Package ‘overshiny’

August 29, 2025
Type Package

Title Interactive Overlays on 'shiny' Plots
Version 0.1.1

Description Provides rectangular elements that can be dragged and resized over
plots in 'shiny' apps. This may be useful in applications where users need
to mark regions on the plot for further input or processing.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/nicholasdavies/overshiny,
https://nicholasdavies.github.io/overshiny/

BugReports https://github.com/nicholasdavies/overshiny/issues
RoxygenNote 7.3.2

Imports cowplot, ggplot2, graphics, grDevices, grid, htmltools, shiny,
shinyjs, shinyjqui, stringr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Nick Davies [aut, cre, cph]

Maintainer Nick Davies <nicholas.davies@lshtm.ac.uk>
Repository CRAN

Date/Publication 2025-08-28 23:10:02 UTC

Contents

overlayBounds L.
overlayPlotOutput e
overlayServer
overlayToken

https://github.com/nicholasdavies/overshiny
https://nicholasdavies.github.io/overshiny/
https://github.com/nicholasdavies/overshiny/issues

2 overlayBounds

overshiny e e e 8
TEMATZIN o e e e e e 9
useOverlay e 9
Index 11
overlayBounds Align overlays with a ggplot2 or base plot
Description

Sets the pixel and coordinate bounds of the overlay area based on a ggplot2::ggplot() object or
base R plot. This ensures that overlays are positioned correctly in both visual and coordinate space.

Usage

overlayBounds(ov, plot, xlim = c(NA, NA), ylim = c(NA, NA), row = 1L, col = 1L)

Arguments
ov A shiny::reactiveValues() object returned by overlayServer().
plot A ggplot2::ggplot() object used for overlay alignment, or the character string
"base” if you are using base R plotting.
xlim, ylim Vectors defining the coordinate limits for overlays. Use NA to inherit axis limits
from the plot panel.
row, col Row and column of the facet panel (if applicable). This only works with ggplot2
plots; base R plots with multiple panels are not supported.
Details

Call this function within shiny::renderPlot(), before returning the ggplot object (if using gg-
plot2) or NULL (if using base R plotting).

Value

The ggplot object (for ggplot2) or NULL (for base R plotting), to be returned from the shiny: : renderPlot ()
block.

See Also

overlayServer(), for a complete example.

overlayPlotOutput 3

Examples

server <- function(input, output) {
ov <- overlayServer("my_plot”, 1, 1)
output$my_plot <- shiny::renderPlot({
plot(1:100, sin(1:100 * @.1), type = "1")
overlayBounds(ov, "base”, xlim = c(1, 100))

»
further server code here .
3
overlayPlotOutput Create a plot output element with overlays
Description

Render a shiny: :renderPlot() within an application page, with support for overlays.

Usage

overlayPlotOutput(outputId, width, height)

Arguments

outputId The output slot where the plot will be rendered using shiny: : renderPlot(),
with a call to overlayBounds().

width, height Image width and height. Must be a valid CSS unit, like "100%", "400px", or
"auto”, or a number, interpreted as pixels.
Value

A plot output element that can be added to a UI definition.

See Also

overlayServer(), for a complete example.

Examples

ui <- shiny::fluidPage(
useOverlay(),
overlayPlotOutput("my_plot"”, 640, 480)
further UI elements here .

overlayServer

overlayServer Add interactive overlays to a Shiny plot

Description

This function sets up server-side infrastructure to support draggable and resizable overlays on a
plot. This may be useful in applications where users need to define regions on the plot for further
input or processing. Currently, the overlays are only designed to move along the x axis of the plot.

Usage
overlayServer(
outputld,
nrect,
width = NULL,
snap = "none”,
colours = overlayColours,
opacity = 0.25,
icon = shiny::icon("gear"),
stagger = 0.045,
style = 1list(),
debug = FALSE
)
Arguments
outputId The ID of the plot output (as used in overlayPlotOutput()).
nrect Number of overlay rectangles to support.
width Optional default overlay width in plot coordinates. If NULL (default), set to 10%
of the plot width.
shap Function to "snap" overlay coordinates to a grid, or "none” (default) for no
snapping. See details for how to specify the snap function.
colours A function to assign custom colours to the overlays. Should be a function that
takes a single integer (the number of overlays) and returns colours in hexadeci-
mal notation (e.g. "#FF0000"). Do not provide opacity here as a fourth channel;
use the opacity argument instead.
opacity Numeric value (0 to 1) indicating overlay transparency.
icon A Shiny icon to show the dropdown menu.
stagger Vertical offset between stacked overlays, as a proportion of height.
style Named list of character vectors with additional CSS styling attributes for the
overlays. If an element is named "background-color” then this will override the
colours and opacity arguments. Vectors are recycled to length nrect.
debug If TRUE, prints changes to input values to the console for debugging purposes.

overlayServer 5

Details

Call this function once from your server code to initialise a set of overlay rectangles for a spe-
cific plot. It creates reactive handlers for move, resize, and dropdown menu actions, and al-
lows adding new overlays by dragging an overlayToken() onto the plot. The function returns
a shiny::reactiveValues() object which you should keep for further use; in the examples and
documentation, this object is typically called ov.

This function also defines a dynamic output UI slot with ID paste@(outputId, "_menu"), which
can be rendered using shiny: :renderUI(). When a user clicks the overlay’s dropdown icon, this
menu becomes visible and can be populated with inputs for editing overlay-specific settings, e.g.
labels or numeric parameters tied to that overlay.

If you provide a coordinate snapping function (snap argument), it should have the signature function(ov, i)
where ov is the shiny: :reactiveValues() object defining the overlays and their settings, and i
is the set of indices for the rectangles to be updated. When the position of any of the overlays is
changed, the snapping function will be applied. In this function, you should make sure that all
ov$cx@[i] and ov$cx1[i] are within the coordinate bounds defined by the plot, i.e. constrained
by ov$bound_cx and ov$bound_cw, when the function returns. This means, for example, if you are
"rounding down" ov$cx@[i] to some nearest multiple of a number, you should make sure it doesn’t
become less than ov$bound_cx. Finally, the snapping function will get triggered when the x axis
range of the plot changes, so it may be a good idea to provide one if the user might place an overlay
onto the plot, but then change the x axis range of the plot such that the overlay is no longer visible.
You can detect this by verifying whether the overlay rectangles are "out of bounds" at the top of
your snapping function. See example below.

Value
A shiny::reactiveValues() object with the following named fields:

n Number of overlays (read-only).
active Logical vector of length n; indicates which overlays are active.
show Logical vector; controls whether overlays are visible.

editing Index of the overlay currently being edited via the dropdown menu, if any; NA otherwise
(read-only).

last Index of the most recently added overlay (read-only).

snap Coordinate snapping function.

px, pw Numeric vector; overlay x-position and width in pixels (see note).

pY, ph Numeric vector; overlay y-position and height in pixels (read-only).

cx0, cx1 Numeric vector; overlay x-bounds in plot coordinates (see note).

label Character vector of labels shown at the top of each overlay.

outputld The output ID of the plot display area (read-only).

bound_cx, bound_cw x-position and width of the bounding area in plot coordinates (read-only).
bound_px, bound_pw x-position and width of the bounding area in pixels (read-only).
bound_py, bound_ph y-position and height of the bounding area in pixels (read-only).

stagger Amount of vertical staggering, as proportion of height.

6 overlayServer

style Named list of character vectors; additional styling for rectangular overlays.
update_cx(i) Function to update cx@/cx1 from px/pw for overlays i (see note).

update_px(i) Function to update px/pw from cx@/cx1 for overlays i (see note).

Note: Fields marked "read-only" above should not be changed. Other fields can be changed in
your reactive code and this will modify the overlays and their properties. The fields px and pw
which specify the pixel coordinates of each overlay can be modified, but any modifications should
be placed in a shiny::isolate() call, with a call to ov$update_cx(i) at the end to update cx@
and cx1 and apply snapping. Similarly, the fields cx@ and cx1 which specify the plot coordinates of
each overlay can be modified, but modifications should be placed in a shiny: :isolate() call with
a call to ov$update_px (i) at the end to update px and pw and apply snapping. The i parameter to
these functions can be left out to apply changes to all overlays, or you can pass in the indices of just
the overlay(s) to be updated.

See Also

overlayPlotOutput(), overlayBounds()

Examples

Example of a valid snapping function: snap to nearest round number and
make sure the overlay is at least 2 units wide.
mysnap <- function(ov, i) {
remove any "out of bounds" overlays
oob <- seq_len(ov$n) %in% i &
(ov$cx@ < ov$bound_cx | ov$cx1 > ov$bound_cx + ov$bound_cw)
ov$activeloob] <- FALSE

adjust position and with
widths <- pmax(2, round(ov$cx1[i] - ov$cx@[il))
ov$cx@[i] <- pmax(round(ov$bound_cx),
pmin(round(ov$bound_cx + ov$bound_cw) - widths, round(ov$cx@[il)))
ov$cx1[i] <- pmin(round(ov$bound_cx + ov$bound_cw), ov$cx@[i] + widths)

3

ui <- shiny::fluidPage(
useOverlay(),
overlayPlotOutput("my_plot”, 640, 480),
overlayToken("add"”, "Raise")

further UI elements here .

)

server <- function(input, output) {
ov <- overlayServer("my_plot”, 4, 1, snap = mysnap)

output$my_plot_menu <- renderUI({

i <- req(ov$editing)

textInput("”label_input”, "Overlay label”, value = ov$labell[i])
D

observeEvent (input$label_input, {

overlayToken 7

i <- req(ov$editing)
ov$label[i] <- input$label_input
»

output$my_plot <- shiny::renderPlot({
df <- data.frame(x = seq(@, 2 x pi, length.out = 200))
df$y <- sin(df$x) + 0.1 x sum(ov$active * (df$x > ov$cx@ & df$x < ov$cx1))
plot(df, type = "1")
overlayBounds(ov, "base")
»
further server code here . . .

}

if (interactive()) {
shiny: :shinyApp(ui, server)

}

overlayToken Create an overlay token input control

Description
Create a token that can be dragged onto an (overlay plot)overlayPlotOutput() to create a new
overlay.

Usage

overlayToken(inputId, name, label = name)

Arguments
inputId The input slot used for the token.
name Text (or HTML) to be displayed on the token itself.
label Text label that will appear on the overlay.

Details

Note that the DOM ID of the token will be converted to "overshiny_token_<inputId>". This
transformed ID is important for internal interaction logic (e.g. for use with JavaScript drag/drop
handlers). When referencing the token programmatically (e.g. in CSS selectors or custom JavaScript),
use the full prefixed ID (see examples).

Value

An overlay token input control that can be added to a UI definition.

8 overshiny

See Also

overlayServer(), for a complete example.

Examples

ui <- shiny::fluidPage(
useOverlay(),
overlayToken("add"”, "Add new overlay”, "Overlay"),
The token's HTML id will be "overshiny_token_add"”
shiny: :tags$style(shiny: :HTML("#overshiny_token_add { cursor: grab; }"))

overshiny Interactive overlays on Shiny plots

Description

overshiny provides draggable and resizable rectangular elements that overlay plots in Shiny apps.
This may be useful in applications where users need to define regions on the plot for further input
or processing. Currently, the overlays are only designed to move along the x axis of the plot.

Details

The package exports a setup helper (useOverlay()), Ul components (overlayToken(), overlayPlotOutput()),
a server-side controller (overlayServer()), and a function for aligning overlays to a ggplot2 or
base plot (overlayBounds()).

Author(s)

Maintainer: Nick Davies <nicholas.davies@lshtm.ac.uk> [copyright holder]

See Also
Useful links:
* https://github.com/nicholasdavies/overshiny

e https://nicholasdavies.github.io/overshiny/

* Report bugs at https://github.com/nicholasdavies/overshiny/issues

https://github.com/nicholasdavies/overshiny
https://nicholasdavies.github.io/overshiny/
https://github.com/nicholasdavies/overshiny/issues

remargin 9

remargin Adjust margins of a ggplot2 plot

Description

To avoid the overlay rectangles moving around when the plot margins change, you can use this
function to set specific margins for your plot. You will probably want to specify a large enough
margin so that the axes and legends don’t go out of the plot area.

Usage

remargin(g, t, r, b, 1, unit = "npc")

Arguments
g A ggplot2 plot.
t,r,b,1 Top, right, bottom, and left margins to set.
unit Unit for the margins (see grid::unit() for permissible units). The default,
"npc”, refers to fractions of the overall plot area.
Details

Note that this only works with ggplot?2 plots. For base plots, you can set the margins using par (plt
=c(x1, x2, y1, y2)). See graphics: :par () for details.
Value

A ggplot2 plot with margins adjusted.

Examples

plot1 = ggplot2::ggplot(data.frame(x = rnorm(10), y = rnorm(10))) +
ggplot2::geom_point(ggplot2::aes(x, y))
plot2 = remargin(plotl, 0.1, 0.1, 0.1, 0.1) # plot with 10% margins all around

useOverlay Manually set up a Shiny app to use overshiny

Description

overshiny will set up automatically if you have an overlayPlotOutput() anywhere in your Shiny
UL, which you probably do if you are using this package. But if you don’t, you can set up overshiny
by manually putting useOverlay() somewhere in your Shiny app’s UL

10

Usage

useOverlay()

Details

This also calls shinyjs: :useShinyjs(), as overshiny depends on shinyjs.

Value

Returns an HTML dependency that sets up your Shiny app to use overshiny.

See Also

overlayServer (), for a complete example.

Examples

ui <- shiny::fluidPage(
useOverlay() # only needed if no overlayPlotOutput() elements below
further UI elements here .

)

server <- function(input, output) {
server code here .

}

if (interactive()) {
shiny: :shinyApp(ui, server)

}

useOverlay

Index

ggplot2::ggplot(), 2
graphics::par(), 9
grid::unit(), 9

overlayBounds, 2
overlayBounds(), 3,6, 8
overlayPlotOutput, 3
overlayPlotOutput(), 4, 6-9
overlayServer, 4
overlayServer(), 2, 3,8, 10
overlayToken, 7
overlayToken(), 5, 8
overshiny, 8

overshiny-package (overshiny), 8

remargin, 9

shiny::isolate(), 6

shiny: :reactiveValues(), 2,5
shiny: :renderPlot(), 2, 3
shiny: :renderUI(), 5
shinyjs::useShinyjs(), 10

useOverlay, 9
useOverlay(), 8, 9

11

	overlayBounds
	overlayPlotOutput
	overlayServer
	overlayToken
	overshiny
	remargin
	useOverlay
	Index

