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Abstract
The Center for Multilevel Modelling at the Institute of Education,
London maintains a web site of “Software reviews of multilevel mod-
eling packages”. The data sets discussed in the reviews are available
at this web site. We have incorporated these data sets in the mlmRev
package for R and, in this vignette, provide the results of fitting several
models to these data sets.

1 Introduction

R is an Open Source implementation of John Chambers’ S language language
for data analysis and graphics. R was initially developed by Ross Ihaka and
Robert Gentleman of the University of Auckland and now is developed and
maintained by an international group of statistical computing experts.

In addition to being Open Source software, which means that anyone can
examine the source code to see exactly how the computations are being car-
ried out, R is freely available from a network of archive sites on the Internet.
There are precompiled versions for installation on the Windows operating
system, Mac OS X and several distributions of the Linux operating system.
Because the source code is available those interested in doing so can compile
their own version if they wish.

R provides an environment for interactive computing with data and for
graphical display of data. Users and developers can extend the capabilities of
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R by writing their own functions in the language and by creating packages of
functions and data sets. Many such packages are available on the archive net-
work called CRAN (Comprehensive R Archive Network) for which the parent
site is http://cran.r-project.org. One such package called 1me4 (along
with a companion package called Matrix) provides functions to fit and dis-
play linear mixed models and generalized linear mixed models, which are the
statisticians’ names for the models called multilevel models or hierarchical
linear models in other disciplines. The lattice package provides functions
to generate several high level graphics plots that help with the visualization
of the types of data to which such models are fit. Finally, the mlmRev package
provides the data sets used in the “Software Reviews of Multilevel Modeling
Packages” from the Multilevel Modeling Group at the Institute of Educa-
tion in the UK. This package also contains several other data sets from the
multilevel modeling literature.

The software reviews mentioned above were intended to provide compari-
son of the speed and accuracy of many different packages for fitting multilevel
models. As such, there is a standard set of models that fit to each of the
data sets in each of the packages that were capable of doing the fit. We will
fit these models for comparative purposes but we will also do some graphical
exploration of the data and, in some cases, discuss alternative models.

We follow the general outline of the previous reviews, beginning with
simpler structures and moving to the more complex structures. Because the
previous reviews were performed on older and considerably slower computers
than the ones on which this vignette will be compiled, the timings produced
by the system.time function and shown in the text should not be compared
with previous timings given on the web site. They are an indication of the
times required to fit such models to these data sets on recent computers with
processors running at around 2 GHz or faster.

2 Two-level normal models

In the multilevel modeling literature a two-level model is one with two levels
of random variation; the per-observation noise term and random effects which
are grouped according to the levels of a factor. We call this factor a grouping
factor. If the response is measured on a continuous scale (more or less) our
initial models are based on a normal distribution for the per-observation noise
and for the random effects. Thus such a model is called a “two-level normal
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model” even though it has only one grouping factor for the random effects.

2.1 The Exam data

The data set called Exam provides the normalized exam scores attained by
4,059 students from 65 schools in inner London. Some of the covariates
available with this exam score are the school the student attended, the sex
of the student, the school gender (boys, girls, or mixed) and the student’s
result on the Standardised London Reading test.

The R functions str and summary can be used to examine the structure
of a data set (or, in general, any R object) and to provide a summary of an
object.

> str (Exam)

'data.frame': 4059 obs. of 10 variables:
$ school : Factor w/ 65 levels "1","2" "3" "4" _.,: 1111111111
$ normexam: num 0.261 0.134 -1.724 0.968 0.544
$ schgend : Factor w/ 3 levels "mixed","boys",..: 1111111111
$ schavg : num 0.166 0.166 0.166 0.166 0.166
$ vr : Factor w/ 3 levels "bottom 25%","mid 50%",..: 2 2 2 2222222
$ intake : Factor w/ 3 levels "bottom 25%","mid 50%",..: 1 2 32213223
$ standLRT: num 0.619 0.206 -1.365 0.206 0.371
$ sex : Factor w/ 2 levels "F","M": 1121122212 ...
$ type : Factor w/ 2 levels "Mxd","Sngl": 1111111111
$ student : Factor w/ 650 levels "1",6"2", "3", "4", 6 . : 143 145 142 141 138 155 158 115 117 113
> summary (Exam)
school normexam schgend schavg
14 : 198 Min. :=3.666072 mixed:2169 Min. :—=0.75596
17 : 126 1st Qu.:-0.699505 boys : 513 1st Qu.:-0.14934
18 : 120 Median : 0.004322 girls:1377 Median :-0.02020
49 : 113 Mean :=0.000114 Mean : 0.00181
8 : 102 3rd Qu.: 0.678759 3rd Qu.: 0.21053
15 : 91 Max. : 3.666091 Max. : 0.63766
(Other) :3309
vr intake standLRT sex type
bottom 25%: 640 bottom 25%:1176 Min. :=2.93495 F:2436 Mxd :2169
mid 50% 12263 mid 50% 12344 1st Qu.:-0.62071 M:1623 Sngl:1890
top 25% :1156 top 25% : 539 Median : 0.04050
Mean : 0.00181
3rd Qu.: 0.61906
Max. 3.01595
student
20 : 34
54 : 34
15 : 33
22 : 33
31 : 33
59 : 33

(Other) : 3859



2.2 Model fits and timings

The first model to fit to the Exam data incorporates fixed-effects terms for
the pretest score, the student’s sex and the school gender. The only random-
effects term is an additive shift associated with the school.

> (Eml <- lmer (normexam ~ standLRT + sex + schgend + (1|school), Exam))

Linear mixed model fit by REML ['lmerMod']

Formula: normexam ~ standLRT + sex + schgend + (1 | school)
Data: Exam

REML criterion at convergence: 9347.674

Random effects:

Groups Name Std.Dev.
school (Intercept) 0.293
Residual 0.750

Number of obs: 4059, groups: school, 65
Fixed Effects:
(Intercept) standLRT sexM schgendboys schgendgirls
-0.001049 0.559754 -0.167392 0.177691 0.158997

The system.time function can be used to time the execution of an R
expression. It returns a vector of five numbers giving the user time (time
spend executing applications code), the system time (time spent executing
system functions called by the applications code), the elapsed time, and the
user and system time for any child processes. The first number is what is
commonly viewed as the time required to do the model fit. (The elapsed
time is unsuitable because it can be affected by other processes running on
the computer.) These times are in seconds. On modern computers this fit
takes only a fraction of a second.

> system.time (1lmer (normexam ~ standLRT + sex + schgend + (1|school), Exam))

user system elapsed
0.03 0.00 0.03

2.3 Interpreting the fit

As can be seen from the output, the default method of fitting a linear mixed
model is restricted maximum likelihood (REML). The estimates of the vari-
ance components correspond to those reported by other packages as given on
the Multilevel Modelling Group’s web site. Note that the estimates of the
variance components are given on the scale of the variance and on the scale of
the standard deviation. That is, the values in the column headed Std.Dev.
are simply the square roots of the corresponding entry in the Variance col-
umn. They are not standard errors of the estimate of the variance.



The estimates of the fixed-effects are different from those quoted on the
web site because the terms for sex and schgend use a different parameteri-
zation than in the reviews. Here the reference level of sex is female (F) and
the coefficient labelled sexM represents the difference for males compared to
females. Similarly the reference level of schgend is mixed and the two coef-
ficients represent the change from mixed to boys only and the change from
mixed to girls only. The value of the coefficient labelled Intercept is affected
by both these changes as is the value of the REML criterion.

To reproduce the results obtained from other packages, we must change
the reference level for each of these factors.

> Exam$sex <- relevel (Exam$sex, "M")
> Exam$schgend <- relevel (Exam$schgend, "girls")
> (Em2 <- lmer (normexam ~ standLRT + sex + schgend + (1|school), Exam))
Linear mixed model fit by REML ['lmerMod']
Formula: normexam ~ standLRT + sex + schgend + (1 | school)
Data: Exam
REML criterion at convergence: 9347.674
Random effects:

Groups Name Std.Dev.
school (Intercept) 0.293
Residual 0.750

Number of obs: 4059, groups: school, 65
Fixed Effects:
(Intercept) standLRT sexF schgendmixed schgendboys
-0.009444 0.559754 0.167392 -0.158997 0.018694

The coefficients now correspond to those in the tables on the web site. It
happens that the REML criterion at the optimum in this fit is the same as in
the previous fit, but you cannot depend on this occuring. In general the value
of the REML criterion at the optimum depends on the parameterization used
for the fixed effects.

2.4 Further exploration
2.4.1 Checking consistency of the data

It is important to check the consistency of data before trying to fit sophis-
ticated models. One should plot the data in many different ways to see if it
looks reasonableand also check relationships between variables.

For example, each observation in these data is associated with a particular
student. The variable student is not a unique identifier of the student as it
only has 650 unique values. It is intended to be a unique identifier within a
school but it is not. To show this we create a factor that is the interaction
of school and student then drop unused levels.



> Exam <— within (Exam,

> str (Exam)

'data.frame':

$ school : Factor
$ normexam: num O.
$ schgend : Factor
$ schavg : num 0.
$ vr : Factor
$ intake : Factor
$ standLRT: num O.
$ sex : Factor
$ type : Factor
$ student : Factor
$ ids : Factor

ids <- factor (school:student))

4059 obs. of 11 variables:
w/ 65 levels "1", "2, "3n nwqn .
261 0.134 -1.724 0.968 0.544
w/ 3 levels "girls","mixed", ..:
166 0.166 0.166 0.166 0.166

11

w/ 3 levels "bottom 25%", "mid 50%",..:
w/ 3 levels "bottom 25%", "mid 50%", ..:

619 0.206
w/ 2 levels "M","F":

-1.365 0.206 0.371
22122111

11111111

2222222222

2222222222 ...
1232213223 ...

21

w/ 2 levels "Mxd","Sngl": 1111111111

w/ 650 levels "1", "2", "3" nwgn .
w/ 4055 levels "1:1","1:4","1:6",..:

143 145 142 141 138 155 158 115 117 113 ...

48 49 47 46 45 50 51 39 40 38

Notice that there are 4059 observations but only 4055 unique levels of
student within school. We can check the ones that are duplicated

> as.character (Exam$ids [which (duplicated (Exam$ids))])

[1]

> subset (Exam,

schoo
2758 4
2759 4

stude
2758

"43:86" "50:39" "52:2" "52:21"
One of these cases
ids == '43:86"')

1 normexam schgend schavg vr intake
3 -0.8526700 mixed 0.4334322 top 25% mid 50%
3 0.8219882 mixed 0.4334322 top 25% top 25%
nt ids
86 43:86
86 43:86

2759

> xtabs (~

school
sex 43 50
M 1 35
F 60 38

sex + school, Exam,

52
61
0

subset school %in% c (43,

standLRT sex type

0.1231502 M Mxd
-0.0421520 F Mxd
50, 52), drop = TRUE)

is particularly interesting. Notice that one of the students numbered 86 in
school 43 is the only male student out of 61 students from this school who

took the

exarnl.

It is quite likely that this student’s score was attributed

to the wrong school and that the school is in fact a girls-only school, not a
mixed-sex school.
The causes of the other three cases of duplicate student numbers within
a school are not as clear. It would be necessary to go back to the original
data records to check these.
The cross-tabulation of the students by sex and school for the mixed-sex

schools

> xtabs(~ sex + school, Exam,

subset type == "Mxd",

drop

TRUE)



school
sex 1 3 4 5 9 10 12 13 14 15 17 19 20 22 23 26 28 32 33
M 45 29 45 16 21 31 23 26 92 47 31 33 21 48 10 44 31 27 44
F 28 23 34 19 13 19 24 38 106 44 95 22 18 42 18 31 26 15 33
school
sex 34 38 42 43 45 46 47 50 51 54 55 56 59 61 62 63
M 18 31 35 1 5 47 81 35 26 4 26 16 30 35 43 13
F 8 23 23 60 48 36 1 38 32 4 25 22 17 29 28 17

shows another anomaly. School 47 is similar to school 43 in that, although
it is classified as a mixed-sex school, 81 male students and only one female
student took the exam. It is likely that the school was misrecorded for this
one female student and the school is a male-only school.

Another school is worth noting. There were only eight students from
school 54 who took the exam so any within-school estimates from this school
will be unreliable.

A mosaic plot (Figure [1)) produced with

> ExamMxd <- within (subset (Exam, type == "Mxd"), school <- factor (school))
> mosaicplot (~ school + sex, ExamMxd)

helps to detect mixed-sex schools with unusually large or unusually small
ratios of females to males taking the exam.

2.4.2 Preliminary graphical displays

In addition to the pretest score (standLRT), the predictor variables used in
this model are the student’s sex and the school gender, which is coded as
having three levels. There is some redundancy in these two variables in
that all the students in a boys-only school must be male. For graphical
exploration we convert from schgend to type, an indicator of whether the
school is a mixed-sex school or a single-sex school, and plot the response
versus the pretest score for each combination of sex and school type.

This plot is created with the xyplot from the lattice package as (es-
sentially)

> xyplot (normexam ~ standLRT | sex » type, Exam, type = c("g", "p", "smooth"))

The formula would be read as “plot normexam by standLRT given sex by
(school) type”. A few other arguments were added in the actual call to make
the axis annotations more readable.

Figure 2| shows the even after accounting for a student’s sex, pretest score
and school type, there is considerable variation in the response. We may
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Figure 1: A mosaic plot of the sex distribution by school. The areas of the
rectangles are proportional to the number of students of that sex from that
school who took the exam. Schools with an unusally large or unusually small
ratio or females to males are highlighted.
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Standardized London Reading Test score

Figure 2: Normalized exam score versus pretest (Standardized London Read-
ing Test) score for 4095 students from 65 schools in inner London. The panels
on the left show the male students’ scores; those on the right show the fe-
males’ scores. The top row of panels shows the scores of students in single-sex
schools and the bottom row shows the scores of students in mixed-sex schools.
A scatterplot smoother line for each panel has been added to help visualize
the trend.
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Figure 3: Overlaid scatterplot smoother lines of the normalized test scores
versus the pretest (Standardized London Reading Test) score for female (F)
and male (M) students in single-sex (Sngl) and mixed-sex (Mxd) schools.

attribute some of this variation to differences in schools but the fitted model
indicates that most of the variation is unaccounted or “residual” variation.

In some ways the high level of residual variation obscures the pattern
in the data. By removing the data points and overlaying the scatterplot
smoothers we can concentrate on the relationships between the covariates.
The call to xyplot is essentially

> xyplot (normexam ~ standLRT, Exam, groups = sex:type, type = c("g", "smooth"))

Figure 3] is a remarkable plot in that it shows nearly a perfect “main
effects” relationship of the response with the three covariates and almost no
interaction. It is rare to see real data follow a simple theoretical relationship
so closely.

To elaborate, we can see that for each of the four groups the smoothed re-
lationship between the exam score and the pretest score is close to a straight
line and that the lines are close to being parallel. The only substantial devi-
ation is in the smoothed relationship for the males in single-sex schools and
this is the group with the fewest observations and hence the least precision
in the estimated relationship. The lack of parallelism for this group is most
apparent in the region of extremely low pretest scores where there are few
observations and a single student who had a low pretest score and a moderate
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post-test score can substantially influence the curve. Five or six such points
can be seen in the upper left panel of Figure 2

We should also notice the ordering of the lines and the spacing between
the lines. The smoothed relationships for students in single-sex schools are
consistently above those in the mixed-sex schools and, except for the region
of low pretest scores described above, the relationship for the females in a
given type of school is consistently above that for the males. Furthermore
the distance between the female and male lines in the single-sex schools is ap-
proximately the same as the corresponding distance in the mixed-sex schools.
We would summarize this by saying that there is a positive effect for females
versus males and a positive effect for single-sex versus mixed-sex and no
indication of interaction between these factors.

2.4.3 The effect of schools

We can check for patterns within and between schools by plotting the re-
sponse versus the pretest by school. Because there appear to be differences
in this relationship for single-sex versus mixed-sex schools and for females
versus males we consider these separately.

In Figure {4 we plot the normalized exam scores versus the pretest score
by school for female students in single-sex schools. The plot is produced as

> xyplot (normexam ~ standLRT | school, Exam,
+ type = C("g", "P"/ "r"),
+ subset = sex == "F" & type == "Sngl")

The "r" in the type argument adds a simple linear regression line to each
panel.

The first thing we notice in Figure [4] is that school 48 is an anomaly
because only two students in this school took the exam. Because within-
school results based on only two students are unreliable, we will exclude
this school from further plots (but we do include these data when fitting
comprehensive models).

Although the regression lines on the panels can help us to look for vari-
ation in the schools, the ordering of the panels is, for our purposes, random.
We recreate this plot in Figure [ using

> xyplot (normexam ~ standLRT | school, Exam, type = c("g", "p", "r"),
+ subset = sex == "F" & type == "Sngl" & school != 48,
+ index.cond = function(x, y) coef(lm(y ~ x))[1])

11



Normalized exam score

L
-3-2-10 1 2 3 -3-2-10 1 2 3
Standardized London Reading Test score

Figure 4: Normalized exam scores versus pretest (Standardized London
Reading Test) score by school for female students in single-sex schools.
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Figure 5: Normalized exam scores versus pretest (Standardized London
Reading Test) score by school for female students in single-sex schools. School
48 where only two students took the exam has been eliminated and the pan-
els have been ordered by increasing intercept (predicted normalized score for
a pretest score of 0) of the regression line.
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so that the panels are ordered (from left to right starting at the bottom row)
by increasing intercept for the regression line (i.e. by increasing predicted
exam score for a student with a pretest score of 0).

Alternatively, we could order the panels by increasing slope of the within-
school regression lines, as in Figure [0

Although it is informative to plot the within-school regression lines we
need to assess the variability in the estimates of the coefficients before con-
cluding if there is “significant” variability between schools. We can obtain
the individual regression fits with the lmList function
> show (ExamFS <— lmList (normexam ~ standLRT | school, Exam,

+ subset = sex == "F" & type == "Sngl" & school != 48))
Call: 1lmList (formula = normexam ~ standLRT | school, data = Exam, subset = sex ==
Coefficients:

(Intercept) standLRT
2 0.48227991 0.7612884
6 0.60321439 0.5353444
7 0.39852689 0.2422785

8 -0.02519463
16 —-0.38564292
18 -0.05733995
21 0.26872018
25 -0.26779146

.5674053
.4069399
.3593830
.5544939
.5320575

29 0.20442314 0.4005158
30 0

31 -0.03922548 0.4022838
35 .13173022 0.3966535
39 .12754208 0.4525918
41 .21249712 0.4834107

.04747055
.59370349
.20707724
.25196603
.17490019

.4845568
.0769781
.3557839
.6378090

0

0

0

0

0

0

0

0

0
.11885028 0.8059021

0

0

0

0

0

1

0

0

0.5684592

>
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Degrees of freedom: 1375 total; 1337 residual
Residual standard error: 0.7329521

and compare the confidence intervals on these coefficients.
> plot (confint (ExamFS, pool = TRUE), order = 1)

> show (ExamMS <- lmList (normexam ~ standLRT | school, Exam,
+ subset = sex == "M" & type == "Sngl"))

Call: 1lmList (formula = normexam ~ standLRT | school, data = Exam, subset = sex ==
Coefficients:
(Intercept) standLRT

11 0.26596312 0.4586355
24 0.17773174 0.3976156
27 0.03518861 0.5728684
36 -0.20691842 0.4383453
37 -0.48522245 0.2382739

14
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Figure 6: Normalized exam scores versus pretest (Standardized London
Reading Test) score by school for female students in single-sex schools. School
48 has been eliminated and the panels have been ordered by increasing slope
of the within-school regression lines.
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Figure 7: Confidence intervals on the coefficients of the within-school re-
gression lines for female students in single-sex schools. School 48 has been
eliminated and the schools have been ordered by increasing estimated inter-
cept.
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Figure 8: Normalized exam scores versus pretest (Standardized London
Reading Test) score by school for male students in single-sex schools.
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Figure 9: Confidence intervals on the coefficients of the within-school re-
gression lines for female students in single-sex schools. School 48 has been
eliminated and the schools have been ordered by increasing estimated inter-
cept.

40 -0.25019842 0.7262845
44 -0.34440523 0.3696269
52 0.38803903 0.7402692
57 0.04055154 0.6123692
64 0.03749455 0.7055239

Degrees of freedom: 513 total; 493 residual
Residual standard error: 0.8082068

The corresponding plot of the confidence intervals is shown in Figure [9]
For the mixed-sex schools we can consider the effect of the pretest score
and sex in the plot (Figure and in the separate model fits for each school.

> show (ExamM <- ImList (normexam ~ standLRT + sex| school, Exam,

+ subset = type == "Mxd" & !school %in% c(43,47,54)))
Call: 1mList (formula = normexam ~ standLRT + sex | school, data = Exam, subset
Coefficients:
(Intercept) standLRT sexF
1 0.24770238 0.7044798 0.355719842
3 0.58030950 0.5843480 -0.057223931
4 -0.16739321 0.7372405 0.402829332
5 0.36213174 0.6695127 -0.183238345
9 -0.32487665 0.3961812 0.222382659
10 -0.45139239 0.2972074 0.330917735
12 -0.26201220 0.4200265 0.378359201
13 -0.27196976 0.6037392 0.196013604
14 -0.28741229 0.5966633 0.202122649
15 -0.30963145 0.7370363 0.144392527
17 -0.30553035 0.4905235 0.156646395
19 -0.22542808 0.7214611 0.385544198
20 0.25120209 0.5187894 0.041342515
22 -0.50744197 0.5206371 0.089368918
23 -0.51727825 0.3873051 -0.189332381
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Figure 10: Normalized exam scores versus pretest score by school and sex for
students in mixed-sex schools.
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Figure 11: Confidence intervals on the coefficients of the within-school re-
gression lines for female students in single-sex schools. School 48 has been
eliminated and the schools have been ordered by increasing estimated inter-
cept.

26 -0.11870804
28 -0.84451962
32 0.02596084
33 -0.02539396
34 -0.19582273
38 -0.19255275
42 -0.01913469 0.3827088 246533297
45 -0.21212351 0.5665400 102317128
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0 -0.
0 0.
0 0.

.2583861
.6560569
.5148927
.7662681
.6184554

185283146
138672637
082029123
147967544
327656212
084872081

50 -0.32718434 0.6752947 001906973
51 -0.40150931 0.3076539 445100548
55 0.35743002 0.6118447 400034477
56 -0.18744293 0.8558783 391178135
59 -0.97233088 0.3594417 329480168
61 -0.01215078 0.6428683 060024560
62 -0.16445110 0.5411566 283642476
63 0.60216184 0.3091657 150390337

Degrees of freedom: 2018 total; 1922 residual
Residual standard error: 0.7273955

The confidence intervals for these separately fitted models, shown in Figure[T]]
indicate differences in the intercepts and possibly differences in the slopes
with respect to the pretest scores. However, there is not a strong indication
of variation by school in the effect of sex.
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2.5 Multilevel models for the exam data

We begin with a model that has a random effects for the intercept by school
plus additive fixed effects for the pretest score, the student’s sex and the
school type.

> (Em3 <- lmer (normexam ~ standLRT + sex + type + (1]|school), Exam))
Linear mixed model fit by REML ['lmerMod']
Formula: normexam ~ standLRT + sex + type + (1 | school)
Data: Exam
REML criterion at convergence: 9345.384
Random effects:

Groups Name Std.Dev.
school (Intercept) 0.2905
Residual 0.7500

Number of obs: 4059, groups: school, 65

Fixed Effects:

(Intercept) standLRT sexF typeSngl
-0.1677 0.5598 0.1660 0.1655

Our data exploration indicated that the slope with respect to the pretest
score may vary by school. We can fit a model with random effects by school
for both the slope and the intercept as

> (Em4 <- lmer (normexam ~ standLRT + sex + type + (standLRT|school), Exam))
Linear mixed model fit by REML ['lmerMod']
Formula: normexam ~ standLRT + sex + type + (standLRT | school)
Data: Exam
REML criterion at convergence: 9300.573
Random effects:

Groups Name Std.Dev. Corr

school (Intercept) 0.2872
standLRT 0.1228 0.58

Residual 0.7418

Number of obs: 4059, groups: school, 65

Fixed Effects:

(Intercept) standLRT sexF typeSngl
-0.1887 0.5541 0.1680 0.1764

and compare this fit to the previous fit with
> anova (Em3, Em4)

Data: Exam

Models:

Em3: normexam ~ standLRT + sex + type + (1 | school)

Em4: normexam ~ standLRT + sex + type + (standLRT | school)

Df AIC BIC 1loglLik deviance Chisqg Chi Df Pr(>Chisq)
Em3 6 9337.5 9375.3 -4662.7 9325.5
Em4 8 9297.1 9347.6 -4640.6 9281.1 44.327 2 2.368e-10

There is a strong evidence of a significant random effect for the slope by
school, whether judged by AIC, BIC or the p-value for the likelihood ratio
test.
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The p-value for the likelihood ratio test is based on a x? distribution with
degrees of freedom calculated as the difference in the number of parameters
in the two models. Because one of the parameters eliminated from the full
model in the submodel is at its boundary the usual asymptotics for the
likelihood ratio test do not apply. However, it can be shown that the p-value
quoted for the test is conservative in the sense that it is an upper bound on
the p-value that would be calculated say from a parametric bootstrap.

Having an upper bound of 1.9 x 10719 on the p-value can be regarded as
“highly significant” evidence of the utility of the random effect for the slope
by school.

We could also add a random effect for the student’s sex by school

> (Em5 <- lmer (normexam ~ standLRT + sex + type + (standLRT + sex|school), Exam))

Linear mixed model fit by REML ['lmerMod']

Formula: normexam ~ standLRT + sex + type + (standLRT + sex | school)
Data: Exam

REML criterion at convergence: 9299.956

Random effects:

Groups Name Std.Dev. Corr
school (Intercept) 0.27553

standLRT 0.12281 0.62

sexF 0.02914 0.70 -0.14
Residual 0.74177

Number of obs: 4059, groups: school, 65

Fixed Effects:

(Intercept) standLRT sexF typeSngl
-0.1895 0.5541 0.1698 0.1762

convergence code 0; 1 optimizer warnings; 0 lme4 warnings

Notice that the estimate of the variance of the sexM term is essentially zero
so there is no need to test the significance of this variance component. We
proceed with the analysis of Em4.

3 Growth curve model for repeated measures
data

> str (Oxboys)

'data.frame': 234 obs. of 4 variables:
$ Subject : Factor w/ 26 levels "1","10","11",..: 1 1 111111 1 12
$ age : num -1 -0.7479 -0.463 -0.1643 -0.0027
$ height : num 140 143 145 147 148
$ Occasion: Factor w/ 9 levels "1","2","3","4",..: 1 23 4567891
- attr(x, "ginfo")=List of 7
..$ formula :Class 'formula' 1language height ~ age | Subject
e ..— attr(x, ".Environment'")=<environment: R_GlobalEnv>
..$ order.groups: logi TRUE
..$ FUN :function (x)
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.— attr(x, "source")= chr "function (x) max(x, na.rm = TRUE)"

..$ outer : NULL
..$ inner : NULL
.$ labels :List of 2
..$ age : chr "Centered age"
. ..$ height: chr "Height"
.$ units :List of 1

..$ height: chr "(cm)"
> system.time (mX1 <- lmer (height ~ age + I(age”2) + I(age”3) + I(age”4) + (age + I(age”2) |Subject),
+ Oxboys) )
user system elapsed
0.05 0.00 0.05
> summary (mX1)

Linear mixed model fit by REML ['lmerMod']
Formula: height ~ age + I(age”2) + I(age”3) + I(age”4) + (age + I(age”2) |
Subject)
Data: Oxboys

REML criterion at convergence: 627.9
Scaled residuals:

Min 10 Median 30 Max
—-2.71347 -0.54621 0.00289 0.54294 2.65893

Random effects:

Groups Name Variance Std.Dev. Corr
Subject (Intercept) 64.0943 8.0059

age 2.8661 1.6930 0.61

I (age”2) 0.6744 0.8212 0.22 0.66
Residual 0.2174 0.4662

Number of obs: 234, groups: Subject, 26

Fixed effects:
Estimate Std. Error t value

(Intercept) 149.0189 1.5711 94.850
age 6.1742 0.3566 17.314
I (age”2) 1.1282 0.3514 3.210
I(age”3) 0.4539 0.1624 2.794
I (age”4) -0.3769 0.3002 -1.256

Correlation of Fixed Effects:
(Intr) age I(g”*2) I(g”*3)
age 0.572
I(age”2) 0.076 0.264
I(age”3) -0.001 -0.340 0.025
I(age”4) 0.021 0.016 -0.857 -0.021
convergence code: 0
Model failed to converge with max|grad| = 0.00267836 (tol = 0.002, component 1)

> system.time (mX2 <- lmer (height ~ poly(age,4) + (age + I(age”2) |Subject), Oxboys))

user system elapsed
0.06 0.00 0.06

> summary (mX2)
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Linear mixed model fit by REML ['lmerMod']
Formula: height ~ poly(age, 4) + (age + I(age”2) | Subject)
Data: Oxboys

REML criterion at convergence: 616.9
Scaled residuals:
Min 10 Median 30 Max

—-2.71340 -0.54607 0.00301 0.54293 2.65879

Random effects:

Groups Name Variance Std.Dev. Corr
Subject (Intercept) 64.0634 8.0040
age 2.8643 1.6924 0.61
I(age”2) 0.6742 0.8211 0.22 0.66
Residual 0.2174 0.4662

Number of obs: 234, groups: Subject, 26

Fixed effects:

Estimate Std. Error t value
(Intercept) 149.5198 .5907 93.999
poly(age, 4)1 64.5409 .3279 19.394
poly(age, 4)2 4.2032 .0235 4.107
poly(age, 4)3 1.2908 .4663 2.768
poly(age, 4)4 -0.5855 .4663 -1.256

OO K WK

Correlation of Fixed Effects:

(Intr) p(,4)1 p(,4)2 p(,4)3
poly(ag,4)1 0.631
poly(ag,4)2 0.230 0.583
poly(ag,4)3 0.000 0.000 0.000
poly(ag,4)4 0.000 0.000 0.000 0.000

4 Cross-classification model

> str(ScotsSec)

'data.frame': 3435 obs. of 6 variables:

$ verbal : num 11 0 -14 -6 -30 -17 -17 -11 -9 -19

$ attain : num 10 3 2 3 2 2 4 6 4 2

$ primary: Factor w/ 148 levels "1","2" "3" "4" _.: 1111111111
$ sex : Factor w/ 2 levels "M","F": 1 211222111

$ social : num 0 0 020000000

$ second : Factor w/ 19 levels "1","2","3","4",..: 9999991199

> system.time (mS1 <- lmer (attain ~ sex + (1|primary) + (1|second), ScotsSec))
user system elapsed
0.05 0.00 0.04

> summary (mS1)

Linear mixed model fit by REML ['lmerMod']
Formula: attain ~ sex + (1 | primary) + (1 | second)
Data: ScotsSec

REML criterion at convergence: 17127.9
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Scaled residuals:
Min 10 Median 30 Max
-2.2376 -0.8469 -0.1219 0.9035 2.2001

Random effects:

Groups Name Variance Std.Dev.

primary (Intercept) 1.1096 1.053

second (Intercept) 0.3697 0.608

Residual 8.0551 2.838
Number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.25515 0.18432 28.511

sexF

0.49851 0.09825 5.074

Correlation of Fixed Effects:

5

(Intr)
sexF -

0.264

Session Info

> toLatex (sessionInfo())

R version 3.5.2 (2018-12-20), x86_64-w64-mingw32

Locale: LC_COLLATE=C, LC_CTYPE=English_Canada.1252,
LC_MONETARY=English_Canada. 1252, LC_NUMERIC=C,
LC_TIME=English_Canada.1252

Running under: Windows 10 x64 (build 17763)
Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

Other packages: Matrix 1.2-15, lattice 0.20-38, Ime4 1.1-20,
mlmRev 1.0-8

Loaded via a namespace (and not attached): MASS 7.3-51.1,
Rcpp 1.0.3, compiler 3.5.2, grid 3.5.2, minqa 1.2.4, nlme 3.1-137,
nloptr 1.2.1, splines 3.5.2, tools 3.5.2
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