Package ‘partools’

February 6, 2026

Version 1.1.7
Maintainer Norm Matloff <normmatloff@gmail.com>
Title Tools for the Parallel' Package

Description Miscellaneous utilities for parallelizing large
computations. Alternative to MapReduce.
File splitting and distributed operations such as sort and aggregate.
* *Software Alchemy" method for parallelizing most statistical methods,
presented in N. Matloff, Parallel Computation for Data Science,
Chapman and Hall, 2015. Includes a debugging aid.

Depends regtools,parallel,stats,utils,data.table,pdist,methods
Suggests rpart,e1071,testthat

ByteCompile yes

NeedsCompilation no

License GPL (>=2)

URL https://github.com/matloff/partools

BugReports https://github.com/matloff/partools/issues
Repository CRAN
Date/Publication 2026-02-06 06:40:17 UTC

Author Norm Matloff [cre, aut],
Clark Fitzgerald [aut],
Reed Davis [aut],
Robin Yancey [aut],
Shunxu Huang [aut],
Alex Rumbaugh [aut],
Hadley Wickham [aut]

Contents

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn
caclassfit,caclasspred,vote,re_code
dbs . . e e e

https://github.com/matloff/partools
https://github.com/matloff/partools/issues

2 ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribg

newadult e 14
parpdisto e e e e e 14
PISENE .« « . o o vt e e e e e 15
snowdoop,filechunkname, etc...o Lo 16
Index 21

ca,cabase,calm, caglm, caprcomp, cakm, cameans, caquantile, caagg, caknn
Software Alchemy: Turning Complex Statistical Computations into
Embarrassingly-Parallel Ones

Description

Easy parallelization of most statistical computations.

Usage

ca(cls,z,ovf,estf,estcovf=NULL, findmean=TRUE, scramble=FALSE)
cabase(cls,ovf,estf,estcovf=NULL, findmean=TRUE, cacall=FALSE,z=NULL,scramble=FALSE)
calm(cls,1lmargs)

caglm(cls,glmargs)

caprcomp(cls,prcompargs, p)

cakm(cls,mtdf,ncenters,p)

cameans(cls,cols,na.rm=FALSE)

caquantile(cls,vec, probs = c(0.25, 0.5, ©.75),na.rm=FALSE)

caagg(cls,ynames, xnames,dataname, FUN)

caknn(cls, yname, k, xname='")

Arguments

cls A cluster run under the parallel package.

z A data frame, matrix or vector, one observation per row/element.

ovf Overall statistical function, say glm.

estf Function to extract the point estimate (typically vector-valued) from the output
of ovf.

estcovf If provided, function to extract the estimated covariance matrix of the output of
estf

findmean If TRUE, output the average of the estimates from the chunks; otherwise, output
only the estimates themselves.

Imargs Quoted string representing arguments to 1m, e.g. R formula, data specification.

glmargs Quoted string representing arguments to glm, e.g. R formula, data specification,

and family argument.

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn 3

prcompargs Quoted string representing arguments to prcomp.

p Number of columns in data

na.rm If TRUE, remove NA values from the analysis.

mtdf Quoted name of a distributed matrix or data frame.

ncenters Number of clusters to find.

cacall If TRUE, indicates that cabase had been called by ca

scramble If this and cacall are TRUE, randomize the data before distributing.
cols A quoted string that evaluates to a data frame or matrix.

vec A quoted string that evaluates to a vector.

yname A quoted variable name, for the Y vector.

k Number of nearest neighbors.

xname A quoted variable name, for the X matrix/data frame. If empty, it is assumed

that preprocessx has already been run on the nodes; if nonempty, that function
is run on this X data.

ynames A vector of quoted variable names.
xnames A vector of quoted variable names.
dataname Quoted name of a data frame or matrix.
probs As in the argument with the same name in quantile. Should not be 0.00 or
1.00, as asymptotic normality doesn’t hold.
FUN Quoted name of a function.
Details

Implements the “Software Alchemy” (SA) method for parallelizing statistical computations (N.
Matloff, Parallel Computation for Data Science, Chapman and Hall, 2015, with further details in
N. Matloff, Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-
Parallel Ones, Journal of Statistical Software, 2016.) This can result in substantial speedups in
computation, as well as address limits on physical memory.

The method involves breaking the data into chunks, and then applying the given estimator to each
one. The results are averaged, and an estimated covariance matrix computed (optional).

Except for ca, it is assumed that the chunking has already been done, say via distribsplit or
readnscramble.

Note that in cabase, the data object is not specified explicitly in the argument list. This is done
through the function ovf.

Key point: The SA estimator is statistically equivalent to the original, nonparallel one, in the sense
that they have the SAME asymptotic statistical accuracy. Neither the non-SA nor the SA estimator
is "better" than the other, and usually they will be quite close to each other anyway. Since we would
use SA only with large data sets anyway (otherwise, parallel computation would not be needed for
speed), the asymptotic aspect should not be an issue. In other words, with SA we achieve the same
statistical accuracy while possibly attaining much faster computation.

It is vital to keep in mind that The memory space issue can be just as important as run time. Even
if the problem is run on many cores, if the total memory space needed exceeds that of the machine,
the run may fail.

4 ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn

Wrapper functions, applying SA to the corresponding R function (or function elsewere in this pack-
age):

* calm: Wrapper for 1m.

* caglm: Wrapper for glm.

* caprcomp: Wrapper for prcomp.

* cakm: Wrapper for kmeans.

* cameans: Wrapper for colMeans.

* caquantile: Wrapper for quantile.

* caagg: Like distribagg, but finds the average value of FUN across the cluster nodes.

A note on NA values: Some R functions such as 1m, glm and prcomp have an na.action argument.
The default is na.omit, which means that cases with at least one NA value will be discarded.
(This is also settable via options().) However, na.omit seems to have no effect in prcomp unless
that function’s formula option is used. When in doubt, apply the function na.omit directly; e.g.
na.omit(d) for a data frame d returns a data frame consisting of only the intact rows of d.

The method assumes that the base estimator is asymptotically normal, and assumes i.i.d. data.
If your data set had been stored in some sorted order, it must be randomized first, say using the
scramble option in distribsplit or by calling readnscramble, depending on whether your data
is already in memory or still in a file.

Value

R list with these components:

* thts, the results of applying the requested estimator to the chunks; the estimator from chunk
iisin row i
* tht, the chunk-averaged overall estimator, if requested

e thtcov, the estimated covariance matrix of tht, if available
The wrapper functions return the following list elements:

* calm, caglm: estimated regression coefficients and their estimated covariance matrix

* caprcomp: sdev (square roots of the eigenvalues) and rotation, as with prcomp; thts is
returned as well.

e cakm: centers and size, as with kmeans; thts is returned as well.

The wrappers that return thts are useful for algorithms that may expose some instability in the
original (i.e. non-SA) algorithm. With prcomp, for instance, the eigenvectors corresponding to the
smaller eigenvalues may have high variances in the nonparallel version, which will be reflected in
large differences from chunk to chunk in SA, visible in thts. Note that this reflects a fundamental
problem with the algorithm on the given data set, not due to Software Alchemy; on the contrary, an
important advantage of the SA approach is to expose such problems.

Author(s)
Norm Matloff

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn 5

References

N. Matloff N (2016). "Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-
Parallel Ones." Journal of Statistical Software, 71(4), 1-15.

Examples

set up 'parallel' cluster
cls <- makeCluster(2)
setclsinfo(cls)

generate simulated test data, as distributed data frame

n <- 10000

p <-2

tmp <- matrix(rnorm((p+1)*n),nrow=n)

<- tmp[,1:p] # "X" values

add a "Y" col

<- cbind(u,u %*% rep(1,p) + tmp[,p+1]1)

now in u, cols 1,2 are the "X" variables, and col 3 is "Y",
with regress coefs (0,1,1), with tmp[,p+1] being the error term
distribsplit(cls,”u”) # form distributed d.f.

apply the function

calm(cls,"ul,3] ~ ul[,1]+ul,2]")$tht

calm(cls,”"V3 ~ .,data=u")$tht

check; results should be approximately the same

Im(ul,3] ~ ul,11+ul,21)

without the wrapper

ovf <- function(dummy=NULL) 1m(V3 ~ .,data=z168)
ca(cls,u,ovf,estf=coef,estcovf=vcov)$tht

H H C ¥ C

Not run:

Census data on programmers and engineers; include a quadratic term for
age, due to nonmonotone relation to income

data(prgeng)

distribsplit(cls, "prgeng"”)

caout <- calm(cls,"wageinc ~ age+I(age”2)+sex+twkswrkd,data=prgeng")
caout$tht

compare to nonparallel

Im(wageinc ~ age+I(age”2)+sex+wkswrkd,data=prgeng)

get standard errors of the beta-hats

sqrt(diag(caout$thtcov))

find mean age for all combinations of the cit and sex variables
caagg(cls,"age”,c("cit"”,"sex"), "prgeng”, "mean")
compare to nonparallel

aggregate(age ~ citt+sex,data=prgeng,mean)

data(newadult)
distribsplit(cls, "newadult”)
caglm(cls,” gt50 ~ ., family = binomial,data=newadult”)$tht

caprcomp(cls, 'newadult,scale=TRUE',5)$sdev
prcomp(newadult, scale=TRUE) $sdev

6 caclassfit,caclasspred,vote,re_code

cameans(cls, "prgeng")
cameans(cls, "prgengl[,c('age', 'wageinc')]")
caquantile(cls, 'prgeng$age')

pe <- prgengl[,c(1,3,8)]
distribsplit(cls, "pe")

z1 <- cakm(cls, 'pe',3,3); z1%$size; zl1$centers
check algorithm unstable

z1$thts # looks unstable

pe <- prgeng

pe$ms <- as.integer(pe$educ == 14)
pe$phd <- as.integer(pe$educ == 16)

pe <- pe[,c(1,7,8,9,12,13)]
distribsplit(cls, 'pe',scramble=TRUE)
kout <- caknn(cls, 'pe[,3]1',50, 'pe[,-3]1")

End(Not run)

stopCluster(cls)

caclassfit,caclasspred,vote,re_code
Software Alchemy for Machine Learning

Description

Parallelization of machine learning algorithms.

Usage

caclassfit(cls,fitcmd)
caclasspred(fitobjs,newdata,yidx=NULL,...)

vote(preds)
re_code(x)
Arguments
cls A cluster run under the parallel package.
fitcmd A string containing a model-fitting command to be run on each cluster node.
This will typically include specification of the distributed data set.
fitobjs An R list of objects returned by the fitcmd calls.
newdata Data to be predicted from the fit computed by caclassfit.
yidx If provided, index of the true class values in newdata, typically in a cross-

validation setting.

caclassfit,caclasspred,vote,re_code 7

Arguments to be passed to the underlying prediction function for the given
method, e.g. predict.rpart.

preds A vector of predicted classes, from which the "winner" will be selected by vot-
ing.
X A vector of integers, in this context class codes.
Details

This should work for almost any classification code that has a “fit” function and a predict method.

The method assumes i.i.d. data. If your data set had been stored in some sorted order, it must be
randomized first, say using the scramble option in distribsplit or by calling readnscramble,
depending on whether your data is already in memory or still in a file.

It is assumed that class labels are 1,2,... If not, use re_code.

Value

The caclassfit function returns an R list of objects as in fitobjs above.

The caclasspred function returns an R list with these components:

* predmat, a matrix of predicted classes for newdata, one row per cluster node

* preds, the final predicted classes, after using vote to resolve possible differences in predic-
tions among nodes

* consensus, the proportion of cases for which all nodes gave the same predictions (higher
values indicating more stability)

* acc, if yidx is non-NULL, the proportion of cases in which preds is correct

e confusion, if yidx is non-NULL, the confusion matrix

Author(s)
Norm Matloff

Examples

Not run:

set up 'parallel' cluster

cls <- makeCluster(2)

setclsinfo(cls)

data prep

data(prgeng)

prgeng$occ <- re_code(prgeng$occ)

prgeng$bs <- as.integer(prgeng$educ == 13)
prgeng$ms <- as.integer(prgeng$educ == 14)
prgeng$phd <- as.integer(prgeng$educ == 15)
prgeng$sex <- prgeng$sex - 1

pe <- prgeng[,c(1,7,8,9,12,13,14,5)]

pe$occ <- as.factor(pe$occ) # needed for rpart!
go

distribsplit(cls, 'pe')

8 dbs

library(rpart)
clusterEvalQ(cls,library(rpart))
fit <- caclassfit(cls,"rpart(occ ~ .,data=pe)")

predout <- caclasspred(fit,pe,8,type="'class')
predout$acc # 0.36

stopCluster(cls)

End(Not run)

dbs Debugging aid for parallel cluster code.

Description

Aids in debugging of code written for the cluster operations in the parallel package.

Usage
dbs(nwrkrs,xterm=NULL, src=NULL, ftn=NULL)
writemgrscreen(cmd)
killdebug()
dbsmsgstart(cls)
dbsmsg(msg)
dbsdump ()
Arguments
cls A cluster for the parallel package.
nwrkrs Number of workers, i.e. size of the cluster.
xterm The string "xterm" or name of compatible terminal.
src Name of the source file to be debugged.
ftn Name of the function to be debugged.
cmd R command to be executed in manager screen.
msg A message to write to the debugging record file. Can be either a character string

or any expression that is printable by cat.

Details

A major obstacle to debugging cluster-based parallel applications is the lack of a terminal, thus
precluding direct use of debug and browser. This set of functions consists of two groups, one
for “quick and dirty” debugging, that writes debugging information to disk files, and the other for
more sophisticated work that deals with the terminal restriction. For both methods, make sure
setclsinfo has been called.

For “quick and dirty” debugging, there is dbsmsg, which prints messages to files, invoked from
within code running at the cluster nodes. There is one file for each member of the cluster, e.g.

dbs 9

dbs. @01, dbs.002 and so on, and dbsmsg writes to the file associated with the worker invoking it.
Initialize via dbsmsgstart.

Another quick approach is to call dbsdump, which will call R’s dump. frames, making a separate
output file for each cluster node. These can then be input to debugger to examine stack frames.

The more elaborate debugging tool, dbs, is the only one in this partools package requiring a Unix-
family system (Linux, Mac). To discuss it, suppose you wish to debug the function f in the file x.R.
Run, say, dbs(2,xterm="xterm"”,src="x.R",ftn="f"). Then three new terminal windows will
be created, one for the cluster manager and two for the cluster workers. The cluster will be named
cls. Automatically, the file x.R will be sourced by the worker windows, and debug(f) will be run
in them.

Then you simply debug as usual. Go to the manager window, and run your parallel application
launch call in the usual way, say clusterEvalQ(cls,f(5)). The function f will run in each
worker window, with execution automatically entering browser mode. You are now ready to single-
step through them, or execute any other browser operation.

If xterm is NULL, you will be prompted to create the terminal windows by hand (or use existing
ones), and run screen there as instructed. Terminal works on Macs; label the windows by hand,
by clicking "Shell" then "Edit".

When finished with the debugging session, run killdebug from the original window (the one from
which you invoked dbs) to quit the various screen processes.

Author(s)
Norm Matloff

Examples

Not run:

quick-and-dirty method

cls <- makeCluster(2)

setclsinfo(cls)

define 'buggy' function

g <- function(x,y) {u<-x+y; v<-x-y; dbsmsg(c(u,v)); u*2+v*2}
clusterExport(cls,”g")

set x and y at cluster nodes

clusterEvalQ(cls,{x <= runif(1); y <- runif(1)3})

start debugging session

dbsmsgstart(cls)

run

clusterEvalQ(cls,g(x,y))

files dbs.1 and dbs.2 created, each reporting u,v values

dbs() method

make a test file

cat(c("f <- function(x) {"," x <= x +1"," x*2","}"),file="x.R",sep="\n")
dbs(2,src="x.R",ftn="f")

now type in manager window:

clusterEvalQ(cls,f(5))

the 2 worker windows are now in the browser, ready for debugging

10formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg, distribrange,distribcounts,distribgetrows

stopCluster(cls)

End(Not run)

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange
Utilities for parallel cluster code.

Description

Miscellaneous code snippets for use with the parallel package, including “Snowdoop.”

Usage

formrowchunks(cls,m,mchunkname, scramble=FALSE)
matrixtolist(rc,m)

addlists(lst1,1st2,add)

setclsinfo(cls)

getpte()

exportlibpaths(cls)
distribsplit(cls,dfname,scramble=FALSE)
distribcat(cls,dfname)

distribagg(cls,ynames, xnames,dataname, FUN,FUNdim=1,FUNT=FUN)
distribrange(cls,vec,na.rm=FALSE)

distribcounts(cls, xnames,dataname)
distribmeans(cls, ynames, xnames,dataname, saveni=FALSE)
dwhich.min(cls,vecname)

dwhich.max(cls,vecname)

distribgetrows(cls,cmd)

distribisdt(cls,dataname)

docmd(toexec)

doclscmd(cls, toexec)

geteltis(lst,i)

ipstrcat(str1 = stop(”str1 not supplied”), ..., outersep = "", innersep = "")
Arguments

cls A cluster for the parallel package.

scramble If TRUE, randomize the row order in the resulting data frame.

rc Set to 1 for rows, other for columns.

m A matrix or data frame.

mchunkname Quoted name to be given to the created chunks.

1st1 An R list.

1st2 An R list.

add “Addition” function, which could be summation, concatenation and so on.

formrowchunks,addlists, matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,d

dfname Quoted name of a data frame, either centralized or distributed.

ynames Vector of quoted names of variables on which FUN is to be applied.

vecname Quoted name of a vector.
One of more vectors of character strings, where the vectors are typically of
length 1.

xnames Vector of quoted names of variables that define the grouping.

dataname Quoted name of a distributed data frame or data.table.

saveni If TRUE, save the chunk sizes.

FUN Quoted name of a single-argument function to be used in aggregating within

cluster nodes. If dataname is the name of a data.table, FUN must be a vector of
function names, of length equal to that of ynames.

FUNdim Number of elements in the return value of FUN. Must be 1 for data.tables.
FUN1 Quoted name of function to be used in aggregation between cluster nodes.
vec Quoted expression that evaluates to a vector.
na.rm Remove NA values.
cmd An R command.
toexec Quoted string containing command to be executed.
1st An R list of vectors.
i A column index
stri A character string.
outersep Separator, e.g. a comma, between strings specified in ...
innersep Separator, e.g. a comma, within string vectors specified in ...
Details

The setclsinfo function does initialization needed for use of the tools in the package.

The function formrowchunks forms chunks of rows of m, corresponding to the number of worker
nodes in the cluster m. For any given worker, the code places its chunk in mchunk in the global space
of the worker.

A call tomatrixtolist extracts the rows or columns of a matrix or data frame and forms an R list
from them.

The function addlists does the following: Say we have two lists, with numeric values. We wish
to form a new list, with all the keys (names) from the two input lists appearing in the new list. In
the case of a key in common to the two lists, the value in the new list will be the sum of the two
individual values for that key. (Here “sum” means the result of applying add.) For a key appearing
in one list and not the other, the value in the new list will be the value in the input list.

The function exportlibpaths, invoked from the manager, exports the manager’s R search path to
the workers.

The function distribsplit splits a data frame dfname into approximately equal-sized chunks of
rows, placing the chunks on the cluster nodes, as global variables of the same name. The opposite
action is taken by distribcat, coalsecing variables of the given name in the cluster nodes into one
grand data frame as the calling (i.e. manager) node.

12formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg, distribrange,distribcounts,distribgetrows

The package’s distribagg function is a distributed (and somewhat restricted) form of aggregate.
The latter is called to each distributed chunk with the function FUN. The manager collects the results
and calls FUNT.

The special cases of aggregating counts and means is handled by the wrappers distribcounts and
distribmeans. In each case, cells are defined by xnames, and aggregation done first within workers
and then across workers.

The distribrange function is a distributed form of range.
The dwhich.min and dwhich.max functions are distributed analogs of R’s which.min and which.max.

The distribgetrows function is useful in a variety of situations. It can be used, for instance, as
a distributed form of select. In the latter case, the specified rows will be selected at each cluster
node, then rbind-ed together at the caller.

The docmd function executes the quoted command, useful for building up complex command for
remote execution. The doclscmd function does that directly.

An R formula will be constructed from the arguments ynames and xnames, with the latter put on
the left side of the ~ sign, with cbind for combining, and the latter put on the right side, with + signs
as delimiters.

The geteltis function extracts from an R list of vectors element i from each.

Value

In the case of addlists, the return value is the new list.
The distribcat function returns the concatenated data frame; distribgetrows works similarly.

The distribagg function returns a data frame, the same as would a call to aggregate, though
possibly in different row order; distribcounts works similarly.

The dwhich.min and dwhich.max functions each return a two-tuple, consisting of the node number
and row number which node at which the min or max occurs.

Author(s)
Norm Matloff

Examples

examples of addlists()

11 <- list(a=2, b=5, c=1)

12 <- list(a=8, c=12, d=28)

addlists(11,12,sum) # list with a=10, b=5, c=13, d=28

z1 <- list(x = ¢(5,12,13), y = c(3,4,5))

z2 <- list(y = c(8,88))

addlists(z1,z2,c) # list with x=(5,12,13), y=(3,4,5,8,88)

need 'parallel' cluster for the remaining examples
cls <- makeCluster(2)
setclsinfo(cls)

check it
clusterEvalQ(cls,partoolsenv$myid) # returns 1, 2

formrowchunks,addlists, matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,d

clusterEvalQ(cls,partoolsenv$ncls) # returns 2, 2

formrowchunks example; see up a matrix to be distributed first
m <- rbind(1:2,3:4,5:6)

apply the function

formrowchunks(cls,m,"mc")

check results

clusterEvalQ(cls,mc) # list of a 1x2 and a 2x2 matrix

matrixtolist(1,m) # 3-component list, first is (1,2)

test of of distribagg():
form and distribute test data
sample(1:3,10,replace=TRUE)

<- sample(0:1,10,replace=TRUE)

<- runif(10)

<- runif(10)
d <- data.frame(x,y,u,v)
distribsplit(cls,"d")
check that it's there at the cluster nodes, in distributed form
clusterEvalQ(cls,d)
d
try the aggregation function
distribagg(cls,c("u”,"v"), c("x","y"),"d", "max")
check result
aggregate(cbind(u,v) ~ x+y,d,max)

< €< X H H=
N
1

real data

mtc <- mtcars

distribsplit(cls,"mtc")
distribagg(cls,c("mpg","disp”,"hp"),c("cyl”,"gear"),"mtc”, "max")
check

aggregate(cbind(mpg,disp,hp) ~ cyl+gear,data=mtcars,FUN=max)

distribcounts(cls,c("cyl”, "gear"), "mtc")
check
table(mtccyl,mtcgear)

find mean mpg, hp for each cyl/gear combination
distribmeans(cls,c('mpg', 'hp'),c('cyl’, 'gear"'), 'mtc')

extract and collect all the mtc rows in which the number of cylinders is 8
distribgetrows(cls, 'mtc[mtc$cyl == 8,]1")

check

mtc[mtc$cyl == 8,]

same for data.tables

mtc <- as.data.table(mtc)

setkey(mtc,cyl)

distribsplit(cls, 'mtc')

distribcounts(cls,c("cyl”, "gear"),"mtc")
distribmeans(cls,c('mpg', 'hp'),c('cyl’, 'gear'), 'mtc')

14 parpdist

dwhich.min(cls, 'mtc$mpg') # smallest is at node 1, row 15
dwhich.max(cls, 'mtc$mpg') # largest is at node 2, row 4

stopCluster(cls)

newadult UCI adult income data set, adapted

Description

This data set is adapted from the Adult data from the UCI Machine Learning Repository, which was
in turn adapted from Census data on adult incomes and other demographic variables. The UCI data
is used here with permission from Ronny Kohavi.

The variables are:
* gt50, which converts the original >50K variable to an indicator variable; 1 for income greater
than $50,000, else 0
* edu, which converts a set of education levels to approximate number of years of schooling
* age
e gender, 1 for male, O for female

* mar, 1 for married, O for single

Usage

data(newadult)

parpdist Partools Apps

Description

General parallel applications.

Usage

parpdist(x,y,cls)

Arguments
cls A cluster run under the parallel package.
X A data matrix

y A data matrix

prgeng 15

Details
Parallel wrapper for pdist from package of the same name. Finds all the distances from rows in x
to rows in y.

Value

Object of type "pdist”.

Author(s)
Norm Matloff

Examples

set up 'parallel' cluster
cls <- makeCluster(2)
setclsinfo(cls)

x <= matrix(runif(20),nrow=5)

y <= matrix(runif(32),nrow=8)

2 calls should have identical resultsW
pdist(x,y,cls)@dist
parpdist(x,y,cls)@dist

stopCluster(cls)

prgeng Silicon Valley programmers and engineers

Description
This data set is adapted from the 2000 Census (5% sample, person records). It is restricted to
programmers and engineers in the Silicon Valley area.

The variable codes, e.g. occupational codes, are available from the Census Bureau. (Short code
lists are given in the record layout, but longer ones are in the appendix Code Lists.)

The variables are:

* age, with a U(0,1) variate added for jitter

* cit, citizenship; 1-4 code various categories of citizens; 5 means noncitizen (including per-
manent residents

* educ: 01-09 code no college; 10-12 means some college; 13 is a bachelor’s degree, 14 a
master’s, 15 a professiona deal and 16 is a doctorate

* occ, occupation
* birth, place of birth

* wageinc, wage income

16 snowdoop, filechunkname, etc...

¢ wkswrkd, number of weeks worked
* yrentry, year of entry to the U.S. (0 for natives)
e powpuma, location of work

e gender, 1 for male, 2 for female

Usage
data(prgeng)

snowdoop, filechunkname, etc...
Snowdoop.

Description

“Snowdoop”: Utilities for distributed file storage, access and related operations.

Usage

filechunkname (basenm,ndigs, nodenum=NULL)
filesort(cls,infilenm,colnum,outdfnm,infiledst=FALSE,

ndigs=0,nsamp=1000, header=FALSE, sep="",usefread=FALSE)
filesplit(nch,basenm, header=FALSE, seqnums=FALSE)
filesplitrand(cls, fname,newbasename,ndigs,header=FALSE, sep)
fileshuffle(inbasename, nout, outbasename, header = FALSE)
linecount(infile, header=FALSE, chunksize=100000)
filecat(cls, basenm, header = FALSE)

readnscramble(cls,basenm, header=FALSE,sep= " ")
filesave(cls,dname,newbasename,ndigs, sep)

fileread(cls, fname,dname,ndigs,header=FALSE, sep=" ",usefread=FALSE)
getnumdigs(nch)

fileagg(fnames,ynames, xnames,header=FALSE,sep= " ",FUN, FUNT=FUN)
dfileagg(cls, fnames, ynames, xnames, header=FALSE,sep=" ",FUN, FUNT=FUN)

filegetrows(fnames, tmpdataexpr,header=FALSE, sep=" ")
dfilegetrows(cls, fnames, tmpdataexpr,header=FALSE, sep=" ")

Arguments
cls A cluster for the parallel package.
nch Number of chunks for the file split.
basenm A chunked file name, minus suffix.
infile Name of a nonchunked file.
ndigs Number of digits in the chunked file name suffix.
nodenum If non-NULL, get the name of the file chunk of cluster node nodenum; otherwise,

get the name for the chunk associated with this node.

infilenm
outdfnm
infiledst

colnum

usefread

nsamp

header
segnums
sep
chunksize

dname

fname
fnames

newbasename

ynames
xnames
tmpdataexpr
FUN

FUN1
inbasename
outbasename

nout

Details

snowdoop,filechunkname, etc... 17

Name of input file (without suffix, if distributed).
Name of output file (without suffix).
If TRUE, infilenm is distributed.

Column number on which the sort will be done. It is assumed that this data
column is free of NAs.

If true, use fread instead of read. table; generally much faster; requires data. table
package.

Number of records to sample in each file chunk to determine bins for the bucket
sort.

TRUE if the file chunks have headers.

TRUE if the file chunks will have sequence numbers.
Field delimiter used in read. table.

Number of lines to read at a time, for efficient I/O.

Quoted name of a distributed data frame or matrix. For filesave, the object
must have column names.

Quoted name of a distributed file.
Character vector of file names.

Quoted name of the prefix of a distributed file, e.g. xyz for a distributed file
Xyz.01, xyz.02 etc.

Vector of quoted names of variables on which FUN is to be applied.
Vector of quoted names of variables to be used for cell definition.
Expression involving a data frame tmpdataexpr. See below.
First-level aggregation function.

Second-level aggregation function.

basename of the input files, e.g. x for x.1, x.2, ...

basename of the output files

number of output files

Use filesplit to convert a single file into distributed one, with nch chunks. The file header, if
present, will be retained in the chunks. If seqnums is TRUE, each line in a chunk will be preceded
by the line number it had in the original file.

The reverse operation to filesplit is performed by filecat, which converts a distributed file into

a single one.

The fileagg function does an out-of-memory, multifile version of aggregate, reading the specified
files one at a time, and returning a grand aggregation. The function dfileagg partitions the specified
group of files to a partools cluster, has each call fileagg, and again aggregates the results.

The function filegetrows reads in the files in fnames, one at a time, naming the resulting in-
memory data tmpdata each time. (It is assumed that the data fit in memory.) The function applies

18 snowdoop, filechunkname, etc...

the user command tmpdataexpr to tmpdata, producing a subset of tmpdata. All of these sub-
sets are combined using rbind, yielding the return value. The paired function dfilegetrows is a
distributed wrapper for filegetrows, just as dfileagg is for fileagg.

Use filesort to do a file sort, with the input file being either distributed or ordinary, placing the
result as a distributed data frame/matrix in the memories of the cluster nodes. The first nsamp
records are read from the file, and are used to form one quantile range for each cluster node. Each
node then reads the input file, retaining the records in its assigned range, and sorts them. This results
in the input file being sorted, in memory, in a distributed manner across nodes, under the specifid
name. At present, this utility is not very efficient.

Operations such as ca need i.i.d. data. If the original file storage was ordered on some variable, one
needs to randomize the data first. There are several options:

* readnscramble: This produces a distributed data frame/matrix under the name basenm. Note
that a record in chunk i of the distributed file will likely end up in chunk j in the distributed
data frame/matrix, with j different from 1i.

* filesplitrand: Use this you wish to directly produce a randomized distributed file from a
monolithic one. It will read the file into memory, chunk it at the cluster nodes, each of which
will save its chunk to disk.

e fileshuffle: If you need to avoid reading big files into memory, use this. You must run
filesplit first, and then run fileshuffle several times for a good shuffle.

Note that this function is also useful if your cluster size changes. A distributed file of m chunks
can now be converted to one with n chunks, either more or fewer than before.

If you wish to use this same randomized data in a future session, you can save it as a distributed file
by calling filesave. Of course, this function is also useful if one wishes to save a distributed data
frame or matrix that was created computationally rather than from read from a distributed file. To
go the other direction, i.e. read a distributed file, use fileread.

Some of the functions here are useful mainly as intermediate operations for the others:

* The function filechunkname returns the name of the file chunk for the calling cluster node.
e The linecount function returns the number of lines in a text file.

e A call to getnumdigs returns the number of digits in a distributed file name suffix.

Author(s)
Norm Matloff

Examples

Not run:

cls <- makeCluster(2)
setclsinfo(cls)

example of filesplit()

make test input file

m <- rbind(1:2,3:4,5:6)
write.table(m,"m",row.names=FALSE,col.names=FALSE)

snowdoop,filechunkname, etc... 19

apply the function

filesplit(2,"m"”,seqnums=TRUE)

file m.1 and m.2 created, with contents c(1,1,2) and
rbind(c(2,3,4),c(3,5,6)), respectively

check it

read. table("m.1",header=FALSE, row.names=1)
read.table("m.2",header=FALSE, row.names=1)

m

example of filecat(); assumes filesplit() example above already done
delete file m so we can make sure we are re-creating it

unlink("m")

filecat(cls,"m")

check that file m is back

read.table("m",row.names=1)

example of filesave(), fileread()

make test distributed data frame

clusterEvalQ(cls,x <- data.frame(u = runif(5),v = runif(5)))
apply filesave()

filesave(cls, 'x', 'xfile',1,"' ")

check it

fileread(cls, 'xfile', 'xx"',1,header=TRUE,sep=" ")
clusterEvalQ(cls,xx)

clusterEvalQ(cls,x)

example of filesort()

make test distributed input file

ml <- matrix(c(5,12,13,3,4,5,8,8,8,1,2,3,6,5,4),byrow=TRUE,ncol=3)
m2 <- matrix(c(9,22,88,44,5,5,2,6,10,7,7,7),byrow=TRUE,ncol=3)
write.table(ml,"m.1",row.names=FALSE)
write.table(m2,"m.2",row.names=FALSE)

sort on column 2 and check result
filesort(cls,"m",2,"msort"”,infiledst=TRUE,ndigs=1,nsamp=3, header=TRUE)
clusterEvalQ(cls,msort) # data should be sorted on V2

check by comparing to input

m1

m2

m <- rbind(m1,m2)

write.table(m,"m",row.names=FALSE)

clusterEvalQ(cls,rm(msort))
filesort(cls,"m",2,"msort"”,infiledst=FALSE, nsamp=3,header=TRUE)
clusterEvalQ(cls,msort) # data should be sorted on V2

example of readnscramble()

co2 <- head(C02,25)

write.table(co2,"co2",row.names=FALSE) # creates file 'co2'
filesplit(2,"co2",header=TRUE) # creates files 'co2.1', 'co2.2'
readnscramble(cls, "co2"”,header=TRUE) # now have distrib. d.f.
save the scrambled version to disk
filesave(cls, 'co2', 'co2s',1,sep=",")

snowdoop, filechunkname, etc...

example of fileshuffle()

make test file, 'test'

cat('a','bc','def',"i","'j", 'k',file="test',sep="\n")

filesplit(2,'test') # creates files 'test.1','test.2'
fileshuffle('test',2, 'testa') # creates shuffled files 'testa.l1', 'testa.2'

example of filechunkname()
clusterEvalQ(cls,filechunkname("x",3)) # returns "x.001", "x.002"

example of getnumdigs()
getnumdigs(156) # should be 3

examples of filesave() and fileread()

mtc <- mtcars

distribsplit(cls, "mtc")

save distributed data frame to distributed file

filesave(cls, 'mtc','ctm',1,"',")

read it back in to a new distributed data frame
fileread(cls, 'ctm', 'ctmnew',1,header=TRUE,sep=",")

check it

clusterEvalQ(cls, ctmnew)

try dfileagg() on it (not same as distribagg())
dfileagg(cls,c('ctm.1', " 'ctm.2'),c("mpg","disp”,"hp"),c("cyl”, "gear"),header=TRUE, sep=",", "max")
check

aggregate(cbind(mpg,disp,hp) ~ cyl+gear,data=mtcars,FUN=max)

extract the records with 4 cylinders and 4 gears (again, different
from distribgetrows())

cmd <- 'tmpdata[tmpdata$cyl == 4 & tmpdata$gear == 4,]'
dfilegetrows(cls,c('ctm.1', " 'ctm.2'),cmd, header=TRUE, sep=", ")

check

mtc[mtc$cyl == 4 & mtc$gear == 4,]

stopCluster(cls)

End(Not run)

Index

addlists caquantile
(formrowchunks,addlists,matrixtolist, setclsinfoggedpdse disim;jibsgln t¢apstonpcadkjsdamabaggsadsdm
10 2

ca dbs, 8
(ca,cabase,calm,caglm, caprcomp, cakm, cabsauspqaipsin8ile, caagg, caknn),
2 dbsmsg (dbs), 8

ca,cabase,calm,caglm, caprcomp, cakm, cameans, cadpbismigd egichddhstaknn
2 dfileagg (snowdoop, filechunkname,

caagg etc...), 16
(ca,cabase,calm,caglm, caprcomp, cakm, cafiédegetaquanshbwdoapgd idaambhkname,
2 etc...), 16

cabase distribagg
(ca,cabase,calm,caglm, caprcomp, cakm, cameans, céfjoantidehaakggaddkists, matrixtolist, setclsinfo, ge
2 10

caclassfit distribcat
(caclassfit,caclasspred,vote,re_code), (formrowchunks,addlists,matrixtolist,setclsinfo,ge
6 10

caclassfit,caclasspred,vote,re_code, 6 distribcounts

caclasspred (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(caclassfit,caclasspred,vote,re_code), 10
6 distribgetrows

caglm (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm, caprcomp,cakm, cameans, cdfuantile, caagg, caknn),
2 distribisdt

cakm (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm, caprcomp, cakm, cameans, cdfuantile, caagg, caknn),
2 distribmeans

caknn (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm, caprcomp,cakm, cameans, cdfuantile,caagg, caknn),
2 distribrange

calm (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm, caprcomp, cakm, cameans, cdfuantile, caagg, caknn),
2 distribsplit

cameans (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm,caprcomp, cakm,cameans, cdfuantile, caagg, caknn),
2 doclscmd

caprcomp (formrowchunks,addlists,matrixtolist,setclsinfo,ge
(ca,cabase,calm,caglm, caprcomp, cakm, cameans, cdfuantile, caagg, caknn),
2 docmd

21

22 INDEX

(formrowchunks,addlists,matrixtolist, setclsinffqopetptehdilssratbdpists gistriktalidistetibbgintasge

10 10

dwhich.max
(Formrowchunks,addlists,matrixtolist,gé@é§§PH€d?§éﬁp$e,distribsplit,distribcat,distribagg,distr
10

dwhich.min linecount (snowdoop, filechunkname,

(formrowchunks,addlists,matrixtolist,setclsin?&?getﬂté@distribsplit,distribcat,distribagg,distr

10 matrixtolist

exportlibpaths (formrowchunks,addlists,matrixtolist,setclsinfo,ge

(formrowchunks,addlists,matrixtolist,setclsin#g,getpte,distribsplit,distribcat,distribagg,distr
10 newadult, 14

fileagg (snowdoop, filechunkname, parpdist, 14

etc...), 16 prgeng, 15
filecat (snowdoop, filechunkname,
etc...), 16 re_code
filechunkname (snowdoop, filechunkname, (caclassfit,caclasspred,vote,re_code),
etc...), 16 6
filegetrows (snowdoop, filechunkname, readnscramble (snowdoop, filechunkname,
etc...), 16 etc...), 16
fileread (snowdoop, filechunkname,
etc...), 16 setclsinfo
filesave (snowdoop, filechunkname, (formrowchunks,addlists,matrixtolist,setclsinfo,ge
etc...), 16 10
fileshuffle (snowdoop, filechunkname, snowdoop (snowdoop, filechunkname,
etc...), 16 etc...), 16
filesort (snowdoop, filechunkname, snowdoop, filechunkname, etc..., 16
etc...), 16
filesplit (snowdoop, filechunkname, vote
etc...), 16 (caclassfit,caclasspred, vote,re_code),
filesplitrand (snowdoop, filechunkname, 6
etc...), 16 .
formrowchunks) writemgrscreen (dbs), 8
(formrowchunks,addlists,matrixtolist,gg%gfg{hfgfgggg éﬁgf3t§ibsplit,distribcat,distribagg,distr
10
formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,c
10
geteltis
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distr
10
getnumdigs (snowdoop, filechunkname,
etc...), 16

getpte
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distr
10

ipstrcat

	ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn
	caclassfit,caclasspred,vote,re_code
	dbs
	formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max
	newadult
	parpdist
	prgeng
	snowdoop,filechunkname, etc...
	Index

