Package ‘osrm.backend’

February 6, 2026
Title Bindings for 'Open Source Routing Machine'
Version 0.2.0

Description Install and control 'Open Source Routing Machine' (OSRM")
backend executables to prepare routing data and run/stop a local
'OSRM' server. For computations with the running server use the 'osrm’
R package (<https://cran.r-project.org/package=osrm>).

License MIT + file LICENSE

URL https://github.com/e-kotov/osrm.backend,

https://www.ekotov.pro/osrm.backend/

BugReports https://github.com/e-kotov/osrm.backend/issues
Imports digest, httr2, jsonlite, processx, ps

Suggests knitr, osrm, rmarkdown, sf, testthat (>= 3.0.0), tibble
VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en

RoxygenNote 7.3.3

SystemRequirements OSRM backend binaries (>= v5.27.0)
<https://github.com/Project-OSRM/osrm-backend>; package
downloads binaries automatically if not found

NeedsCompilation no

Author Egor Kotov [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-6690-5345>)

Maintainer Egor Kotov <kotov.egor@gmail.com>
Repository CRAN
Date/Publication 2026-02-06 21:30:02 UTC

https://cran.r-project.org/package=osrm
https://github.com/e-kotov/osrm.backend
https://www.ekotov.pro/osrm.backend/
https://github.com/e-kotov/osrm.backend/issues
https://orcid.org/0000-0001-6690-5345

2 osrm_check_available_versions
Contents
osrm_check available versionso 2
osrm_check_latest_version e e 3
OSIM_Cleanup o o e e e e e e 3
osrm_clear_path 5
OSTIM_CONIIACE v v o ot e e e e e e e e e e e e e e e 6
OSIM_CUSIOIMIZE . . .« v v v v o v e e e e e e e e e e e e e e e e e e 8
OSIML_EXIIACt o o o e e e e e e e e e e 10
osrm_find_profile 12
osrm_install L e e 13
OSIM_PArtition ot e e e e 15
osrm_prepare_graph Lo e e 17
OSIIN_SEIVELS . « v+ v v v e v e e e e e e e e e e e e e e e e e 19
OSIIML_SEATT o o o e e e e e e e e e 20
OSTIML_STATt_SEIVEL v v v v e e e e e e e e e e e e e 22
OSTIN_SEOP + v v v v e 25
osrm_stop_all 27
osrm_uninstall e 28
osrm_which 29
Index 31
osrm_check_available_versions
Check for Available OSRM Versions
Description
Queries the GitHub API to get a list of all available version tags for the OSRM backend that have
binaries for the current platform.
Usage
osrm_check_available_versions(prereleases = FALSE)
Arguments
prereleases A logical value. If TRUE, include pre-release versions in the returned list. De-
faults to FALSE.
Value

A character vector of available version tags.

osrm_check_latest_version 3

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
Get all stable versions with binaries for this platform
osrm_check_available_versions()

}

osrm_check_latest_version
Check for the Latest Stable OSRM Version

Description

Queries the GitHub API to find the most recent stable (non-pre-release) version tag for the OSRM
backend that has binaries available for the current platform.

Usage

osrm_check_latest_version()

Value

A string containing the latest version tag (e.g., "v5.27.1").

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
Get the latest stable version number of OSRM backend
osrm_check_latest_version()

}

osrm_cleanup Clean Up OSRM Files in a Directory

Description

Remove OSRM-generated files from a directory. This is useful when switching between algorithms
(CH and MLD) or when you want to start fresh.

Usage

osrm_cleanup(path, keep_osm = TRUE, dry_run = FALSE, quiet = FALSE)

4 osrm_cleanup

Arguments
path A string. Path to an OSRM file or directory containing OSRM files. If a file
path is provided (e.g., data.osm.pbf or data.osrm.hsgr), the base name will
be extracted and all related . osrm. * files will be removed.
keep_osm Logical. If TRUE (default), keeps the original .osm.pbf (or .osm, .osm.bz2)
file. If FALSE, removes it as well.
dry_run Logical. If TRUE, shows what would be deleted without actually deleting. De-
fault is FALSE.
quiet Logical. If TRUE, suppresses messages. Default is FALSE.
Details

OSRM creates many .osrm.* files during the extract, contract, partition, and customize stages.
This function helps clean up these files.

Important: The CH and MLD algorithms cannot safely coexist in the same directory because
the MLD partition stage modifies some extract-stage files. Use this function to clean up before
switching algorithms.

Value

Invisibly returns a character vector of removed file paths.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

Stage a temporary workspace with placeholder OSRM files
pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)
tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")
file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)
file.create(

file.path(osrm_dir, "cur.osrm.timestamp”),

file.path(osrm_dir, "cur.osrm.hsgr"),

file.path(osrm_dir, "cur.osrm.mldgr"),

file.path(osrm_dir, "cur.osrm.partition”)

)

n

Preview what would be deleted
osrm_cleanup(osrm_dir, dry_run = TRUE)

Clean up OSRM artifacts (keep the OSM file)
osrm_cleanup(osrm_dir)

osrm_clear_path 5

Remove everything including the 0SM source
osrm_cleanup(osrm_dir, keep_osm = FALSE)

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
3
osrm_clear_path Clear OSRM Path from Project’s .Rprofile
Description

Scans the .Rprofile file in the current project’s root directory and removes any lines that were
added by osrm_install() to modify the PATH.

Usage

osrm_clear_path(quiet = FALSE)

Arguments

quiet A logical value. If TRUE, suppresses messages. Defaults to FALSE.

Value

TRUE if the file was modified, FALSE otherwise.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
Clean up a temporary project's .Rprofile
old <- setwd(tempdir())
on.exit(setwd(old), add = TRUE)
writeLines(
c(
"#added-by-r-pkg-osrm.backend”,
'Sys.setenv(PATH = paste("dummy”, Sys.getenv("PATH"), sep = .Platform$path.sep))’
),
" .Rprofile”
)
osrm_clear_path(quiet = TRUE)
unlink(".Rprofile")

6 osrm_contract

osrm_contract Contract OSRM Graph for Contraction Hierarchies (CH)

Description

Run the osrm-contract tool to contract an OSRM graph for the CH pipeline. After running, a
companion <base>.osrm. hsgr file must exist to confirm success.

Usage

osrm_contract(
input_osrm,
threads = 8L,
verbosity = c(”INFO", "NONE”, "ERROR”, "WARNING”, "DEBUG"),
segment_speed_file = NULL,
turn_penalty_file = NULL,
edge_weight_updates_over_factor = 0,
parse_conditionals_from_now = 0,
time_zone_file = NULL,
quiet = FALSE,
verbose = FALSE,
spinner = TRUE,
echo_cmd = FALSE

)
Arguments
input_osrm A string. Path to a .osrm. timestamp file, the base path to the . osrm files (with-
out extension), or a directory containing exactly one .osrm. timestamp file.
threads An integer. Number of threads to use; default 8.
verbosity A string. Log verbosity level passed to -1/--verbosity (one of "NONE", "ERROR" , "WARNING", "INFO",’

default "INFOQ".
segment_speed_file

A string or NULL. Path to nodeA,nodeB,speed CSV; default NULL.
turn_penalty_file

A string or NULL. Path to from_,to_,via_nodes,penalties CSV; default NULL.
edge_weight_updates_over_factor

A numeric. Threshold for logging large weight updates; default @.
parse_conditionals_from_now

A numeric. UTC timestamp for conditional restrictions; default @.

time_zone_file A string or NULL. GeoJSON file for time zone boundaries; default NULL.

quiet A logical. Master switch that suppresses package messages and process output
when TRUE; default FALSE.
verbose A logical. When TRUE and quiet = FALSE, streams stdout and stderr from the

underlying processx: : run calls.

osrm_contract 7

spinner A logical. When TRUE and quiet = FALSE, shows a spinner instead of live logs;
default TRUE.
echo_cmd Alogical. When TRUE and quiet = FALSE, prints each command before running;
default FALSE.
Value

An object of class osrm_job with the following elements:

osrm_job_artifact The path to the contracted .osrm.hsgr file.

osrm_working_dir The directory containing all OSRM files.

logs The processx: : run result object.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {

install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

Prepare a small graph then contract it for the CH pipeline

pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

profile <- osrm_find_profile("car.lua")

extract_job <- osrm_extract(
input_osm = tmp_pbf,
profile = profile,
overwrite = TRUE,
threads = 1L

)

ch_graph <- osrm_contract(extract_job, threads = 1L, verbose = TRUE)
ch_graph$osrm_job_artifact

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,
force = TRUE,
quiet = TRUE

)

unlink(osrm_dir, recursive = TRUE)

8 osrm_customize

osrm_customize Customize OSRM Graph for Multi-Level Dijkstra (MLD)

Description

Run the osrm-customize tool to customize a partitioned OSRM graph for the MLD pipeline. After
running, a companion <base>.osrm.mldgr file must exist to confirm success.

Usage

osrm_customize(
input_osrm,
threads = 8L,
verbosity = c("INFO”, "NONE”, "ERROR”, "WARNING", "DEBUG"),
segment_speed_file = NULL,
turn_penalty_file = NULL,
edge_weight_updates_over_factor = 0,
parse_conditionals_from_now = 0,
time_zone_file = NULL,
quiet = FALSE,
verbose = FALSE,
spinner = TRUE,
echo_cmd = FALSE

)
Arguments
input_osrm A string. Path to a .osrm.partition file, the base path to the partitioned .osrm
files (without extension), or a directory containing exactly one .osrm.partition
file.
threads An integer. Number of threads to use; default 8 (osrm-customize’s default).
verbosity A string. Log verbosity level passed to -1/--verbosity (one of "NONE"”, "ERROR" , "WARNING" , "INFO",’

default "INFOQ".
segment_speed_file

A string or NULL. Path to nodeA,nodeB,speed CSV; default NULL.
turn_penalty_file

A string or NULL. Path to from_,to_,via_nodes,penalties CSV; default NULL.
edge_weight_updates_over_factor

A numeric. Factor threshold for logging large weight updates; default 0.
parse_conditionals_from_now

A numeric. UTC timestamp from which to evaluate conditional turn restrictions;
default 0.

time_zone_file A string or NULL. GeoJSON file with time zone boundaries; default NULL.

quiet A logical. Master switch that suppresses package messages and process output
when TRUE; default FALSE.

osrm_customize

verbose A logical. When TRUE and quiet = FALSE, streams stdout and stderr from the
underlying processx: : run calls.
spinner A logical. When TRUE and quiet = FALSE, shows a spinner instead of live logs;
default TRUE.
echo_cmd Alogical. When TRUE and quiet = FALSE, prints each command before running;
default FALSE.
Value

An object of class osrm_job with the following elements:

osrm_job_artifact The path to the customized .osrm.mldgr file.
osrm_working_dir The directory containing all OSRM files.

logs The processx: : run result object.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

Partition then customize a graph for the MLD pipeline
pbf_path <- system.file("extdata/cur.osm.pbf", package =
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)
profile <- osrm_find_profile("car.lua")
extract_job <- osrm_extract(
input_osm = tmp_pbf,
profile = profile,
overwrite = TRUE,
threads = 1L
)
partition_job <- osrm_partition(extract_job, threads = 1L)

mld_graph <- osrm_customize(partition_job, threads = 1L, verbose
mld_graph$osrm_job_artifact

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,
force = TRUE,
quiet = TRUE

)

unlink(osrm_dir, recursive = TRUE)

"osrm.backend")

= TRUE)

10 osrm_extract

osrm_extract Extract OSM into OSRM Graph Files

Description

Run the osrm-extract tool to preprocess an OSM file (.osm, .osm.bz2, or . osm. pbf) into the base
.osrm graph files using a specified Lua profile. After running, a companion <base>.osrm.timestamp
file must exist to confirm success.

Usage

osrm_extract(
input_osm,
profile = osrm_find_profile("car.lua”),
threads = 8L,
overwrite = FALSE,
verbosity = c("INFO", "NONE", "ERROR", "WARNING", "DEBUG"),
data_version = NULL,
small_component_size = 1000L,
with_osm_metadata = FALSE,
parse_conditional_restrictions = FALSE,
location_dependent_data = NULL,
disable_location_cache = FALSE,
dump_nbg_graph = FALSE,
quiet = FALSE,
verbose = FALSE,
spinner = TRUE,
echo_cmd = FALSE

)
Arguments
input_osm A string. Path to the input OSM file (.osm, .osm.bz2, or .osm.pbf) or a direc-
tory containing exactly one OSM file with a supported extension.
profile A string. Path to the OSRM Lua profile (e.g. returned by osrm_find_profile(”car.lua")).
threads An integer. Number of threads for -t/--threads; default 8 (OSRM’s default).
overwrite A logical. If FALSE (default), stops when any existing . osrm= files matching the
base name are found alongside input_osm. Set to TRUE to proceed regardless.
verbosity A string. Log verbosity level passed to -1/--verbosity (one of "NONE", "ERROR", "WARNING" , "INFO",

default "INFO".

data_version A string or NULL. Passed to -d/--data_version; default NULL, in which case
the option is omitted.

osrm_extract 11

small_component_size

An integer. For --small-component-size; default 1000 (OSRM’s default).
with_osm_metadata

A logical. If TRUE, adds --with-osm-metadata; default FALSE.
parse_conditional_restrictions

A logical. If TRUE, adds --parse-conditional-restrictions; default FALSE.
location_dependent_data

A string or NULL. Path to GeoJSON, passed to --location-dependent-data;

default NULL, in which case the option is omitted.

disable_location_cache
A logical. If TRUE, adds --disable-location-cache; default FALSE.

dump_nbg_graph A logical. If TRUE, adds --dump-nbg-graph; default FALSE.

quiet A logical. Master switch that suppresses package messages and process output
when TRUE; default FALSE.

verbose A logical. When TRUE and quiet = FALSE, streams stdout and stderr from the
underlying processx: :run calls.

spinner A logical. When TRUE and quiet = FALSE, shows a spinner instead of live logs;
default TRUE.

echo_cmd Alogical. When TRUE and quiet = FALSE, prints each command before running;

default FALSE.

Value
An object of class osrm_job with the following elements:

osrm_job_artifact The path to the generated .osrm. timestamp file.
osrm_working_dir The directory containing all OSRM files.

logs The processx: : run result object.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
Install OSRM (temporary, session PATH)
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

copy example OSM PBF into a temporary workspace to avoid polluting pkg data
pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

Find the path to the profile first
car_profile <- osrm_find_profile(”car.lua")

12 osrm_find_profile

extract OSRM graph files
result <- osrm_extract(

input_osm = tmp_pbf,
profile = car_profile,
overwrite = TRUE,
threads =1L

)

path to generated .osrm files (specifically, the .osrm.timestamp file)
result$osrm_job_artifact

Clean up binaries and workspace
osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
}
osrm_find_profile Locate an OSRM Lua profile (e.g. car.lua) in a host installation
Description

By default OSRM ships profiles for "car", "bike" and "foot" in a profiles/ directory alongside the

binaries. This function will try to locate osrm-routed on the PATH, resolve symlinks, and look first

for a profiles/ directory next to the binary (as placed there by osrm_install()). If that fails, it

looks for sibling directories share/osrm/profiles and share/osrm-backend/profiles. IF that

fails, it will try to fall back on /usr/local/share/osrm/profiles,/usr/local/share/osrm-backend/profiles,
/usr/share/osrm/profiles, and /usr/share/osrm-backend/profiles.

Usage
osrm_find_profile(profile = "car.lua")
Arguments
profile A single string, the name of the Lua profile file (e.g. "car.lua"). Defaults to
"car.lua".
Value

The normalized filesystem path to the profile.

osrm_install 13

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

osrm_find_profile("”car.lua")
osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
3
osrm_install Install OSRM Backend Binaries
Description

Downloads and installs pre-compiled binaries for the OSRM backend from the official GitHub re-
leases. The function automatically detects the user’s operating system and architecture to download
the appropriate files. Only the latest v5 release (v5.27.1) and v6.0.0 were manually tested and
are known to work well; other releases available on GitHub can be installed but are not guranteed
to function correctly.

Usage

osrm_install(
version = "latest”,
dest_dir = NULL,
force = FALSE,

path_action = c("session”, "project”, "none"),
quiet = FALSE
)
Arguments
version A string specifying the OSRM version tag to install. Defaults to "latest”. Use
"latest” to automatically find the most recent stable version (internally calls
osrm_check_latest_version()). Versions other than v5.27.1 and v6.0.0
will trigger a warning but are still attempted if binaries are available.
dest_dir A string specifying the directory where OSRM binaries should be installed. If

NULL (the default), a user-friendly, persistent location is chosen via tools: :R_user_dir("osrm.backend
which = "cache"), and the binaries are installed into a subdirectory named after
the OSRM version (e.g. .../cache/v6.0.0).

14 osrm_install

force A logical value. If TRUE, reinstall OSRM even if it’s already found in dest_dir.
If FALSE (default), the function will stop if an existing installation is detected.

path_action A string specifying how to handle the system PATH. One of:

* "session” (default): Adds the OSRM bin directory to the PATH for the
current R session only.

* "project”: Modifies the .Rprofile in the current project to set the PATH
for all future sessions in that project.

* "none”: Does not modify the PATH.

quiet A logical value. If TRUE, suppresses installer messages and warnings. Defaults
to FALSE.

Details

The function performs the following steps:

1. Queries the GitHub API to find the specified release of Project-0SRM/osrm-backend.

. Identifies the correct binary (. tar.gz archive) for the user’s OS (Linux, macOS, or Windows)
and architecture (x64, arm64).

[\

. Downloads the archive to a temporary location.
. Extracts the archive and locates the OSRM executables (e.g., osrm-routed, osrm-extract).
. Copies these executables to a local directory (defaults to file.path(tools: :R_user_dir("osrm.backend”, which =

AN L A~ W

. Downloads the matching Lua profiles from the release tarball and installs them alongside the
binaries.

7. Optionally modifies the PATH environment variable for the current session or project.

macOS users should note that upstream OSRM v6.x binaries are built for macOS 15.0 (Sequoia,
Darwin 24.0.0) or newer. osrm_install() automatically blocks v6 installs on older macOS re-
leases and, when version = "latest”, selects the most recent v5 build instead while warning about
the requirement. Warnings include both the marketing version and Darwin kernel so you’ll see mes-
sages like macOS 13 Ventura [Darwin 22.6.0].

When installing OSRM v6.x for Windows, the upstream release omits the Intel Threading Building
Blocks (TBB) runtime and a compatible bz2 DLL. To keep the executables runnable out of the
box, osrm_install() fetches TBB from oneTBB v2022.3.0 and the BZip2 runtime from bzip2-
windows v1.0.8.0, verifying their SHA-256 checksums before extraction. Without these extra li-
braries, the OSRM v6 binaries shipped for Windows cannot start.

On macOS, OSRM v6.x binaries also miss the bundled TBB runtime. The installer reuses the
libraries from release v5.27.1 to keep the binaries functional and patches their 1ibbz2 linkage
using install_name_tool so that they load the system-provided BZip2 runtime.

Power users (including package authors running cross-platform tests) can override the auto-detected
platform by setting the R options osrm.backend.override_os and osrm.backend. override_arch
(e.g.,options(osrm.backend.override_os = "1linux"”, osrm.backend.override_arch = "arm64"))
before calling osrm_install(). Overrides allow requesting binaries for any OS and CPU combi-
nation that exists on the GitHub releases.

Value

The path to the installation directory.

https://github.com/uxlfoundation/oneTBB/releases/tag/v2022.3.0
https://github.com/philr/bzip2-windows/releases/tag/v1.0.8.0
https://github.com/philr/bzip2-windows/releases/tag/v1.0.8.0

osrm_partition 15

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
old <- setwd(tempdir())
on.exit(setwd(old), add = TRUE)

Install the default stable version and set PATH for this session
install_dir <- osrm_install(path_action = "session”, quiet = TRUE)

Install for a project non-interactively (e.g., in a script)
osrm_install(path_action = "project”, quiet = TRUE, force = TRUE)

Clean up the project's .Rprofile and uninstall binaries
osrm_clear_path(quiet = TRUE)
osrm_uninstall(

dest_dir = install_dir,

clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
}
osrm_partition Partition OSRM Graph for Multi-Level Dijkstra (MLD)
Description

Run the osrm-partition tool to partition an OSRM graph for the MLD pipeline. After running, a
companion <base>.osrm.partition file must exist to confirm success.

Usage

osrm_partition(
input_osrm,
threads = 8L,
verbosity = c("INFO", "NONE"”, "ERROR", "WARNING", "DEBUG"),
balance = 1.2,
boundary = 0.25,
optimizing_cuts = 10L,
small_component_size = 1000L,
max_cell_sizes = c(128, 4096, 65536, 2097152),
quiet = FALSE,
verbose = FALSE,
spinner = TRUE,
echo_cmd = FALSE

16 osrm_partition

Arguments

input_osrm A string. Path to a .osrm. timestamp file, the base path to the . osrm files (with-
out extension), or a directory containing exactly one .osrm. timestamp file.

threads An integer. Number of threads to use; default 8 (osrm-partition’s default).

verbosity A string. Log verbosity level passed to -1/--verbosity (one of "NONE", "ERROR" , "WARNING" , "INFO",’
default "INFO".

balance A numeric. Balance for left and right side in single bisection; default 1. 2.

boundary A numeric. Percentage of embedded nodes to contract as sources and sinks;

default 0. 25.
optimizing_cuts

An integer. Number of cuts to use for optimizing a single bisection; default 10.
small_component_size

An integer. Size threshold for small components; default 1000.

max_cell_sizes A numeric vector. Maximum cell sizes starting from level 1; default c(128,4096,65536,2097152).

quiet A logical. Master switch that suppresses package messages and process output
when TRUE; default FALSE.

verbose A logical. When TRUE and quiet = FALSE, streams stdout and stderr from the
underlying processx: :run calls.

spinner A logical. When TRUE and quiet = FALSE, shows a spinner instead of live logs;
default TRUE.

echo_cmd Alogical. When TRUE and quiet = FALSE, prints each command before running;

default FALSE.

Value
An object of class osrm_job with the following elements:
osrm_job_artifact The path to the partitioned .osrm.partition file.

osrm_working_dir The directory containing all OSRM files.

logs The processx: : run result object.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

Prepare a small graph then partition it for the MLD pipeline

pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

osrm_prepare_graph 17

profile <- osrm_find_profile("car.lua")

extract_job <- osrm_extract(
input_osm = tmp_pbf,
profile = profile,
overwrite = TRUE,
threads = 1L

)

partition_job <- osrm_partition(extract_job, threads = 1L, verbose = TRUE)
partition_job$osrm_job_artifact

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)

osrm_prepare_graph Prepare OSRM Graph for Routing (Extract + Partition/Contract)

Description

High-level wrapper that first runs osrm-extract on an OSM file to produce the base . osrm graph,
then prepares it for routing via either the MLD pipeline (osrm-partition + osrm-customize) or
the CH pipeline (osrm-contract).

Usage

osrm_prepare_graph(
input_osm,
profile = osrm_find_profile(”car.lua”),
threads = 8L,
overwrite = FALSE,
verbosity = c(”INFO", "NONE”, "ERROR”, "WARNING”, "DEBUG"),
data_version = NULL,
small_component_size = 1000L,
with_osm_metadata = FALSE,
parse_conditional_restrictions = FALSE,
location_dependent_data = NULL,
disable_location_cache = FALSE,
dump_nbg_graph = FALSE,
algorithm = c("mld", "ch"),
balance = 1.2,

18 osrm_prepare_graph

boundary = 0.25,

optimizing_cuts = 10L,

max_cell_sizes = c(128, 4096, 65536, 2097152),
quiet = FALSE,

verbose = FALSE,

spinner = TRUE,

echo_cmd = FALSE

)
Arguments
input_osm A string. Path to the input OSM file (.osm, .osm.bz2, or .osm.pbf) or a direc-
tory containing exactly one OSM file with a supported extension.
profile A string. Path to the OSRM Lua profile (e.g. returned by osrm_find_profile(”car.lua")).
threads An integer. Number of threads for extract and partition/contract; default 8.
overwrite A logical. If FALSE, stops if any existing .osrm* files matching the base name
are found alongside input_osm. Set to TRUE to overwrite them.
verbosity A string. Log verbosity for extract/partition/contract (one of "NONE”, "ERROR" , "WARNING", "INFO", "DEB

default "INFO".

data_version A string or NULL. Passed to osrm-extract via -d; default NULL.
small_component_size

An integer. For extract & partition; default 1000.
with_osm_metadata

A logical. Adds --with-osm-metadata during extract; default FALSE.
parse_conditional_restrictions

A logical. Adds --parse-conditional-restrictions; default FALSE.
location_dependent_data

A string or NULL. Path to GeoJSON for extract; default NULL.
disable_location_cache

A logical. Adds --disable-location-cache; default FALSE.

dump_nbg_graph A logical. Adds --dump-nbg-graph; default FALSE.

algorithm A string. One of "mld” (default) or "ch".
balance A numeric. Balance for osrm-partition; default 1. 2.
boundary A numeric. Boundary percentage for osrm-partition; default 0. 25.

optimizing_cuts
An integer. Optimizing cuts for osrm-partition; default 10.
max_cell_sizes A numeric vector. Max cell sizes for osrm-partition; default c(128,4096,65536,2097152).

quiet A logical. Master switch that suppresses package messages and process output
when TRUE; default FALSE.

verbose A logical. When TRUE and quiet = FALSE, streams stdout and stderr from the
underlying processx: : run calls.

spinner A logical. When TRUE and quiet = FALSE, shows a spinner instead of live logs;
default TRUE.

echo_cmd Alogical. When TRUE and quiet = FALSE, prints each command before running;

default FALSE.

osrm_servers 19

Value

An object of class osrm_job with the following elements:

osrm_job_artifact The path to the final routing-ready graph file (.osrm.hsgr for CH or .osrm.mldgr
for MLD).

osrm_working_dir The directory containing all OSRM files.

logs Alistof processx: :runresults for each stage: extract, partition/contract, and customize
(if MLD).

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

Prepare a routing-ready graph with the default MLD pipeline

pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

graph <- osrm_prepare_graph(
input_osm = tmp_pbf,

overwrite = TRUE,
threads = 1L,
algorithm = "mld”

)

graph$osrm_job_artifact

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)

osrm_servers List OSRM servers started via this package

20 osrm_start

Description
Returns a snapshot of servers registered by osrm_start_server () or osrm_start(). You can stop
one by passing its id, port, or pid to osrm_stop().

Usage

osrm_servers()

Value

A data.frame with columns: id, pid, port, algorithm, started_at, alive, has_handle, log.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

copy example OSM PBF into a temporary workspace to avoid polluting pkg data
pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

graph <- osrm_prepare_graph(tmp_pbf, overwrite = TRUE, threads = 1L)

srv <- osrm_start_server(graph$osrm_job_artifact, port = 6000, threads = 1L)
osrm_servers()
osrm_stop(srv)

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
3
osrm_start Start an OSRM Server with Automatic Setup
Description

A high-level, "one-shot" function to start an OSRM server that automatically handles OSRM in-
stallation and graph preparation. This is the recommended function for most users to get a server
running quickly with minimal steps.

osrm_start 21

Usage

osrm_start(
path,
algorithm = c("mld", "ch"),
quiet = FALSE,
verbose = FALSE,

Arguments
path A string. Path to the input data. Can be one of:
* A path to an OSM file (e.g., /path/to/data.osm.pbf).
* A path to a directory containing OSRM graph files or an OSM file.
* A direct path to a final graph file (.osrm.mldgr or .osrm.hsgr).
algorithm A string specifying the routing algorithm to use for graph preparation, either
"mld” (Multi-Level Dijkstra, default) or "ch” (Contraction Hierarchies). This
is only used when osrm_prepare_graph is automatically called.
quiet A logical value. If TRUE, suppresses installer messages and warnings. Defaults
to FALSE.
verbose A logical. If FALSE (default), suppresses detailed console output from backend
commands. If TRUE, shows all output, which is useful for debugging.
Additional arguments passed on to osrm_prepare_graph() (e.g., overwrite =
TRUE) and osrm_start_server() (e.g., port = 5001).
Details

This function is designed for convenience and automates the entire setup process. By default, it is
not verbose and only prints high-level status messages.

1. Check for OSRM Installation: It first verifies if the osrm-routed executable is available in
the system’s PATH. If not, it automatically calls osrm_install() to download and install the
latest stable version.

2. Process Input Path and Prepare Graph: The function intelligently handles the path argu-
ment to find or create the necessary graph files. If the graph files do not exist, it automatically
runs osrm_prepare_graph() to build them, which may take some time.

3. Start Server: Once the graph files are located or prepared, it launches the osrm-routed server
and prints a confirmation message with the server’s PID and port.

For advanced users or for debugging, set verbose = TRUE to see the detailed console output from
the installation and graph preparation steps. For full manual control, use the lower-level functions
like osrm_prepare_graph() and osrm_start_server () directly.

Value

A processx: :process object for the running server.

22 osrm_start_server

See Also

osrm_stop(), osrm_start_server() for manual server startup.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

copy example OSM PBF into a temporary workspace to avoid polluting pkg data
pbf_path <- system.file("extdata/cur.osm.pbf"”, package = "osrm.backend")
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

local_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = local_pbf, overwrite = TRUE)

Start the server with one command.
It will quietly install OSRM and prepare the graph if needed.
osrm_process <- osrm_start(local_pbf)

Stop the server when done.
osrm_stop()

To see all backend logs during setup, use verbose = TRUE
osrm_process_verbose <- osrm_start(local_pbf, verbose = TRUE)
osrm_stop()

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
3
osrm_start_server Start an OSRM MLD/CH server with osrm-routed
Description

Launches an osrm-routed process pointing at a localized OSRM graph (either .osrm.mldgr for
MLD or .osrm. hsgr for CH/CoreCH).

osrm_start_server 23

Usage

osrm_start_server(
osrm_path,
version = FALSE,
help = FALSE,
verbosity = c("INFO", "ERROR", "WARNING"”, "NONE", "DEBUG"),
trial = FALSE,

ip = "0.0.0.0",
port = 5001L,
threads = 8L,

shared_memory = FALSE,
memory_file = NULL,

mmap = FALSE,
dataset_name = NULL,
algorithm = NULL,
max_viaroute_size = 500L,
max_trip_size = 100L,
max_table_size = 100L,
max_matching_size = 100L,
max_nearest_size = 100L,
max_alternatives = 3L,
max_matching_radius = -1L,
quiet = FALSE,

verbose = FALSE,

echo_cmd = FALSE

)
Arguments
osrm_path Character(1). Path to the .osrm.mldgr or .osrm.hsgr file
version Logical; if TRUE, prints version and exits
help Logical; if TRUE, prints help and exits
verbosity Character; one of "NONE", "ERROR" , "WARNING", "INFO", "DEBUG"
trial Logical or integer; if TRUE or >0, quits after initialization (default: FALSE)
ip Character; IP address to bind (default: "0.0.0.0")
port Integer; TCP port to listen on (default: 5001)
threads Integer; number of worker threads (default: 8)

shared_memory Logical; load graph from shared memory (default: FALSE)

memory_file
mmap
dataset_name

algorithm

Character or NULL; DEPRECATED (behaves like mmap)
Logical; memory-map data files (default: FALSE)

Character or NULL; name of shared memory dataset

Character or NULL; one of "CH","CoreCH","MLD". If NULL (default), auto-

selected based on file extension

max_viaroute_size

Integer (default: 500)

24 osrm_start_server

max_trip_size Integer (default: 100)

max_table_size Integer (default: 100)
max_matching_size
Integer (default: 100)
max_nearest_size
Integer (default: 100)
max_alternatives
Integer (default: 3)
max_matching_radius
Integer; use -1 for unlimited (default: -1)
quiet Logical; when TRUE, suppresses package messages.

verbose Logical; when TRUE, routes server stdout and stderr to the R console for live
debugging. Note: This can cause deadlocks in tight loops if R is busy. Defaults
to FALSE, which writes logs to a temporary file.

echo_cmd Logical; echo command line to console before launch (default: FALSE)

Details

The server’s standard output and error streams are handled via temporary files by default to prevent
deadlocks in R’s single-threaded environment. This ensures reliable operation while preserving logs
for debugging startup failures.

To customize logging behavior, you can use the following approaches:
* Default (Temp File): Logs are written to a temporary file. This prevents deadlocks while
keeping logs available for debugging.

* Verbose Mode: Set verbose = TRUE to display logs directly in the R console. Note: This can
cause deadlocks in tight loops if R is busy.

* Custom Log File: Set the osrm.server.log_file option to redirect output to a specific file:
options(osrm.server.log_file = "path/to/osrm.log")

n n

Note: List specifications (e.g., “list(stdout = "..."”, stderr = "...")")
are deprecated and will fall back to the default temporary file behavior.

You can override the osrm-routed executable via options(osrm.routed.exec = "/full/path/to/osrm-routed”).

Value

A processx: :process object for the running server (also registered internally).

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

osrm_stop 25

Build a graph then launch an OSRM server on a custom port

pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

graph <- osrm_prepare_graph(
input_osm = tmp_pbf,
overwrite = TRUE,
threads = 1L,
algorithm = "mld”

)

server <- osrm_start_server(
osrm_path = graph$osrm_job_artifact,
port = 6000,
threads = 1L

Later, stop the server again
osrm_stop(server)

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
}
osrm_stop Stop an OSRM Server
Description

Terminates an osrm-routed process launched by osrm_start() or osrm_start_server().

Usage

osrm_stop(
server = NULL,

id = NULL,
port = NULL,
pid = NULL,
wait = 1000L,

quiet = FALSE

26 osrm_stop

Arguments
server Optional processx: :process object returned by osrm_start_server ().
id Optional character id from osrm_servers().
port Optional integer TCP port.
pid Optional integer process id.
wait Integer milliseconds to wait for clean shutdown (default 1000).
quiet Logical; suppress messages (default FALSE).
Details

This function provides a flexible way to stop a running OSRM process. If no arguments are speci-
fied, it defaults to stopping the most recently started server that is still alive.

You can also stop a specific server by providing:

* The processx: :process object returned by osrm_start() or osrm_start_server().

e The server’s id, port, or pid (use osrm_servers() to find these).

Value

A list with fields id, pid, port, stopped (logical).

See Also

osrm_start(), osrm_servers(), osrm_stop_all()

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

copy example OSM PBF into a temporary workspace to avoid polluting pkg data
pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

graph <- osrm_prepare_graph(tmp_pbf, overwrite = TRUE, threads = 1L)

srv <- osrm_start_server(graph$osrm_job_artifact, port = 6000, threads = 1L)

Stop by passing the process object
osrm_stop(srv)

Or stop by port after the process is registered
osrm_stop(port = 6000)

osrm_stop_all

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,

27

force = TRUE,
quiet = TRUE
)
unlink(osrm_dir, recursive = TRUE)
3
osrm_stop_all Stop all running OSRM servers started via this package
Description

Stop all running OSRM servers started via this package

Usage

osrm_stop_all()

Value

The number of servers attempted.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(

version = "latest”,
path_action = "session”,
quiet = TRUE

)

pbf_path <- system.file("extdata/cur.osm.pbf”, package = "osrm.backend”)
osrm_dir <- file.path(tempdir(), paste@("osrm-", Sys.getpid()))
dir.create(osrm_dir, recursive = TRUE)

tmp_pbf <- file.path(osrm_dir, "cur.osm.pbf")

file.copy(from = pbf_path, to = tmp_pbf, overwrite = TRUE)

graph <- osrm_prepare_graph(tmp_pbf, overwrite = TRUE, threads = 1L)

srv <- osrm_start_server(graph$osrm_job_artifact, port = 6000, threads =
stopped <- osrm_stop_all()
stopped

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,
force = TRUE,

L)

28

quiet = TRUE
)

osrm_uninstall

unlink(osrm_dir, recursive = TRUE)

}

osrm_uninstall

Uninstall OSRM Backend Binaries

Description

Removes the OSRM backend binaries and optionally clears the PATH configuration from the project’s

.Rprofile.

Usage

osrm_uninstall(

dest_dir = NULL,
clear_path = TRUE,

quiet = FALSE
all = FALSE,
force = FALSE

Arguments

dest_dir

clear_path

quiet

all

force

Value

’

A string specifying the directory from which to remove OSRM binaries. If NULL
(the default), the function looks for an installation in the per-version subdirecto-
ries inside tools: :R_user_dir("osrm.backend"”, which = "cache”) and re-
moves it. When multiple versions are installed, interactive sessions that are not
quiet will be prompted (with a numbered menu and @ to cancel) to choose a
directory; otherwise, dest_dir must be supplied. Ignored if all = TRUE.

A logical value. If TRUE (default), also removes the PATH configuration from the
project’s .Rprofile by calling osrm_clear_path().

A logical value. If TRUE, suppresses informational messages and confirmation
prompts. Defaults to FALSE.

A logical value. If TRUE, removes all OSRM installations found in the default
cache directory. Will prompt for confirmation unless force = TRUE. Defaults to
FALSE. When TRUE, the dest_dir parameter is ignored.

A logical value. If TRUE, skips all confirmation prompts, enabling non-interactive
usage. Defaults to FALSE.

TRUE if one or more directories were successfully removed, and FALSE otherwise.

osrm_which 29

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
Install OSRM temporarily
install_dir <- osrm_install(path_action = "session"”, quiet = TRUE)

Uninstall that specific version and clear PATH changes
osrm_uninstall(

dest_dir = install_dir,

clear_path = TRUE,

force = TRUE,

quiet = TRUE
)

If multiple installs exist, remove them all
osrm_uninstall(all = TRUE, force = TRUE, quiet = TRUE)
}

osrm_which Locate the OSRM Installation Used by osrm.backend

Description

Resolves the osrm-routed executable available on the current PATH (or the override provided via
options(osrm.routed.exec)). Runs osrm-routed --version to verify availability, then prints
the directory containing the executable together with the backend version reported by osrm-routed
so you know what will be used in the current session.

Usage

osrm_which(quiet = FALSE)

Arguments
quiet Logical; if FALSE (default), prints information about the located installation. If
TRUE, suppresses printed output and only returns the information as a list.
Value

A list with components executable (full path to osrm-routed), directory (its parent folder),
osrm_version (character vector of non-empty lines emitted by osrm-routed --version), and the
raw processx: : run result in logs.

Examples

if (identical(Sys.getenv("OSRM_EXAMPLES"), "true")) {
install_dir <- osrm_install(
version = "latest”,
path_action = "session”,

30

}

quiet = TRUE
)

check which OSRM installation will be used
osrm_which()

osrm_uninstall(
dest_dir = install_dir,
clear_path = TRUE,
force = TRUE,
quiet = TRUE

)

osrm_which

Index

osrm_check_available_versions, 2
osrm_check_latest_version, 3
osrm_check_latest_version(), 13
osrm_cleanup, 3
osrm_clear_path, 5
osrm_contract, 6
osrm_customize, 8
osrm_extract, 10
osrm_find_profile, 12
osrm_install, 13
osrm_partition, 15
osrm_prepare_graph, 17
osrm_servers, 19
osrm_servers(), 26
osrm_start, 20
osrm_start(), 20, 26
osrm_start_server, 22
osrm_start_server(), 20, 22
osrm_stop, 25
osrm_stop(), 20, 22
osrm_stop_all, 27
osrm_stop_all(), 26
osrm_uninstall, 28
osrm_which, 29

31

	osrm_check_available_versions
	osrm_check_latest_version
	osrm_cleanup
	osrm_clear_path
	osrm_contract
	osrm_customize
	osrm_extract
	osrm_find_profile
	osrm_install
	osrm_partition
	osrm_prepare_graph
	osrm_servers
	osrm_start
	osrm_start_server
	osrm_stop
	osrm_stop_all
	osrm_uninstall
	osrm_which
	Index

