Package 'multilevLCA'

February 27, 2025

Type Package

Version 2.0.1

Date 2025-02-27

- Title Estimates and Plots Single-Level and Multilevel Latent Class Models
- **Description** Efficiently estimates single- and multilevel latent class models with covariates, allowing for output visualization in all specifications. For more technical details, see Lyrvall et al (2023) <doi:10.48550/arXiv.2305.07276>.

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.9), magrittr, MASS, dplyr, tidyr, klaR, foreach, parallel, clustMixType, pracma, tictoc

LinkingTo Rcpp, RcppArmadillo

License GPL (>= 2)

LazyData true

NeedsCompilation yes

Author Roberto Di Mari [aut, cre], Johan Lyrvall [aut], Zsuzsa Bakk [ctb], Jennifer Oser [ctb], Jouni Kuha [ctb]

Maintainer Roberto Di Mari <roberto.dimari@unict.it>

Repository CRAN

Date/Publication 2025-02-27 12:40:02 UTC

Contents

multilevLCA-package	2
dataIEA	3
dataTOY	4
multiLCA	5
plot.multiLCA	14

16

Index

multilevLCA-package Estimates and Plots Single-Level and Multilevel Latent Class Models

Description

Efficiently estimates single- and multilevel latent class models with covariates, allowing for output visualization in all specifications. For more technical details, see Lyrvall et al (2023) <doi:10.48550/arXiv.2305.07276>.

Details

For estimating latent class models, see multiLCA.

For plotting latent class models, see plot.multiLCA

Author(s)

Roberto Di Mari and Johan Lyrvall.

Maintainer: Roberto Di Mari <roberto.dimari@unict.it>

References

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between latent classes and external variables. *Psychometrika*, *83*, *871-892*.

Bakk, Z., Di Mari, R., Oser, J., & Kuha, J. (2022). Two-stage multilevel latent class analysis with covariates in the presence of direct effects. *Structural Equation Modeling: A Multidisciplinary Journal*, 29(2), 267-277.

Di Mari, Bakk, Z., R., Oser, J., & Kuha, J. (2023). A two-step estimator for multilevel latent class analysis with covariates. Psychometrika.

Lukociene, O., Varriale, R., & Vermunt, J. K. (2010). The simultaneous decision(s) about the number of lower-and higher-level classes in multilevel latent class analysis. Sociological Methodology, 40(1), 247-283.

Examples

```
data = dataIEA
Y = colnames(dataIEA)[4+1:12]
out = multiLCA(data = data, Y = Y, iT = 2)
out
plot(out, horiz = FALSE)
```

dataIEA

Description

Data set from the International Civic and Citizenship Education Study 2016 (Schulz et al., 2018). As part of a comprehensive evaluation of education systems, the IEA conducted surveys in 1999, 2009 and 2016 in school classes of 14-year olds to investigate civic education with the same scientific rigor as the evaluation of more traditional educational skills of language and mathematics. The present study focuses on the third wave of the survey that was conducted in 2016.

Questions regarding citizenship norms in all three waves asked respondents to explain their understanding of what a good adult citizen is or does. The survey then lists a variety of activities for respondents to rate in terms of how important these activities are in order to be considered a good adult citizen. The twelve items range from obeying the law and voting in elections, to protecting the environment and defending human rights.

Covariates included are customary determinants of citizenship norms from the literature at the individual-level of socio-economic measures and country-level measure of gross domestic product (GDP) per capita.

Usage

data("dataIEA")

Format

A data frame with 90221 observations on the following 28 variables.

ICCS_year Year of survey COUNTRY Country IDSTUD Study ID TOTWGTS Study weight obey Always obeying the law rights Taking part in activities promoting human rights local Participating in activities to benefit people in the local community work Working hard envir Taking part in activities to protect the environment vote Voting in every national election history Learning about the country's history respect Showing respect for government representatives

news Following political issues in the newspaper, on the radio, on TV, or on the Internet

protest Participating in peaceful protests against laws believed to be unjust

discuss Engaging in political discussions

party Joining a political party
female Female
books Number of books at home
edexp Educational expectations
ed_mom Mother education
ed_dad Father education
nonnat_born Non-native born
immigrantfam Immigrant family
nonnat_lang Non-native language level
gdp_constant GDP
log_gdp_constant Log GDP
gdp_currentusd GDP in USD
log_gdp_currentusd Log GDP in USD

References

Schulz, W., Ainley, J., Fraillon, J., Losito, B., Agrusti, G., & Friedman, T. (2018). Becoming citizens in a changing world: IEA International Civic and Citizenship Education Study 2016 international report. Springer.

dataTOY

Artificial data set

Description

Artificial multilevel data set.

Usage

data("dataTOY")

Format

A data frame with 3000 observations on the following 13 variables.

id_high High-level id

- Y_1 Indicator n.1
- Y_2 Indicator n.2
- Y_3 Indicator n.3
- Y_4 Indicator n.4
- Y_5 Indicator n.5
- Y_6 Indicator n.6

4

Y_7 Indicator n.7

- Y_8 Indicator n.8
- Y_9 Indicator n.9
- Y_10 Indicator n.10
- Z_low Continuous low-level covariate
- Z_high Continuous high-level covariate

References

Di Mari, Bakk, Z., R., Oser, J., & Kuha, J. (2023). A two-step estimator for multilevel latent class analysis with covariates. Under review. Available from https://arxiv.org/abs/2303.06091.

multiLCA

Estimates and plots single- and multilevel latent class models

Description

The multiLCA function in the multilevLCA package estimates single- and multilevel measurement and structural latent class models. Moreover, the function performs two different strategies for model selection. Methodological details can be found in Bakk et al. (2022), Bakk and Kuha (2018), and Di Mari et al. (2023).

Different output visualization tools are available for all model specifications. See, e.g., plot.multiLCA.

Usage

```
multiLCA(
data,
Υ,
iΤ,
id_high = NULL,
iM = NULL,
Z = NULL,
Zh = NULL,
incomplete = FALSE,
fixedslopes = FALSE,
startval = NULL,
kmea = TRUE,
extout = FALSE,
dataout = TRUE,
sequential = TRUE,
numFreeCores = 2,
maxIter = 1e3,
tol = 1e-8,
reord = TRUE,
fixedpars = 1,
```

```
NRmaxit = 100,
NRtol = 1e-6,
verbose = TRUE
)
```

Arguments

- *	,union is	
	data	Input matrix or dataframe.
	Υ	Names of data columns with indicators.
	iT	Number of lower-level latent classes.
	id_high	Name of data column with higher-level id. Default: NULL.
	iM	Number of higher-level latent classes. Default: NULL.
	Z	Names of data columns with lower-level covariates (non-numeric covariates are treated as nominal). Default: NULL.
	Zh	Names of data columns with higher-level covariates (non-numeric covariates are treated as nominal). Default: NULL.
	incomplete	Whether to estimate the model with missing values included by means of full- information maximum-likelihood estimation (TRUE) or perform row-wise dele- tion of missing values (FALSE). Default: FALSE.
	fixedslopes	Whether to estimate multilevel models with covariates with fixed lower-level slope parameters across the higher-level classes by means of log-linear parametrization. Default: FALSE.
	startval	Name of data column with starting values for lower-level latent classes. Default: NULL.
	kmea	Whether to compute starting values for single-level model using K -means (TRUE), which is recommended for algorithmic stability, or K -modes (FALSE). Default: TRUE.
	extout	Whether to output extensive model and estimation information. Default: FALSE.
	dataout	Whether to match class predictions to the observed data. Default: TRUE.
	sequential	Whether to perform sequential model selection (TRUE) or parallelized model selection (FALSE). Default: TRUE.
	numFreeCores	If performing parallelized model selection, the number of CPU cores to keep free. Default: 2.
	maxIter	Maximum number of iterations for EM algorithm. Default: 1e3.
	tol	Tolerance for EM algorithm. Default: 1e-8.
	reord	Whether to (re)order classes in decreasing order according to probability of scoring yes on all items. Default: TRUE.
	fixedpars	One-step estimator (\emptyset), two-step estimator (1) or two-stage estimator (2). Default: 1.
	NRmaxit	Maximum number of iterations for Newton-Raphson algorithm. Default: 100.
	NRtol	Tolerance for Newton-Raphson algorithm. Default: 1e-6.
	verbose	Whether to print estimation progress. Default: TRUE.

6

Details

The indicator columns may be coded as as consecutive sequence of integers from 0, or as characters.

To directly estimate a latent class model, iT and (optionally) iM should be specified as a single positive integer. To perform model selection over range of consecutive positive integers as the number of latent classes, iT and/or iM may be specified in the form $iT_min:iT_max$ and/or $iM_min:iM_max$. It is possible to specify $iT = iT_min:iT_max$ with either iM = NULL or iM equal to a single positive integer, $iM = iM_min:iM_max$ with iT equal to a single positive integer, or $iT = iT_min:iT_max$ with $iM = iM_min:iM_max$. All model selection procedures return the output of the optimal model based on the BIC.

In the case where both iT and iM are defined as a range of consecutive positive integers, model selection can be performed using the sequential three-stage approach (Lukociene et al., 2010) or a simultaneous approach. The sequential approach involves (first step) estimating iT_min:iT_max single-level models and identifying the optimal alternative iT_opt1 based on the BIC, (second step) estimating iM_min:iM_max|iT = iT_opt1 multilevel models and identifying the optimal alternative iT_opt2 based on the higher-level BIC, and (third step) estimating iT_min:iT_max|iM = iM_opt2 multilevel models and identifying the optimal alternative iT_opt3 based on the lower-level BIC. The simultaneous approach involves devoting multiple CPU cores on the local machine to estimate all combinations in iT = iT_min:iT_max, iM = iM_min:iM_max and identifying the optimal alternative based on the lower-level BIC.

Value

Single-level model estimation returns (if extout = FALSE, a subset):

vPi	Class proportions
mPhi	Response probabilities given the latent classes
mU	Matrix of posterior class assignment (proportional assignment)
mU_modal	Matrix of posterior class assignment (modal assignment)
vU_modal	Vector of posterior class assignment (modal assignment)
mClassErr	Expected number of classification errors
mClassErrProb	Expected proportion of classification errors
AvgClassErrPro	b
	Average of mClassErrProb
R2entr	Entropy-based R ²
BIC	Bayesian Information Criterion (BIC)
AIC	Akaike Information Criterion (AIC)
vGamma	Intercepts in logistic parametrization for class proportions
mBeta	Intercepts in logistic parametrization for response probabilities
parvec	Vector of logistic parameters
SEs	Standard errors
Varmat	Variance-covariance matrix
iter	Number of iterations for EM algorithm

eps	Difference between last two elements of log-likelihood sequence for EM algorithm
LLKSeries	Full log-likelihood series for EM algorithm
mScore	Contributions to log-likelihood score
spec	Model specification
missing_values	Strategy for handling of eventual missing values
<pre>sample_size</pre>	Final sample size for model estimation
Single-level model	l estimation with covariates returns (if extout = FALSE, a subset):
mPi	Class proportions given the covariates
vPi_avg	Sample average of mPi
mPhi	Response probabilities given the latent classes
mU	Matrix of posterior class assignment (proportional assignment)
mClassErr	Expected number of classification errors
mClassErrProb	Expected proportion of classification errors
AvgClassErrProb	
	Average of mClassErrProb
R2entr	Entropy-based R ²
BIC	Bayesian Information Criterion (BIC)
AIC	Akaike Information Criterion (AIC)
mGamma	Intercept and slope parameters in logistic models for conditional class member- ship
mBeta	Intercepts in logistic parametrization for response probabilities
parvec	Vector of logistic parameters
SEs_unc	Uncorrected standard errors
SEs_cor	Corrected standard errors (see Bakk & Kuha, 2018; Di Mari et al., 2023)
SEs_cor_gamma	Corrected standard errors only for the gammas (see Bakk & Kuha, 2018; Di Mari et al., 2023)
mQ	Cross-derivatives for asymptotic standard error correction in two-step estimation (see Bakk & Kuha, 2018; Di Mari et al., 2023)
Varmat_unc	Uncorrected variance-covariance matrix
Varmat_cor	Corrected variance-covariance matrix (see Bakk & Kuha, 2018; Di Mari et al., 2023)
mV2	Inverse of information matrix for structural model
iter	Number of iterations for EM algorithm
eps	Difference between last two elements of log-likelihood sequence for EM algo- rithm
LLKSeries	Full log-likelihood series for EM algorithm
spec	Model specification

estimator	Estimation approach for structural model
missing_values	Strategy for handling of eventual missing values
sample_size	Final sample size for model estimation
Multilevel model	estimation returns (if extout = FALSE, a subset):
vOmega	Higher-level class proportions
mPi	Lower-level class proportions given the higher-level latent classes
mPhi	Response probabilities given the lower-level latent classes
сРМХ	Posterior joint class assignment (proportional assignment)
cLogPMX	Log of cPMX
сРХ	Posterior lower-level class assignment given high-level class membership (pro- portional assignment)
cLogPX	Log of cPX
mSumPX	Posterior higher-level class assignment for lower-level units after marginaliza- tion over the lower-level classes (proportional assignment)
mPW	Posterior higher-level class assignment for higher-level units (proportional as- signment)
mlogPW	Log of mPW
mPW_N	Posterior higher-level class assignment for lower-level units (proportional as- signment)
mPMsumX	Posterior lower-level class assignment for lower-level units after marginalization over the higher-level classes (proportional assignment)
R2entr_low	Lower-level entropy-based R ²
R2entr_high	Higher-level entropy-based R ²
BIClow	Lower-level Bayesian Information Criterion (BIC)
BIChigh	Higher-level Bayesian Information Criterion (BIC)
ICL_BIClow	Lower-level BIC-type approximation the integrated complete likelihood
ICL_BIChigh	Higher-level BIC-type approximation the integrated complete likelihood
AIC	Akaike Information Criterion (AIC)
vAlpha	Intercepts in logistic parametrization for higher-level class proportions
mGamma	Intercepts in logistic parametrization for conditional lower-level class propor- tions
mBeta	Intercepts in logistic parametrization for response probabilities
parvec	Vector of logistic parameters
SEs	Standard errors
Varmat	Variance-covariance matrix
Infomat	Expected information matrix
iter	Number of iterations for EM algorithm
eps	Difference between last two elements of log-likelihood sequence for EM algorithm

LLKSeries	Full log-likelihood series for EM algorithm
vLLK	Current log-likelihood for higher-level units
mScore	Contributions to log-likelihood score
spec	Model specification
missing_values	Strategy for handling of eventual missing values
<pre>sample_size</pre>	Final sample size for model estimation
Multilevel model e	estimation with lower-level covariates returns (if extout = FALSE, a subset):
vOmega	Higher-level class proportions
mPi	Lower-level class proportions given the higher-level latent classes and the co- variates
mPi_avg	Sample average of mPi
mPhi	Response probabilities given the lower-level latent classes
сРМХ	Posterior joint class assignment (proportional assignment)
cLogPMX	Log of cPMX
сРХ	Posterior lower-level class assignment given high-level class membership (pro- portional assignment)
cLogPX	Log of cPX
mSumPX	Posterior higher-level class assignment for lower-level units after marginaliza- tion over the lower-level classes (proportional assignment)
mPW	Posterior higher-level class assignment for higher-level units (proportional as- signment)
mlogPW	Log of mPW
mPW_N	Posterior higher-level class assignment for lower-level units (proportional as- signment)
mPMsumX	Posterior lower-level class assignment for lower-level units after marginalization over the higher-level classes (proportional assignment)
R2entr_low	Lower-level entropy-based R ²
R2entr_high	Higher-level entropy-based R ²
BIClow	Lower-level Bayesian Information Criterion (BIC)
BIChigh	Higher-level Bayesian Information Criterion (BIC)
ICL_BIClow	Lower-level BIC-type approximation the integrated complete likelihood
ICL_BIChigh	Higher-level BIC-type approximation the integrated complete likelihood
AIC	Akaike Information Criterion (AIC)
vAlpha	Intercepts in logistic parametrization for higher-level class proportions
cGamma	Intercept and slope parameters in logistic models for conditional lower-level class membership
mBeta	Intercepts in logistic parametrization for response probabilities
parvec	Vector of logistic parameters

SEs_unc	Uncorrected standard errors	
SEs_cor	Corrected standard errors (see Bakk & Kuha, 2018; Di Mari et al., 2023)	
SEs_cor_gamma	Corrected standard errors only for the gammas (see Bakk & Kuha, 2018; Di Mari et al., 2023)	
mQ	Cross-derivatives for asymptotic standard error correction in two-step estimation (see Bakk & Kuha, 2018; Di Mari et al., 2023)	
Varmat_unc	Uncorrected variance-covariance matrix	
Varmat_cor	Corrected variance-covariance matrix (see Bakk & Kuha, 2018; Di Mari et al., 2023)	
Infomat	Expected information matrix	
cGamma_Info	Expected information matrix only for the gammas	
mV2	Inverse of information matrix for structural model	
iter	Number of iterations for EM algorithm	
eps	Difference between last two elements of log-likelihood sequence for EM algo- rithm	
LLKSeries	Full log-likelihood series for EM algorithm	
vLLK	Current log-likelihood for higher-level units	
mScore	Contributions to log-likelihood score	
mGamma_Score	Contributions to log-likelihood score only for the gammas	
spec	Model specification	
estimator	Estimation approach for structural model	
missing_values	Strategy for handling of eventual missing values	
<pre>sample_size</pre>	Final sample size for model estimation	
Multilevel model estimation with lower- and higher-level covariates returns (if extout = FALSE, a subset):		
mOmega	Higher-level class proportions given the covariates	
vOmega_avg	Higher-level class proportions averaged over higher-level units	
mPi	Lower-level class proportions given the higher-level latent classes and the co-variates	
mPi_avg	Sample average of mPi	
mPhi	Response probabilities given the lower-level latent classes	
сРМХ	Posterior joint class assignment (proportional assignment)	
cLogPMX	Log of cPMX	
сРХ	Posterior lower-level class assignment given high-level class membership (pro- portional assignment)	
cLogPX	Log of cPX	
mSumPX	Posterior higher-level class assignment for lower-level units after marginaliza- tion over the lower-level classes (proportional assignment)	

mPW	Posterior higher-level class assignment for higher-level units (proportional as- signment)
mlogPW	Log of mPW
mPW_N	Posterior higher-level class assignment for lower-level units (proportional as- signment)
mPMsumX	Posterior lower-level class assignment for lower-level units after marginalization over the higher-level classes (proportional assignment)
R2entr_low	Lower-level entropy-based R ²
R2entr_high	Higher-level entropy-based R ²
BIClow	Lower-level Bayesian Information Criterion (BIC)
BIChigh	Higher-level Bayesian Information Criterion (BIC)
ICL_BIClow	Lower-level BIC-type approximation the integrated complete likelihood
ICL_BIChigh	Higher-level BIC-type approximation the integrated complete likelihood
AIC	Akaike Information Criterion (AIC)
mAlpha	Intercept and slope parameters in logistic models for conditional higher-level class membership
cGamma	Intercept and slope parameters in logistic models for conditional lower-level class membership
mBeta	Intercepts in logistic parametrization for response probabilities
parvec	Vector of logistic parameters
SEs_unc	Uncorrected standard errors
SEs_cor	Corrected standard errors (see Bakk & Kuha, 2018; Di Mari et al., 2023)
SEs_cor_alpha	Corrected standard errors only for the alphas (see Bakk & Kuha, 2018; Di Mari et al., 2023)
SEs_cor_gamma	Corrected standard errors only for the gammas (see Bakk & Kuha, 2018; Di Mari et al., 2023)
mQ	Cross-derivatives for asymptotic standard error correction in two-step estimation (see Bakk & Kuha, 2018; Di Mari et al., 2023)
Varmat_unc	Uncorrected variance-covariance matrix
Varmat_cor	Corrected variance-covariance matrix (see Bakk & Kuha, 2018; Di Mari et al., 2023)
Infomat	Expected information matrix
cAlpha_Info	Expected information matrix only for the alphas
cGamma_Info	Expected information matrix only for the gammas
mV2	Inverse of information matrix for structural model
iter	Number of iterations for EM algorithm
eps	Difference between last two elements of log-likelihood sequence for EM algo- rithm
LLKSeries	Full log-likelihood series for EM algorithm
vLLK	Current log-likelihood for higher-level units

mScore	Contributions to log-likelihood score
mAlpha_Score	Contributions to log-likelihood score only for the alphas
mGamma_Score	Contributions to log-likelihood score only for the gammas
spec	Model specification
estimator	Estimation approach for structural model
missing_values	Strategy for handling of eventual missing values
sample_size	Final sample size for model estimation

References

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between latent classes and external variables. *Psychometrika*, *83*, 871-892.

Bakk, Z., Di Mari, R., Oser, J., & Kuha, J. (2022). Two-stage multilevel latent class analysis with covariates in the presence of direct effects. *Structural Equation Modeling: A Multidisciplinary Journal*, 29(2), 267-277.

Di Mari, Bakk, Z., R., Oser, J., & Kuha, J. (2023). A two-step estimator for multilevel latent class analysis with covariates. Psychometrika.

Lukociene, O., Varriale, R., & Vermunt, J. K. (2010). The simultaneous decision(s) about the number of lower-and higher-level classes in multilevel latent class analysis. Sociological Methodology, 40(1), 247-283.

Examples

```
# Use the artificial data set
data = dataTOY
# Define vector with names of columns with items
Y = colnames(data)[1+1:10]
# Define name of column with higher-level id
id_high = "id_high"
# Define vector with names of columns with lower-level covariates
Z = c("Z_low")
# Define vector with names of columns with higher-level covariates
Zh = c("Z_high")
# Single-level 3-class LC model with covariates
out = multiLCA(data, Y, 3, Z = Z, verbose = FALSE)
out
# Multilevel LC model
out = multiLCA(data, Y, 3, id_high, 2, verbose = FALSE)
out
# Multilevel LC model lower-level covariates
out = multiLCA(data, Y, 3, id_high, 2, Z, verbose = FALSE)
```

```
out
# Multilevel LC model lower- and higher-level covariates
out = multiLCA(data, Y, 3, id_high, 2, Z, Zh, verbose = FALSE)
out
# Model selection over single-level models with 1-3 classes
out = multiLCA(data, Y, 1:3, verbose = FALSE)
out
# Model selection over multilevel models with 1-3 lower-level classes and
# 2 higher-level classes
out = multiLCA(data, Y, 1:3, id_high, 2, verbose = FALSE)
out
# Model selection over multilevel models with 3 lower-level classes and
# 1-2 higher-level classes
out = multiLCA(data, Y, 3, id_high, 1:2, verbose = FALSE)
out
# Model selection over multilevel models with 1-3 lower-level classes and
# 1-2 higher-level classes using the default sequential approach
out = multiLCA(data, Y, 1:3, id_high, 1:2, verbose = FALSE)
out
```

plot.multiLCA Plots conditional response probabilities

Description

Visualizes conditional response probabilities estimated by the multiLCA function. The method works for both single- and multilevel models.

Let out denote the list object returned by the multiLCA function. Executing plot(out) visualizes the conditional response probabilities given by the mPhi matrix in out.

Usage

```
## S3 method for class 'multiLCA'
plot(x, horiz = FALSE, clab = NULL, ...)
```

Arguments

х	The object returned by the multiLCA function
horiz	Whether item labels should be oriented horizontally (TRUE) or vertically (FALSE). Default FALSE
clab	A character vector with user-specified class labels, if available, in the order "Class 1", "Class 2", under the default settings, i.e. top-to-bottom. Default NULL
	Additional plotting arguments

plot.multiLCA

Value

No return value

Examples

```
# Use IEA data
data = dataIEA
# Define vector with names of columns with items
Y = colnames(data)[4+1:12]
# Define number of (low-level) classes
iT = 3
# Estimate single-level measurement model
out = multiLCA(data = data, Y = Y, iT = iT)
out
# Plot conditional response probabilities with default settings
plot(out)
# Plot with vertical item labels and custom class labels
plot(out, horiz = FALSE, clab = c("Maximal", "Engaged", "Subject"))
```

Index

* datasets
 dataIEA, 3
 dataTOY, 4
* package
 multilevLCA-package, 2

dataIEA, 3 dataTOY, 4

multiLCA, 2, 5, 14
multilevLCA-package, 2

plot.multiLCA, 2, 5, 14