained
from (3) maximize the absolute value of the standardized difference between two means of
the values of the influence functions. For prediction, one is usually interested in an estimate
of the expectation of the response E(Y|X = x) in each cell, an estimate can be obtained by

Ê(Y|X = x) =

(

n
∑

i=1

wi(x)

)−1 n
∑

i=1

wi(x)Yi.

5.2. Censored regression

The influence function h may be chosen as Logrank or Savage scores taking censoring into
account and one can proceed as for univariate continuous regression. This is essentially the
approach first published by Segal (1988). An alternative is the weighting scheme suggested
by Molinaro, Dudoit, and van der Laan (2004). A weighted Kaplan-Meier curve for the case
weights w(x) can serve as prediction.

5.3. J-class classification

The nominal response variable at levels 1, . . . , J is handled by influence functions
h(Yi, (Y1, . . . , Yn)) = eJ(Yi). Note that for a nominal covariate Xj at levels 1, . . . , K with
gji(k) = eK(k) the corresponding linear statistic Tj is a vectorized contingency table. The
conditional class probabilities can be estimated via

P̂(Y = y|X = x) =

(

n
∑

i=1

wi(x)

)−1 n
∑

i=1

wi(x)I(Yi = y), y = 1, . . . , J.

5.4. Ordinal regression

Ordinal response variables measured at J levels, and ordinal covariates measured at K levels,
are associated with score vectors ξ ∈ R

J and γ ∈ R
K , respectively. Those scores reflect
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the ‘distances’ between the levels: If the variable is derived from an underlying continuous
variable, the scores can be chosen as the midpoints of the intervals defining the levels. The
linear statistic is now a linear combination of the linear statistic Tj of the form

MTj(Ln, w) = vec

(

n
∑

i=1

wiγ
¦gj(Xji)

(

ξ¦h(Yi, (Y1, . . . , Yn)
)¦

)

with gj(x) = eK(x) and h(Yi, (Y1, . . . , Yn)) = eJ(Yi). If both response and covariate are
ordinal, the matrix of coefficients is given by the Kronecker product of both score vectors
M = ξ ¹ γ ∈ R

1,KJ . In case the response is ordinal only, the matrix of coefficients M is a
block matrix

M =







ξ1 0
. . .

0 ξ1

∣

∣

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

∣

∣

ξq 0
. . .

0 ξq






or M = diag(γ)

when one covariate is ordered but the response is not. For both Y and Xj being ordinal, the
corresponding test is known as linear-by-linear association test (Agresti 2002). Scores can be
supplied to ctree using the scores argument, see Section 6 for an example.

5.5. Multivariate regression

For multivariate responses, the influence function is a combination of influence functions ap-
propriate for any of the univariate response variables discussed in the previous paragraphs,
e.g., indicators for multiple binary responses (Zhang 1998; Noh, Song, and Park 2004), Lo-
grank or Savage scores for multiple failure times and the original observations or a rank
transformation for multivariate regression (De’ath 2002).

6. Illustrations and applications

In this section, we present regression problems which illustrate the potential fields of appli-
cation of the methodology. Conditional inference trees based on cquad-type test statistics
using the identity influence function for numeric responses and asymptotic χ2 distribution
are applied. For the stopping criterion a simple Bonferroni correction is used and we follow
the usual convention by choosing the nominal level of the conditional independence tests as
α = 0.05.

6.1. Tree pipit abundance

data("treepipit", package = "coin")

tptree <- ctree(counts ~ ., data = treepipit)

The impact of certain environmental factors on the population density of the tree pipit Anthus

trivialis is investigated by Müller and Hothorn (2004). The occurrence of tree pipits was
recorded several times at n = 86 stands which were established on a long environmental
gradient. Among nine environmental factors, the covariate showing the largest association
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plot(tptree, terminal_panel = node_barplot)
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Figure 2: Conditional regression tree for the tree pipit data.

to the number of tree pipits is the canopy overstorey (P = 0.002). Two groups of stands
can be distinguished: Sunny stands with less than 40% canopy overstorey (n = 24) show
a significantly higher density of tree pipits compared to darker stands with more than 40%
canopy overstorey (n = 62). This result is important for management decisions in forestry
enterprises: Cutting the overstorey with release of old oaks creates a perfect habitat for this
indicator species of near natural forest environments.

6.2. Glaucoma and laser scanning images

data("GlaucomaM", package = "TH.data")

gtree <- ctree(Class ~ ., data = GlaucomaM)

Laser scanning images taken from the eye background are expected to serve as the basis
of an automated system for glaucoma diagnosis. Although prediction is more important in
this application (Mardin, Hothorn, Peters, Jünemann, Nguyen, and Lausen 2003), a simple
visualization of the regression relationship is useful for comparing the structures inherent in
the learning sample with subject matter knowledge. For 98 patients and 98 controls, matched
by age and gender, 62 covariates describing the eye morphology are available. The data is
part of the TH.data package (Hothorn 2025). The first split in Figure 3 separates eyes with
a volume above reference less than mm3 in the inferior part of the optic nerve head (vari).
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Observations with larger volume are mostly controls, a finding which corresponds to subject
matter knowledge: The volume above reference measures the thickness of the nerve layer,
expected to decrease with a glaucomatous damage of the optic nerve. Further separation is
achieved by the volume above surface global (vasg) and the volume above reference in the
temporal part of the optic nerve head (vart).

The plot in Figure 3 is generated by

plot(gtree)

and shows the distribution of the classes in the terminal nodes. This distribution can be
shown for the inner nodes as well, namely by specifying the appropriate panel generating
function (node_barplot in our case), see Figure 4.

plot(gtree, inner_panel = node_barplot,

edge_panel = function(...) invisible(), tnex = 1)

The class predictions of the tree for the learning sample (and for new observations as well)
can be computed using the predict function. A comparison with the true class memberships
is done by

table(predict(gtree), GlaucomaM$Class)

##

## glaucoma normal

## glaucoma 74 5

## normal 24 93

When we are interested in conditional class probabilities, the predict(, type = "prob")

method must be used. A graphical representation is shown in Figure 5.

6.3. Node positive breast cancer

Recursive partitioning for censored responses has attracted a lot of interest (e.g., Segal 1988;
LeBlanc and Crowley 1992). Survival trees using P -value adjusted Logrank statistics are used
by Schumacher, Holländer, Schwarzer, and Sauerbrei (2001) for the evaluation of prognostic
factors for the German Breast Cancer Study Group (GBSG2) data, a prospective controlled
clinical trial on the treatment of node positive breast cancer patients. Here, we use Logrank
scores as well. Complete data of seven prognostic factors of 686 women are used for prognostic
modeling, the dataset is available within the TH.data package. The number of positive lymph
nodes (pnodes) and the progesterone receptor (progrec) have been identified as prognostic
factors in the survival tree analysis by Schumacher et al. (2001). Here, the binary variable
coding whether a hormonal therapy was applied or not (horTh) additionally is part of the
model depicted in Figure 6, which was fitted using the following code:
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Figure 3: Conditional inference tree for the glaucoma data. For each inner node, the
Bonferroni-adjusted P -values are given, the fraction of glaucomatous eyes is displayed for
each terminal node.
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Figure 4: Conditional inference tree for the glaucoma data with the fraction of glaucomatous
eyes displayed for both inner and terminal nodes.
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prob <- predict(gtree, type = "prob")[,1] +

runif(nrow(GlaucomaM), min = -0.01, max = 0.01)

splitvar <- character_split(split_node(node_party(gtree)),

data = data_party(gtree))$name

plot(GlaucomaM[[splitvar]], prob,

pch = as.numeric(GlaucomaM$Class), ylab = "Conditional Class Prob.",

xlab = splitvar)

abline(v = split_node(node_party(gtree))$breaks, lty = 2)

legend(0.15, 0.7, pch = 1:2, legend = levels(GlaucomaM$Class), bty = "n")
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Figure 5: Estimated conditional class probabilities (slightly jittered) for the Glaucoma data
depending on the first split variable. The vertical line denotes the first split point.

data("GBSG2", package = "TH.data")

library("survival")

(stree <- ctree(Surv(time, cens) ~ ., data = GBSG2))

##

## Model formula:

## Surv(time, cens) ~ horTh + age + menostat + tsize + tgrade +

## pnodes + progrec + estrec

##

## Fitted party:

## [1] root
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plot(stree)
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Figure 6: Tree-structured survival model for the GBSG2 data and the distribution of survival
times in the terminal nodes. The median survival time is displayed in each terminal node of
the tree.

## | [2] pnodes <= 3

## | | [3] horTh in no: 2093.000 (n = 248)

## | | [4] horTh in yes: Inf (n = 128)

## | [5] pnodes > 3

## | | [6] progrec <= 20: 624.000 (n = 144)

## | | [7] progrec > 20: 1701.000 (n = 166)

##

## Number of inner nodes: 3

## Number of terminal nodes: 4

The estimated median survival time for new patients is less informative compared to the whole
Kaplan-Meier curve estimated from the patients in the learning sample for each terminal node.
We can compute those ‘predictions’ by means of the treeresponse method

pn <- predict(stree, newdata = GBSG2[1:2,], type = "node")

n <- predict(stree, type = "node")

survfit(Surv(time, cens) ~ 1, data = GBSG2, subset = (n == pn[1]))

## Call: survfit(formula = Surv(time, cens) ~ 1, data = GBSG2, subset = (n ==
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plot(mtree)
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Figure 7: Ordinal regression for the mammography experience data with the fractions of
(never, within a year, over one year) given in the nodes. No admissible split was found for
node 5 because only 5 of 91 women reported a family history of breast cancer and the sample
size restrictions would require more than 5 observations in each daughter node.

## pn[1]))

##

## n events median 0.95LCL 0.95UCL

## [1,] 248 88 2093 1814 NA

survfit(Surv(time, cens) ~ 1, data = GBSG2, subset = (n == pn[2]))

## Call: survfit(formula = Surv(time, cens) ~ 1, data = GBSG2, subset = (n ==

## pn[2]))

##

## n events median 0.95LCL 0.95UCL

## [1,] 166 77 1701 1174 2018

6.4. Mammography experience

data("mammoexp", package = "TH.data")

mtree <- ctree(ME ~ ., data = mammoexp)

Ordinal response variables are common in investigations where the response is a subjective
human interpretation. We use an example given by Hosmer and Lemeshow (2000), p. 264,
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studying the relationship between the mammography experience (never, within a year, over
one year) and opinions about mammography expressed in questionnaires answered by n = 412
women. The resulting partition based on scores ξ = (1, 2, 3) is given in Figure 7. Women
who (strongly) agree with the question ‘You do not need a mammogram unless you develop
symptoms’ seldomly have experienced a mammography. The variable benefit is a score with
low values indicating a strong agreement with the benefits of the examination. For those
women in (strong) disagreement with the first question above, low values of benefit identify
persons being more likely to have experienced such an examination at all.

6.5. Hunting spiders

Finally, we take a closer look at a challenging dataset on animal abundance first reported by
Van der Aart and Smeenk-Enserink (1975) and re-analyzed by De’ath (2002) using regression
trees dealing with multivariate responses. The abundance of 12 hunting spider species is
regressed on six environmental variables (water, sand, moss, reft, twigs and herbs) for
n = 28 observations. Because of the small sample size we allow for a split if at least 5
observations are element of a node The prognostic factor water found by De’ath (2002) is
confirmed by the model shown in Figures 8 and 9 which additionally identifies reft.

data("HuntingSpiders", package = "partykit")

sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr +

pard.pull + aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce +

alop.fabr + arct.peri ~ herbs + reft + moss + sand + twigs + water,

data = HuntingSpiders, teststat = "max", minsplit = 5,

pargs = GenzBretz(abseps = .1, releps = .1))

7. Backward compatibility and novel functionality

partykit::ctree is a complete reimplementation of party::ctree. The latter reference
implementation is based on a monolithic C core and an S4-based R interface. The novel
implementation of conditional inference trees in partykit is much more modular and was
almost entirely written in R (package partykit does not contain any foreign language code as
of version 1.2-0). Permutation tests are computed in the dedicated R add-on package libcoin.

Nevertheless, both implementations will almost every time produce the same tree. There are,
naturally, exceptions where ensuring backward-compatibility requires specific choices of hyper
parameters in partykit::ctree_control. We will demonstrate how one can compute the
same trees in partykit and party in this section. In addition, some novel features introduced
in partykit 1.2-0 are described.

7.1. Regression

We use the airquality data from package party and fit a regression tree after removal of
missing response values. There are missing values in one of the explanatory variables, so we
ask for three surrogate splits to be set-up:
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plot(sptree, terminal_panel = node_barplot)
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Figure 8: Regression tree for hunting spider abundance with bars for the mean of each
response.

data("airquality", package = "datasets")

airq <- subset(airquality, !is.na(Ozone))

(airct_party <- party::ctree(Ozone ~ ., data = airq,

controls = party::ctree_control(maxsurrogate = 3)))

##

## Conditional inference tree with 5 terminal nodes

##

## Response: Ozone

## Inputs: Solar.R, Wind, Temp, Month, Day

## Number of observations: 116

##

## 1) Temp <= 82; criterion = 1, statistic = 56.086

## 2) Wind <= 6.9; criterion = 0.998, statistic = 12.969

## 3)* weights = 10

## 2) Wind > 6.9

## 4) Temp <= 77; criterion = 0.997, statistic = 11.599

## 5)* weights = 48

## 4) Temp > 77

## 6)* weights = 21

## 1) Temp > 82

## 7) Wind <= 10.3; criterion = 0.997, statistic = 11.712

## 8)* weights = 30

## 7) Wind > 10.3



20 ctree: Conditional Inference Trees

plot(sptree)
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Figure 9: Regression tree for hunting spider abundance with boxplots for each response.
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## 9)* weights = 7

mean((airq$Ozone - predict(airct_party))^2)

## [1] 403.6668

For this specific example, the same call produces the same tree under both party and partykit.
To ensure this also for other patterns of missingness, the numsurrogate flag needs to be set
in order to restrict the evaluation of surrogate splits to numeric variables only (this is a
restriction hard-coded in party):

(airct_partykit <- partykit::ctree(Ozone ~ ., data = airq,

control = partykit::ctree_control(maxsurrogate = 3,

numsurrogate = TRUE)))

##

## Model formula:

## Ozone ~ Solar.R + Wind + Temp + Month + Day

##

## Fitted party:

## [1] root

## | [2] Temp <= 82

## | | [3] Wind <= 6.9: 55.600 (n = 10, err = 21946.4)

## | | [4] Wind > 6.9

## | | | [5] Temp <= 77: 18.479 (n = 48, err = 3956.0)

## | | | [6] Temp > 77: 31.143 (n = 21, err = 4620.6)

## | [7] Temp > 82

## | | [8] Wind <= 10.3: 81.633 (n = 30, err = 15119.0)

## | | [9] Wind > 10.3: 48.714 (n = 7, err = 1183.4)

##

## Number of inner nodes: 4

## Number of terminal nodes: 5

mean((airq$Ozone - predict(airct_partykit))^2)

## [1] 403.6668

table(predict(airct_party, type = "node"),

predict(airct_partykit, type = "node"))

##

## 3 5 6 8 9

## 3 10 0 0 0 0

## 5 0 48 0 0 0

## 6 0 0 21 0 0

## 8 0 0 0 30 0

## 9 0 0 0 0 7
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max(abs(predict(airct_party) - predict(airct_partykit)))

## [1] 0

The results are identical as are the underlying test statistics:

airct_party@tree$criterion

## $statistic

## Solar.R Wind Temp Month Day

## 13.34761286 41.61369618 56.08632426 3.11265955 0.02011554

##

## $criterion

## Solar.R Wind Temp Month Day

## 9.987069e-01 1.000000e+00 1.000000e+00 6.674119e-01 1.824984e-05

##

## $maxcriterion

## [1] 1

info_node(node_party(airct_partykit))

## $criterion

## Solar.R Wind Temp Month

## statistic 13.347612859 4.161370e+01 5.608632e+01 3.1126596

## p.value 0.001293090 5.560572e-10 3.467894e-13 0.3325881

## criterion -0.001293926 -5.560572e-10 -3.467894e-13 -0.4043478

## Day

## statistic 0.02011554

## p.value 0.99998175

## criterion -10.91135399

##

## $p.value

## Temp

## 3.467894e-13

##

## $unweighted

## [1] TRUE

##

## $nobs

## [1] 116

partykit has a nicer way or presenting the variable selection test statistics on the scale of the
statistics and the p-values. In addition, the criterion to be maximised (here: log(1−p−value))
is given.
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7.2. Classification

For classification tasks with more than two classes, the default in party is a maximum-type
test statistic on the multidimensional test statistic when computing splits. partykit employs
a quadratic test statistic by default, because it was found to produce better splits empirically.
One can switch-back to the old behaviour using the splitstat argument:

(irisct_party <- party::ctree(Species ~ .,data = iris))

##

## Conditional inference tree with 4 terminal nodes

##

## Response: Species

## Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

## Number of observations: 150

##

## 1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264

## 2)* weights = 50

## 1) Petal.Length > 1.9

## 3) Petal.Width <= 1.7; criterion = 1, statistic = 67.894

## 4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865

## 5)* weights = 46

## 4) Petal.Length > 4.8

## 6)* weights = 8

## 3) Petal.Width > 1.7

## 7)* weights = 46

(irisct_partykit <- partykit::ctree(Species ~ .,data = iris,

control = partykit::ctree_control(splitstat = "maximum")))

##

## Model formula:

## Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

##

## Fitted party:

## [1] root

## | [2] Petal.Length <= 1.9: setosa (n = 50, err = 0.0%)

## | [3] Petal.Length > 1.9

## | | [4] Petal.Width <= 1.7

## | | | [5] Petal.Length <= 4.8: versicolor (n = 46, err = 2.2%)

## | | | [6] Petal.Length > 4.8: versicolor (n = 8, err = 50.0%)

## | | [7] Petal.Width > 1.7: virginica (n = 46, err = 2.2%)

##

## Number of inner nodes: 3

## Number of terminal nodes: 4

table(predict(irisct_party, type = "node"),

predict(irisct_partykit, type = "node"))
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##

## 2 5 6 7

## 2 50 0 0 0

## 5 0 46 0 0

## 6 0 0 8 0

## 7 0 0 0 46

The interface for computing conditional class probabilities changed from

tr_party <- treeresponse(irisct_party, newdata = iris)

to

tr_partykit <- predict(irisct_partykit, type = "prob",

newdata = iris)

max(abs(do.call("rbind", tr_party) - tr_partykit))

## [1] 0

leading to identical results. For ordinal regression, the conditional class probabilities can be
computed in the very same way:

### ordinal regression

data("mammoexp", package = "TH.data")

(mammoct_party <- party::ctree(ME ~ ., data = mammoexp))

##

## Conditional inference tree with 3 terminal nodes

##

## Response: ME

## Inputs: SYMPT, PB, HIST, BSE, DECT

## Number of observations: 412

##

## 1) SYMPT <= Agree; criterion = 1, statistic = 29.933

## 2)* weights = 113

## 1) SYMPT > Agree

## 3) PB <= 8; criterion = 0.988, statistic = 9.17

## 4)* weights = 208

## 3) PB > 8

## 5)* weights = 91

### estimated class probabilities

tr_party <- treeresponse(mammoct_party, newdata = mammoexp)

(mammoct_partykit <- partykit::ctree(ME ~ ., data = mammoexp))
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##

## Model formula:

## ME ~ SYMPT + PB + HIST + BSE + DECT

##

## Fitted party:

## [1] root

## | [2] SYMPT <= Agree: Never (n = 113, err = 15.9%)

## | [3] SYMPT > Agree

## | | [4] PB <= 8: Never (n = 208, err = 60.1%)

## | | [5] PB > 8: Never (n = 91, err = 38.5%)

##

## Number of inner nodes: 2

## Number of terminal nodes: 3

### estimated class probabilities

tr_partykit <- predict(mammoct_partykit, newdata = mammoexp, type = "prob")

max(abs(do.call("rbind", tr_party) - tr_partykit))

## [1] 0

7.3. Survival Analysis

Like in classification analysis, the treeresponse function from package party was replaced
by the predict function with argument type = "prob" in partykit. The default survival
trees are identical:

data("GBSG2", package = "TH.data")

(GBSG2ct_party <- party::ctree(Surv(time, cens) ~ .,data = GBSG2))

##

## Conditional inference tree with 4 terminal nodes

##

## Response: Surv(time, cens)

## Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec

## Number of observations: 686

##

## 1) pnodes <= 3; criterion = 1, statistic = 56.156

## 2) horTh == {yes}; criterion = 0.965, statistic = 8.113

## 3)* weights = 128

## 2) horTh == {no}

## 4)* weights = 248

## 1) pnodes > 3

## 5) progrec <= 20; criterion = 0.999, statistic = 14.941

## 6)* weights = 144

## 5) progrec > 20

## 7)* weights = 166
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(GBSG2ct_partykit <- partykit::ctree(Surv(time, cens) ~ .,data = GBSG2))

##

## Model formula:

## Surv(time, cens) ~ horTh + age + menostat + tsize + tgrade +

## pnodes + progrec + estrec

##

## Fitted party:

## [1] root

## | [2] pnodes <= 3

## | | [3] horTh in no: 2093.000 (n = 248)

## | | [4] horTh in yes: Inf (n = 128)

## | [5] pnodes > 3

## | | [6] progrec <= 20: 624.000 (n = 144)

## | | [7] progrec > 20: 1701.000 (n = 166)

##

## Number of inner nodes: 3

## Number of terminal nodes: 4

as are the conditional Kaplan-Meier estimators

tr_party <- treeresponse(GBSG2ct_party, newdata = GBSG2)

tr_partykit <- predict(GBSG2ct_partykit, newdata = GBSG2, type = "prob")

all.equal(lapply(tr_party, function(x) unclass(x)[!(names(x) %in% "call")]),

lapply(tr_partykit, function(x) unclass(x)[!(names(x) %in% "call")]),

check.names = FALSE)

## [1] TRUE

7.4. New Features

partykit comes with additional arguments in ctree_control allowing a more detailed control
over the tree growing.

alpha : The user can optionally change the default nominal level of α = 0.05; mincriterion

is updated to 1 − α and logmincriterion is then log(1 − α). The latter allows variable
selection on the scale of log(1 − p-value):

(airct_partykit_1 <- partykit::ctree(Ozone ~ ., data = airq,

control = partykit::ctree_control(maxsurrogate = 3, alpha = 0.001,

numsurrogate = FALSE)))

##

## Model formula:

## Ozone ~ Solar.R + Wind + Temp + Month + Day
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##

## Fitted party:

## [1] root

## | [2] Temp <= 82: 26.544 (n = 79, err = 42531.6)

## | [3] Temp > 82: 75.405 (n = 37, err = 22452.9)

##

## Number of inner nodes: 1

## Number of terminal nodes: 2

depth(airct_partykit_1)

## [1] 1

mean((airq$Ozone - predict(airct_partykit_1))^2)

## [1] 560.2113

Lower values of α lead to smaller trees.

splittest : This enables the computation of p-values for maximally selected statistics for
variable selection. The default test statistic is not particularly powerful against cutpoint-
alternatives but much faster to compute. Currently, p-value approximations are not
available, so one has to rely on resampling for p-value estimation

(airct_partykit <- partykit::ctree(Ozone ~ ., data = airq,

control = partykit::ctree_control(maxsurrogate = 3, splittest = TRUE,

testtype = "MonteCarlo")))

##

## Model formula:

## Ozone ~ Solar.R + Wind + Temp + Month + Day

##

## Fitted party:

## [1] root

## | [2] Temp <= 82

## | | [3] Wind <= 6.9: 55.600 (n = 10, err = 21946.4)

## | | [4] Wind > 6.9

## | | | [5] Temp <= 77

## | | | | [6] Solar.R <= 78: 12.533 (n = 15, err = 723.7)

## | | | | [7] Solar.R > 78: 21.182 (n = 33, err = 2460.9)

## | | | [8] Temp > 77

## | | | | [9] Solar.R <= 148: 20.000 (n = 7, err = 652.0)

## | | | | [10] Solar.R > 148: 36.714 (n = 14, err = 2664.9)

## | [11] Temp > 82

## | | [12] Temp <= 87

## | | | [13] Wind <= 8.6: 72.308 (n = 13, err = 8176.8)
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## | | | [14] Wind > 8.6: 45.571 (n = 7, err = 617.7)

## | | [15] Temp > 87: 90.059 (n = 17, err = 3652.9)

##

## Number of inner nodes: 7

## Number of terminal nodes: 8

saveinfo : Reduces the memory footprint by not storing test results as part of the tree. The
core information about trees is then roughly half the size needed by party.

nmax : Restricts the number of possible cutpoints to nmax, basically by treating all explana-
tory variables as ordered factors defined at quantiles of underlying numeric variables.
This is mainly implemented in package libcoin. For the standard ctree, it is only ap-
propriate to use in classification problems, where is can lead to substantial speed-ups:

(irisct_partykit_1 <- partykit::ctree(Species ~ .,data = iris,

control = partykit::ctree_control(splitstat = "maximum", nmax = 25)))

##

## Model formula:

## Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

##

## Fitted party:

## [1] root

## | [2] Petal.Width <= 0.6: setosa (n = 50, err = 0.0%)

## | [3] Petal.Width > 0.6

## | | [4] Petal.Width <= 1.7

## | | | [5] Petal.Length <= 4.8: versicolor (n = 46, err = 2.2%)

## | | | [6] Petal.Length > 4.8: versicolor (n = 8, err = 50.0%)

## | | [7] Petal.Width > 1.7: virginica (n = 46, err = 2.2%)

##

## Number of inner nodes: 3

## Number of terminal nodes: 4

table(predict(irisct_partykit), predict(irisct_partykit_1))

##

## setosa versicolor virginica

## setosa 50 0 0

## versicolor 0 54 0

## virginica 0 0 46

multiway : Implements multiway splits in unordered factors, each level defines a correspond-
ing daughter node:
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GBSG2$tgrade <- factor(GBSG2$tgrade, ordered = FALSE)

(GBSG2ct_partykit <- partykit::ctree(Surv(time, cens) ~ tgrade,

data = GBSG2, control = partykit::ctree_control(multiway = TRUE,

alpha = .5)))

##

## Model formula:

## Surv(time, cens) ~ tgrade

##

## Fitted party:

## [1] root

## | [2] tgrade in I: Inf (n = 81)

## | [3] tgrade in II: 1730.000 (n = 444)

## | [4] tgrade in III: 1337.000 (n = 161)

##

## Number of inner nodes: 1

## Number of terminal nodes: 3

majority = FALSE : enables random assignment of non-splitable observations to daughter
nodes preserving the node distribution. With majority = TRUE, these observations go
with the majority (the only available behaviour of in party::ctree).

Two arguments of ctree are also interesting. The novel cluster argument allows conditional
inference trees to be fitted to (simple forms of) correlated observations. For each cluster,
the variance of the test statistics used for variable selection and also splitting is computed
separately, leading to stratified permutation tests (in the sense that only observations within
clusters are permuted). For example, we can cluster the data in the airquality dataset by
month to be used as cluster variable:

airq$month <- factor(airq$Month)

(airct_partykit_3 <- partykit::ctree(Ozone ~ Solar.R + Wind + Temp, data = airq,

cluster = month, control = partykit::ctree_control(maxsurrogate = 3)))

##

## Model formula:

## Ozone ~ Solar.R + Wind + Temp

##

## Fitted party:

## [1] root

## | [2] Temp <= 82

## | | [3] Temp <= 76: 18.250 (n = 48, err = 4199.0)

## | | [4] Temp > 76

## | | | [5] Wind <= 6.9: 71.857 (n = 7, err = 15510.9)

## | | | [6] Wind > 6.9

## | | | | [7] Temp <= 81: 32.412 (n = 17, err = 4204.1)
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## | | | | [8] Temp > 81: 23.857 (n = 7, err = 306.9)

## | [9] Temp > 82

## | | [10] Wind <= 10.3: 81.633 (n = 30, err = 15119.0)

## | | [11] Wind > 10.3: 48.714 (n = 7, err = 1183.4)

##

## Number of inner nodes: 5

## Number of terminal nodes: 6

info_node(node_party(airct_partykit_3))

## $criterion

## Solar.R Wind Temp

## statistic 14.4805065501 3.299881e+01 4.783766e+01

## p.value 0.0004247923 2.766464e-08 1.389038e-11

## criterion -0.0004248826 -2.766464e-08 -1.389038e-11

##

## $p.value

## Temp

## 1.389038e-11

##

## $unweighted

## [1] TRUE

##

## $nobs

## [1] 116

mean((airq$Ozone - predict(airct_partykit_3))^2)

## [1] 349.3382

This reduces the number of partitioning variables and makes multiplicity adjustment less
costly.

The ytrafo argument has be made more general. party is not able to update influence
functions h within nodes. With the novel formula-based interface, users can create influence
functions which are newly evaluated in each node. The following example illustrates how one
can compute a survival tree with updated logrank scores:

### with weight-dependent log-rank scores

### log-rank trafo for observations in this node only (= weights > 0)

h <- function(y, x, start = NULL, weights, offset, estfun = TRUE, object = FALSE, ...) {

if (is.null(weights)) weights <- rep(1, NROW(y))

s <- logrank_trafo(y[weights > 0,,drop = FALSE])

r <- rep(0, length(weights))

r[weights > 0] <- s

list(estfun = matrix(as.double(r), ncol = 1), converged = TRUE, unweighted = TRUE)

}
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partykit::ctree(Surv(time, cens) ~ ., data = GBSG2, ytrafo = h)

##

## Model formula:

## Surv(time, cens) ~ horTh + age + menostat + tsize + tgrade +

## pnodes + progrec + estrec

##

## Fitted party:

## [1] root

## | [2] pnodes <= 3

## | | [3] horTh in no: 2093.000 (n = 248)

## | | [4] horTh in yes: Inf (n = 128)

## | [5] pnodes > 3

## | | [6] progrec <= 20: 624.000 (n = 144)

## | | [7] progrec > 20: 1701.000 (n = 166)

##

## Number of inner nodes: 3

## Number of terminal nodes: 4

The results are usually not very sensitive to (simple) updated influence functions. However,
when one uses score functions of more complex models as influence functions (similar to
the mob family of trees), it is necessary to refit models in each node. For example, we are
interested in a normal linear model for ozone concentration given temperature; both the
intercept and the regression coefficient for temperature shall vary across nodes of a tree.
Such a “permutation-based” MOB, here taking clusters into account, can be set-up using

### normal varying intercept / varying coefficient model (aka "mob")

h <- function(y, x, start = NULL, weights = NULL, offset = NULL, cluster = NULL, ...)

glm(y ~ 0 + x, family = gaussian(), start = start, weights = weights, ...)

(airct_partykit_4 <- partykit::ctree(Ozone ~ Temp | Solar.R + Wind,

data = airq, cluster = month, ytrafo = h,

control = partykit::ctree_control(maxsurrogate = 3)))

##

## Model formula:

## Ozone ~ Temp + (Solar.R + Wind)

##

## Fitted party:

## [1] root

## | [2] Wind <= 5.7: 98.692 (n = 13, err = 11584.8)

## | [3] Wind > 5.7

## | | [4] Wind <= 8

## | | | [5] Wind <= 6.9: 55.286 (n = 14, err = 11330.9)

## | | | [6] Wind > 6.9: 50.824 (n = 17, err = 15400.5)

## | | [7] Wind > 8: 27.306 (n = 72, err = 25705.3)

##
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## Number of inner nodes: 3

## Number of terminal nodes: 4

airq$node <- factor(predict(airct_partykit_4, type = "node"))

summary(m <- glm(Ozone ~ node + node:Temp - 1, data = airq))

##

## Call:

## glm(formula = Ozone ~ node + node:Temp - 1, data = airq)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## node2 300.0527 93.4828 3.210 0.001750 **

## node5 -217.3416 51.3970 -4.229 4.94e-05 ***

## node6 -178.9333 58.1093 -3.079 0.002632 **

## node7 -82.2722 17.9951 -4.572 1.29e-05 ***

## node2:Temp -2.2922 1.0626 -2.157 0.033214 *

## node5:Temp 3.2989 0.6191 5.328 5.47e-07 ***

## node6:Temp 2.8059 0.7076 3.965 0.000132 ***

## node7:Temp 1.4769 0.2408 6.133 1.45e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 329.3685)

##

## Null deviance: 331029 on 116 degrees of freedom

## Residual deviance: 35572 on 108 degrees of freedom

## AIC: 1011.4

##

## Number of Fisher Scoring iterations: 2

mean((predict(m) - airq$Ozone)^2)

## [1] 306.6534

Both intercept and effect of temperature change considerably between nodes. The corre-
sponding MOB can be fitted using

airq_lmtree <- partykit::lmtree(Ozone ~ Temp | Solar.R + Wind,

data = airq, cluster = month)

info_node(node_party(airq_lmtree))

## $criterion

## Solar.R Wind

## statistic 8.5987001 19.559486324

## p.value 0.2818551 0.002658029
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## criterion -0.3310839 -0.002661567

##

## $p.value

## Wind

## 0.002658029

##

## $coefficients

## (Intercept) Temp

## -146.995491 2.428703

##

## $objfun

## [1] 64109.89

##

## $object

##

## Call:

## lm(formula = Ozone ~ Temp)

##

## Coefficients:

## (Intercept) Temp

## -146.995 2.429

##

##

## $converged

## [1] TRUE

##

## $nobs

## [1] 116

mean((predict(airq_lmtree, newdata = airq) - airq$Ozone)^2)

## [1] 443.9422

The p-values in the root node are similar but the two procedures find different splits. mob

(and therefore lmtree) directly search for splits by optimising the objective function for all
possible splits whereas ctree only works with the score functions.

Argument xtrafo allowing the user to change the transformations gj of the covariates was
removed from the user interface.
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