
Package ‘mice’
May 27, 2025

Type Package

Version 3.18.0

Title Multivariate Imputation by Chained Equations

Date 2025-05-27

Maintainer Stef van Buuren <stef.vanbuuren@tno.nl>

Depends R (>= 2.10.0)

Imports broom, dplyr, glmnet, graphics, grDevices, lattice, mitml,
nnet, Rcpp, rpart, stats, tidyr, utils

Suggests broom.mixed, future, furrr, haven, knitr, literanger, lme4,
MASS, miceadds, pan, parallelly, purrr, ranger, randomForest,
rmarkdown, rstan, survival, testthat

Description Multiple imputation using Fully Conditional Specification (FCS)
implemented by the MICE algorithm as described in Van Buuren and
Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. Each variable has
its own imputation model. Built-in imputation models are provided for
continuous data (predictive mean matching, normal), binary data (logistic
regression), unordered categorical data (polytomous logistic regression)
and ordered categorical data (proportional odds). MICE can also impute
continuous two-level data (normal model, pan, second-level variables).
Passive imputation can be used to maintain consistency between variables.
Various diagnostic plots are available to inspect the quality of the
imputations.

Encoding UTF-8

LazyLoad yes

LazyData yes

URL https://github.com/amices/mice, https://amices.org/mice/,

https://stefvanbuuren.name/fimd/

BugReports https://github.com/amices/mice/issues

LinkingTo cpp11, Rcpp

License GPL (>= 2)

1

https://doi.org/10.18637/jss.v045.i03
https://github.com/amices/mice
https://amices.org/mice/
https://stefvanbuuren.name/fimd/
https://github.com/amices/mice/issues

2 Contents

RoxygenNote 7.3.2

NeedsCompilation yes

Author Stef van Buuren [aut, cre],
Karin Groothuis-Oudshoorn [aut],
Gerko Vink [ctb],
Rianne Schouten [ctb],
Alexander Robitzsch [ctb],
Patrick Rockenschaub [ctb],
Lisa Doove [ctb],
Shahab Jolani [ctb],
Margarita Moreno-Betancur [ctb],
Ian White [ctb],
Philipp Gaffert [ctb],
Florian Meinfelder [ctb],
Bernie Gray [ctb],
Vincent Arel-Bundock [ctb],
Mingyang Cai [ctb],
Thom Volker [ctb],
Edoardo Costantini [ctb],
Caspar van Lissa [ctb],
Hanne Oberman [ctb],
Stephen Wade [ctb]

Repository CRAN

Date/Publication 2025-05-27 10:40:02 UTC

Contents
.pmm.match . 5
ampute . 6
anova.mira . 10
appendbreak . 11
as.mids . 12
as.mira . 13
as.mitml.result . 14
boys . 15
brandsma . 16
bwplot.mads . 18
bwplot.mids . 19
cbind . 22
cc . 25
cci . 26
complete.mids . 27
construct.blocks . 29
convergence . 30
D1 . 31
D2 . 33

Contents 3

D3 . 34
densityplot.mids . 35
employee . 38
estimice . 39
extractBS . 40
fdd . 41
fdgs . 43
fico . 44
filter.mids . 45
fix.coef . 47
flux . 48
fluxplot . 49
futuremice . 51
getfit . 53
getqbar . 54
glm.mids . 55
ibind . 56
ic . 57
ici . 58
is.mads . 58
is.mids . 59
is.mipo . 59
is.mira . 60
is.mitml.result . 60
leiden85 . 61
lm.mids . 61
mads . 62
make.blocks . 65
make.blots . 66
make.calltype . 66
make.formulas . 68
make.method . 69
make.post . 70
make.predictorMatrix . 71
make.visitSequence . 71
make.where . 72
mammalsleep . 73
matchindex . 74
md.pairs . 76
md.pattern . 77
mdc . 78
mice.impute.2l.bin . 80
mice.impute.2l.lmer . 81
mice.impute.2l.norm . 82
mice.impute.2l.pan . 84
mice.impute.2lonly.mean . 86
mice.impute.2lonly.norm . 88
mice.impute.2lonly.pmm . 91

4 Contents

mice.impute.cart . 93
mice.impute.jomoImpute . 95
mice.impute.lasso.logreg . 96
mice.impute.lasso.norm . 98
mice.impute.lasso.select.logreg . 99
mice.impute.lasso.select.norm . 101
mice.impute.lda . 102
mice.impute.logreg . 104
mice.impute.logreg.boot . 105
mice.impute.mean . 106
mice.impute.midastouch . 108
mice.impute.mnar.logreg . 110
mice.impute.mpmm . 113
mice.impute.norm . 115
mice.impute.norm.boot . 116
mice.impute.norm.nob . 117
mice.impute.norm.predict . 119
mice.impute.panImpute . 120
mice.impute.passive . 122
mice.impute.pmm . 123
mice.impute.polr . 126
mice.impute.polyreg . 128
mice.impute.quadratic . 130
mice.impute.rf . 132
mice.impute.ri . 134
mice.impute.sample . 135
mice.mids . 136
mice.theme . 137
mids . 138
mids2mplus . 144
mids2spss . 145
mira . 146
mnar_demo_data . 148
name.blocks . 148
name.formulas . 149
ncc . 150
nelsonaalen . 151
nhanes . 152
nhanes2 . 153
nic . 154
nimp . 155
norm.draw . 156
parlmice . 157
pattern . 159
pool . 160
pool.compare . 163
pool.r.squared . 164
pool.scalar . 165

.pmm.match 5

pool.table . 167
popmis . 170
pops . 170
potthoffroy . 171
print.mira . 173
quickpred . 174
selfreport . 176
squeeze . 178
stripplot.mids . 178
summary.mira . 182
supports.transparent . 183
tbc . 184
toenail . 185
toenail2 . 186
version . 187
walking . 188
windspeed . 189
with.mids . 190
xyplot.mads . 191
xyplot.mids . 192

Index 196

.pmm.match Finds an imputed value from matches in the predictive metric (depre-
cated)

Description

This function finds matches among the observed data in the predictive mean metric. It selects the
donors closest matches, randomly samples one of the donors, and returns the observed value of the
match.

Usage

.pmm.match(z, yhat = yhat, y = y, donors = 5, ...)

Arguments

z A scalar containing the predicted value for the current case to be imputed.

yhat A vector containing the predicted values for all cases with an observed outcome.

y A vector of length(yhat) elements containing the observed outcome

donors The size of the donor pool among which a draw is made. The default is donors
= 5. Setting donors = 1 always selects the closest match. Values between 3
and 10 provide the best results. Note: This setting was changed from 3 to 5 in
version 2.19, based on simulation work by Tim Morris (UCL).

... Other parameters (not used).

6 ampute

Details

This function is included for backward compatibility. It was used up to mice 2.21. The current
mice.impute.pmm() function calls the faster C function matcher instead of .pmm.match().

Value

A scalar containing the observed value of the selected donor.

Author(s)

Stef van Buuren

References

Schenker N & Taylor JMG (1996) Partially parametric techniques for multiple imputation. Compu-
tational Statistics and Data Analysis, 22, 425-446.

Little RJA (1988) Missing-data adjustments in large surveys (with discussion). Journal of Business
Economics and Statistics, 6, 287-301.

ampute Generate missing data for simulation purposes

Description

This function generates multivariate missing data under a MCAR, MAR or MNAR missing data
mechanism. Imputation of data sets containing missing values can be performed with mice.

Usage

ampute(
data,
prop = 0.5,
patterns = NULL,
freq = NULL,
mech = "MAR",
weights = NULL,
std = TRUE,
cont = TRUE,
type = NULL,
odds = NULL,
bycases = TRUE,
run = TRUE

)

ampute 7

Arguments

data A complete data matrix or data frame. Values should be numeric. Categorical
variables should have been transformed to dummies.

prop A scalar specifying the proportion of missingness. Should be a value between 0
and 1. Default is a missingness proportion of 0.5.

patterns A matrix or data frame of size #patterns by #variables where 0 indicates that
a variable should have missing values and 1 indicates that a variable should
remain complete. The user may specify as many patterns as desired. One pat-
tern (a vector) is possible as well. Default is a square matrix of size #vari-
ables where each pattern has missingness on one variable only (created with
ampute.default.patterns). After the amputation procedure, md.pattern
can be used to investigate the missing data patterns in the data.

freq A vector of length #patterns containing the relative frequency with which the
patterns should occur. For example, for three missing data patterns, the vector
could be c(0.4, 0.4, 0.2), meaning that of all cases with missing values, 40
percent should have pattern 1, 40 percent pattern 2 and 20 percent pattern 3. The
vector should sum to 1. Default is an equal probability for each pattern, created
with ampute.default.freq.

mech A string specifying the missingness mechanism, either "MCAR" (Missing Com-
pletely At Random), "MAR" (Missing At Random) or "MNAR" (Missing Not
At Random). Default is a MAR missingness mechanism.

weights A matrix or data frame of size #patterns by #variables. The matrix contains
the weights that will be used to calculate the weighted sum scores. For a MAR
mechanism, the weights of the variables that will be made incomplete should be
zero. For a MNAR mechanism, these weights could have any possible value.
Furthermore, the weights may differ between patterns and between variables.
They may be negative as well. Within each pattern, the relative size of the values
are of importance. The default weights matrix is made with ampute.default.weights
and returns a matrix with equal weights for all variables. In case of MAR, vari-
ables that will be amputed will be weighted with 0. For MNAR, variables that
will be observed will be weighted with 0. If the mechanism is MCAR, the
weights matrix will not be used.

std Logical. Whether the weighted sum scores should be calculated with standard-
ized data or with non-standardized data. The latter is especially advised when
making use of train and test sets in order to prevent leakage.

cont Logical. Whether the probabilities should be based on a continuous or a dis-
crete distribution. If TRUE, the probabilities of being missing are based on a
continuous logistic distribution function. ampute.continuous will be used to
calculate and assign the probabilities. These probabilities will then be based on
the argument type. If FALSE, the probabilities of being missing are based on a
discrete distribution (ampute.discrete) based on the odds argument. Default
is TRUE.

type A string or vector of strings containing the type of missingness for each pattern.
Either "LEFT", "MID", "TAIL" or ’"RIGHT". If a single missingness type is
given, all patterns will be created with the same type. If the missingness types

8 ampute

should differ between patterns, a vector of missingness types should be given.
Default is RIGHT for all patterns and is the result of ampute.default.type.

odds A matrix where #patterns defines the #rows. Each row should contain the odds
of being missing for the corresponding pattern. The number of odds values
defines in how many quantiles the sum scores will be divided. The odds values
are relative probabilities: a quantile with odds value 4 will have a probability of
being missing that is four times higher than a quantile with odds 1. The number
of quantiles may differ between the patterns, specify NA for cells remaining
empty. Default is 4 quantiles with odds values 1, 2, 3 and 4 and is created by
ampute.default.odds.

bycases Logical. If TRUE, the proportion of missingness is defined in terms of cases.
If FALSE, the proportion of missingness is defined in terms of cells. Default is
TRUE.

run Logical. If TRUE, the amputations are implemented. If FALSE, the return
object will contain everything except for the amputed data set.

Details

This function generates missing values in complete data sets. Amputation of complete data sets
is useful for the evaluation of imputation techniques, such as multiple imputation (performed with
function mice in this package).

The basic strategy underlying multivariate imputation was suggested by Don Rubin during discus-
sions in the 90’s. Brand (1997) created one particular implementation, and his method found its
way into the FCS paper (Van Buuren et al, 2006).

Until recently, univariate amputation procedures were used to generate missing data in complete,
simulated data sets. With this approach, variables are made incomplete one variable at a time. When
more than one variable needs to be amputed, the procedure is repeated multiple times.

With the univariate approach, it is difficult to relate the missingness on one variable to the missing-
ness on another variable. A multivariate amputation procedure solves this issue and moreover, it
does justice to the multivariate nature of data sets. Hence, ampute is developed to perform multi-
variate amputation.

The idea behind the function is the specification of several missingness patterns. Each pattern is a
combination of variables with and without missing values (denoted by 0 and 1 respectively). For
example, one might want to create two missingness patterns on a data set with four variables. The
patterns could be something like: 0,0,1,1 and 1,0,1,0. Each combination of zeros and ones may
occur.

Furthermore, the researcher specifies the proportion of missingness, either the proportion of miss-
ing cases or the proportion of missing cells, and the relative frequency each pattern occurs. Conse-
quently, the data is split into multiple subsets, one subset per pattern. Now, each case is candidate
for a certain missingness pattern, but whether the case will have missing values eventually depends
on other specifications.

The first of these specifications is the missing mechanism. There are three possible mechanisms:
the missingness depends completely on chance (MCAR), the missingness depends on the values
of the observed variables (i.e. the variables that remain complete) (MAR) or on the values of the
variables that will be made incomplete (MNAR).

ampute 9

When the user specifies the missingness mechanism to be "MCAR", the candidates have an equal
probability of becoming incomplete. For a "MAR" or "MNAR" mechanism, weighted sum scores are
calculated. These scores are a linear combination of the variables.

In order to calculate the weighted sum scores, the data is standardized. For this reason, the data
has to be numeric. Second, for each case, the values in the data set are multiplied with the weights,
specified by argument weights. These weighted scores will be summed, resulting in a weighted
sum score for each case.

The weights may differ between patterns and they may be negative or zero as well. Naturally, in
case of a MAR mechanism, the weights corresponding to the variables that will be made incomplete,
have a 0. Note that this may be different for each pattern. In case of MNAR missingness, especially
the weights of the variables that will be made incomplete are of importance. However, the other
variables may be weighted as well.

It is the relative difference between the weights that will result in an effect in the sum scores. For
example, for the first missing data pattern mentioned above, the weights for the third and fourth
variables could be set to 2 and 4. However, weight values of 0.2 and 0.4 will have the exact same
effect on the weighted sum score: the fourth variable is weighted twice as much as variable 3.

Based on the weighted sum scores, either a discrete or continuous distribution of probabilities is
used to calculate whether a candidate will have missing values.

For a discrete distribution of probabilities, the weighted sum scores are divided into subgroups of
equal size (quantiles). Thereafter, the user specifies for each subgroup the odds of being missing.
Both the number of subgroups and the odds values are important for the generation of missing data.
For example, for a RIGHT-like mechanism, scoring in one of the higher quantiles should have high
missingness odds, whereas for a MID-like mechanism, the central groups should have higher odds.
Again, not the size of the odds values are of importance, but the relative distance between the values.

The continuous distributions of probabilities are based on the logistic distribution function. The
user can specify the type of missingness, which, again, may differ between patterns.

For an example and more explanation about how the arguments interact with each other, we refer to
the vignette: Generate missing values with ampute.

Value

Returns an S3 object of class mads (multivariate amputed data set)

Author(s)

Rianne Schouten, Gerko Vink, Peter Lugtig, 2016

References

Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies
for the statistical analysis of incomplete data sets. pp. 110-113. Dissertation. Rotterdam: Erasmus
University.

Schouten, R.M., Lugtig, P and Vink, G. (2018) Generating missing values for simulation purposes:
A multivariate amputation procedure. Journal of Statistical Computation and Simulation, 88(15):
1909-1930. doi:10.1080/00949655.2018.1491577

https://rianneschouten.github.io/mice_ampute/vignette/ampute.html
https://doi.org/10.1080/00949655.2018.1491577

10 anova.mira

Schouten, R.M. and Vink, G. (2018) The Dance of the Mechanisms: How Observed Information
Influences the Validity of Missingness Assumptions. Sociological Methods and Research, 50(3):
1243-1258. doi:10.1177/0049124118799376

Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn, C.G.M., Rubin, D.B. (2006) Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76(12):
1049-1064. doi:10.1080/10629360600810434

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Vink, G. (2016) Towards a standardized evaluation of multiple imputation routines.

See Also

mads, bwplot.mads, xyplot.mads

Examples

start with a complete data set
compl_boys <- cc(boys)[1:3]

Perform amputation with default settings
mads_boys <- ampute(data = compl_boys)
mads_boys$amp

Change default matrices as desired
my_patterns <- mads_boys$patterns
my_patterns[1:3, 2] <- 0

my_weights <- mads_boys$weights
my_weights[2, 1] <- 2
my_weights[3, 1] <- 0.5

Rerun amputation
my_mads_boys <- ampute(

data = compl_boys, patterns = my_patterns, freq =
c(0.3, 0.3, 0.4), weights = my_weights, type = c("RIGHT", "TAIL", "LEFT")

)
my_mads_boys$amp

anova.mira Compare several nested models

Description

Compare several nested models

Usage

S3 method for class 'mira'
anova(object, ..., method = "D1", use = "wald")

https://doi.org/10.1177/0049124118799376
https://doi.org/10.1080/10629360600810434

appendbreak 11

Arguments

object Two or more objects of class mira

... Other parameters passed down to D1(), D2(), D3() and mitml::testModels.

method Either "D1", "D2" or "D3"

use An character indicating the test statistic

Value

Object of class mice.anova

appendbreak Appends specified break to the data

Description

A custom function to insert rows in long data with new pseudo-observations that are being done
on the specified break ages. There should be a column called first in data with logical data that
codes whether the current row is the first for subject id. Furthermore, the function assumes that
columns age, occ, hgt.z, wgt.z and bmi.z are available. This function is used on the tbc data in
FIMD chapter 9. Check that out to see it in action.

Usage

appendbreak(data, brk, warp.model = warp.model, id = NULL, typ = "pred")

Arguments

data A data frame in the long long format

brk A vector of break ages

warp.model A time warping model

id The subject identifier

typ Label to signal that this is a newly added observation

Value

A long data frame with additional rows for the break ages

12 as.mids

as.mids Converts an imputed dataset (long format) into a mids object

Description

This function converts imputed data stored in long format into an object of class mids. The original
incomplete dataset needs to be available so that we know where the missing data are. The function
is useful to convert back operations applied to the imputed data back in a mids object. It may also
be used to store multiply imputed data sets from other software into the format used by mice.

Usage

as.mids(long, where = NULL, .imp = ".imp", .id = ".id")

Arguments

long A multiply imputed data set in long format, for example produced by a call to
complete(..., action = 'long', include = TRUE), or by other software.

where A data frame or matrix with logicals of the same dimensions as data indicat-
ing where in the data the imputations should be created. The default, where =
is.na(data), specifies that the missing data should be imputed. The where
argument may be used to overimpute observed data, or to skip imputations for
selected missing values. Note: Imputation methods that generate imptutations
outside of mice, like mice.impute.panImpute() may depend on a complete
predictor space. In that case, a custom where matrix can not be specified.

.imp An optional column number or column name in long, indicating the imputation
index. The values are assumed to be consecutive integers between 0 and m.
Values 1 through m correspond to the imputation index, value 0 indicates the
original data (with missings). By default, the procedure will search for a variable
named ".imp".

.id An optional column number or column name in long, indicating the subject
identification. If not specified, then the function searches for a variable named
".id". If this variable is found, the values in the column will define the row
names in the data element of the resulting mids object.

Value

An object of class mids

Note

The function expects the input data long to be sorted by imputation number (variable ".imp" by
default), and in the same sequence within each imputation block.

Author(s)

Gerko Vink

as.mira 13

Examples

impute the nhanes dataset
imp <- mice(nhanes, print = FALSE)
extract the data in long format
X <- complete(imp, action = "long", include = TRUE)
create dataset with .imp variable as numeric
X2 <- X

nhanes example without .id
test1 <- as.mids(X)
is.mids(test1)
identical(complete(test1, action = "long", include = TRUE), X)

nhanes example without .id where .imp is numeric
test2 <- as.mids(X2)
is.mids(test2)
identical(complete(test2, action = "long", include = TRUE), X)

nhanes example, where we explicitly specify .id as column 2
test3 <- as.mids(X, .id = ".id")
is.mids(test3)
identical(complete(test3, action = "long", include = TRUE), X)

nhanes example with .id where .imp is numeric
test4 <- as.mids(X2, .id = 6)
is.mids(test4)
identical(complete(test4, action = "long", include = TRUE), X)

example without an .id variable
variable .id not preserved
X3 <- X[, -6]
test5 <- as.mids(X3)
is.mids(test5)
identical(complete(test5, action = "long", include = TRUE)[, -6], X[, -6])

where argument copies also observed data into $imp element
where <- matrix(TRUE, nrow = nrow(nhanes), ncol = ncol(nhanes))
colnames(where) <- colnames(nhanes)
test11 <- as.mids(X, where = where)
identical(complete(test11, action = "long", include = TRUE), X)

as.mira Create a mira object from repeated analyses

Description

The as.mira() function takes the results of repeated complete-data analysis stored as a list, and
turns it into a mira object that can be pooled.

14 as.mitml.result

Usage

as.mira(fitlist)

Arguments

fitlist A list containing m fitted analysis objects

Value

An S3 object of class mira.

Author(s)

Stef van Buuren

See Also

mira

as.mitml.result Converts into a mitml.result object

Description

The as.mitml.result() function takes the results of repeated complete-data analysis stored as a
list, and turns it into an object of class mitml.result.

Usage

as.mitml.result(x)

Arguments

x An object of class mira

Value

An S3 object of class mitml.result, a list containing m fitted analysis objects.

Author(s)

Stef van Buuren

See Also

with.mitml.list

boys 15

boys Growth of Dutch boys

Description

Height, weight, head circumference and puberty of 748 Dutch boys.

Format

A data frame with 748 rows on the following 9 variables:

age Decimal age (0-21 years)

hgt Height (cm)

wgt Weight (kg)

bmi Body mass index

hc Head circumference (cm)

gen Genital Tanner stage (G1-G5)

phb Pubic hair (Tanner P1-P6)

tv Testicular volume (ml)

reg Region (north, east, west, south, city)

Details

Random sample of 10\ Dutch growth references 1997. Variables gen and phb are ordered factors.
reg is a factor.

Source

Fredriks, A.M„ van Buuren, S., Burgmeijer, R.J., Meulmeester JF, Beuker, R.J., Brugman, E.,
Roede, M.J., Verloove-Vanhorick, S.P., Wit, J.M. (2000) Continuing positive secular growth change
in The Netherlands 1955-1997. Pediatric Research, 47, 316-323.

Fredriks, A.M., van Buuren, S., Wit, J.M., Verloove-Vanhorick, S.P. (2000). Body index measure-
ments in 1996-7 compared with 1980. Archives of Disease in Childhood, 82, 107-112.

Examples

create two imputed data sets
imp <- mice(boys, m = 1, maxit = 2)
z <- complete(imp, 1)

create imputations for age <8yrs
plot(zage, zgen,

col = mdc(1:2)[1 + is.na(boys$gen)],
xlab = "Age (years)", ylab = "Tanner Stage Genital"

)

16 brandsma

figure to show that the default imputation method does not impute BMI
consistently
plot(zbmi, zwgt / (z$hgt / 100)^2,

col = mdc(1:2)[1 + is.na(boys$bmi)],
xlab = "Imputed BMI", ylab = "Calculated BMI"

)

also, BMI distributions are somewhat different
oldpar <- par(mfrow = c(1, 2))
MASS::truehist(z$bmi[!is.na(boys$bmi)],

h = 1, xlim = c(10, 30), ymax = 0.25,
col = mdc(1), xlab = "BMI observed"

)
MASS::truehist(z$bmi[is.na(boys$bmi)],

h = 1, xlim = c(10, 30), ymax = 0.25,
col = mdc(2), xlab = "BMI imputed"

)
par(oldpar)

repair the inconsistency problem by passive imputation
meth <- imp$meth
meth["bmi"] <- "~I(wgt/(hgt/100)^2)"
pred <- imp$predictorMatrix
pred["hgt", "bmi"] <- 0
pred["wgt", "bmi"] <- 0
imp2 <- mice(boys, m = 1, maxit = 2, meth = meth, pred = pred)
z2 <- complete(imp2, 1)

show that new imputations are consistent
plot(z2$bmi, z2$wgt / (z2$hgt / 100)^2,

col = mdc(1:2)[1 + is.na(boys$bmi)],
ylab = "Calculated BMI"

)

and compare distributions
oldpar <- par(mfrow = c(1, 2))
MASS::truehist(z2$bmi[!is.na(boys$bmi)],

h = 1, xlim = c(10, 30), ymax = 0.25, col = mdc(1),
xlab = "BMI observed"

)
MASS::truehist(z2$bmi[is.na(boys$bmi)],

h = 1, xlim = c(10, 30), ymax = 0.25, col = mdc(2),
xlab = "BMI imputed"

)
par(oldpar)

brandsma Brandsma school data used Snijders and Bosker (2012)

brandsma 17

Description

Dataset with raw data from Snijders and Bosker (2012) containing data from 4106 pupils attending
216 schools. This dataset includes all pupils and schools with missing data.

Format

brandsma is a data frame with 4106 rows and 14 columns:

sch School number

pup Pupil ID

iqv IQ verbal

iqp IQ performal

sex Sex of pupil

ses SES score of pupil

min Minority member 0/1

rpg Number of repeated groups, 0, 1, 2

lpr language score PRE

lpo language score POST

apr Arithmetic score PRE

apo Arithmetic score POST

den Denomination classification 1-4 - at school level

ssi School SES indicator - at school level

Note

This dataset is constructed from the raw data. There are a few differences with the data set used in
Chapter 4 and 5 of Snijders and Bosker:

1. All schools are included, including the five school with missing values on langpost.

2. Missing denomina codes are left as missing.

3. Aggregates are undefined in the presence of missing data in the underlying values. Variables
ses, iqv and iqp are in their original scale, and not globally centered. No aggregate variables
at the school level are included.

4. There is a wider selection of original variables. Note however that the source data contain an
even wider set of variables.

Source

Constructed from MLbook_2nded_total_4106-99.sav from https://www.stats.ox.ac.uk/~snijders/
mlbook.htm by function data-raw/R/brandsma.R

https://www.stats.ox.ac.uk/~snijders/mlbook.htm
https://www.stats.ox.ac.uk/~snijders/mlbook.htm

18 bwplot.mads

References

Brandsma, HP and Knuver, JWM (1989), Effects of school and classroom characteristics on pupil
progress in language and arithmetic. International Journal of Educational Research, 13(7), 777 -
788.

Snijders, TAB and Bosker RJ (2012). Multilevel Analysis, 2nd Ed. Sage, Los Angeles, 2012.

bwplot.mads Box-and-whisker plot of amputed and non-amputed data

Description

Plotting method to investigate the relation between the data variables and the amputed data. The
function shows how the amputed values are related to the variable values.

Usage

S3 method for class 'mads'
bwplot(
x,
data,
which.pat = NULL,
standardized = TRUE,
descriptives = TRUE,
layout = NULL,
...

)

Arguments

x A mads (mads) object, typically created by ampute.

data A string or vector of variable names that needs to be plotted. As a default, all
variables will be plotted.

which.pat A scalar or vector indicating which patterns need to be plotted. As a default, all
patterns are plotted.

standardized Logical. Whether the box-and-whisker plots need to be created from standard-
ized data or not. Default is TRUE.

descriptives Logical. Whether the mean, variance and n of the variables need to be printed.
This is useful to examine the effect of the amputation. Default is TRUE.

layout A vector of two values indicating how the boxplots of one pattern should be
divided over the plot. For example, c(2, 3) indicates that the boxplots of six
variables need to be placed on 3 rows and 2 columns. Default is 1 row and an
amount of columns equal to #variables. Note that for more than 6 variables,
multiple plots will be created automatically.

... Not used, but for consistency with generic

bwplot.mids 19

Value

A list containing the box-and-whisker plots. Note that a new pattern will always be shown in a new
plot.

Note

The mads object contains all the information you need to make any desired plots. Check mads or
the vignette Multivariate Amputation using Ampute to understand the contents of class object mads.

Author(s)

Rianne Schouten, 2016

See Also

ampute, bwplot, mads

bwplot.mids Box-and-whisker plot of observed and imputed data

Description

Plotting methods for imputed data using lattice. bwplot() produces box-and-whisker plots. The
function automatically separates the observed and imputed data. The functions extend the usual
features of lattice.

Usage

S3 method for class 'mids'
bwplot(
x,
data,
na.groups = NULL,
groups = NULL,
as.table = TRUE,
theme = mice.theme(),
mayreplicate = TRUE,
allow.multiple = TRUE,
outer = TRUE,
drop.unused.levels = lattice::lattice.getOption("drop.unused.levels"),
...,
subscripts = TRUE,
subset = TRUE

)

20 bwplot.mids

Arguments

x A mids object, typically created by mice() or mice.mids().

data Formula that selects the data to be plotted. This argument follows the lattice
rules for formulas, describing the primary variables (used for the per-panel dis-
play) and the optional conditioning variables (which define the subsets plotted
in different panels) to be used in the plot.
The formula is evaluated on the complete data set in the long form. Legal vari-
able names for the formula include names(x$data) plus the two administrative
factors .imp and .id.
Extended formula interface: The primary variable terms (both the LHS y and
RHS x) may consist of multiple terms separated by a ‘+’ sign, e.g., y1 + y2
~ x | a * b. This formula would be taken to mean that the user wants to plot
both y1 ~ x | a * b and y2 ~ x | a * b, but with the y1 ~ x and y2 ~ x in separate
panels. This behavior differs from standard lattice. Only combine terms of the
same type, i.e. only factors or only numerical variables. Mixing numerical and
categorical data occasionally produces odds labeling of vertical axis.
For convenience, in stripplot() and bwplot() the formula y~.imp may be ab-
breviated as y. This applies only to a single y, and does not work for y1+y2~.imp.

na.groups An expression evaluating to a logical vector indicating which two groups are
distinguished (e.g. using different colors) in the display. The environment in
which this expression is evaluated in the response indicator is.na(x$data).
The default na.group = NULL contrasts the observed and missing data in the
LHS y variable of the display, i.e. groups created by is.na(y). The expression
y creates the groups according to is.na(y). The expression y1 & y2 creates
groups by is.na(y1) & is.na(y2), and y1 | y2 creates groups as is.na(y1) |
is.na(y2), and so on.

groups This is the usual groups arguments in lattice. It differs from na.groups be-
cause it evaluates in the completed data data.frame(complete(x, "long",
inc=TRUE)) (as usual), whereas na.groups evaluates in the response indicator.
See xyplot for more details. When both na.groups and groups are specified,
na.groups takes precedence, and groups is ignored.

as.table See xyplot.

theme A named list containing the graphical parameters. The default function mice.theme
produces a short list of default colors, line width, and so on. The extensive list
may be obtained from trellis.par.get(). Global graphical parameters like
col or cex in high-level calls are still honored, so first experiment with the
global parameters. Many setting consists of a pair. For example, mice.theme
defines two symbol colors. The first is for the observed data, the second for the
imputed data. The theme settings only exist during the call, and do not affect
the trellis graphical parameters.

mayreplicate A logical indicating whether color, line widths, and so on, may be replicated.
The graphical functions attempt to choose "intelligent" graphical parameters.
For example, the same color can be replicated for different element, e.g. use all
reds for the imputed data. Replication may be switched off by setting the flag to
FALSE, in order to allow the user to gain full control.

bwplot.mids 21

allow.multiple See xyplot.

outer See xyplot.
drop.unused.levels

See xyplot.

... Further arguments, usually not directly processed by the high-level functions
documented here, but instead passed on to other functions.

subscripts See xyplot.

subset See xyplot.

Details

The argument na.groups may be used to specify (combinations of) missingness in any of the vari-
ables. The argument groups can be used to specify groups based on the variable values themselves.
Only one of both may be active at the same time. When both are specified, na.groups takes prece-
dence over groups.

Use the subset and na.groups together to plots parts of the data. For example, select the first
imputed data set by by subset=.imp==1.

Graphical parameters like col, pch and cex can be specified in the arguments list to alter the plotting
symbols. If length(col)==2, the color specification to define the observed and missing groups.
col[1] is the color of the ’observed’ data, col[2] is the color of the missing or imputed data.
A convenient color choice is col=mdc(1:2), a transparent blue color for the observed data, and a
transparent red color for the imputed data. A good choice is col=mdc(1:2), pch=20, cex=1.5.
These choices can be set for the duration of the session by running mice.theme().

Value

The high-level functions documented here, as well as other high-level Lattice functions, return
an object of class "trellis". The update.trellis method can be used to subsequently update
components of the object, and the print.trellis method (usually called by default) will plot it on
an appropriate plotting device.

Note

The first two arguments (x and data) are reversed compared to the standard Trellis syntax imple-
mented in lattice. This reversal was necessary in order to benefit from automatic method dispatch.

In mice the argument x is always a mids object, whereas in lattice the argument x is always a
formula.

In mice the argument data is always a formula object, whereas in lattice the argument data is
usually a data frame.

All other arguments have identical interpretation.

Generates a box-and-whisker plot for each numerical variable in a mids object. This extends the
bwplot generic.

Author(s)

Stef van Buuren

22 cbind

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

mice, bwplot

Examples

imp <- mice(boys, maxit = 1)

box-and-whisker plot per imputation of all numerical variables
bwplot(imp)

tv (testicular volume), conditional on region
bwplot(imp, tv ~ .imp | reg)

same data, organized in a different way
bwplot(imp, tv ~ reg | .imp, theme = list())

cbind Combine R objects by rows and columns

Description

Functions cbind() and rbind() are defined in the mice package in order to enable dispatch to
cbind.mids() and rbind.mids() when one of the arguments is a data.frame.

Usage

cbind(...)

rbind(...)

Arguments

... Arguments passed on to base::cbind

deparse.level integer controlling the construction of labels in the case of non-
matrix-like arguments (for the default method):
deparse.level = 0 constructs no labels;
the default deparse.level = 1 typically and deparse.level = 2 always
construct labels from the argument names, see the ‘Value’ section below.

https://doi.org/10.18637/jss.v045.i03

cbind 23

Details

The standard base::cbind() and base::rbind() always dispatch to base::cbind.data.frame()
or base::rbind.data.frame() if one of the arguments is a data.frame. The versions defined in
the mice package intercept the user command and test whether the first argument has class "mids".
If so, function calls cbind.mids(), respectively rbind.mids(). In all other cases, the call is for-
warded to standard functions in the base package.

The cbind.mids() function combines two mids objects columnwise into a single object of class
mids, or combines a single mids object with a vector, matrix, factor or data.frame columnwise
into a mids object.

If both arguments of cbind.mids() are mids-objects, the data list components should have the
same number of rows. Also, the number of imputations (m) should be identical. If the second
argument is a matrix, factor or vector, it is transformed into a data.frame. The number of rows
should match with the data component of the first argument.

The cbind.mids() function renames any duplicated variable or block names by appending ".1",
".2" to duplicated names.

The rbind.mids() function combines two mids objects rowwise into a single mids object, or
combines a mids object with a vector, matrix, factor or data frame rowwise into a mids object.

If both arguments of rbind.mids() are mids objects, then rbind.mids() requires that both have
the same number of multiple imputations. In addition, their data components should match.

If the second argument of rbind.mids() is not a mids object, the columns of the arguments should
match. The where matrix for the second argument is set to FALSE, signalling that any missing
values in that argument were not imputed. The ignore vector for the second argument is set to
FALSE. Rows inherited from the second argument will therefore influence the parameter estimation
of the imputation model in any future iterations.

Value

An S3 object of class mids

Note

The cbind.mids() function constructs the elements of the new mids object as follows:

data Columnwise combination of the data in x and y
imp Combines the imputed values from x and y
m Taken from x$m
where Columnwise combination of x$where and y$where
blocks Combines x$blocks and y$blocks
call Vector, call[1] creates x, call[2] is call to cbind.mids()
nmis Equals c(x$nmis, y$nmis)
method Combines x$method and y$method
predictorMatrix Combination with zeroes on the off-diagonal blocks
visitSequence Combined as c(x$visitSequence, y$visitSequence)
formulas Combined as c(x$formulas, y$formulas)
post Combined as c(x$post, y$post)
blots Combined as c(x$blots, y$blots)

24 cbind

ignore Taken from x$ignore
seed Taken from x$seed
iteration Taken from x$iteration
lastSeedValue Taken from x$lastSeedValue
chainMean Combined from x$chainMean and y$chainMean
chainVar Combined from x$chainVar and y$chainVar
loggedEvents Taken from x$loggedEvents
version Current package version
date Current date

The rbind.mids() function constructs the elements of the new mids object as follows:

data Rowwise combination of the (incomplete) data in x and y
imp Equals rbind(x$imp[[j]], y$imp[[j]]) if y is mids object; otherwise the data of y will be copied
m Equals x$m
where Rowwise combination of where arguments
blocks Equals x$blocks
call Vector, call[1] creates x, call[2] is call to rbind.mids
nmis x$nmis + y$nmis
method Taken from x$method
predictorMatrix Taken from x$predictorMatrix
visitSequence Taken from x$visitSequence
formulas Taken from x$formulas
post Taken from x$post
blots Taken from x$blots
ignore Concatenate x$ignore and y$ignore
seed Taken from x$seed
iteration Taken from x$iteration
lastSeedValue Taken from x$lastSeedValue
chainMean Set to NA
chainVar Set to NA
loggedEvents Taken from x$loggedEvents
version Taken from x$version
date Taken from x$date

Author(s)

Karin Groothuis-Oudshoorn, Stef van Buuren

References

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

cbind, ibind, mids

https://doi.org/10.18637/jss.v045.i03

cc 25

Examples

--- cbind ---
impute four variables at once (default)
imp <- mice(nhanes, m = 1, maxit = 1, print = FALSE)
imp$predictorMatrix

impute two by two
data1 <- nhanes[, c("age", "bmi")]
data2 <- nhanes[, c("hyp", "chl")]
imp1 <- mice(data1, m = 2, maxit = 1, print = FALSE)
imp2 <- mice(data2, m = 2, maxit = 1, print = FALSE)

Append two solutions
imp12 <- cbind(imp1, imp2)

This is a different imputation model
imp12$predictorMatrix

Append the other way around
imp21 <- cbind(imp2, imp1)
imp21$predictorMatrix

Append 'forgotten' variable chl
data3 <- nhanes[, 1:3]
imp3 <- mice(data3, maxit = 1, m = 2, print = FALSE)
imp4 <- cbind(imp3, chl = nhanes$chl)

Of course, chl was not imputed
head(complete(imp4))

Combine mids object with data frame
imp5 <- cbind(imp3, nhanes2)
head(complete(imp5))

--- rbind ---
imp1 <- mice(nhanes[1:13,], m = 2, maxit = 1, print = FALSE)
imp5 <- mice(nhanes[1:13,], m = 2, maxit = 2, print = FALSE)
mylist <- list(age = NA, bmi = NA, hyp = NA, chl = NA)

nrow(complete(rbind(imp1, imp5)))
nrow(complete(rbind(imp1, mylist)))

nrow(complete(rbind(imp1, data.frame(mylist))))
nrow(complete(rbind(imp1, complete(imp5))))

cc Select complete cases

26 cci

Description

Extracts the complete cases, also known as listwise deletion. cc(x) is similar to na.omit(x), but
returns an object of the same class as the input data. Dimensions are not dropped. For extracting
incomplete cases, use ici.

Usage

cc(x)

Arguments

x An R object. Methods are available for classes mids, data.frame and matrix.
Also, x could be a vector.

Value

A vector, matrix or data.frame containing the data of the complete cases.

Author(s)

Stef van Buuren, 2017.

See Also

na.omit, cci, ici

Examples

cc(nhanes) # get the 13 complete cases
cc(nhanes$bmi) # extract complete bmi

cci Complete case indicator

Description

The complete case indicator is useful for extracting the subset of complete cases. The function
cci(x) calls complete.cases(x). The companion function ici() selects the incomplete cases.

Usage

cci(x)

Arguments

x An R object. Currently supported are methods for the following classes: mids.

complete.mids 27

Value

Logical vector indicating the complete cases.

Author(s)

Stef van Buuren, 2017.

See Also

complete.cases, ici, cc

Examples

cci(nhanes) # indicator for 13 complete cases
cci(mice(nhanes, maxit = 0))
f <- cci(nhanes[, c("bmi", "hyp")]) # complete data for bmi and hyp
nhanes[f,] # obtain all data from those with complete bmi and hyp

complete.mids Extracts the completed data from a mids object

Description

Takes an object of class mids, fills in the missing data, and returns the completed data in a specified
format.

Usage

S3 method for class 'mids'
complete(
data,
action = 1L,
include = FALSE,
mild = FALSE,
order = c("last", "first"),
...

)

Arguments

data An object of class mids as created by the function mice().

action A numeric vector or a keyword. Numeric values between 1 and data$m re-
turn the data with imputation number action filled in. The value of action =
0 return the original data, with missing values. action can also be one of the
following keywords: "all", "long", "broad" and "repeated". See the De-
tails section for the interpretation. The default is action = 1L returns the first
imputed data set.

28 complete.mids

include A logical to indicate whether the original data with the missing values should be
included.

mild A logical indicating whether the return value should always be an object of class
mild. Setting mild = TRUE overrides action keywords "long", "broad" and
"repeated". The default is FALSE.

order Either "first" or "last". Only relevant when action == "long". Writes the
".imp" and ".id" in columns 1 and 2. The default is order = "last". Included
for backward compatibility with "< mice 3.16.0".

... Additional arguments. Not used.

Details

The argument action can be length-1 character, which is matched to one of the following keywords:

"all" produces a mild object of imputed data sets. When include = TRUE, then the original data
are appended as the first list element;

"long" produces a data set where imputed data sets are stacked vertically. The columns are added:
1) .imp, integer, referring the imputation number, and 2) .id, character, the row names of
data$data;

"stacked" same as "long" but without the two additional columns;

"broad" produces a data set with where imputed data sets are stacked horizontally. Columns are
ordered as in the original data. The imputation number is appended to each column name;

"repeated" same as "broad", but with columns in a different order.

Value

Complete data set with missing values replaced by imputations. A data.frame, or a list of data
frames of class mild.

Note

Technical note: mice 3.7.5 renamed the complete() function to complete.mids() and exported
it as an S3 method of the generic tidyr::complete(). Name clashes between mice::complete()
and tidyr::complete() should no longer occur.

See Also

mice, mids

Examples

obtain first imputed data set
sum(is.na(nhanes2))
imp <- mice(nhanes2, print = FALSE, maxit = 1)
dat <- complete(imp)
sum(is.na(dat))

obtain stacked third and fifth imputation

construct.blocks 29

dat <- complete(imp, c(3, 5))

obtain all datasets, with additional identifiers
head(complete(imp, "long"))

same, but now as list, mild object
dslist <- complete(imp, "all")
length(dslist)

same, but also include the original data
dslist <- complete(imp, "all", include = TRUE)
length(dslist)

select original + 3 + 5, store as mild
dslist <- complete(imp, c(0, 3, 5), mild = TRUE)
names(dslist)

construct.blocks Construct blocks from formulas and predictorMatrix

Description

This helper function attempts to find blocks of variables in the specification of the formulas and/or
predictorMatrix objects. Blocks specified by formulas may consist of multiple variables. Blocks
specified by predictorMatrix are assumed to consist of single variables. Any duplicates in names
are removed, and the formula specification is preferred. predictorMatrix and formulas. When
both arguments specify models for the same block, the model for the predictMatrix is removed,
and priority is given to the specification given in formulas.

Usage

construct.blocks(formulas = NULL, predictorMatrix = NULL)

Arguments

formulas A named list of formula’s, or expressions that can be converted into formula’s
by as.formula. List elements correspond to blocks. The block to which the
list element applies is identified by its name, so list names must correspond to
block names. The formulas argument is an alternative to the predictorMatrix
argument that allows for more flexibility in specifying imputation models, e.g.,
for specifying interaction terms.

predictorMatrix

A numeric matrix of length(blocks) rows and ncol(data) columns, contain-
ing 0/1 data specifying the set of predictors to be used for each target column.
Each row corresponds to a variable block, i.e., a set of variables to be imputed.
A value of 1 means that the column variable is used as a predictor for the target
block (in the rows). By default, the predictorMatrix is a square matrix of
ncol(data) rows and columns with all 1’s, except for the diagonal. Note: For
two-level imputation models (which have "2l" in their names) other codes (e.g,
2 or -2) are also allowed.

30 convergence

Value

A blocks object.

See Also

make.blocks, name.blocks

Examples

form <- list(bmi + hyp ~ chl + age, chl ~ bmi)
pred <- make.predictorMatrix(nhanes[, c("age", "chl")])
construct.blocks(formulas = form, pred = pred)

convergence Computes convergence diagnostics for a mids object

Description

Takes an object of class mids, computes the autocorrelation and/or potential scale reduction factor,
and returns a data.frame with the specified diagnostic(s) per iteration.

Usage

convergence(data, diagnostic = "all", parameter = "mean", ...)

Arguments

data An object of class mids as created by the function mice().

diagnostic A keyword. One of the following keywords: "ac", "all", "gr" and "psrf".
See the Details section for the interpretation. The default is diagnostic =
"all" which returns both the autocorrelation and potential scale reduction factor
per iteration.

parameter A keyword. One of the following keywords: "mean" or "sd" to evaluate chain
means or chain standard deviations, respectively.

... Additional arguments. Not used.

Details

The argument diagnostic can be length-1 character, which is matched to one of the following
keywords:

"all" computes both the lag-1 autocorrelation as well as the potential scale reduction factor (cf.
Vehtari et al., 2021) per iteration of the MICE algorithm;

"ac" computes only the autocorrelation per iteration;

"psrf" computes only the potential scale reduction factor per iteration;

D1 31

"gr" same as psrf, the potential scale reduction factor is colloquially called the Gelman-Rubin
diagnostic.

In the unlikely event of perfect convergence, the autocorrelation equals zero and the potential scale
reduction factor equals one. To interpret the convergence diagnostic(s) in the output of the function,
it is recommended to plot the diagnostics (ac and/or psrf) against the iteration number (.it) per
imputed variable (vrb). A persistently decreasing trend across iterations indicates potential non-
convergence.

Value

A data.frame with the autocorrelation and/or potential scale reduction factor per iteration of the
MICE algorithm.

References

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Burkner, P.-C. (2021). Rank-Normalization,
Folding, and Localization: An Improved R for Assessing Convergence of MCMC. Bayesian Anal-
ysis, 1(1), 1-38. https://doi.org/10.1214/20-BA1221

See Also

mice, mids

Examples

Not run:
obtain imputed data set
imp <- mice(nhanes2, print = FALSE)
compute convergence diagnostics
convergence(imp)

End(Not run)

D1 Compare two nested models using D1-statistic

Description

The D1-statistics is the multivariate Wald test.

Usage

D1(fit1, fit0 = NULL, dfcom = NULL, df.com = NULL)

32 D1

Arguments

fit1 An object of class mira, produced by with().

fit0 An object of class mira, produced by with(). The model in fit0 is a nested
within fit1. The default null model fit0 = NULL compares fit1 to the intercept-
only model.

dfcom A single number denoting the complete-data degrees of freedom of model fit1.
If not specified, it is set equal to df.residual of model fit1. If that cannot be
done, the procedure assumes (perhaps incorrectly) a large sample.

df.com Deprecated

Note

Warning: D1() assumes that the order of the variables is the same in different models. See https:
//github.com/amices/mice/issues/420 for details.

References

Li, K. H., T. E. Raghunathan, and D. B. Rubin. 1991. Large-Sample Significance Levels from
Multiply Imputed Data Using Moment-Based Statistics and an F Reference Distribution. Journal
of the American Statistical Association, 86(416): 1065–73.

https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:wald

See Also

testModels

Examples

Compare two linear models:
imp <- mice(nhanes2, seed = 51009, print = FALSE)
mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))
mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp))
D1(mi1, mi0)
Not run:
Compare two logistic regression models
imp <- mice(boys, maxit = 2, print = FALSE)
fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial))
fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial))
D1(fit1, fit0)

End(Not run)

https://github.com/amices/mice/issues/420
https://github.com/amices/mice/issues/420
https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:wald

D2 33

D2 Compare two nested models using D2-statistic

Description

The D2-statistic pools test statistics from the repeated analyses. The method is less powerful than
the D1- and D3-statistics.

Usage

D2(fit1, fit0 = NULL, use = "wald")

Arguments

fit1 An object of class mira, produced by with().

fit0 An object of class mira, produced by with(). The model in fit0 is a nested
within fit1. The default null model fit0 = NULL compares fit1 to the intercept-
only model.

use A character string denoting Wald- or likelihood-based based tests. Can be either
"wald" or "likelihood". Only used if method = "D2".

Note

Warning: D2() assumes that the order of the variables is the same in different models. See https:
//github.com/amices/mice/issues/420 for details.

References

Li, K. H., X. L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance Levels from
Repeated p-Values with Multiply-Imputed Data. Statistica Sinica 1 (1): 65–92.

https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:chi

See Also

testModels

Examples

Compare two linear models:
imp <- mice(nhanes2, seed = 51009, print = FALSE)
mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))
mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp))
D2(mi1, mi0)
Not run:
Compare two logistic regression models
imp <- mice(boys, maxit = 2, print = FALSE)
fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial))
fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial))

https://github.com/amices/mice/issues/420
https://github.com/amices/mice/issues/420
https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:chi

34 D3

D2(fit1, fit0)

End(Not run)

D3 Compare two nested models using D3-statistic

Description

The D3-statistic is a likelihood-ratio test statistic.

Usage

D3(fit1, fit0 = NULL, dfcom = NULL, df.com = NULL)

Arguments

fit1 An object of class mira, produced by with().
fit0 An object of class mira, produced by with(). The model in fit0 is a nested

within fit1. The default null model fit0 = NULL compares fit1 to the intercept-
only model.

dfcom A single number denoting the complete-data degrees of freedom of model fit1.
If not specified, it is set equal to df.residual of model fit1. If that cannot be
done, the procedure assumes (perhaps incorrectly) a large sample.

df.com Deprecated

Details

The D3() function implement the LR-method by Meng and Rubin (1992). The implementation of
the method relies on the broom package, the standard update mechanism for statistical models in R
and the offset function.

The function calculates m repetitions of the full (or null) models, calculates the mean of the estimates
of the (fixed) parameter coefficients β. For each imputed imputed dataset, it calculates the likelihood
for the model with the parameters constrained to β.

The mitml::testModels() function offers similar functionality for a subset of statistical mod-
els. Results of mice::D3() and mitml::testModels() differ in multilevel models because the
testModels() also constrains the variance components parameters. For more details on

Value

An object of class mice.anova

References

Meng, X. L., and D. B. Rubin. 1992. Performing Likelihood Ratio Tests with Multiply-Imputed
Data Sets. Biometrika, 79 (1): 103–11.

https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:likelihoodratio

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#setting-residual-variances-to-a-fixed-value-zero-or-other

https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:likelihoodratio
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#setting-residual-variances-to-a-fixed-value-zero-or-other

densityplot.mids 35

See Also

fix.coef

Examples

Compare two linear models:
imp <- mice(nhanes2, seed = 51009, print = FALSE)
mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))
mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp))
D3(mi1, mi0)
Not run:
Compare two logistic regression models
imp <- mice(boys, maxit = 2, print = FALSE)
fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial))
fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial))
D3(fit1, fit0)

End(Not run)

densityplot.mids Density plot of observed and imputed data

Description

Plotting methods for imputed data using lattice. densityplot produces plots of the densities. The
function automatically separates the observed and imputed data. The functions extend the usual
features of lattice.

Usage

S3 method for class 'mids'
densityplot(
x,
data,
na.groups = NULL,
groups = NULL,
as.table = TRUE,
plot.points = FALSE,
theme = mice.theme(),
mayreplicate = TRUE,
thicker = 2.5,
allow.multiple = TRUE,
outer = TRUE,
drop.unused.levels = lattice::lattice.getOption("drop.unused.levels"),
panel = lattice::lattice.getOption("panel.densityplot"),
default.prepanel = lattice::lattice.getOption("prepanel.default.densityplot"),
...,
subscripts = TRUE,

36 densityplot.mids

subset = TRUE
)

Arguments

x A mids object, typically created by mice() or mice.mids().

data Formula that selects the data to be plotted. This argument follows the lattice
rules for formulas, describing the primary variables (used for the per-panel dis-
play) and the optional conditioning variables (which define the subsets plotted
in different panels) to be used in the plot.
The formula is evaluated on the complete data set in the long form. Legal vari-
able names for the formula include names(x$data) plus the two administrative
factors .imp and .id.
Extended formula interface: The primary variable terms (both the LHS y and
RHS x) may consist of multiple terms separated by a ‘+’ sign, e.g., y1 + y2
~ x | a * b. This formula would be taken to mean that the user wants to plot
both y1 ~ x | a * b and y2 ~ x | a * b, but with the y1 ~ x and y2 ~ x in separate
panels. This behavior differs from standard lattice. Only combine terms of the
same type, i.e. only factors or only numerical variables. Mixing numerical and
categorical data occasionally produces odds labeling of vertical axis.
The function densityplot does not use the y terms in the formula. Density
plots for x1 and x2 are requested as ~ x1 + x2.

na.groups An expression evaluating to a logical vector indicating which two groups are
distinguished (e.g. using different colors) in the display. The environment in
which this expression is evaluated in the response indicator is.na(x$data).
The default na.group = NULL contrasts the observed and missing data in the
LHS y variable of the display, i.e. groups created by is.na(y). The expression
y creates the groups according to is.na(y). The expression y1 & y2 creates
groups by is.na(y1) & is.na(y2), and y1 | y2 creates groups as is.na(y1) |
is.na(y2), and so on.

groups This is the usual groups arguments in lattice. It differs from na.groups be-
cause it evaluates in the completed data data.frame(complete(x, "long",
inc=TRUE)) (as usual), whereas na.groups evaluates in the response indicator.
See xyplot for more details. When both na.groups and groups are specified,
na.groups takes precedence, and groups is ignored.

as.table See xyplot.

plot.points A logical used in densityplot that signals whether the points should be plotted.

theme A named list containing the graphical parameters. The default function mice.theme
produces a short list of default colors, line width, and so on. The extensive list
may be obtained from trellis.par.get(). Global graphical parameters like
col or cex in high-level calls are still honored, so first experiment with the
global parameters. Many setting consists of a pair. For example, mice.theme
defines two symbol colors. The first is for the observed data, the second for the
imputed data. The theme settings only exist during the call, and do not affect
the trellis graphical parameters.

densityplot.mids 37

mayreplicate A logical indicating whether color, line widths, and so on, may be replicated.
The graphical functions attempt to choose "intelligent" graphical parameters.
For example, the same color can be replicated for different element, e.g. use all
reds for the imputed data. Replication may be switched off by setting the flag to
FALSE, in order to allow the user to gain full control.

thicker Used in densityplot. Multiplication factor of the line width of the observed
density. thicker=1 uses the same thickness for the observed and imputed data.

allow.multiple See xyplot.

outer See xyplot.
drop.unused.levels

See xyplot.

panel See xyplot.
default.prepanel

See xyplot.

... Further arguments, usually not directly processed by the high-level functions
documented here, but instead passed on to other functions.

subscripts See xyplot.

subset See xyplot.

Details

The argument na.groups may be used to specify (combinations of) missingness in any of the vari-
ables. The argument groups can be used to specify groups based on the variable values themselves.
Only one of both may be active at the same time. When both are specified, na.groups takes prece-
dence over groups.

Use the subset and na.groups together to plots parts of the data. For example, select the first
imputed data set by by subset=.imp==1.

Graphical parameters like col, pch and cex can be specified in the arguments list to alter the plotting
symbols. If length(col)==2, the color specification to define the observed and missing groups.
col[1] is the color of the ’observed’ data, col[2] is the color of the missing or imputed data.
A convenient color choice is col=mdc(1:2), a transparent blue color for the observed data, and a
transparent red color for the imputed data. A good choice is col=mdc(1:2), pch=20, cex=1.5.
These choices can be set for the duration of the session by running mice.theme().

Value

The high-level functions documented here, as well as other high-level Lattice functions, return
an object of class "trellis". The update.trellis method can be used to subsequently update
components of the object, and the print.trellis method (usually called by default) will plot it on
an appropriate plotting device.

Note

The first two arguments (x and data) are reversed compared to the standard Trellis syntax imple-
mented in lattice. This reversal was necessary in order to benefit from automatic method dispatch.

38 employee

In mice the argument x is always a mids object, whereas in lattice the argument x is always a
formula.

In mice the argument data is always a formula object, whereas in lattice the argument data is
usually a data frame.

All other arguments have identical interpretation.

densityplot errs on empty groups, which occurs if all observations in the subgroup contain NA. The
relevant error message is: Error in density.default: ... need at least 2 points to select
a bandwidth automatically. There is yet no workaround for this problem. Use the more robust
bwplot or stripplot as a replacement.

Author(s)

Stef van Buuren

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Examples

imp <- mice(boys, maxit = 1)

density plot of head circumference per imputation
blue is observed, red is imputed
densityplot(imp, ~ hc | .imp)

All combined in one panel.
densityplot(imp, ~hc)

employee Employee selection data

Description

A toy example from Craig Enders.

Usage

employee

Format

A data frame with 20 rows and 3 variables:

IQ candidate IQ score
wbeing candidate well-being score
jobperf candidate job performance score

https://doi.org/10.18637/jss.v045.i03

estimice 39

Details

Enders describes these data as follows: I designed these data to mimic an employee selection sce-
nario in which prospective employees complete an IQ test and a psychological well-being ques-
tionnaire during their interview. The company subsequently hires the applications that score in the
upper half of the IQ distribution, and a supervisor rates their job performance following a 6-month
probationary period. Note that the job performance scores are missing at random (MAR) (i.e. in-
dividuals in the lower half of the IQ distribution were never hired, and thus have no performance
rating). In addition, I randomly deleted three of the well-being scores in order to mimic a situation
where the applicant’s well-being questionnaire is inadvertently lost.
A larger version of this data set in present as data.enders.employee.

Source

Enders (2010), Applied Missing Data Analysis, p. 218

estimice Computes least squares parameters

Description

This function computes least squares estimates, variance/covariance matrices, residuals and degrees
of freedom according to ridge regression, QR decomposition or Singular Value Decomposition.
This function is internally called by .norm.draw(), but can be called by any user-specified imputation
function.

Usage

estimice(x, y, ls.meth = "qr", ridge = 1e-05, ...)

Arguments

x Matrix (n x p) of complete covariates.
y Incomplete data vector of length n

ls.meth the method to use for obtaining the least squares estimates. By default parame-
ters are drawn by means of QR decomposition.

ridge A small numerical value specifying the size of the ridge used. The default value
ridge = 1e-05 represents a compromise between stability and unbiasedness.
Decrease ridge if the data contain many junk variables. Increase ridge for
highly collinear data.

... Other named arguments.

Details

When calculating the inverse of the crossproduct of the predictor matrix, problems may arise. For
example, taking the inverse is not possible when the predictor matrix is rank deficient, or when
the estimation problem is computationally singular. This function detects such error cases and
automatically falls back to adding a ridge penalty to the diagonal of the crossproduct to allow for
proper calculation of the inverse.

40 extractBS

Value

A list containing components c (least squares estimate), r (residuals), v (variance/covariance
matrix) and df (degrees of freedom).

Note

This functions adds a star to variable names in the mice iteration history to signal that a ridge penalty
was added. In that case, it also adds an entry to loggedEvents.

Author(s)

Gerko Vink, 2018

extractBS Extract broken stick estimates from a lmer object

Description

Extract broken stick estimates from a lmer object

Usage

extractBS(fit)

Arguments

fit An object of class lmer

Value

A matrix containing broken stick estimates

Author(s)

Stef van Buuren, 2012

fdd 41

fdd SE Fireworks disaster data

Description

Multiple outcomes of a randomized study to reduce post-traumatic stress.

Format

fdd is a data frame with 52 rows and 65 columns:

id Client number

trt Treatment (E=EMDR, C=CBT)

pp Per protocol (Y/N)

trtp Number of parental treatments

sex Sex: M/F

etn Ethnicity: NL/OTHER

age Age (years)

trauma Trauma count (1-5)

prop1 PROPS total score T1

prop2 PROPS total score T2

prop3 PROPS total score T3

crop1 CROPS total score T1

crop2 CROPS total score T2

crop3 CROPS total score T3

masc1 MASC score T1

masc2 MASC score T2

masc3 MASC score T3

cbcl1 CBCL T1

cbcl3 CBCL T3

prs1 PRS total score T1

prs2 PRS total score T2

prs3 PRS total score T3

ypa1 PTSD-RI B intrusive recollection parent T1

ypb1 PTSD-RI C avoidant/numbing parent T1

ypc1 PTSD-RI D hyper-arousal parent T1

yp1 PTSD-RI B+C+D parent T1

ypa2 PTSD-RI B intrusive recollection parent T2

ypb2 PTSD-RI C avoidant/numbing parent T2

42 fdd

ypc2 PTSD-RI D hyper-arousal parent T2

yp2 PTSD-RI B+C+D parent T1

ypa3 PTSD-RI B intrusive recollection parent T3

ypb3 PTSD-RI C avoidant/numbing parent T3

ypc3 PTSD-RI D hyper-arousal parent T3

yp3 PTSD-RI B+C+D parent T3

yca1 PTSD-RI B intrusive recollection child T1

ycb1 PTSD-RI C avoidant/numbing child T1

ycc1 PTSD-RI D hyper-arousal child T1

yc1 PTSD-RI B+C+D child T1

yca2 PTSD-RI B intrusive recollection child T2

ycb2 PTSD-RI C avoidant/numbing child T2

ycc2 PTSD-RI D hyper-arousal child T2

yc2 PTSD-RI B+C+D child T2

yca3 PTSD-RI B intrusive recollection child T3

ycb3 PTSD-RI C avoidant/numbing child T3

ycc3 PTSD-RI D hyper-arousal child T3

yc3 PTSD-RI B+C+D child T3

ypf1 PTSD-RI parent full T1

ypf2 PTSD-RI parent full T2

ypf3 PTSD-RI parent full T3

ypp1 PTSD parent partial T1

ypp2 PTSD parent partial T2

ypp3 PTSD parent partial T3

ycf1 PTSD child full T1

ycf2 PTSD child full T2

ycf3 PTSD child full T3

ycp1 PTSD child partial T1

ycp2 PTSD child partial T2

ycp3 PTSD child partial T3

cbin1 CBCL Internalizing T1

cbin3 CBCL Internalizing T3

cbex1 CBCL Externalizing T1

cbex3 CBCL Externalizing T3

bir1 Birlison T1

bir2 Birlison T2

bir3 Birlison T3

fdd.pred is the 65 by 65 binary predictor matrix used to impute fdd.

fdgs 43

Details

Data from a randomized experiment to reduce post-traumatic stress by two treatments: Eye Move-
ment Desensitization and Reprocessing (EMDR) (experimental treatment), and cognitive behavioral
therapy (CBT) (control treatment). 52 children were randomized to one of these two treatments.
Outcomes were measured at three time points: at baseline (pre-treatment, T1), post-treatment (T2,
4-8 weeks), and at follow-up (T3, 3 months). For more details, see de Roos et al (2011). Some
person covariates were reshuffled. The imputation methodology is explained in Chapter 9 of van
Buuren (2012).

Source

de Roos, C., Greenwald, R., den Hollander-Gijsman, M., Noorthoorn, E., van Buuren, S., de Jong,
A. (2011). A Randomised Comparison of Cognitive Behavioral Therapy (CBT) and Eye Move-
ment Desensitisation and Reprocessing (EMDR) in disaster-exposed children. European Journal of
Psychotraumatology, 2, 5694.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL. Boca Raton, FL.: Chapman & Hall/CRC Press.

Examples

data <- fdd
md.pattern(fdd)

fdgs Fifth Dutch growth study 2009

Description

Age, height, weight and region of 10030 children measured within the Fifth Dutch Growth Study
2009

Format

fdgs is a data frame with 10030 rows and 8 columns:

id Person number

reg Region (factor, 5 levels)

age Age (years)

sex Sex (boy, girl)

hgt Height (cm)

wgt Weight (kg)

hgt.z Height Z-score

wgt.z Weight Z-score

https://stefvanbuuren.name/fimd/sec-fdd.html

44 fico

Details

The data set contains data from children of Dutch descent (biological parents are born in the Nether-
lands). Children with growth-related diseases were excluded. The data were used to construct new
growth charts of children of Dutch descent (Schonbeck 2013), and to calculate overweight and
obesity prevalence (Schonbeck 2011).

Some groups were underrepresented. Multiple imputation was used to create synthetic cases that
were used to correct for the nonresponse. See Van Buuren (2012), chapter 8 for details.

Source

Schonbeck, Y., Talma, H., van Dommelen, P., Bakker, B., Buitendijk, S. E., Hirasing, R. A., van
Buuren, S. (2011). Increase in prevalence of overweight in Dutch children and adolescents: A
comparison of nationwide growth studies in 1980, 1997 and 2009. PLoS ONE, 6(11), e27608.

Schonbeck, Y., Talma, H., van Dommelen, P., Bakker, B., Buitendijk, S. E., Hirasing, R. A., van
Buuren, S. (2013). The world’s tallest nation has stopped growing taller: the height of Dutch
children from 1955 to 2009. Pediatric Research, 73(3), 371-377.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Boca Raton, FL.:
Chapman & Hall/CRC Press.

Examples

data <- data(fdgs)
summary(data)

fico Fraction of incomplete cases among cases with observed

Description

FICO is an outbound statistic defined by the fraction of incomplete cases among cases with Yj
observed (White and Carlin, 2010).

Usage

fico(data)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA’s.

Value

A vector of length ncol(data) of FICO statistics.

https://stefvanbuuren.name/fimd/sec-nonresponse.html#fifth-dutch-growth-study

filter.mids 45

Author(s)

Stef van Buuren, 2012

References

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

White, I.R., Carlin, J.B. (2010). Bias and efficiency of multiple imputation compared with complete-
case analysis for missing covariate values. Statistics in Medicine, 29, 2920-2931.

See Also

fluxplot, flux, md.pattern

filter.mids Subset rows of a mids object

Description

This function takes a mids object and returns a new mids object that pertains to the subset of the
data identified by the expression in The expression may use column values from the incomplete
data in .data$data.

Usage

S3 method for class 'mids'
filter(.data, ..., .preserve = FALSE)

Arguments

.data A mids object.

... Expressions that return a logical value, and are defined in terms of the variables
in .data$data. If multiple expressions are specified, they are combined with
the & operator. Only rows for which all conditions evaluate to TRUE are kept.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Value

An S3 object of class mids

https://stefvanbuuren.name/fimd/missing-data-pattern.html#sec:flux

46 filter.mids

Note

The function calculates a logical vector include of length nrow(.data$data). The function con-
structs the elements of the filtered mids object as follows:

data Select rows in .data$data for which include == TRUE
imp Select rows each imputation data.frame in .data$imp for which include == TRUE
m Equals .data$m
where Select rows in .data$where for which include == TRUE
blocks Equals .data$blocks
call Equals .data$call
nmis Recalculate nmis based on the selected data rows
method Equals .data$method
predictorMatrix Equals .data$predictorMatrix
visitSequence Equals .data$visitSequence
formulas Equals .data$formulas
post Equals .data$post
blots Equals .data$blots
ignore Select positions in .data$ignore for which include == TRUE
seed Equals .data$seed
iteration Equals .data$iteration
lastSeedValue Equals .data$lastSeedValue
chainMean Set to NULL
chainVar Set to NULL
loggedEvents Equals .data$loggedEvents
version Replaced with current version
date Replaced with current date

Author(s)

Patrick Rockenschaub

See Also

filter

Examples

imp <- mice(nhanes, m = 2, maxit = 1, print = FALSE)

example with external logical vector
imp_f <- filter(imp, c(rep(TRUE, 13), rep(FALSE, 12)))

nrow(complete(imp))
nrow(complete(imp_f))

example with calculated include vector
imp_f2 <- filter(imp, age >= 2 & hyp == 1)
nrow(complete(imp_f2)) # should be 5

fix.coef 47

fix.coef Fix coefficients and update model

Description

Refits a model with a specified set of coefficients.

Usage

fix.coef(model, beta = NULL)

Arguments

model An R model, e.g., produced by lm or glm

beta A numeric vector with length(coef) model coefficients. If the vector is not
named, the coefficients should be given in the same order as in coef(model). If
the vector is named, the procedure attempts to match on names.

Details

The function calculates the linear predictor using the new coefficients, and reformulates the model
using the offset argument. The linear predictor is called offset, and its coefficient will be 1 by
definition. The new model only fits the intercept, which should be 0 if we set beta = coef(model).

Value

An updated R model object

Author(s)

Stef van Buuren, 2018

Examples

model0 <- lm(Volume ~ Girth + Height, data = trees)
formula(model0)
coef(model0)
deviance(model0)

refit same model
model1 <- fix.coef(model0)
formula(model1)
coef(model1)
deviance(model1)

change the beta's
model2 <- fix.coef(model0, beta = c(-50, 5, 1))
coef(model2)
deviance(model2)

48 flux

compare predictions
plot(predict(model0), predict(model1))
abline(0, 1)
plot(predict(model0), predict(model2))
abline(0, 1)

compare proportion explained variance
cor(predict(model0), predict(model0) + residuals(model0))^2
cor(predict(model1), predict(model1) + residuals(model1))^2
cor(predict(model2), predict(model2) + residuals(model2))^2

extract offset from constrained model
summary(model2$offset)

it also works with factors and missing data
model0 <- lm(bmi ~ age + hyp + chl, data = nhanes2)
model1 <- fix.coef(model0)
model2 <- fix.coef(model0, beta = c(15, -8, -8, 2, 0.2))

flux Influx and outflux of multivariate missing data patterns

Description

Influx and outflux are statistics of the missing data pattern. These statistics are useful in selecting
predictors that should go into the imputation model.

Usage

flux(data, local = names(data))

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA’s.

local A vector of names of columns of data. The default is to include all columns in
the calculations.

Details

Infux and outflux have been proposed by Van Buuren (2018), chapter 4.

Influx is equal to the number of variable pairs (Yj , Yk) with Yj missing and Yk observed, divided
by the total number of observed data cells. Influx depends on the proportion of missing data of the
variable. Influx of a completely observed variable is equal to 0, whereas for completely missing
variables we have influx = 1. For two variables with the same proportion of missing data, the
variable with higher influx is better connected to the observed data, and might thus be easier to
impute.

fluxplot 49

Outflux is equal to the number of variable pairs with Yj observed and Yk missing, divided by the
total number of incomplete data cells. Outflux is an indicator of the potential usefulness of Yj for
imputing other variables. Outflux depends on the proportion of missing data of the variable. Outflux
of a completely observed variable is equal to 1, whereas outflux of a completely missing variable is
equal to 0. For two variables having the same proportion of missing data, the variable with higher
outflux is better connected to the missing data, and thus potentially more useful for imputing other
variables.

FICO is an outbound statistic defined by the fraction of incomplete cases among cases with Yj
observed (White and Carlin, 2010).

Value

A data frame with ncol(data) rows and six columns: pobs = Proportion observed, influx = Influx
outflux = Outflux ainb = Average inbound statistic aout = Average outbound statistic fico = Fraction
of incomplete cases among cases with Yj observed

Author(s)

Stef van Buuren, 2012

References

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

White, I.R., Carlin, J.B. (2010). Bias and efficiency of multiple imputation compared with complete-
case analysis for missing covariate values. Statistics in Medicine, 29, 2920-2931.

See Also

fluxplot, md.pattern, fico

fluxplot Fluxplot of the missing data pattern

Description

Influx and outflux are statistics of the missing data pattern. These statistics are useful in selecting
predictors that should go into the imputation model.

Usage

fluxplot(
data,
local = names(data),
plot = TRUE,
labels = TRUE,
xlim = c(0, 1),

https://stefvanbuuren.name/fimd/missing-data-pattern.html#sec:flux

50 fluxplot

ylim = c(0, 1),
las = 1,
xlab = "Influx",
ylab = "Outflux",
main = paste("Influx-outflux pattern for", deparse(substitute(data))),
eqscplot = TRUE,
pty = "s",
lwd = 1,
...

)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA’s.

local A vector of names of columns of data. The default is to include all columns in
the calculations.

plot Should a graph be produced?
labels Should the points be labeled?
xlim See par.
ylim See par.
las See par.
xlab See par.
ylab See par.
main See par.
eqscplot Should a square plot be produced?
pty See par.
lwd See par. Controls axis line thickness and diagonal
... Further arguments passed to plot() or eqscplot().

Details

Infux and outflux have been proposed by Van Buuren (2012), chapter 4.

Influx is equal to the number of variable pairs (Yj , Yk) with Yj missing and Yk observed, divided
by the total number of observed data cells. Influx depends on the proportion of missing data of the
variable. Influx of a completely observed variable is equal to 0, whereas for completely missing
variables we have influx = 1. For two variables with the same proportion of missing data, the
variable with higher influx is better connected to the observed data, and might thus be easier to
impute.

Outflux is equal to the number of variable pairs with Yj observed and Yk missing, divided by the
total number of incomplete data cells. Outflux is an indicator of the potential usefulness of Yj for
imputing other variables. Outflux depends on the proportion of missing data of the variable. Outflux
of a completely observed variable is equal to 1, whereas outflux of a completely missing variable is
equal to 0. For two variables having the same proportion of missing data, the variable with higher
outflux is better connected to the missing data, and thus potentially more useful for imputing other
variables.

futuremice 51

Value

An invisible data frame with ncol(data) rows and six columns: pobs = Proportion observed, influx
= Influx outflux = Outflux ainb = Average inbound statistic aout = Average outbound statistic fico
= Fraction of incomplete cases among cases with Yj observed

Author(s)

Stef van Buuren, 2012

References

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

White, I.R., Carlin, J.B. (2010). Bias and efficiency of multiple imputation compared with complete-
case analysis for missing covariate values. Statistics in Medicine, 29, 2920-2931.

See Also

flux, md.pattern, fico

futuremice Wrapper function that runs MICE in parallel

Description

This is a wrapper function for mice, using multiple cores to execute mice in parallel. As a result,
the imputation procedure can be sped up, which may be useful in general. By default, futuremice
distributes the number of imputations m about equally over the cores.

Usage

futuremice(
data,
m = 5,
parallelseed = NA,
n.core = NULL,
seed = NA,
use.logical = TRUE,
future.plan = "multisession",
packages = NULL,
globals = NULL,
...

)

https://stefvanbuuren.name/fimd/missing-data-pattern.html#sec:flux

52 futuremice

Arguments

data A data frame or matrix containing the incomplete data. Similar to the first argu-
ment of mice.

m The number of desired imputated datasets. By default $m=5$ as with mice

parallelseed A scalar to be used to obtain reproducible results over the futures. The default
parallelseed = NA will result in a seed value that is randomly drawn between
-999999999 and 999999999.

n.core A scalar indicating the number of cores that should be used.

seed A scalar to be used as the seed value for the mice algorithm within each parallel
stream. Please note that the imputations will be the same for all streams and,
hence, this should be used if and only if n.core = 1 and if it is desired to obtain
the same output as under mice.

use.logical A logical indicating whether logical (TRUE) or physical (FALSE) CPU’s on ma-
chine should be used.

future.plan A character indicating how futures are resolved. The default multisession
resolves futures asynchronously (in parallel) in separate R sessions running in
the background. See plan for more information on future plans.

packages A character vector with additional packages to be used in mice (e.g., for using
external imputation functions).

globals A character string with additional functions to be exported to each future (e.g.,
user-written imputation functions).

... Named arguments that are passed down to function mice.

Details

This function relies on package furrr, which is a package for R versions 3.2.0 and later. We
have chosen to use furrr function future_map to allow the use of futuremice on Mac, Linux and
Windows systems.

This wrapper function combines the output of future_map with function ibind from the mice
package. A mids object is returned and can be used for further analyses.

A seed value can be specified in the global environment, which will yield reproducible results.
A seed value can also be specified within the futuremice call, through specifying the argument
parallelseed. If parallelseed is not specified, a seed value is drawn randomly by default, and
accessible through $parallelseed in the output object. Hence, results will always be reproducible,
regardless of whether the seed is specified in the global environment, or by setting the same seed
within the function (potentially by extracting the seed from the futuremice output object.

Value

A mids object as defined by mids-class

Author(s)

Thom Benjamin Volker, Gerko Vink

getfit 53

References

Volker, T.B. and Vink, G. (2022). futuremice: The future starts today. https://www.gerkovink.
com/miceVignettes/futuremice/Vignette_futuremice.html

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

future, furrr, future_map, plan, mice, mids-class

Examples

150 imputations in dataset nhanes, performed by 3 cores
Not run:
imp1 <- futuremice(data = nhanes, m = 150, n.core = 3)
Making use of arguments in mice.
imp2 <- futuremice(data = nhanes, m = 100, method = "norm.nob")
imp2$method
fit <- with(imp2, lm(bmi ~ hyp))
pool(fit)

End(Not run)

getfit Extract list of fitted models

Description

Function getfit() returns the list of objects containing the repeated analysis results, or optionally,
one of these fitted objects. The function looks for a list element called analyses, and return this
component as a list with mira class. If element analyses is not found in x, then it returns x as a
mira object.

Usage

getfit(x, i = -1L, simplify = FALSE)

Arguments

x An object of class mira, typically produced by a call to with().

i An integer between 1 and x$m signalling the index of the repeated analysis. The
default i= -1 return a list with all analyses.

simplify Should the return value be unlisted?

https://www.gerkovink.com/miceVignettes/futuremice/Vignette_futuremice.html
https://www.gerkovink.com/miceVignettes/futuremice/Vignette_futuremice.html
https://stefvanbuuren.name/fimd/parallel-computation.html

54 getqbar

Details

No checking is done for validity of objects. The function also processes objects of class mitml.result
from the mitml package.

Value

If i = -1 an object of class mira containing all analyses. If i selects one of the analyses, then it
return an object whose with class inherited from that element.

Author(s)

Stef van Buuren, 2012, 2020

See Also

mira, with.mids

Examples

imp <- mice(nhanes, print = FALSE, seed = 21443)
fit <- with(imp, lm(bmi ~ chl + hyp))
f1 <- getfit(fit)
class(f1)
f2 <- getfit(fit, 2)
class(f2)

getqbar Extract estimate from mipo object

Description

getqbar returns a named vector of pooled estimates.

Usage

getqbar(x)

Arguments

x An object of class mipo

glm.mids 55

glm.mids Generalized linear model for mids object

Description

Applies glm() to a multiply imputed data set

Usage

glm.mids(formula, family = gaussian, data, ...)

Arguments

formula a formula expression as for other regression models, of the form response ~
predictors. See the documentation of lm and formula for details.

family The family of the glm model

data An object of type mids, which stands for ’multiply imputed data set’, typically
created by function mice().

... Additional parameters passed to glm.

Details

This function is included for backward compatibility with V1.0. The function is superseded by
with.mids.

Value

An objects of class mira, which stands for ’multiply imputed repeated analysis’. This object con-
tains data$m distinct glm.objects, plus some descriptive information.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

Van Buuren, S., Groothuis-Oudshoorn, C.G.M. (2000) Multivariate Imputation by Chained Equa-
tions: MICE V1.0 User’s manual. Leiden: TNO Quality of Life.

See Also

with.mids, glm, mids, mira

56 ibind

Examples

imp <- mice(nhanes)

logistic regression on the imputed data
fit <- glm.mids((hyp == 2) ~ bmi + chl, data = imp, family = binomial)
fit

ibind Enlarge number of imputations by combining mids objects

Description

This function combines two mids objects x and y into a single mids object, with the objective of
increasing the number of imputed data sets. If the number of imputations in x and y are m(x) and
m(y), then the combined object will have m(x)+m(y) imputations.

Usage

ibind(x, y)

Arguments

x A mids object.

y A mids object.

Details

The two mids objects are required to have the same underlying multiple imputation model and
should be fitted on the same data.

Value

An S3 object of class mids

Author(s)

Karin Groothuis-Oudshoorn, Stef van Buuren

See Also

mids

ic 57

Examples

data(nhanes)
imp1 <- mice(nhanes, m = 1, maxit = 2, print = FALSE)
imp1$m

imp2 <- mice(nhanes, m = 3, maxit = 3, print = FALSE)
imp2$m

imp12 <- ibind(imp1, imp2)
imp12$m
plot(imp12)

ic Select incomplete cases

Description

Extracts incomplete cases from a data set. The companion function for selecting the complete cases
is cc.

Usage

ic(x)

Arguments

x An R object. Methods are available for classes mids, data.frame and matrix.
Also, x could be a vector.

Value

A vector, matrix or data.frame containing the data of the complete cases.

Author(s)

Stef van Buuren, 2017.

See Also

cc, ici

Examples

ic(nhanes) # get the 12 rows with incomplete cases
ic(nhanes[1:10,]) # incomplete cases within the first ten rows
ic(nhanes[, c("bmi", "hyp")]) # restrict extraction to variables bmi and hyp

58 is.mads

ici Incomplete case indicator

Description

This array is useful for extracting the subset of incomplete cases. The companion function cci()
selects the complete cases.

Usage

ici(x)

Arguments

x An R object. Currently supported are methods for the following classes: mids.

Value

Logical vector indicating the incomplete cases,

Author(s)

Stef van Buuren, 2017.

See Also

cci, ic

Examples

ici(nhanes) # indicator for 12 rows with incomplete cases

is.mads Check for mads object

Description

Check for mads object

Usage

is.mads(x)

Arguments

x An object

is.mids 59

Value

A logical indicating whether x is an object of class mads

is.mids Check for mids object

Description

Check for mids object

Usage

is.mids(x)

Arguments

x An object

Value

A logical indicating whether x is an object of class mids

is.mipo Check for mipo object

Description

Check for mipo object

Usage

is.mipo(x)

Arguments

x An object

Value

A logical indicating whether x is an object of class mipo

60 is.mitml.result

is.mira Check for mira object

Description

Check for mira object

Usage

is.mira(x)

Arguments

x An object

Value

A logical indicating whether x is an object of class mira

is.mitml.result Check for mitml.result object

Description

Check for mitml.result object

Usage

is.mitml.result(x)

Arguments

x An object

Value

A logical indicating whether x is an object of class mitml.result

leiden85 61

leiden85 Leiden 85+ study

Description

Subset of data from the Leiden 85+ study

Format

leiden85 is a data frame with 956 rows and 336 columns.

Details

The data set concerns of subset of 956 members of a very old (85+) cohort in Leiden.

Multiple imputation of this data set has been described in Boshuizen et al (1998), Van Buuren et al
(1999) and Van Buuren (2012), chapter 7.

The data set is not available as part of mice.

Source

Lagaay, A. M., van der Meij, J. C., Hijmans, W. (1992). Validation of medical history taking as part
of a population based survey in subjects aged 85 and over. Brit. Med. J., 304(6834), 1091-1092.

Izaks, G. J., van Houwelingen, H. C., Schreuder, G. M., Ligthart, G. J. (1997). The association
between human leucocyte antigens (HLA) and mortality in community residents aged 85 and older.
Journal of the American Geriatrics Society, 45(1), 56-60.

Boshuizen, H. C., Izaks, G. J., van Buuren, S., Ligthart, G. J. (1998). Blood pressure and mortality
in elderly people aged 85 and older: Community based study. Brit. Med. J., 316(7147), 1780-1784.

Van Buuren, S., Boshuizen, H.C., Knook, D.L. (1999) Multiple imputation of missing blood pres-
sure covariates in survival analysis. Statistics in Medicine, 18, 681–694.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

lm.mids Linear regression for mids object

Description

Applies lm() to multiply imputed data set

Usage

lm.mids(formula, data, ...)

https://stefvanbuuren.name/fimd/sec-toomany.html#sec:leiden85cohort

62 mads

Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms,
separated by + operators, on the right. See the documentation of lm and formula
for details.

data An object of type ’mids’, which stands for ’multiply imputed data set’, typically
created by a call to function mice().

... Additional parameters passed to lm

Details

This function is included for backward compatibility with V1.0. The function is superseded by
with.mids.

Value

An objects of class mira, which stands for ’multiply imputed repeated analysis’. This object con-
tains data$m distinct lm.objects, plus some descriptive information.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

lm, mids, mira

Examples

imp <- mice(nhanes)
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
fit

mads Multivariate amputed data set (mads)

Description

The mads object is an S3 class that contains an amputed dataset, i.e., a dataset with simulated
missing values. The ampute() function produces a mads object. The mads() function is the S3
constructor. The S3 class mads has the following methods: bwplot.mads(),print(), summary(),
and xyplot.mads().

https://doi.org/10.18637/jss.v045.i03

mads 63

Usage

mads(
call,
prop,
patterns,
freq,
mech,
weights,
cont,
type,
odds,
amp,
cand,
scores,
data

)

S3 method for class 'mads'
print(x, ...)

S3 method for class 'mads'
summary(object, ...)

Arguments

call The function call that created the object.

prop A numeric vector of proportions.

patterns A matrix of missing data patterns.

freq A numeric vector of frequencies for each pattern.

mech A character string describing the missing data mechanism.

weights A matrix of weights.

cont A logical vector indicating continuous variables.

type A character vector describing variable types.

odds A matrix of odds ratios.

amp A data frame for amplitude information.

cand An integer vector of candidate variables.

scores A list of scores.

data A data frame representing the original data.

x Object of class mads

... Other parameters

object Object of class mads

64 mads

Value

An object of class "mads".

print() returns the input object invisibly.

summary() returns the input object invisibly.

Contents

call: The function call.

prop: Proportion of cases with missing values. Note: even when the proportion is entered as the
proportion of missing cells (when bycases == TRUE), this object contains the proportion of
missing cases.

patterns: A data frame of size #patterns by #variables where 0 indicates a variable has missing
values and 1 indicates a variable remains complete.

freq: A vector of length #patterns containing the relative frequency with which the patterns occur.
For example, if the vector is c(0.4, 0.4, 0.2), this means that of all cases with missing
values, 40 percent is candidate for pattern 1, 40 percent for pattern 2 and 20 percent for pattern
3. The vector sums to 1.

mech: A string specifying the missingness mechanism, either "MCAR", "MAR" or "MNAR".

weights: A data frame of size #patterns by #variables. It contains the weights that were used to
calculate the weighted sum scores. The weights may differ between patterns and between
variables.

cont: Logical, whether probabilities are based on continuous logit functions or on discrete odds
distributions.

type: A vector of strings containing the type of missingness for each pattern. Either "LEFT",
"MID", "TAIL" or "RIGHT". The first type refers to the first pattern, the second type to the
second pattern, etc.

odds: A matrix where #patterns defines the #rows. Each row contains the odds of being missing
for the corresponding pattern. The amount of odds values defines in how many quantiles the
sum scores were divided. The values are relative probabilities: a quantile with odds value 4
will have a probability of being missing that is four times higher than a quantile with odds 1.
The #quantiles may differ between patterns, NA is used for cells remaining empty.

amp: A data frame containing the input data with NAs for the amputed values.

cand: A vector that contains the pattern number for each case. A value between 1 and #patterns is
given. For example, a case with value 2 is candidate for missing data pattern 2.

scores: A list containing vectors with weighted sum scores of the candidates. The first vector
refers to the candidates of the first pattern, the second vector refers to the candidates of the
second pattern, etc. The length of the vectors differ because the number of candidates is
different for each pattern.

data: The complete data set that was entered in ampute.

Author(s)

Rianne Schouten, 2016

make.blocks 65

See Also

ampute, Vignette titled "Multivariate Amputation using Ampute".

make.blocks Creates a blocks argument

Description

The make.blocks() helper function generates a suitable blocks argument for the [=mice]{mice}
function.

Usage

make.blocks(x, partition = c("scatter", "collect", "void"))

Arguments

x A data.frame, character vector with variable names, or list with variable
names.

partition A character vector of length 1 used to assign variables to blocks when data is a
data.frame. Value "scatter" (default) assigns each variable to it own block.
Value "collect" assigns all variables to a single block.

Details

Choices "scatter" and "collect" represent to two extreme scenarios for assigning variables to
imputation blocks. Use "scatter" to create an imputation model based on fully conditionally
specification (FCS). Use "collect" to gather all variables to be imputed by a joint model (JM).
Scenario’s in-between these two extremes represent hybrid imputation models that combine FCS
and JM.

Any variable not listed in will not be imputed. Specification "void" represents the extreme scenario
that skips imputation of all variables.

A variable may be a member of multiple blocks. The variable will be re-imputed in each block, so
the final imputations for variable will come from the last block that was executed. This scenario
may be useful where the same complete background factors appear in multiple imputation blocks.

A variable may appear multiple times within a given block. If a univariate imputation model is
applied to such a block, then the variable is re-imputed each time as it appears in the block.

Value

A named list of character vectors with variables names.

Examples

make.blocks(nhanes)
make.blocks(c("age", "sex", "edu"))

66 make.calltype

make.blots Creates a blots argument

Description

This helper function creates a valid blots object. The blots object is an argument to the mice
function. The name blots is a contraction of blocks-dots. Through blots, the user can specify any
additional arguments that are specifically passed down to the lowest level imputation function.

Usage

make.blots(data, blocks = make.blocks(data))

Arguments

data A data.frame with the source data

blocks An optional specification for blocks of variables in the rows. The default assigns
each variable in its own block.

Value

A matrix

See Also

make.blocks

Examples

make.predictorMatrix(nhanes)
make.blots(nhanes, blocks = name.blocks(c("age", "hyp"), "xxx"))

make.calltype Create calltype of the imputation model

Description

The helper make.calltype() creates a vector that identifies per block if the imputation model is
taken from predictorMatrix or formulas. The function is used internally by mice().

Usage

make.calltype(calltype, predictorMatrix, formulas, priority = "pred")

make.calltype 67

Arguments

calltype A character vector of length equal to the number of blocks in predictorMatrix.
Each element specifies how the imputation model for the corresponding block
is defined. Valid values are "pred" and "formula". If NULL, the calltype will
be "pred" for all blocks, unless priority is "formula".

predictorMatrix

A matrix specifying the predictors for each block. Each row corresponds to a
block, and each column corresponds to a variable. Non-zero entries indicate that
the variable is used as a predictor for the block.

formulas A list of formulas, where each element corresponds to a block in predictorMatrix.
If a formula is provided for a block, the corresponding calltype entry is set to
"formula". If NULL, formulas are not used to modify calltype.

priority A character string specifying the default value for calltype when it is NULL.
Defaults to "pred". If priority == "formula", the calltype will be "formula"
for blocks found in formulas with a matching name.

Value

A character vector of length equal to the number of rows in predictorMatrix. Each element is
either "pred" or "formula", indicating how the imputation model is specified for the corresponding
block.

Examples

Example predictorMatrix
predictorMatrix <- matrix(1, nrow = 3, ncol = 3,
dimnames = list(c("block1", "block2", "block3"), c("x1", "x2", "y")))
predictorMatrix[1, 3] <- 0

Case 1: No calltype or formulas specified
make.calltype(NULL, predictorMatrix, NULL)

Case 2: Formulas provided
formulas <- list(

NULL,
y ~ x1 + x2,
NULL

)
make.calltype(NULL, predictorMatrix, formulas)

Case 3: Custom calltype
calltype <- c("pred", "formula", "pred")
make.calltype(calltype, predictorMatrix, NULL)

68 make.formulas

make.formulas Creates a formulas argument

Description

This helper function creates a valid formulas object. The formulas object is an argument to the
mice function. It is a list of formula’s that specifies the target variables and the predictors by means
of the standard ~ operator.

Usage

make.formulas(data, blocks = make.blocks(data), predictorMatrix = NULL)

Arguments

data A data.frame with the source data

blocks An optional specification for blocks of variables in the rows. The default assigns
each variable in its own block.

predictorMatrix

A predictorMatrix specified by the user.

Value

A list of formula’s.

See Also

make.blocks, make.predictorMatrix

Examples

f1 <- make.formulas(nhanes)
f1
f2 <- make.formulas(nhanes, blocks = make.blocks(nhanes, "collect"))
f2

for editing, it may be easier to work with the character vector
c1 <- as.character(f1)
c1

fold it back into a formula list
f3 <- name.formulas(lapply(c1, as.formula))
f3

make.method 69

make.method Creates a method argument

Description

This helper function creates a valid method vector. The method vector is an argument to the mice
function that specifies the method for each block.

Usage

make.method(
data,
where = make.where(data),
blocks = make.blocks(data),
defaultMethod = c("pmm", "logreg", "polyreg", "polr")

)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA.

where A data frame or matrix with logicals of the same dimensions as data indicat-
ing where in the data the imputations should be created. The default, where =
is.na(data), specifies that the missing data should be imputed. The where
argument may be used to overimpute observed data, or to skip imputations for
selected missing values. Note: Imputation methods that generate imptutations
outside of mice, like mice.impute.panImpute() may depend on a complete
predictor space. In that case, a custom where matrix can not be specified.

blocks List of vectors with variable names per block. List elements may be named to
identify blocks. Variables within a block are imputed by a multivariate impu-
tation method (see method argument). By default each variable is placed into
its own block, which is effectively fully conditional specification (FCS) by uni-
variate models (variable-by-variable imputation). Only variables whose names
appear in blocks are imputed. The relevant columns in the where matrix are
set to FALSE of variables that are not block members. A variable may appear
in multiple blocks. In that case, it is effectively re-imputed each time that it is
visited.

defaultMethod A vector of length 4 containing the default imputation methods for 1) numeric
data, 2) factor data with 2 levels, 3) factor data with > 2 unordered levels, and 4)
factor data with > 2 ordered levels. By default, the method uses pmm, predictive
mean matching (numeric data) logreg, logistic regression imputation (binary
data, factor with 2 levels) polyreg, polytomous regression imputation for un-
ordered categorical data (factor > 2 levels) polr, proportional odds model for
(ordered, > 2 levels).

70 make.post

Value

Vector of length(blocks) element with method names

See Also

mice

Examples

make.method(nhanes2)

make.post Creates a post argument

Description

This helper function creates a valid post vector. The post vector is an argument to the mice
function that specifies post-processing for a variable after each iteration of imputation.

Usage

make.post(data)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA.

Value

Character vector of ncol(data) element

See Also

mice

Examples

make.post(nhanes2)

make.predictorMatrix 71

make.predictorMatrix Creates a predictorMatrix argument

Description

This helper function creates a valid predictMatrix. The predictorMatrix is an argument to the
mice function. It specifies the target variable or block in the rows, and the predictor variables on
the columns. An entry of 0 means that the column variable is NOT used to impute the row variable
or block. A nonzero value indicates that it is used.

Usage

make.predictorMatrix(data, blocks = make.blocks(data), predictorMatrix = NULL)

Arguments

data A data.frame with the source data

blocks An optional specification for blocks of variables in the rows. The default assigns
each variable in its own block.

predictorMatrix

A predictor matrix from which rows with the same names are copied into the
output predictor matrix.

Value

A matrix

See Also

make.blocks

Examples

make.predictorMatrix(nhanes)
make.predictorMatrix(nhanes, blocks = make.blocks(nhanes, "collect"))

make.visitSequence Creates a visitSequence argument

Description

This helper function creates a valid visitSequence. The visitSequence is an argument to the
mice function that specifies the sequence in which blocks are imputed.

72 make.where

Usage

make.visitSequence(data = NULL, blocks = NULL)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA.

blocks List of vectors with variable names per block. List elements may be named to
identify blocks. Variables within a block are imputed by a multivariate impu-
tation method (see method argument). By default each variable is placed into
its own block, which is effectively fully conditional specification (FCS) by uni-
variate models (variable-by-variable imputation). Only variables whose names
appear in blocks are imputed. The relevant columns in the where matrix are
set to FALSE of variables that are not block members. A variable may appear
in multiple blocks. In that case, it is effectively re-imputed each time that it is
visited.

Value

Vector containing block names

See Also

mice

Examples

make.visitSequence(nhanes)

make.where Creates a where argument

Description

This helper function creates a valid where matrix. The where matrix is an argument to the mice
function. It has the same size as data and specifies which values are to be imputed (TRUE) or nor
(FALSE).

Usage

make.where(data, keyword = c("missing", "all", "none", "observed"))

Arguments

data A data.frame with the source data

keyword An optional keyword, one of "missing" (missing values are imputed), "observed"
(observed values are imputed), "all" and "none". The default is keyword =
"missing"

mammalsleep 73

Value

A matrix with logical

See Also

make.blocks, make.predictorMatrix

Examples

head(make.where(nhanes), 3)

create & analyse synthetic data
where <- make.where(nhanes2, "all")
imp <- mice(nhanes2,

m = 10, where = where,
print = FALSE, seed = 123

)
fit <- with(imp, lm(chl ~ bmi + age + hyp))
summary(pool.syn(fit))

mammalsleep Mammal sleep data

Description

Dataset from Allison and Cicchetti (1976) of 62 mammal species on the interrelationship between
sleep, ecological, and constitutional variables. The dataset contains missing values on five variables.

Format

mammalsleep is a data frame with 62 rows and 11 columns:

species Species of animal

bw Body weight (kg)

brw Brain weight (g)

sws Slow wave ("nondreaming") sleep (hrs/day)

ps Paradoxical ("dreaming") sleep (hrs/day)

ts Total sleep (hrs/day) (sum of slow wave and paradoxical sleep)

mls Maximum life span (years)

gt Gestation time (days)

pi Predation index (1-5), 1 = least likely to be preyed upon

sei Sleep exposure index (1-5), 1 = least exposed (e.g. animal sleeps in a well-protected den), 5 =
most exposed

odi Overall danger index (1-5) based on the above two indices and other information, 1 = least
danger (from other animals), 5 = most danger (from other animals)

74 matchindex

Details

Allison and Cicchetti (1976) investigated the interrelationship between sleep, ecological, and con-
stitutional variables. They assessed these variables for 39 mammalian species. The authors con-
cluded that slow-wave sleep is negatively associated with a factor related to body size. This suggests
that large amounts of this sleep phase are disadvantageous in large species. Also, paradoxical sleep
(REM sleep) was associated with a factor related to predatory danger, suggesting that large amounts
of this sleep phase are disadvantageous in prey species.

Source

Allison, T., Cicchetti, D.V. (1976). Sleep in Mammals: Ecological and Constitutional Correlates.
Science, 194(4266), 732-734.

Examples

sleep <- data(mammalsleep)

matchindex Find index of matched donor units

Description

Find index of matched donor units

Usage

matchindex(d, t, k = 5L)

Arguments

d Numeric vector with values from donor cases.

t Numeric vector with values from target cases.

k Integer, number of unique donors from which a random draw is made. For k = 1
the function returns the index in d corresponding to the closest unit. For multiple
imputation, the advice is to set values in the range of k = 5 to k = 10.

Details

For each element in t, the method finds the k nearest neighbours in d, randomly draws one of these
neighbours, and returns its position in vector d.

Fast predictive mean matching algorithm in seven steps:

1. Shuffle records to remove effects of ties

2. Obtain sorting order on shuffled data

3. Calculate index on input data and sort it

4. Pre-sample vector h with values between 1 and k

matchindex 75

For each of the n0 elements in t:

1. find the two adjacent neighbours

2. find the h_i’th nearest neighbour

3. store the index of that neighbour

Return vector of n0 positions in d.

We may use the function to perform predictive mean matching under a given predictive model.
To do so, specify both d and t as predictions from the same model. Suppose that y contains the
observed outcomes of the donor cases (in the same sequence as d), then y[matchindex(d, t)]
returns one matched outcome for every target case.

See https://github.com/amices/mice/issues/236. This function is a replacement for the
matcher() function that has been in default in mice since version 2.22 (June 2014).

Value

An integer vector with length(t) elements. Each element is an index in the array d.

Author(s)

Stef van Buuren, Nasinski Maciej, Alexander Robitzsch

Examples

set.seed(1)

Inputs need not be sorted
d <- c(-5, 5, 0, 10, 12)
t <- c(-6, -4, 0, 2, 4, -2, 6)

Index (in vector a) of closest match
idx <- matchindex(d, t, 1)
idx

To check: show values of closest match

Random draw among indices of the 5 closest predictors
matchindex(d, t)

An example
train <- mtcars[1:20,]
test <- mtcars[21:32,]
fit <- lm(mpg ~ disp + cyl, data = train)
d <- fitted.values(fit)
t <- predict(fit, newdata = test) # note: not using mpg
idx <- matchindex(d, t)

Borrow values from train to produce 12 synthetic values for mpg in test.
Synthetic values are plausible values that could have been observed if
they had been measured.
train$mpg[idx]

https://github.com/amices/mice/issues/236

76 md.pairs

Exercise: Create a distribution of 1000 plausible values for each of the
twelve mpg entries in test, and count how many times the true value
(which we know here) is located within the inter-quartile range of each
distribution. Is your count anywhere close to 500? Why? Why not?

md.pairs Missing data pattern by variable pairs

Description

Number of observations per variable pair.

Usage

md.pairs(data)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA.

Details

The four components in the output value is have the following interpretation:

list(’rr’) response-response, both variables are observed

list(’rm’) response-missing, row observed, column missing

list(’mr’) missing -response, row missing, column observed

list(’mm’) missing -missing, both variables are missing

Value

A list of four components named rr, rm, mr and mm. Each component is square numerical matrix
containing the number observations within four missing data pattern.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2009

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

https://doi.org/10.18637/jss.v045.i03

md.pattern 77

Examples

pat <- md.pairs(nhanes)
pat

show that these four matrices decompose the total sample size
for each pair
pat$rr + pat$rm + pat$mr + pat$mm

percentage of usable cases to impute row variable from column variable
round(100 * pat$mr / (pat$mr + pat$mm))

md.pattern Missing data pattern

Description

Display missing-data patterns.

Usage

md.pattern(x, plot = TRUE, rotate.names = FALSE)

Arguments

x A data frame or a matrix containing the incomplete data. Missing values are
coded as NA’s.

plot Should the missing data pattern be made into a plot. Default is plot = TRUE.

rotate.names Whether the variable names in the plot should be placed horizontally or verti-
cally. Default is rotate.names = FALSE.

Details

This function is useful for investigating any structure of missing observations in the data. In specific
case, the missing data pattern could be (nearly) monotone. Monotonicity can be used to simplify the
imputation model. See Schafer (1997) for details. Also, the missing pattern could suggest which
variables could potentially be useful for imputation of missing entries.

Value

A matrix with ncol(x)+1 columns, in which each row corresponds to a missing data pattern (1=ob-
served, 0=missing). Rows and columns are sorted in increasing amounts of missing information.
The last column and row contain row and column counts, respectively.

Author(s)

Gerko Vink, 2018, based on an earlier version of the same function by Stef van Buuren, Karin
Groothuis-Oudshoorn, 2000

78 mdc

References

Schafer, J.L. (1997), Analysis of multivariate incomplete data. London: Chapman&Hall.

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Examples

md.pattern(nhanes)
age hyp bmi chl
13 1 1 1 1 0
1 1 1 0 1 1
3 1 1 1 0 1
1 1 0 0 1 2
7 1 0 0 0 3
0 8 9 10 27

mdc Graphical parameter for missing data plots

Description

mdc returns colors used to distinguish observed, missing and combined data in plotting. mice.theme
return a partial list of named objects that can be used as a theme in stripplot, bwplot, densityplot
and xyplot.

Usage

mdc(
r = "observed",
s = "symbol",
transparent = TRUE,
cso = grDevices::hcl(240, 100, 40, 0.7),
csi = grDevices::hcl(0, 100, 40, 0.7),
csc = "gray50",
clo = grDevices::hcl(240, 100, 40, 0.8),
cli = grDevices::hcl(0, 100, 40, 0.8),
clc = "gray50"

)

Arguments

r A numerical or character vector. The numbers 1-6 request colors as follows:
1=cso, 2=csi, 3=csc, 4=clo, 5=cli and 6=clc. Alternatively, r may contain
the strings ’ observed’, ’missing’, or ’both’, or abbreviations thereof.

s A character vector containing the strings ’symbol’ or ’ line’, or abbreviations
thereof.

transparent A logical indicating whether alpha-transparency is allowed. The default is TRUE.

https://doi.org/10.18637/jss.v045.i03

mdc 79

cso The symbol color for the observed data. The default is a transparent blue.

csi The symbol color for the missing or imputed data. The default is a transparent
red.

csc The symbol color for the combined observed and imputed data. The default is a
grey color.

clo The line color for the observed data. The default is a slightly darker transparent
blue.

cli The line color for the missing or imputed data. The default is a slightly darker
transparent red.

clc The line color for the combined observed and imputed data. The default is a
grey color.

Details

This function eases consistent use of colors in plots. The default follows the Abayomi convention,
which uses blue for observed data, red for missing or imputed data, and black for combined data.

Value

mdc() returns a vector containing color definitions. The length of the output vector is calculate from
the length of r and s. Elements of the input vectors are repeated if needed.

Author(s)

Stef van Buuren, sept 2012.

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.

See Also

hcl, rgb, xyplot, trellis.par.set

Examples

all six colors
mdc(1:6)

lines color for observed and missing data
mdc(c("obs", "mis"), "lin")

80 mice.impute.2l.bin

mice.impute.2l.bin Imputation by a two-level logistic model using glmer

Description

Imputes univariate systematically and sporadically missing data using a two-level logistic model
using lme4::glmer()

Usage

mice.impute.2l.bin(y, ry, x, type, wy = NULL, intercept = TRUE, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Vector of length ncol(x) identifying random and class variables. Random vari-
ables are identified by a ’2’. The class variable (only one is allowed) is coded as
’-2’. Fixed effects are indicated by a ’1’.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

intercept Logical determining whether the intercept is automatically added.

... Arguments passed down to glmer

Details

Data are missing systematically if they have not been measured, e.g., in the case where we combine
data from different sources. Data are missing sporadically if they have been partially observed.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Shahab Jolani, 2015; adapted to mice, SvB, 2018

References

Jolani S., Debray T.P.A., Koffijberg H., van Buuren S., Moons K.G.M. (2015). Imputation of
systematically missing predictors in an individual participant data meta-analysis: a generalized
approach using MICE. Statistics in Medicine, 34:1841-1863.

mice.impute.2l.lmer 81

See Also

Other univariate-2l: mice.impute.2l.lmer(), mice.impute.2l.norm(), mice.impute.2l.pan()

Examples

library(tidyr)
library(dplyr)
data("toenail2")
data <- tidyr::complete(toenail2, patientID, visit) %>%

tidyr::fill(treatment) %>%
dplyr::select(-time) %>%
dplyr::mutate(patientID = as.integer(patientID))

Not run:
pred <- mice(data, print = FALSE, maxit = 0, seed = 1)$pred
pred["outcome", "patientID"] <- -2
imp <- mice(data, method = "2l.bin", pred = pred, maxit = 1, m = 1, seed = 1)

End(Not run)

mice.impute.2l.lmer Imputation by a two-level normal model using lmer

Description

Imputes univariate systematically and sporadically missing data using a two-level normal model
using lme4::lmer().

Usage

mice.impute.2l.lmer(y, ry, x, type, wy = NULL, intercept = TRUE, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Vector of length ncol(x) identifying random and class variables. Random vari-
ables are identified by a ’2’. The class variable (only one is allowed) is coded as
’-2’. Fixed effects are indicated by a ’1’.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

intercept Logical determining whether the intercept is automatically added.

... Arguments passed down to lmer

82 mice.impute.2l.norm

Details

Data are missing systematically if they have not been measured, e.g., in the case where we combine
data from different sources. Data are missing sporadically if they have been partially observed.

While the method is fully Bayesian, it may fix parameters of the variance-covariance matrix or
the random effects to their estimated value in cases where creating draws from the posterior is not
possible. The procedure throws a warning when this happens.

If lme4::lmer() fails, the procedure prints the warning "lmer does not run. Simplify imputation
model" and returns the current imputation. If that happens we see flat lines in the trace line plots.
Thus, the appearance of flat trace lines should be taken as an additional alert to a problem with
imputation model fitting.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Shahab Jolani, 2017

References

Jolani S. (2017) Hierarchical imputation of systematically and sporadically missing data: An ap-
proximate Bayesian approach using chained equations. Forthcoming.

Jolani S., Debray T.P.A., Koffijberg H., van Buuren S., Moons K.G.M. (2015). Imputation of
systematically missing predictors in an individual participant data meta-analysis: a generalized
approach using MICE. Statistics in Medicine, 34:1841-1863.

Van Buuren, S. (2011) Multiple imputation of multilevel data. In Hox, J.J. and and Roberts, J.K.
(Eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173–196. Milton Park,
UK: Routledge.

See Also

Other univariate-2l: mice.impute.2l.bin(), mice.impute.2l.norm(), mice.impute.2l.pan()

mice.impute.2l.norm Imputation by a two-level normal model

Description

Imputes univariate missing data using a two-level normal model

Usage

mice.impute.2l.norm(y, ry, x, type, wy = NULL, intercept = TRUE, ...)

mice.impute.2l.norm 83

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Vector of length ncol(x) identifying random and class variables. Random vari-
ables are identified by a ’2’. The class variable (only one is allowed) is coded as
’-2’. Random variables also include the fixed effect.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

intercept Logical determining whether the intercept is automatically added.

... Other named arguments.

Details

Implements the Gibbs sampler for the linear multilevel model with heterogeneous with-class vari-
ance (Kasim and Raudenbush, 1998). Imputations are drawn as an extra step to the algorithm. For
simulation work see Van Buuren (2011).

The random intercept is automatically added in mice.impute.2L.norm(). A model within a ran-
dom intercept can be specified by mice(...,intercept = FALSE).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Note

Added June 25, 2012: The currently implemented algorithm does not handle predictors that are
specified as fixed effects (type=1). When using mice.impute.2l.norm(), the current advice is to
specify all predictors as random effects (type=2).

Warning: The assumption of heterogeneous variances requires that in every class at least one obser-
vation has a response in y.

Author(s)

Roel de Jong, 2008

References

Kasim RM, Raudenbush SW. (1998). Application of Gibbs sampling to nested variance components
models with heterogeneous within-group variance. Journal of Educational and Behavioral Statistics,
23(2), 93–116.

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

https://doi.org/10.18637/jss.v045.i03

84 mice.impute.2l.pan

Van Buuren, S. (2011) Multiple imputation of multilevel data. In Hox, J.J. and and Roberts, J.K.
(Eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173–196. Milton Park,
UK: Routledge.

See Also

Other univariate-2l: mice.impute.2l.bin(), mice.impute.2l.lmer(), mice.impute.2l.pan()

mice.impute.2l.pan Imputation by a two-level normal model using pan

Description

Imputes univariate missing data using a two-level normal model with homogeneous within group
variances. Aggregated group effects (i.e. group means) can be automatically created and included
as predictors in the two-level regression (see argument type). This function needs the pan package.

Usage

mice.impute.2l.pan(
y,
ry,
x,
type,
intercept = TRUE,
paniter = 500,
groupcenter.slope = FALSE,
...

)

Arguments

y Incomplete data vector of length n

ry Vector of missing data pattern (FALSE=missing, TRUE=observed)
x Matrix (n x p) of complete covariates.
type Vector of length ncol(x) identifying random and class variables. Random ef-

fects are identified by a ’2’. The group variable (only one is allowed) is coded as
’-2’. Random effects also include the fixed effect. If for a covariates X1 group
means shall be calculated and included as further fixed effects choose ’3’. In
addition to the effects in ’3’, specification ’4’ also includes random effects of
X1.

intercept Logical determining whether the intercept is automatically added.
paniter Number of iterations in pan. Default is 500.
groupcenter.slope

If TRUE, in case of group means (type is ’3’ or’4’) group mean centering for
these predictors are conducted before doing imputations. Default is FALSE.

... Other named arguments.

mice.impute.2l.pan 85

Details

Implements the Gibbs sampler for the linear two-level model with homogeneous within group vari-
ances which is a special case of a multivariate linear mixed effects model (Schafer & Yucel, 2002).
For a two-level imputation with heterogeneous within-group variances see mice.impute.2l.norm.
% The random intercept is automatically added in % mice.impute.2l.norm().

Value

A vector of length nmis with imputations.

Note

This function does not implement the where functionality. It always produces nmis imputation,
irrespective of the where argument of the mice function.

Author(s)

Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Ger-
many), <robitzsch@ipn.uni-kiel.de>

Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Ger-
many), <robitzsch@ipn.uni-kiel.de>.

References

Schafer J L, Yucel RM (2002). Computational strategies for multivariate linear mixed-effects mod-
els with missing values. Journal of Computational and Graphical Statistics. 11, 437-457.

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

Other univariate-2l: mice.impute.2l.bin(), mice.impute.2l.lmer(), mice.impute.2l.norm()

Examples

simulate some data
two-level regression model with fixed slope

number of groups
G <- 250
number of persons
n <- 20
regression parameter
beta <- .3
intraclass correlation
rho <- .30
correlation with missing response
rho.miss <- .10
missing proportion
missrate <- .50

https://doi.org/10.18637/jss.v045.i03

86 mice.impute.2lonly.mean

y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho))
x <- rnorm(G * n)
y <- y1 + beta * x
dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y)
dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA

empty imputation in mice
imp0 <- mice(as.matrix(dfr), maxit = 0)
predM <- imp0$predictorMatrix
impM <- imp0$method

specify predictor matrix and method
predM1 <- predM
predM1["y", "group"] <- -2
predM1["y", "x"] <- 1 # fixed x effects imputation
impM1 <- impM
impM1["y"] <- "2l.pan"

multilevel imputation
imp1 <- mice(as.matrix(dfr),

m = 1, predictorMatrix = predM1,
method = impM1, maxit = 1

)

multilevel analysis
library(lme4)
mod <- lmer(y ~ (1 + x | group) + x, data = complete(imp1))
summary(mod)

Examples of predictorMatrix specification

random x effects
predM1["y","x"] <- 2

fixed x effects and group mean of x
predM1["y","x"] <- 3

random x effects and group mean of x
predM1["y","x"] <- 4

mice.impute.2lonly.mean

Imputation of most likely value within the class

Description

Method 2lonly.mean replicates the most likely value within a class of a second-level variable. It
works for numeric and factor data. The function is primarily useful as a quick fixup for data in
which the second-level variable is inconsistent.

mice.impute.2lonly.mean 87

Usage

mice.impute.2lonly.mean(y, ry, x, type, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Vector of length ncol(x) identifying random and class variables. The class
variable (only one is allowed) is coded as -2.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

Observed values in y are averaged within the class, and replicated to the missing y within that class.
This function is primarily useful for repairing incomplete data that are constant within the class, but
vary over classes.

For numeric variables, mice.impute.2lonly.mean() imputes the class mean of y. If y is a second-
level variable, then conventionally all observed y will be identical within the class, and the function
just provides a quick fix for any missing y by filling in the class mean.

For factor variables, mice.impute.2lonly.mean() imputes the most frequently occuring category
within the class.

If there are no observed y in the class, all entries of the class are set to NA. Note that this may produce
problems later on in mice if imputation routines are called that expects predictor data to be complete.
Methods designed for imputing this type of second-level variables include mice.impute.2lonly.norm
and mice.impute.2lonly.pmm.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Gerko Vink, Stef van Buuren, 2019

References

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Boca Raton, FL.:
Chapman & Hall/CRC Press.

https://stefvanbuuren.name/fimd/sec-level2pred.html

88 mice.impute.2lonly.norm

See Also

Other univariate-2lonly: mice.impute.2lonly.norm(), mice.impute.2lonly.pmm()

mice.impute.2lonly.norm

Imputation at level 2 by Bayesian linear regression

Description

Imputes univariate missing data at level 2 using Bayesian linear regression analysis. Variables are
level 1 are aggregated at level 2. The group identifier at level 2 must be indicated by type = -2 in
the predictorMatrix.

Usage

mice.impute.2lonly.norm(y, ry, x, type, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Group identifier must be specified by ’-2’. Predictors must be specified by ’1’.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

This function allows in combination with mice.impute.2l.pan switching regression imputation
between level 1 and level 2 as described in Yucel (2008) or Gelman and Hill (2007, p. 541).

The function checks for partial missing level-2 data. Level-2 data are assumed to be constant within
the same cluster. If one or more entries are missing, then the procedure aborts with an error message
that identifies the cluster with incomplete level-2 data. In such cases, one may first fill in the cluster
mean (or mode) by the 2lonly.mean method to remove inconsistencies.

Value

A vector of length nmis with imputations.

Note

For a more general approach, see miceadds::mice.impute.2lonly.function().

mice.impute.2lonly.norm 89

Author(s)

Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Ger-
many), <robitzsch@ipn.uni-kiel.de>

References

Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Cambridge, Cambridge University Press.

Yucel, RM (2008). Multiple imputation inference for multivariate multilevel continuous data with
ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389-2404.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice.impute.norm, mice.impute.2lonly.pmm, mice.impute.2l.pan, mice.impute.2lonly.mean

Other univariate-2lonly: mice.impute.2lonly.mean(), mice.impute.2lonly.pmm()

Examples

simulate some data
x,y ... level 1 variables
v,w ... level 2 variables

G <- 250 # number of groups
n <- 20 # number of persons
beta <- .3 # regression coefficient
rho <- .30 # residual intraclass correlation
rho.miss <- .10 # correlation with missing response
missrate <- .50 # missing proportion
y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho))
w <- rep(round(rnorm(G), 2), each = n)
v <- rep(round(runif(G, 0, 3)), each = n)
x <- rnorm(G * n)
y <- y1 + beta * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y, "w" = w, "v" = v)
dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "w"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "v"] <- NA

empty mice imputation
imp0 <- mice(as.matrix(dfr), maxit = 0)
predM <- imp0$predictorMatrix
impM <- imp0$method

multilevel imputation
predM1 <- predM
predM1[c("w", "y", "v"), "group"] <- -2
predM1["y", "x"] <- 1 # fixed x effects imputation
impM1 <- impM

https://stefvanbuuren.name/fimd/sec-level2pred.html

90 mice.impute.2lonly.norm

impM1[c("y", "w", "v")] <- c("2l.pan", "2lonly.norm", "2lonly.pmm")

y ... imputation using pan
w ... imputation at level 2 using norm
v ... imputation at level 2 using pmm

imp1 <- mice(as.matrix(dfr),
m = 1, predictorMatrix = predM1,
method = impM1, maxit = 1, paniter = 500

)

Demonstration that 2lonly.norm aborts for partial missing data.
Better use 2lonly.mean for repair.
data <- data.frame(

patid = rep(1:4, each = 5),
sex = rep(c(1, 2, 1, 2), each = 5),
crp = c(
68, 78, 93, NA, 143,
5, 7, 9, 13, NA,
97, NA, 56, 52, 34,
22, 30, NA, NA, 45

)
)
pred <- make.predictorMatrix(data)
pred[, "patid"] <- -2
only missing value (out of five) for patid == 1
data[3, "sex"] <- NA
Not run:
The following fails because 2lonly.norm found partially missing
level-2 data
imp <- mice(data, method = c("", "2lonly.norm", "2l.pan"),
predictorMatrix = pred, maxit = 1, m = 2)
> iter imp variable
> 1 1 sex crpError in .imputation.level2(y = y, ... :
> Method 2lonly.norm found the following clusters with partially missing
> level-2 data: 1
> Method 2lonly.mean can fix such inconsistencies.

End(Not run)

In contrast, if all sex values are missing for patid == 1, it runs fine,
except on r-patched-solaris-x86. I used dontrun to evade CRAN errors.
Not run:
data[1:5, "sex"] <- NA
imp <- mice(data,

method = c("", "2lonly.norm", "2l.pan"),
predictorMatrix = pred, maxit = 1, m = 2

)

End(Not run)

mice.impute.2lonly.pmm 91

mice.impute.2lonly.pmm

Imputation at level 2 by predictive mean matching

Description

Imputes univariate missing data at level 2 using predictive mean matching. Variables are level 1
are aggregated at level 2. The group identifier at level 2 must be indicated by type = -2 in the
predictorMatrix.

Usage

mice.impute.2lonly.pmm(y, ry, x, type, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

type Group identifier must be specified by ’-2’. Predictors must be specified by ’1’.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

This function allows in combination with mice.impute.2l.pan switching regression imputation
between level 1 and level 2 as described in Yucel (2008) or Gelman and Hill (2007, p. 541).

The function checks for partial missing level-2 data. Level-2 data are assumed to be constant within
the same cluster. If one or more entries are missing, then the procedure aborts with an error message
that identifies the cluster with incomplete level-2 data. In such cases, one may first fill in the cluster
mean (or mode) by the 2lonly.mean method to remove inconsistencies.

Value

A vector of length nmis with imputations.

Note

The extension to categorical variables transforms a dependent factor variable by means of the
as.integer() function. This may make sense for categories that are approximately ordered, but
less so for pure nominal measures.

For a more general approach, see miceadds::mice.impute.2lonly.function().

92 mice.impute.2lonly.pmm

Author(s)

Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Ger-
many), <robitzsch@ipn.uni-kiel.de>

References

Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Cambridge, Cambridge University Press.

Yucel, RM (2008). Multiple imputation inference for multivariate multilevel continuous data with
ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389-2404.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice.impute.pmm, mice.impute.2lonly.norm, mice.impute.2l.pan, mice.impute.2lonly.mean

Other univariate-2lonly: mice.impute.2lonly.mean(), mice.impute.2lonly.norm()

Examples

simulate some data
x,y ... level 1 variables
v,w ... level 2 variables

G <- 250 # number of groups
n <- 20 # number of persons
beta <- .3 # regression coefficient
rho <- .30 # residual intraclass correlation
rho.miss <- .10 # correlation with missing response
missrate <- .50 # missing proportion
y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho))
w <- rep(round(rnorm(G), 2), each = n)
v <- rep(round(runif(G, 0, 3)), each = n)
x <- rnorm(G * n)
y <- y1 + beta * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y, "w" = w, "v" = v)
dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "w"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "v"] <- NA

empty mice imputation
imp0 <- mice(as.matrix(dfr), maxit = 0)
predM <- imp0$predictorMatrix
impM <- imp0$method

multilevel imputation
predM1 <- predM
predM1[c("w", "y", "v"), "group"] <- -2
predM1["y", "x"] <- 1 # fixed x effects imputation
impM1 <- impM

https://stefvanbuuren.name/fimd/sec-level2pred.html

mice.impute.cart 93

impM1[c("y", "w", "v")] <- c("2l.pan", "2lonly.norm", "2lonly.pmm")

turn v into a categorical variable
dfr$v <- as.factor(dfr$v)
levels(dfr$v) <- LETTERS[1:4]

y ... imputation using pan
w ... imputation at level 2 using norm
v ... imputation at level 2 using pmm

skip imputation on solaris
is.solaris <- function() grepl("SunOS", Sys.info()["sysname"])
if (!is.solaris()) {

imp <- mice(dfr,
m = 1, predictorMatrix = predM1,
method = impM1, maxit = 1, paniter = 500

)
}

mice.impute.cart Imputation by classification and regression trees

Description

Imputes univariate missing data using classification and regression trees.

Usage

mice.impute.cart(y, ry, x, wy = NULL, minbucket = 5, cp = 1e-04, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

minbucket The minimum number of observations in any terminal node used. See rpart.control
for details.

cp Complexity parameter. Any split that does not decrease the overall lack of fit by
a factor of cp is not attempted. See rpart.control for details.

... Other named arguments passed down to rpart().

94 mice.impute.cart

Details

Imputation of y by classification and regression trees. The procedure is as follows:

1. Fit a classification or regression tree by recursive partitioning;

2. For each ymis, find the terminal node they end up according to the fitted tree;

3. Make a random draw among the member in the node, and take the observed value from that
draw as the imputation.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Numeric vector of length sum(!ry) with imputations

Author(s)

Lisa Doove, Stef van Buuren, Elise Dusseldorp, 2012

References

Doove, L.L., van Buuren, S., Dusseldorp, E. (2014), Recursive partitioning for missing data impu-
tation in the presence of interaction Effects. Computational Statistics & Data Analysis, 72, 92-104.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification and regression
trees, Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice, mice.impute.rf, rpart, rpart.control

Other univariate imputation functions: mice.impute.lasso.logreg(), mice.impute.lasso.norm(),
mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(), mice.impute.lda(),
mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

Examples

imp <- mice(nhanes2, meth = "cart", minbucket = 4)
plot(imp)

https://stefvanbuuren.name/fimd/sec-cart.html

mice.impute.jomoImpute 95

mice.impute.jomoImpute

Multivariate multilevel imputation using jomo

Description

This function is a wrapper around the jomoImpute function from the mitml package so that it can
be called to impute blocks of variables in mice. The mitml::jomoImpute function provides an in-
terface to the jomo package for multiple imputation of multilevel data https://CRAN.R-project.
org/package=jomo. Imputations can be generated using type or formula, which offer different
options for model specification.

Usage

mice.impute.jomoImpute(
data,
formula,
type,
m = 1,
silent = TRUE,
format = "imputes",
...

)

Arguments

data A data frame containing incomplete and auxiliary variables, the cluster indicator
variable, and any other variables that should be present in the imputed datasets.

formula A formula specifying the role of each variable in the imputation model. The
basic model is constructed by model.matrix, thus allowing to include derived
variables in the imputation model using I(). See jomoImpute.

type An integer vector specifying the role of each variable in the imputation model
(see jomoImpute)

m The number of imputed data sets to generate. Default is 10.

silent (optional) Logical flag indicating if console output should be suppressed. De-
fault is FALSE.

format A character vector specifying the type of object that should be returned. The
default is format = "list". No other formats are currently supported.

... Other named arguments: n.burn, n.iter, group, prior, silent and others.

Value

A list of imputations for all incomplete variables in the model, that can be stored in the the imp
component of the mids object.

https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=jomo

96 mice.impute.lasso.logreg

Note

The number of imputations m is set to 1, and the function is called m times so that it fits within the
mice iteration scheme.

This is a multivariate imputation function using a joint model.

Author(s)

Stef van Buuren, 2018, building on work of Simon Grund, Alexander Robitzsch and Oliver Luedtke
(authors of mitml package) and Quartagno and Carpenter (authors of jomo package).

References

Grund S, Luedtke O, Robitzsch A (2016). Multiple Imputation of Multilevel Missing Data: An
Introduction to the R Package pan. SAGE Open.

Quartagno M and Carpenter JR (2015). Multiple imputation for IPD meta-analysis: allowing for
heterogeneity and studies with missing covariates. Statistics in Medicine, 35:2938-2954, 2015.

See Also

jomoImpute

Other multivariate-2l: mice.impute.panImpute()

Examples

Not run:
Note: Requires mitml 0.3-5.7
blocks <- list(c("bmi", "chl", "hyp"), "age")
method <- c("jomoImpute", "pmm")
ini <- mice(nhanes, blocks = blocks, method = method, maxit = 0)
pred <- ini$pred
pred["B1", "hyp"] <- -2
imp <- mice(nhanes, blocks = blocks, method = method, pred = pred, maxit = 1)

End(Not run)

mice.impute.lasso.logreg

Imputation by direct use of lasso logistic regression

Description

Imputes univariate missing binary data using lasso logistic regression with bootstrap.

Usage

mice.impute.lasso.logreg(y, ry, x, wy = NULL, nfolds = 10, ...)

mice.impute.lasso.logreg 97

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nfolds The number of folds for the cross-validation of the lasso penalty. The default is
10.

... Other named arguments.

Details

The method consists of the following steps:

1. For a given y variable under imputation, draw a bootstrap version y* with replacement from
the observed cases y[ry], and stores in x* the corresponding values from x[ry,].

2. Fit a regularised (lasso) logistic regression with y* as the outcome, and x* as predictors. A
vector of regression coefficients bhat is obtained. All of these coefficients are considered
random draws from the imputation model parameters posterior distribution. Same of these
coefficients will be shrunken to 0.

3. Compute predicted scores for m.d., i.e. logit-1(X bhat)

4. Compare the score to a random (0,1) deviate, and impute.

The method is based on the Direct Use of Regularized Regression (DURR) proposed by Zhao &
Long (2016) and Deng et al (2016).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Edoardo Costantini, 2021

References

Deng, Y., Chang, C., Ido, M. S., & Long, Q. (2016). Multiple imputation for general missing data
patterns in the presence of high-dimensional data. Scientific reports, 6(1), 1-10.

Zhao, Y., & Long, Q. (2016). Multiple imputation in the presence of high-dimensional data. Statis-
tical Methods in Medical Research, 25(5), 2021-2035.

98 mice.impute.lasso.norm

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(),
mice.impute.lasso.select.norm(), mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(),
mice.impute.mean(), mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(),
mice.impute.norm(), mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(),
mice.impute.pmm(), mice.impute.polr(), mice.impute.polyreg(), mice.impute.quadratic(),
mice.impute.rf(), mice.impute.ri()

mice.impute.lasso.norm

Imputation by direct use of lasso linear regression

Description

Imputes univariate missing normal data using lasso linear regression with bootstrap.

Usage

mice.impute.lasso.norm(y, ry, x, wy = NULL, nfolds = 10, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nfolds The number of folds for the cross-validation of the lasso penalty. The default is
10.

... Other named arguments.

Details

The method consists of the following steps:

1. For a given y variable under imputation, draw a bootstrap version y* with replacement from
the observed cases y[ry], and stores in x* the corresponding values from x[ry,].

2. Fit a regularised (lasso) linear regression with y* as the outcome, and x* as predictors. A
vector of regression coefficients bhat is obtained. All of these coefficients are considered
random draws from the imputation model parameters posterior distribution. Same of these
coefficients will be shrunken to 0.

mice.impute.lasso.select.logreg 99

3. Draw the imputed values from the predictive distribution defined by the original (non-bootstrap)
data, bhat, and estimated error variance.

The method is based on the Direct Use of Regularized Regression (DURR) proposed by Zhao &
Long (2016) and Deng et al (2016).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Edoardo Costantini, 2021

References

Deng, Y., Chang, C., Ido, M. S., & Long, Q. (2016). Multiple imputation for general missing data
patterns in the presence of high-dimensional data. Scientific reports, 6(1), 1-10.

Zhao, Y., & Long, Q. (2016). Multiple imputation in the presence of high-dimensional data. Statis-
tical Methods in Medical Research, 25(5), 2021-2035.

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(), mice.impute.lda(),
mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.lasso.select.logreg

Imputation by indirect use of lasso logistic regression

Description

Imputes univariate missing data using logistic regression following a preprocessing lasso variable
selection step.

Usage

mice.impute.lasso.select.logreg(y, ry, x, wy = NULL, nfolds = 10, ...)

100 mice.impute.lasso.select.logreg

Arguments

y Vector to be imputed
ry Logical vector of length length(y) indicating the the subset y[ry] of elements

in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nfolds The number of folds for the cross-validation of the lasso penalty. The default is
10.

... Other named arguments.

Details

The method consists of the following steps:

1. For a given y variable under imputation, fit a linear regression with lasso penalty using y[ry]
as dependent variable and x[ry,] as predictors. The coefficients that are not shrunk to 0
define the active set of predictors that will be used for imputation.

2. Fit a logit with the active set of predictors, and find (bhat, V(bhat))
3. Draw BETA from N(bhat, V(bhat))
4. Compute predicted scores for m.d., i.e. logit-1(X BETA)
5. Compare the score to a random (0,1) deviate, and impute.

The user can specify a predictorMatrix in the mice call to define which predictors are provided
to this univariate imputation method. The lasso regularization will select, among the variables
indicated by the user, the ones that are important for imputation at any given iteration. Therefore,
users may force the exclusion of a predictor from a given imputation model by speficing a 0 entry.
However, a non-zero entry does not guarantee the variable will be used, as this decision is ultimately
made by the lasso variable selection procedure.

The method is based on the Indirect Use of Regularized Regression (IURR) proposed by Zhao &
Long (2016) and Deng et al (2016).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Edoardo Costantini, 2021

References

Deng, Y., Chang, C., Ido, M. S., & Long, Q. (2016). Multiple imputation for general missing data
patterns in the presence of high-dimensional data. Scientific reports, 6(1), 1-10.

Zhao, Y., & Long, Q. (2016). Multiple imputation in the presence of high-dimensional data. Statis-
tical Methods in Medical Research, 25(5), 2021-2035.

mice.impute.lasso.select.norm 101

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.norm(), mice.impute.lda(), mice.impute.logreg(),
mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(), mice.impute.mnar.logreg(),
mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(), mice.impute.norm.nob(),
mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(), mice.impute.polyreg(),
mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.lasso.select.norm

Imputation by indirect use of lasso linear regression

Description

Imputes univariate missing data using Bayesian linear regression following a preprocessing lasso
variable selection step.

Usage

mice.impute.lasso.select.norm(y, ry, x, wy = NULL, nfolds = 10, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nfolds The number of folds for the cross-validation of the lasso penalty. The default is
10.

... Other named arguments.

Details

The method consists of the following steps:

1. For a given y variable under imputation, fit a linear regression with lasso penalty using y[ry]
as dependent variable and x[ry,] as predictors. Coefficients that are not shrunk to 0 define
an active set of predictors that will be used for imputation

2. Define a Bayesian linear model using y[ry] as the dependent variable, the active set of x[ry,
] as predictors, and standard non-informative priors

102 mice.impute.lda

3. Draw parameter values for the intercept, regression weights, and error variance from their
posterior distribution

4. Draw imputations from the posterior predictive distribution

The user can specify a predictorMatrix in the mice call to define which predictors are provided
to this univariate imputation method. The lasso regularization will select, among the variables
indicated by the user, the ones that are important for imputation at any given iteration. Therefore,
users may force the exclusion of a predictor from a given imputation model by specifying a 0 entry.
However, a non-zero entry does not guarantee the variable will be used, as this decision is ultimately
made by the lasso variable selection procedure.

The method is based on the Indirect Use of Regularized Regression (IURR) proposed by Zhao &
Long (2016) and Deng et al (2016).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Edoardo Costantini, 2021

References

Deng, Y., Chang, C., Ido, M. S., & Long, Q. (2016). Multiple imputation for general missing data
patterns in the presence of high-dimensional data. Scientific reports, 6(1), 1-10.

Zhao, Y., & Long, Q. (2016). Multiple imputation in the presence of high-dimensional data. Statis-
tical Methods in Medical Research, 25(5), 2021-2035.

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lda(), mice.impute.logreg(),
mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(), mice.impute.mnar.logreg(),
mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(), mice.impute.norm.nob(),
mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(), mice.impute.polyreg(),
mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.lda Imputation by linear discriminant analysis

Description

Imputes univariate missing data using linear discriminant analysis

Usage

mice.impute.lda(y, ry, x, wy = NULL, ...)

mice.impute.lda 103

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments. Not used.

Details

Imputation of categorical response variables by linear discriminant analysis. This function uses the
Venables/Ripley functions lda() and predict.lda() to compute posterior probabilities for each
incomplete case, and draws the imputations from this posterior.

This function can be called from within the Gibbs sampler by specifying "lda" in the method argu-
ment of mice(). This method is usually faster and uses fewer resources than calling the function,
but the statistical properties may not be as good (Brand, 1999). mice.impute.polyreg.

Value

Vector with imputed data, of type factor, and of length sum(wy)

Warning

The function does not incorporate the variability of the discriminant weight, so it is not ’proper’ in
the sense of Rubin. For small samples and rare categories in the y, variability of the imputed data
could therefore be underestimated.

Added: SvB June 2009 Tried to include bootstrap, but disabled since bootstrapping may easily lead
to constant variables within groups.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Brand, J.P.L. (1999). Development, Implementation and Evaluation of Multiple Imputation Strate-
gies for the Statistical Analysis of Incomplete Data Sets. Ph.D. Thesis, TNO Prevention and
Health/Erasmus University Rotterdam. ISBN 90-74479-08-1.

Venables, W.N. & Ripley, B.D. (1997). Modern applied statistics with S-PLUS (2nd ed). Springer,
Berlin.

https://doi.org/10.18637/jss.v045.i03

104 mice.impute.logreg

See Also

mice, mice.impute.polyreg, lda

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.logreg Imputation by logistic regression

Description

Imputes univariate missing data using logistic regression.

Usage

mice.impute.logreg(y, ry, x, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

Imputation for binary response variables by the Bayesian logistic regression model (Rubin 1987, p.
169-170). The Bayesian method consists of the following steps:

1. Fit a logit, and find (bhat, V(bhat))

2. Draw BETA from N(bhat, V(bhat))

3. Compute predicted scores for m.d., i.e. logit-1(X BETA)

4. Compare the score to a random (0,1) deviate, and impute.

The method relies on the standard glm.fit function. Warnings from glm.fit are suppressed.
Perfect prediction is handled by the data augmentation method.

mice.impute.logreg.boot 105

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Brand, J.P.L. (1999). Development, Implementation and Evaluation of Multiple Imputation Strate-
gies for the Statistical Analysis of Incomplete Data Sets. Ph.D. Thesis, TNO Prevention and
Health/Erasmus University Rotterdam. ISBN 90-74479-08-1.

Venables, W.N. & Ripley, B.D. (1997). Modern applied statistics with S-Plus (2nd ed). Springer,
Berlin.

White, I., Daniel, R. and Royston, P (2010). Avoiding bias due to perfect prediction in multi-
ple imputation of incomplete categorical variables. Computational Statistics and Data Analysis,
54:22672275.

See Also

mice, glm, glm.fit

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg.boot(), mice.impute.mean(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.logreg.boot

Imputation by logistic regression using the bootstrap

Description

Imputes univariate missing data using logistic regression by a bootstrapped logistic regression
model. The bootstrap method draws a simple bootstrap sample with replacement from the observed
data y[ry] and x[ry,].

Usage

mice.impute.logreg.boot(y, ry, x, wy = NULL, ...)

https://doi.org/10.18637/jss.v045.i03

106 mice.impute.mean

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000, 2011

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice, glm, glm.fit

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.mean(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.mean Imputation by the mean

Description

Imputes the arithmetic mean of the observed data

Usage

mice.impute.mean(y, ry, x = NULL, wy = NULL, ...)

https://doi.org/10.18637/jss.v045.i03
https://stefvanbuuren.name/fimd/sec-categorical.html

mice.impute.mean 107

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Warning

Imputing the mean of a variable is almost never appropriate. See Little and Rubin (2002, p. 61-62)
or Van Buuren (2012, p. 10-11)

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York: John
Wiley and Sons.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice, mean

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.midastouch(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

https://doi.org/10.18637/jss.v045.i03
https://stefvanbuuren.name/fimd/sec-simplesolutions.html#sec:meanimp

108 mice.impute.midastouch

mice.impute.midastouch

Imputation by predictive mean matching with distance aided donor
selection

Description

Imputes univariate missing data using predictive mean matching.

Usage

mice.impute.midastouch(
y,
ry,
x,
wy = NULL,
ridge = 1e-05,
midas.kappa = NULL,
outout = TRUE,
neff = NULL,
debug = NULL,
...

)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

ridge The ridge penalty used in .norm.draw() to prevent problems with multicollinear-
ity. The default is ridge = 1e-05, which means that 0.01 percent of the diagonal
is added to the cross-product. Larger ridges may result in more biased estimates.
For highly noisy data (e.g. many junk variables), set ridge = 1e-06 or even
lower to reduce bias. For highly collinear data, set ridge = 1e-04 or higher.

midas.kappa Scalar. If NULL (default) then the optimal kappa gets selected automatically.
Alternatively, the user may specify a scalar. Siddique and Belin 2008 find
midas.kappa = 3 to be sensible.

outout Logical. If TRUE (default) one model is estimated for each donor (leave-one-
out principle). For speedup choose outout = FALSE, which estimates one model
for all observations leading to in-sample predictions for the donors and out-of-
sample predictions for the recipients. Mind the inappropriateness, though.

mice.impute.midastouch 109

neff FOR EXPERTS. Null or character string. The name of an existing environ-
ment in which the effective sample size of the donors for each loop (CE it-
erations times multiple imputations) is supposed to be written. The effective
sample size is necessary to compute the correction for the total variance as orig-
inally suggested by Parzen, Lipsitz and Fitzmaurice 2005. The objectname is
midastouch.neff.

debug FOR EXPERTS. Null or character string. The name of an existing environment
in which the input is supposed to be written. The objectname is midastouch.inputlist.

... Other named arguments.

Details

Imputation of y by predictive mean matching, based on Rubin (1987, p. 168, formulas a and b) and
Siddique and Belin 2008. The procedure is as follows:

1. Draw a bootstrap sample from the donor pool.

2. Estimate a beta matrix on the bootstrap sample by the leave one out principle.

3. Compute type II predicted values for yobs (nobs x 1) and ymis (nmis x nobs).

4. Calculate the distance between all yobs and the corresponding ymis.

5. Convert the distances in drawing probabilities.

6. For each recipient draw a donor from the entire pool while considering the probabilities from
the model.

7. Take its observed value in y as the imputation.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Philipp Gaffert, Florian Meinfelder, Volker Bosch 2015

References

Gaffert, P., Meinfelder, F., Bosch V. (2018) Towards an MI-proper Predictive Mean Matching, JSM
2018. Discussion Paper.

Little, R.J.A. (1988), Missing data adjustments in large surveys (with discussion), Journal of Busi-
ness Economics and Statistics, 6, 287–301.

Parzen, M., Lipsitz, S. R., Fitzmaurice, G. M. (2005), A note on reducing the bias of the approxi-
mate Bayesian bootstrap imputation variance estimator. Biometrika 92, 4, 971–974.

Rubin, D.B. (1987), Multiple imputation for nonresponse in surveys. New York: Wiley.

Siddique, J., Belin, T.R. (2008), Multiple imputation using an iterative hot-deck with distance-based
donor selection. Statistics in medicine, 27, 1, 83–102

Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn C.G.M., Rubin, D.B. (2006), Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 12,
1049–1064.

110 mice.impute.mnar.logreg

Van Buuren, S., Groothuis-Oudshoorn, K. (2011), mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45, 3, 1–67. doi:10.18637/jss.v045.i03

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

Examples

do default multiple imputation on a numeric matrix
imp <- mice(nhanes, method = "midastouch")
imp

list the actual imputations for BMI
impimpbmi

first completed data matrix
complete(imp)

imputation on mixed data with a different method per column
mice(nhanes2, method = c("sample", "midastouch", "logreg", "norm"))

mice.impute.mnar.logreg

Imputation under MNAR mechanism by NARFCS

Description

Imputes univariate data under a user-specified MNAR mechanism by linear or logistic regression
and NARFCS. Sensitivity analysis under different model specifications may shed light on the impact
of different MNAR assumptions on the conclusions.

Usage

mice.impute.mnar.logreg(y, ry, x, wy = NULL, ums = NULL, umx = NULL, ...)

mice.impute.mnar.norm(y, ry, x, wy = NULL, ums = NULL, umx = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

https://doi.org/10.18637/jss.v045.i03

mice.impute.mnar.logreg 111

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

ums A string containing the specification of the unidentifiable part of the imputa-
tion model (the *unidentifiable model specification"), that is, the desired δ-
adjustment (offset) as a function of other variables and values for the corre-
sponding deltas (sensitivity parameters). See details.

umx An auxiliary data matrix containing variables that do not appear in the identi-
fiable part of the imputation procedure but that have been specified via ums as
being predictors in the unidentifiable part of the imputation model. See details.

... Other named arguments.

Details

This function imputes data that are thought to be Missing Not at Random (MNAR) by the NARFCS
method. The NARFCS procedure (Tompsett et al, 2018) generalises the so-called δ-adjustment
sensitivity analysis method of Van Buuren, Boshuizen & Knook (1999) to the case with multiple
incomplete variables within the FCS framework. In practical terms, the NARFCS procedure shifts
the imputations drawn at each iteration of mice by a user-specified quantity that can vary across
subjects, to reflect systematic departures of the missing data from the data distribution imputed
under MAR.

Specification of the NARFCS model is done by the blots argument of mice(). The blots parame-
ter is a named list. For each variable to be imputed by mice.impute.mnar.norm() or mice.impute.mnar.logreg()
the corresponding element in blots is a list with at least one argument ums and, optionally, a sec-
ond argument umx. For example, the high-level call might like something like mice(nhanes[, c(2,
4)], method = c("pmm", "mnar.norm"),blots = list(chl = list(ums = "-3+2*bmi"))).

The ums parameter is required, and might look like this: "-4+1*Y". The ums specifcation must have
the following characteristics:

1. A single term corresponding to the intercept (constant) term, not multiplied by any variable
name, must be included in the expression;

2. Each term in the expression (corresponding to the intercept or a predictor variable) must be
separated by either a "+" or "-" sign, depending on the sign of the sensitivity parameter;

3. Within each non-intercept term, the sensitivity parameter value comes first and the predictor
variable comes second, and these must be separated by a "*" sign;

4. For categorical predictors, for example a variable Z with K + 1 categories ("Cat0","Cat1",
...,"CatK"), K category-specific terms are needed, and those not in umx (see below) must be
specified by concatenating the variable name with the name of the category (e.g. ZCat1) as this
is how they are named in the design matrix (argument x) passed to the univariate imputation
function. An example is "2+1*ZCat1-3*ZCat2".

If given, the umx specification must have the following characteristics:

1. It contains only complete variables, with no missing values;
2. It is a numeric matrix. In particular, categorical variables must be represented as dummy

indicators with names corresponding to what is used in ums to refer to the category-specific
terms (see above);

112 mice.impute.mnar.logreg

3. It has the same number of rows as the data argument passed on to the main mice function;

4. It does not contain variables that were already predictors in the identifiable part of the model
for the variable under imputation.

Limitation: The present implementation can only condition on variables that appear in the iden-
tifiable part of the imputation model (x) or in complete auxiliary variables passed on via the umx
argument. It is not possible to specify models where the offset depends on incomplete auxiliary
variables.

For an MNAR alternative see also mice.impute.ri.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Margarita Moreno-Betancur, Stef van Buuren, Ian R. White, 2020.

References

Tompsett, D. M., Leacy, F., Moreno-Betancur, M., Heron, J., & White, I. R. (2018). On the use
of the not-at-random fully conditional specification (NARFCS) procedure in practice. Statistics in
Medicine, 37(15), 2338-2353. doi:10.1002/sim.7643.

Van Buuren, S., Boshuizen, H.C., Knook, D.L. (1999) Multiple imputation of missing blood pres-
sure covariates in survival analysis. Statistics in Medicine, 18, 681–694.

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mpmm(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

Examples

1: Example with no auxiliary data: only pass unidentifiable model specification (ums)

Specify argument to pass on to mnar imputation functions via "blots" argument
mnar.blot <- list(X = list(ums = "-4"), Y = list(ums = "2+1*ZCat1-3*ZCat2"))

Run NARFCS by using mnar imputation methods and passing argument via blots
impNARFCS <- mice(mnar_demo_data,

method = c("mnar.logreg", "mnar.norm", ""),
blots = mnar.blot, seed = 234235, print = FALSE

)

Obtain MI results: Note they coincide with those from old version at
https://github.com/moreno-betancur/NARFCS

https://doi.org/10.1002/sim.7643

mice.impute.mpmm 113

pool(with(impNARFCS, lm(Y ~ X + Z)))$pooled$estimate

2: Example passing also auxiliary data to MNAR procedure (umx)
Assumptions:
- Auxiliary data are complete, no missing values
- Auxiliary data are a numeric matrix
- Auxiliary data have same number of rows as x
- Auxiliary data have no overlapping variable names with x

Specify argument to pass on to mnar imputation functions via "blots" argument
aux <- matrix(0:1, nrow = nrow(mnar_demo_data))
dimnames(aux) <- list(NULL, "even")
mnar.blot <- list(

X = list(ums = "-4"),
Y = list(ums = "2+1*ZCat1-3*ZCat2+0.5*even", umx = aux)

)

Run NARFCS by using mnar imputation methods and passing argument via blots
impNARFCS <- mice(mnar_demo_data,

method = c("mnar.logreg", "mnar.norm", ""),
blots = mnar.blot, seed = 234235, print = FALSE

)

Obtain MI results: As expected they differ (slightly) from those
from old version at https://github.com/moreno-betancur/NARFCS
pool(with(impNARFCS, lm(Y ~ X + Z)))$pooled$estimate

mice.impute.mpmm Imputation by multivariate predictive mean matching

Description

Imputes multivariate incomplete data among which there are specific relations, for instance, poly-
nomials, interactions, range restrictions and sum scores.

Usage

mice.impute.mpmm(data, format = "imputes", ...)

Arguments

data matrix with exactly two missing data patterns

format A character vector specifying the type of object that should be returned. The
default is format = "imputes".

... Other named arguments.

114 mice.impute.mpmm

Details

This function implements the predictive mean matching and applies canonical regression analysis to
select donors fora set of missing variables. In general, canonical regressionanalysis looks for a linear
combination of covariates that predicts a linear combination of outcomes (a set of missing variables)
optimally in a least-square sense (Israels, 1987). The predicted value of the linear combination of
the set of missing variables would be applied to perform predictive mean matching.

Value

A matrix with imputed data, which has ncol(y) columns and sum(wy) rows.

Note

The function requires variables in the block have the same missingness pattern. If there are more
than one missingness pattern, the function will return a warning.

Author(s)

Mingyang Cai and Gerko Vink

See Also

mice.impute.pmm Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition.
Chapman & Hall/CRC. Boca Raton, FL.

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.norm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

Examples

simulate data
beta2 <- beta1 <- .5
x <- rnorm(1000)
e <- rnorm(1000, 0, 1)
y <- beta1 * x + beta2 * x^2 + e
dat <- data.frame(y = y, x = x, x2 = x^2)
m <- as.logical(rbinom(1000, 1, 0.25))
dat[m, c("x", "x2")] <- NA

impute
blk <- list("y", c("x", "x2"))
meth <- c("", "mpmm")
imp <- mice(dat, blocks = blk, method = meth, print = FALSE,

m = 2, maxit = 2)

analyse and check
summary(pool(with(imp, lm(y ~ x + x2))))

https://stefvanbuuren.name/fimd/sec-knowledge.html#sec:quadratic

mice.impute.norm 115

with(dat, plot(x, x2, col = mdc(1)))
with(complete(imp), points(x[m], x2[m], col = mdc(2)))

mice.impute.norm Imputation by Bayesian linear regression

Description

Calculates imputations for univariate missing data by Bayesian linear regression, also known as the
normal model.

Usage

mice.impute.norm(y, ry, x, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

Imputation of y by the normal model by the method defined by Rubin (1987, p. 167). The procedure
is as follows:

1. Calculate the cross-product matrix S = X ′
obsXobs.

2. Calculate V = (S + diag(S)κ)−1, with some small ridge parameter κ.

3. Calculate regression weights β̂ = V X ′
obsyobs.

4. Draw a random variable ġ ∼ χ2
ν with ν = n1 − q.

5. Calculate σ̇2 = (yobs −Xobsβ̂)
′(yobs −Xobsβ̂)/ġ.

6. Draw q independent N(0, 1) variates in vector ż1.

7. Calculate V 1/2 by Cholesky decomposition.

8. Calculate β̇ = β̂ + σ̇ż1V
1/2.

9. Draw n0 independent N(0, 1) variates in vector ż2.

10. Calculate the n0 values yimp = Xmisβ̇ + ż2σ̇.

Using mice.impute.norm for all columns emulates Schafer’s NORM method (Schafer, 1997).

116 mice.impute.norm.boot

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn

References

Rubin, D.B (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley &
Sons.

Schafer, J.L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm.boot(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.norm.boot Imputation by linear regression, bootstrap method

Description

Imputes univariate missing data using linear regression with bootstrap

Usage

mice.impute.norm.boot(y, ry, x, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

mice.impute.norm.nob 117

Details

Draws a bootstrap sample from x[ry,] and y[ry], calculates regression weights and imputes with
normal residuals.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Gerko Vink, Stef van Buuren, 2018

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.norm.nob Imputation by linear regression without parameter uncertainty

Description

Imputes univariate missing data using linear regression analysis without accounting for the uncer-
tainty of the model parameters.

Usage

mice.impute.norm.nob(y, ry, x, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

https://doi.org/10.18637/jss.v045.i03

118 mice.impute.norm.nob

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

This function creates imputations using the spread around the fitted linear regression line of y given
x, as fitted on the observed data.

This function is provided mainly to allow comparison between proper (e.g., as implemented in
mice.impute.norm and improper (this function) normal imputation methods.

For large data, having many rows, differences between proper and improper methods are small, and
in those cases one may opt for speed by using mice.impute.norm.nob.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Warning

The function does not incorporate the variability of the regression weights, so it is not ’proper’ in
the sense of Rubin. For small samples, variability of the imputed data is therefore underestimated.

Author(s)

Gerko Vink, Stef van Buuren, Karin Groothuis-Oudshoorn, 2018

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Brand, J.P.L. (1999). Development, Implementation and Evaluation of Multiple Imputation Strate-
gies for the Statistical Analysis of Incomplete Data Sets. Ph.D. Thesis, TNO Prevention and
Health/Erasmus University Rotterdam.

See Also

mice, mice.impute.norm

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.predict(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

https://doi.org/10.18637/jss.v045.i03

mice.impute.norm.predict 119

mice.impute.norm.predict

Imputation by linear regression through prediction

Description

Imputes the "best value" according to the linear regression model, also known as regression impu-
tation.

Usage

mice.impute.norm.predict(y, ry, x, wy = NULL, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

Calculates regression weights from the observed data and returns predicted values to as imputations.
This method is known as regression imputation.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Warning

THIS METHOD SHOULD NOT BE USED FOR DATA ANALYSIS. This method is seductive be-
cause it imputes the most likely value according to the model. However, it ignores the uncertainty
of the missing values and artificially amplifies the relations between the columns of the data. Ap-
plication of richer models having more parameters does not help to evade these issues. Stochastic
regression methods, like mice.impute.pmm or mice.impute.norm, are generally preferred.

At best, prediction can give reasonable estimates of the mean, especially if normality assumptions
are plausible. See Little and Rubin (2002, p. 62-64) or Van Buuren (2012, p. 11-13, p. 45-46) for a
discussion of this method.

120 mice.impute.panImpute

Author(s)

Gerko Vink, Stef van Buuren, 2018

References

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York: John
Wiley and Sons.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.pmm(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.panImpute Impute multilevel missing data using pan

Description

This function is a wrapper around the panImpute function from the mitml package so that it can be
called to impute blocks of variables in mice. The mitml::panImpute function provides an interface
to the pan package for multiple imputation of multilevel data (Schafer & Yucel, 2002). Imputations
can be generated using type or formula, which offer different options for model specification.

Usage

mice.impute.panImpute(
data,
formula,
type,
m = 1,
silent = TRUE,
format = "imputes",
...

)

Arguments

data A data frame containing incomplete and auxiliary variables, the cluster indicator
variable, and any other variables that should be present in the imputed datasets.

https://stefvanbuuren.name/fimd/sec-linearnormal.html

mice.impute.panImpute 121

formula A formula specifying the role of each variable in the imputation model. The
basic model is constructed by model.matrix, thus allowing to include derived
variables in the imputation model using I(). See panImpute.

type An integer vector specifying the role of each variable in the imputation model
(see panImpute)

m The number of imputed data sets to generate.

silent (optional) Logical flag indicating if console output should be suppressed. De-
fault is to FALSE.

format A character vector specifying the type of object that should be returned. The
default is format = "list". No other formats are currently supported.

... Other named arguments: n.burn, n.iter, group, prior, silent and others.

Value

A list of imputations for all incomplete variables in the model, that can be stored in the the imp
component of the mids object.

Note

The number of imputations m is set to 1, and the function is called m times so that it fits within the
mice iteration scheme.

This is a multivariate imputation function using a joint model.

Author(s)

Stef van Buuren, 2018, building on work of Simon Grund, Alexander Robitzsch and Oliver Luedtke
(authors of mitml package) and Joe Schafer (author of pan package).

References

Grund S, Luedtke O, Robitzsch A (2016). Multiple Imputation of Multilevel Missing Data: An
Introduction to the R Package pan. SAGE Open.

Schafer JL (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.

Schafer JL, and Yucel RM (2002). Computational strategies for multivariate linear mixed-effects
models with missing values. Journal of Computational and Graphical Statistics, 11, 437-457.

See Also

panImpute

Other multivariate-2l: mice.impute.jomoImpute()

Examples

blocks <- list(c("bmi", "chl", "hyp"), "age")
method <- c("panImpute", "pmm")
ini <- mice(nhanes, blocks = blocks, method = method, maxit = 0)
pred <- ini$pred

122 mice.impute.passive

pred["B1", "hyp"] <- -2
imp <- mice(nhanes, blocks = blocks, method = method, pred = pred, maxit = 1)

mice.impute.passive Passive imputation

Description

Calculate new variable during imputation

Usage

mice.impute.passive(data, func)

Arguments

data A data frame

func A formula specifying the transformations on data

Details

Passive imputation is a special internal imputation function. Using this facility, the user can specify,
at any point in the mice Gibbs sampling algorithm, a function on the imputed data. This is useful,
for example, to compute a cubic version of a variable, a transformation like Q = W/H^2 based on
two variables, or a mean variable like (x_1+x_2+x_3)/3. The so derived variables might be used
in other places in the imputation model. The function allows to dynamically derive virtually any
function of the imputed data at virtually any time.

Value

The result of applying formula

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

mice

https://doi.org/10.18637/jss.v045.i03

mice.impute.pmm 123

mice.impute.pmm Imputation by predictive mean matching

Description

Imputation by predictive mean matching

Usage

mice.impute.pmm(
y,
ry,
x,
wy = NULL,
donors = 5L,
matchtype = 1L,
exclude = NULL,
quantify = TRUE,
trim = 1L,
ridge = 1e-05,
use.matcher = FALSE,
...

)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

donors The size of the donor pool among which a draw is made. The default is donors
= 5L. Setting donors = 1L always selects the closest match, but is not recom-
mended. Values between 3L and 10L provide the best results in most cases
(Morris et al, 2015).

matchtype Type of matching distance. The default choice (matchtype = 1L) calculates the
distance between the predicted value of yobs and the drawn values of ymis
(called type-1 matching). Other choices are matchtype = 0L (distance between
predicted values) and matchtype = 2L (distance between drawn values).

exclude Dependent values to exclude from the imputation model and the collection of
donor values

124 mice.impute.pmm

quantify Logical. If TRUE, factor levels are replaced by the first canonical variate before
fitting the imputation model. If false, the procedure reverts to the old behaviour
and takes the integer codes (which may lack a sensible interpretation). Relevant
only of y is a factor.

trim Scalar integer. Minimum number of observations required in a category in order
to be considered as a potential donor value. Relevant only of y is a factor.

ridge The ridge penalty used in .norm.draw() to prevent problems with multicollinear-
ity. The default is ridge = 1e-05, which means that 0.01 percent of the diagonal
is added to the cross-product. Larger ridges may result in more biased estimates.
For highly noisy data (e.g. many junk variables), set ridge = 1e-06 or even
lower to reduce bias. For highly collinear data, set ridge = 1e-04 or higher.

use.matcher Logical. Set use.matcher = TRUE to specify the C function matcher(), the now
deprecated matching function that was default in versions 2.22 (June 2014)
to 3.11.7 (Oct 2020). Since version 3.12.0 mice() uses the much faster
matchindex C function. Use the deprecated matcher function only for exact
reproduction.

... Other named arguments.

Details

Imputation of y by predictive mean matching, based on van Buuren (2012, p. 73). The procedure is
as follows:

1. Calculate the cross-product matrix S = X ′
obsXobs.

2. Calculate V = (S + diag(S)κ)−1, with some small ridge parameter κ.

3. Calculate regression weights β̂ = V X ′
obsyobs.

4. Draw q independent N(0, 1) variates in vector ż1.

5. Calculate V 1/2 by Cholesky decomposition.

6. Calculate β̇ = β̂ + σ̇ż1V
1/2.

7. Calculate η̇(i, j) = |Xobs,[i]|β̂ −Xmis,[j]β̇ with i = 1, . . . , n1 and j = 1, . . . , n0.

8. Construct n0 sets Zj , each containing d candidate donors, from yobs such that
∑

d η̇(i, j) is
minimum for all j = 1, . . . , n0. Break ties randomly.

9. Draw one donor ij from Zj randomly for j = 1, . . . , n0.

10. Calculate imputations ẏj = yij for j = 1, . . . , n0.

The name predictive mean matching was proposed by Little (1988).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Gerko Vink, Stef van Buuren, Karin Groothuis-Oudshoorn

mice.impute.pmm 125

References

Little, R.J.A. (1988), Missing data adjustments in large surveys (with discussion), Journal of Busi-
ness Economics and Statistics, 6, 287–301.

Morris TP, White IR, Royston P (2015). Tuning multiple imputation by predictive mean matching
and local residual draws. BMC Med Res Methodol. ;14:75.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.polr(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

Examples

We normally call mice.impute.pmm() from within mice()
But we may call it directly as follows (not recommended)

set.seed(53177)
xname <- c("age", "hgt", "wgt")
r <- stats::complete.cases(boys[, xname])
x <- boys[r, xname]
y <- boys[r, "tv"]
ry <- !is.na(y)
table(ry)

percentage of missing data in tv
sum(!ry) / length(ry)

Impute missing tv data
yimp <- mice.impute.pmm(y, ry, x)
length(yimp)
hist(yimp, xlab = "Imputed missing tv")

Impute all tv data
yimp <- mice.impute.pmm(y, ry, x, wy = rep(TRUE, length(y)))
length(yimp)
hist(yimp, xlab = "Imputed missing and observed tv")
plot(jitter(y), jitter(yimp),

main = "Predictive mean matching on age, height and weight",
xlab = "Observed tv (n = 224)",
ylab = "Imputed tv (n = 224)"

)
abline(0, 1)

https://stefvanbuuren.name/fimd/sec-pmm.html
https://doi.org/10.18637/jss.v045.i03

126 mice.impute.polr

cor(y, yimp, use = "pair")

Use blots to exclude different values per column
Create blots object
blots <- make.blots(boys)
Exclude ml 1 through 5 from tv donor pool
blotstvexclude <- c(1:5)
Exclude 100 random observed heights from tv donor pool
blotshgtexclude <- sample(unique(boys$hgt), 100)
imp <- mice(boys, method = "pmm", print = FALSE, blots = blots, seed=123)
blotshgtexclude %in% unlist(c(impimphgt)) # MUST be all FALSE
blotstvexclude %in% unlist(c(impimptv)) # MUST be all FALSE

Factor quantification
xname <- c("age", "hgt", "wgt")
br <- boys[c(1:10, 101:110, 501:510, 601:620, 701:710),]
r <- stats::complete.cases(br[, xname])
x <- br[r, xname]
y <- factor(br[r, "tv"])
ry <- !is.na(y)
table(y)

impute factor by optimizing canonical correlation y, x
mice.impute.pmm(y, ry, x)

only categories with at least 2 cases can be donor
mice.impute.pmm(y, ry, x, trim = 2L)

in addition, eliminate category 20
mice.impute.pmm(y, ry, x, trim = 2L, exclude = 20)

to get old behavior: as.integer(y))
mice.impute.pmm(y, ry, x, quantify = FALSE)

mice.impute.polr Imputation of ordered data by polytomous regression

Description

Imputes missing data in a categorical variable using polytomous regression

Usage

mice.impute.polr(
y,
ry,
x,
wy = NULL,
nnet.maxit = 100,
nnet.trace = FALSE,

mice.impute.polr 127

nnet.MaxNWts = 1500,
polr.to.loggedEvents = FALSE,
...

)

Arguments

y Vector to be imputed
ry Logical vector of length length(y) indicating the the subset y[ry] of elements

in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nnet.maxit Tuning parameter for nnet().
nnet.trace Tuning parameter for nnet().
nnet.MaxNWts Tuning parameter for nnet().
polr.to.loggedEvents

A logical indicating whether each fallback to the multinom() function should
be written to loggedEvents. The default is FALSE.

... Other named arguments.

Details

The function mice.impute.polr() imputes for ordered categorical response variables by the pro-
portional odds logistic regression (polr) model. The function repeatedly applies logistic regression
on the successive splits. The model is also known as the cumulative link model.

By default, ordered factors with more than two levels are imputed by mice.impute.polr.

The algorithm of mice.impute.polr uses the function polr() from the MASS package.

In order to avoid bias due to perfect prediction, the algorithm augment the data according to the
method of White, Daniel and Royston (2010).

The call to polr might fail, usually because the data are very sparse. In that case, multinom is tried
as a fallback. If the local flag polr.to.loggedEvents is set to TRUE, a record is written to the
loggedEvents component of the mids object. Use mice(data, polr.to.loggedEvents = TRUE)
to set the flag.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Note

In December 2019 Simon White alerted that the polr could always fail silently. I can confirm
this behaviour for versions mice 3.0.0 - mice 3.6.6, so any method requests for polr in these
versions were in fact handled by multinom. See https://github.com/amices/mice/issues/206
for details.

https://github.com/amices/mice/issues/206

128 mice.impute.polyreg

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000-2010

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies
for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.

White, I.R., Daniel, R. Royston, P. (2010). Avoiding bias due to perfect prediction in multiple
imputation of incomplete categorical variables. Computational Statistics and Data Analysis, 54,
2267-2275.

Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S-Plus (4th ed). Springer,
Berlin.

See Also

mice, multinom, polr

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(),
mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.polyreg Imputation of unordered data by polytomous regression

Description

Imputes missing data in a categorical variable using polytomous regression

Usage

mice.impute.polyreg(
y,
ry,
x,
wy = NULL,
nnet.maxit = 100,
nnet.trace = FALSE,
nnet.MaxNWts = 1500,
...

)

https://doi.org/10.18637/jss.v045.i03

mice.impute.polyreg 129

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

nnet.maxit Tuning parameter for nnet().

nnet.trace Tuning parameter for nnet().

nnet.MaxNWts Tuning parameter for nnet().

... Other named arguments.

Details

The function mice.impute.polyreg() imputes categorical response variables by the Bayesian
polytomous regression model. See J.P.L. Brand (1999), Chapter 4, Appendix B.

By default, unordered factors with more than two levels are imputed by mice.impute.polyreg().

The method consists of the following steps:

1. Fit categorical response as a multinomial model

2. Compute predicted categories

3. Add appropriate noise to predictions

The algorithm of mice.impute.polyreg uses the function multinom() from the nnet package.

In order to avoid bias due to perfect prediction, the algorithm augment the data according to the
method of White, Daniel and Royston (2010).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000-2010

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equa-
tions in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies
for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.

White, I.R., Daniel, R. Royston, P. (2010). Avoiding bias due to perfect prediction in multiple
imputation of incomplete categorical variables. Computational Statistics and Data Analysis, 54,
2267-2275.

https://doi.org/10.18637/jss.v045.i03

130 mice.impute.quadratic

Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S-Plus (4th ed). Springer,
Berlin.

See Also

mice, multinom, polr

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(),
mice.impute.polr(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()

mice.impute.quadratic Imputation of quadratic terms

Description

Imputes incomplete variable that appears as both main effect and quadratic effect in the complete-
data model.

Usage

mice.impute.quadratic(y, ry, x, wy = NULL, quad.outcome = NULL, ...)

Arguments

y Vector to be imputed
ry Logical vector of length length(y) indicating the the subset y[ry] of elements

in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

quad.outcome The name of the outcome in the quadratic analysis as a character string. For
example, if the substantive model of interest is y ~ x + xx, then "y" would be
the quad.outcome

... Other named arguments.

Details

This function implements the "polynomial combination" method. First, the polynomial combina-
tion Z = Y β1 + Y 2β2 is formed. Z is imputed by predictive mean matching, followed by a
decomposition of the imputed data Z into components Y and Y 2. See Van Buuren (2012, pp. 139-
141) and Vink et al (2012) for more details. The method ensures that 1) the imputed data for Y and
Y 2 are mutually consistent, and 2) that provides unbiased estimates of the regression weights in a
complete-data linear regression that use both Y and Y 2.

mice.impute.quadratic 131

Value

Vector with imputed data, same type as y, and of length sum(wy)

Note

There are two situations to consider. If only the linear term Y is present in the data, calculate the
quadratic term YY after imputation. If both the linear term Y and the the quadratic term YY are
variables in the data, then first impute Y by calling mice.impute.quadratic() on Y, and then
impute YY by passive imputation as meth["YY"] <- "~I(Y^2)". See example section for details.
Generally, we would like YY to be present in the data if we need to preserve quadratic relations
between YY and any third variables in the multivariate incomplete data that we might wish to impute.

Author(s)

Mingyang Cai and Gerko Vink

See Also

mice.impute.pmm Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition.
Chapman & Hall/CRC. Boca Raton, FL.

Vink, G., van Buuren, S. (2013). Multiple Imputation of Squared Terms. Sociological Methods &
Research, 42:598-607.

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(),
mice.impute.polr(), mice.impute.polyreg(), mice.impute.rf(), mice.impute.ri()

Examples

Create Data
B1 <- .5
B2 <- .5
X <- rnorm(1000)
XX <- X^2
e <- rnorm(1000, 0, 1)
Y <- B1 * X + B2 * XX + e
dat <- data.frame(x = X, xx = XX, y = Y)

Impose 25 percent MCAR Missingness
dat[0 == rbinom(1000, 1, 1 - .25), 1:2] <- NA

Prepare data for imputation
ini <- mice(dat, maxit = 0)
meth <- c("quadratic", "~I(x^2)", "")
pred <- ini$pred
pred[, "xx"] <- 0

Impute data

https://stefvanbuuren.name/fimd/sec-knowledge.html#sec:quadratic

132 mice.impute.rf

imp <- mice(dat, meth = meth, pred = pred, quad.outcome = "y")

Pool results
pool(with(imp, lm(y ~ x + xx)))

Plot results
stripplot(imp)
plot(datx, datxx, col = mdc(1), xlab = "x", ylab = "xx")
cmp <- complete(imp)
points(cmp$x[is.na(dat$x)], cmp$xx[is.na(dat$x)], col = mdc(2))

mice.impute.rf Imputation by random forests

Description

Imputes univariate missing data using random forests.

Usage

mice.impute.rf(
y,
ry,
x,
wy = NULL,
ntree = 10,
rfPackage = c("ranger", "randomForest", "literanger"),
...

)

Arguments

y Vector to be imputed
ry Logical vector of length length(y) indicating the the subset y[ry] of elements

in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

ntree The number of trees to grow. The default is 10.
rfPackage A single string specifying the backend for estimating the random forest. The

default backend is the ranger package. An alternative is literanger which
predicts faster but does not support all forest types and split rules from ranger.
Also implemented as an alternative is the randomForest package, which used
to be the default in mice 3.13.10 and earlier.

... Other named arguments passed down to mice:::install.on.demand(), randomForest::randomForest(),
randomForest:::randomForest.default(), ranger::ranger(), and literanger::train().

mice.impute.rf 133

Details

Imputation of y by random forests. The method calls randomForrest() which implements Breiman’s
random forest algorithm (based on Breiman and Cutler’s original Fortran code) for classification and
regression. See Appendix A.1 of Doove et al. (2014) for the definition of the algorithm used.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Note

An alternative implementation was independently developed by Shah et al (2014). This were avail-
able as functions CALIBERrfimpute::mice.impute.rfcat and CALIBERrfimpute::mice.impute.rfcont
(now archived). Simulations by Shah (Feb 13, 2014) suggested that the quality of the imputation
for 10 and 100 trees was identical, so mice 2.22 changed the default number of trees from ntree =
100 to ntree = 10.

Author(s)

Lisa Doove, Stef van Buuren, Elise Dusseldorp, 2012; Patrick Rockenschaub, 2021

References

Doove, L.L., van Buuren, S., Dusseldorp, E. (2014), Recursive partitioning for missing data impu-
tation in the presence of interaction Effects. Computational Statistics & Data Analysis, 72, 92-104.

Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H. (2014), Comparison of ran-
dom forest and parametric imputation models for imputing missing data using MICE: A CALIBER
study. American Journal of Epidemiology, doi:10.1093/aje/kwt312.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

mice, mice.impute.cart, randomForest, ranger, train

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(),
mice.impute.polr(), mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.ri()

Examples

Not run:
imp <- mice(nhanes2, meth = "rf", ntree = 3)
plot(imp)

End(Not run)

https://doi.org/10.1093/aje/kwt312
https://stefvanbuuren.name/fimd/sec-cart.html

134 mice.impute.ri

mice.impute.ri Imputation by the random indicator method for nonignorable data

Description

Imputes nonignorable missing data by the random indicator method.

Usage

mice.impute.ri(y, ry, x, wy = NULL, ri.maxit = 10, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

ri.maxit Number of inner iterations

... Other named arguments.

Details

The random indicator method estimates an offset between the distribution of the observed and
missing data using an algorithm that iterates over the response and imputation models.

This routine assumes that the response model and imputation model have same predictors.

For an MNAR alternative see also mice.impute.mnar.logreg.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Shahab Jolani (University of Utrecht)

References

Jolani, S. (2012). Dual Imputation Strategies for Analyzing Incomplete Data. Dissertation. Univer-
sity of Utrecht, Dec 7 2012.

mice.impute.sample 135

See Also

Other univariate imputation functions: mice.impute.cart(), mice.impute.lasso.logreg(),
mice.impute.lasso.norm(), mice.impute.lasso.select.logreg(), mice.impute.lasso.select.norm(),
mice.impute.lda(), mice.impute.logreg(), mice.impute.logreg.boot(), mice.impute.mean(),
mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.mpmm(), mice.impute.norm(),
mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.pmm(),
mice.impute.polr(), mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf()

mice.impute.sample Imputation by simple random sampling

Description

Imputes a random sample from the observed y data

Usage

mice.impute.sample(y, ry, x = NULL, wy = NULL, ...)

Arguments

y Vector to be imputed
ry Logical vector of length length(y) indicating the the subset y[ry] of elements

in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Details

This function takes a simple random sample from the observed values in y, and returns these as
imputations.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000, 2017

References

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

https://doi.org/10.18637/jss.v045.i03

136 mice.mids

mice.mids Multivariate Imputation by Chained Equations (Iteration Step)

Description

Takes a mids object, performs maxit iterations and produces a new object of class "mids".

Usage

mice.mids(obj, newdata = NULL, maxit = 1, printFlag = TRUE, ...)

Arguments

obj An object of class mids, typically produces by a previous call to mice() or
mice.mids()

newdata An optional data.frame for which multiple imputations are generated accord-
ing to the model in obj.

maxit The number of additional Gibbs sampling iterations. The default is 1.

printFlag A Boolean flag. If TRUE, diagnostic information during the Gibbs sampling
iterations will be written to the command window. The default is TRUE.

... Named arguments that are passed down to the univariate imputation functions.

Details

This function enables the user to split up the computations of the Gibbs sampler into smaller parts.
This is useful for the following reasons:

• To add a few extra iteration to an existing solution.

• If RAM memory is exhausted. Returning to prompt/session level may alleviate such problems.

• To customize convergence statistics at specific points, e.g., after every maxit iterations to
monitor convergence.

The imputation model itself is specified in the mice() function and cannot be changed in mice.mids().
The state of the random generator is saved with the mids object. This ensures that the imputations
are reproducible.

Value

mice.mids returns an object of class "mids".

See Also

complete, mice, set.seed, mids

mice.theme 137

Examples

imp1 <- mice(nhanes, maxit = 1, seed = 123)
imp2 <- mice.mids(imp1)

yields the same result as
imp <- mice(nhanes, maxit = 2, seed = 123)

verification
identical(imp$imp, imp2$imp)
#

mice.theme Set the theme for the plotting Trellis functions

Description

The mice.theme() function sets default choices for Trellis plots that are built into mice.

Usage

mice.theme(transparent = TRUE, alpha.fill = 0.3)

Arguments

transparent A logical indicating whether alpha-transparency is allowed. The default is TRUE.

alpha.fill A numerical values between 0 and 1 that indicates the default alpha value for
fills.

Value

mice.theme() returns a named list that can be used as a theme in the functions in lattice. By de-
fault, the mice.theme() function sets transparent <- TRUE if the current device .Device supports
semi-transparent colors.

Author(s)

Stef van Buuren 2011

138 mids

mids Multiply imputed data set (mids)

Description

The mids object is an S3 class that represents a multiply imputed data set. The mids() function is
the S3 constructor. The following functions produce a mids object: mids(), mice(), mice.mids(),
cbind(), rbind(), ibind(), as.mids() and filter().

Usage

mids(
data = data.frame(),
imp = list(),
m = integer(),
where = matrix,
blocks = list(),
call = match.call(),
nmis = integer(),
method = character(),
predictorMatrix = matrix(),
visitSequence = character(),
formulas = list(),
calltype = character(),
post = character(),
blots = list(),
ignore = logical(),
seed = integer(),
iteration = integer(),
lastSeedValue = tryCatch(get(".Random.seed", envir = globalenv(), mode = "integer",

inherits = FALSE), error = function(e) NULL),
chainMean = list(),
chainVar = list(),
loggedEvents = data.frame(),
version = packageVersion("mice"),
date = Sys.Date()

)

S3 method for class 'mids'
plot(
x,
y = NULL,
theme = mice.theme(),
layout = c(2, 3),
type = "l",
col = 1:10,
lty = 1,

mids 139

...
)

S3 method for class 'mids'
print(x, ...)

S3 method for class 'mids'
summary(object, ...)

Arguments

data A data frame or a matrix containing the incomplete data. Missing values are
coded as NA.

imp Calculated field

m Number of multiple imputations. The default is m=5.

where A data frame or matrix with logicals of the same dimensions as data indicat-
ing where in the data the imputations should be created. The default, where =
is.na(data), specifies that the missing data should be imputed. The where
argument may be used to overimpute observed data, or to skip imputations for
selected missing values. Note: Imputation methods that generate imptutations
outside of mice, like mice.impute.panImpute() may depend on a complete
predictor space. In that case, a custom where matrix can not be specified.

blocks List of vectors with variable names per block. List elements may be named to
identify blocks. Variables within a block are imputed by a multivariate impu-
tation method (see method argument). By default each variable is placed into
its own block, which is effectively fully conditional specification (FCS) by uni-
variate models (variable-by-variable imputation). Only variables whose names
appear in blocks are imputed. The relevant columns in the where matrix are
set to FALSE of variables that are not block members. A variable may appear
in multiple blocks. In that case, it is effectively re-imputed each time that it is
visited.

call Calculated field

nmis Calculated field

method Can be either a single string, or a vector of strings with length length(blocks),
specifying the imputation method to be used for each column in data. If speci-
fied as a single string, the same method will be used for all blocks. The default
imputation method (when no argument is specified) depends on the measure-
ment level of the target column, as regulated by the defaultMethod argument.
Columns that need not be imputed have the empty method "". See details.

predictorMatrix

A numeric matrix of length(blocks) rows and ncol(data) columns, contain-
ing 0/1 data specifying the set of predictors to be used for each target column.
Each row corresponds to a variable block, i.e., a set of variables to be imputed.
A value of 1 means that the column variable is used as a predictor for the target
block (in the rows). By default, the predictorMatrix is a square matrix of
ncol(data) rows and columns with all 1’s, except for the diagonal. Note: For

140 mids

two-level imputation models (which have "2l" in their names) other codes (e.g,
2 or -2) are also allowed.

visitSequence A vector of block names of arbitrary length, specifying the sequence of blocks
that are imputed during one iteration of the Gibbs sampler. A block is a collec-
tion of variables. All variables that are members of the same block are imputed
when the block is visited. A variable that is a member of multiple blocks is re-
imputed within the same iteration. The default visitSequence = "roman" visits
the blocks (left to right) in the order in which they appear in blocks. One may
also use one of the following keywords: "arabic" (right to left), "monotone"
(ordered low to high proportion of missing data) and "revmonotone" (reverse
of monotone). Special case: If you specify both visitSequence = "monotone"
and maxit = 1, then the procedure will edit the predictorMatrix to conform
to the monotone pattern. Realize that convergence in one iteration is only guar-
anteed if the missing data pattern is actually monotone. The procedure does not
check this.

formulas A named list of formula’s, or expressions that can be converted into formula’s
by as.formula. List elements correspond to blocks. The block to which the
list element applies is identified by its name, so list names must correspond to
block names. The formulas argument is an alternative to the predictorMatrix
argument that allows for more flexibility in specifying imputation models, e.g.,
for specifying interaction terms.

calltype A character vector of length(block) elements that indicates how the imputa-
tion model is specified. Entries can one of two values: "pred" or "formula".
If calltype = "pred", the predictors of the imputation model for the block are
specified by the corresponding row of the predictorMatrix. If calltype =
"formula" the imputation model is specified by relevant entry in formulas.
The default depends on the presence of the formulas argument. If formulas
is present, then mice() sets calltype = "formula" for any block for which a
formula is specified. Otherwise, calltype = "pred".

post A vector of strings with length ncol(data) specifying expressions as strings.
Each string is parsed and executed within the sampler() function to post-process
imputed values during the iterations. The default is a vector of empty strings,
indicating no post-processing. Multivariate (block) imputation methods ignore
the post parameter.

blots A named list of alist’s that can be used to pass down arguments to lower level
imputation function. The entries of element blots[[blockname]] are passed
down to the function called for block blockname.

ignore A logical vector of nrow(data) elements indicating which rows are ignored
when creating the imputation model. The default NULL includes all rows that
have an observed value of the variable to imputed. Rows with ignore set to
TRUE do not influence the parameters of the imputation model, but are still
imputed. We may use the ignore argument to split data into a training set
(on which the imputation model is built) and a test set (that does not influ-
ence the imputation model estimates). Note: Multivariate imputation methods,
like mice.impute.jomoImpute() or mice.impute.panImpute(), do not hon-
our the ignore argument.

mids 141

seed An integer that is used as argument by the set.seed() for offsetting the random
number generator. Default is to leave the random number generator alone.

iteration Calculated field

lastSeedValue Calculated field

chainMean Calculated field

chainVar Calculated field

loggedEvents Calculated field

version Calculated field

date Calculated field

x An object of class mids

y A formula that specifies which variables, stream and iterations are plotted. If
omitted, all streams, variables and iterations are plotted.

theme The trellis theme to applied to the graphs. The default is mice.theme().

layout A vector of length 2 given the number of columns and rows in the plot. The
default is c(2, 3).

type Parameter type of panel.xyplot.

col Parameter col of panel.xyplot.

lty Parameter lty of panel.xyplot.

... Others arguments

object Object of class mids

Details

The S3 class mids has the following methods: bwplot(), complete(), densityplot(), plot(),
print(), stripplot(), summary(), with() and xyplot().

Value

mids() returns a mids object.

plot() returns a xyplot object.

print() returns the input object invisibly.

summary() returns the input object invisibly.

Structure

Objects of class "mids" are lists with the following elements:

data: Original (incomplete) data set.

imp: A list of ncol(data) components with the generated multiple imputations. Each list compo-
nent is a data.frame (nmis[j] by m) of imputed values for variable j. A NULL component is
used for variables for which not imputations are generated.

m: Number of imputations.

where: The where argument of the mice() function.

142 mids

blocks: The blocks argument of the mice() function.
call: Call that created the object.
nmis: An Named vector with counts of missing values per variable
method: A vector of strings of length(blocks specifying the imputation method per block.
predictorMatrix: A numerical matrix of containing integers specifying the predictor set.
visitSequence: A vector of variable and block names that specifies how variables and blocks are

visited in one iteration throuh the data.
formulas: A named list of formula’s, or expressions that can be converted into formula’s by

as.formula. List elements correspond to blocks. The block to which the list element ap-
plies is identified by its name, so list names must correspond to block names.

post: A vector of strings of length length(blocks) with commands for post-processing.
blots: "Block dots". The blots argument to the mice() function.
ignore: A logical vector of length nrow(data) indicating the rows in data used to build the im-

putation model. (new in mice 3.12.0)
seed: The seed value of the solution.
iteration: Last Gibbs sampling iteration number.
lastSeedValue: Random number generator state.
chainMean: An array of dimensions ncol by maxit by m elements containing the mean of the

generated multiple imputations. The array can be used for monitoring convergence. Note that
observed data are not present in this mean.

chainVar: An array with similar structure as chainMean, containing the variance of the imputed
values.

loggedEvents: A data.frame with five columns containing warnings, corrective actions, and
other inside info.

version: Version number of mice package that created the object.
date: Date at which the object was created.

LoggedEvents

The loggedEvents entry is a matrix with five columns containing a record of automatic removal
actions. It is NULL is no action was made. At initialization the program removes constant vari-
ables, and removes variables to cause collinearity. During iteration, the program does the following
actions:

• One or more variables that are linearly dependent are removed (for categorical data, a ’vari-
able’ corresponds to a dummy variable)

• Proportional odds regression imputation that does not converge and is replaced by polyreg.

Explanation of elements in loggedEvents:

it iteration number at which the record was added,
im imputation number,
dep name of the dependent variable,
meth imputation method used,
out a (possibly long) character vector with the names of the altered or removed predictors.

mids 143

Methods

The mids class of objects has methods for the following generic functions: print, summary, plot.

Plot

The plot() metho plots the trace lines of the MICE algorithm. The plot method for a mids object
plots the mean imputed value per imputation and the mean standard deviation of the imputed values
against the iteration number for each of the m replications. By default, the function creates a plot
for each incomplete variable. On convergence, the streams should intermingle and be free of any
trend.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn

References

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

mice, mira, mipo, xyplot

Examples

data <- data.frame(a = c(1, NA, 3), b = c(NA, 2, 3))
q <- list(

a = structure(
list(`1` = 3, `2` = 3, `3` = 3, `4` = 3, `5` = 3),

row.names = "2", class = "data.frame"),
b = structure(

list(`1` = 3, `2` = 3, `3` = 2, `4` = 2, `5` = 3),
row.names = "1", class = "data.frame"))

imp <- mids(
data = data,
imp = q,
m = 5,
where = is.na(data),
blocks = list(a = "a", b = "b"),
nmis = colSums(is.na(data)),
method = c(a = "mean", b = "norm"),
predictorMatrix = matrix(1, nrow = 2, ncol = 2, dimnames = list(c("a", "b"), c("a", "b"))),
visitSequence = c("a", "b"),
formulas = list(a = a ~ b, b = b ~ a),
post = NULL,
blots = NULL,
ignore = logical(nrow(data)),
seed = 123,
iteration = 1,

https://doi.org/10.18637/jss.v045.i03

144 mids2mplus

chainMean = list(a = c(1, 2, 3), b = c(3, 2, 1)),
chainVar = list(a = c(1.1, 1.2, 1.3), b = c(0.9, 1.0, 1.1)),
loggedEvents = NULL)

print(imp)
imp <- mice(nhanes, print = FALSE)
plot(imp, bmi + chl ~ .it | .ms, layout = c(2, 1))

mids2mplus Export mids object to Mplus

Description

Converts a mids object into a format recognized by Mplus, and writes the data and the Mplus input
files

Usage

mids2mplus(
imp,
file.prefix = "imp",
path = getwd(),
sep = "\t",
dec = ".",
silent = FALSE

)

Arguments

imp The imp argument is an object of class mids, typically produced by the mice()
function.

file.prefix A character string describing the prefix of the output data files.

path A character string containing the path of the output file. By default, files are
written to the current R working directory.

sep The separator between the data fields.

dec The decimal separator for numerical data.

silent A logical flag stating whether the names of the files should be printed.

Details

This function automates most of the work needed to export a mids object to Mplus. The function
writes the multiple imputation datasets, the file that contains the names of the multiple imputation
data sets and an Mplus input file. The Mplus input file has the proper file names, so in principle
it should run and read the data without alteration. Mplus will recognize the data set as a multiply
imputed data set, and do automatic pooling in procedures where that is supported.

mids2spss 145

Value

The return value is NULL.

Author(s)

Gerko Vink, 2011.

See Also

mids, mids2spss

mids2spss Export mids object to SPSS

Description

Converts a mids object into a format recognized by SPSS, and writes the data and the SPSS syntax
files.

Usage

mids2spss(
imp,
filename = "midsdata",
path = getwd(),
compress = FALSE,
silent = FALSE

)

Arguments

imp The imp argument is an object of class mids, typically produced by the mice()
function.

filename A character string describing the name of the output data file and its extension.

path A character string containing the path of the output file. The value in path is
appended to filedat. By default, files are written to the current R working
directory. If path=NULL then no file path appending is done.

compress A logical flag stating whether the resulting SPSS set should be a compressed
.zsav file.

silent A logical flag stating whether the location of the saved file should be printed.

146 mira

Details

This function automates most of the work needed to export a mids object to SPSS. It uses haven::write_sav()
to facilitate the export to an SPSS .sav or .zsav file.

Below are some things to pay attention to.

The SPSS syntax file has the proper file names and separators set, so in principle it should run and
read the data without alteration. SPSS is more strict than R with respect to the paths. Always use the
full path, otherwise SPSS may not be able to find the data file.

Factors in R translate into categorical variables in SPSS. The internal coding of factor levels used in
R is exported. This is generally acceptable for SPSS. However, when the data are to be combined
with existing SPSS data, watch out for any changes in the factor levels codes.

SPSS will recognize the data set as a multiply imputed data set, and do automatic pooling in pro-
cedures where that is supported. Note however that pooling is an extra option only available to
those who license the MISSING VALUES module. Without this license, SPSS will still recognize the
structure of the data, but it will not pool the multiply imputed estimates into a single inference.

Value

The return value is NULL.

Author(s)

Gerko Vink, dec 2020.

See Also

mids

mira Create an object of class "mira"

Description

The mira() functions constructs an S3 object representing a set of multiply imputed repeated analy-
ses (mira). The default workflow generates the mira object using the with() function.

Usage

mira(
call = match.call(),
call1 = match.call(),
nmis = integer(),
analyses = list()

)

mira 147

Arguments

call The function call that created the object.

call1 A secondary function call, typically from the first imputation.

nmis An integer vector representing the number of missing values.

analyses A list of analyses performed on the imputed datasets.

Details

The as.mira() function takes the results of repeated complete-data analysis stored as a list, and
turns it into a mira object that can be pooled.

In versions prior to mice 3.0 pooling required only that coef() and vcov() methods were avail-
able for fitted objects. This feature is no longer supported. The reason is that vcov() methods
are inconsistent across packages, leading to buggy behaviour of the pool() function. Since mice
3.0+, the broom package takes care of filtering out the relevant parts of the complete-data analysis.
It may happen that you’ll see the messages like No method for tidying an S3 object of class
... or Error: No glance method for objects of class The royal way to solve this prob-
lem is to write your own glance() and tidy() methods and add these to broom according to the
specifications given in https://broom.tidymodels.org.

The mira class of objects has methods for the following generic functions: print, summary.

Value

An object of class "mira". The mira class contains the following elements:

.Data: Object of class "list" containing the following slots:

call: The call that created the object.

call1: The call that created the mids object that was used in call.

nmis: An array containing the number of missing observations per column.

analyses: A list of m components containing the individual fit objects from each of the m complete
data analyses.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

with.mids, mids, mipo

https://broom.tidymodels.org
https://doi.org/10.18637/jss.v045.i03

148 name.blocks

mnar_demo_data MNAR demo data

Description

A toy example from Margarita Moreno-Betancur for checking NARFCS.

Usage

mnar_demo_data

Format

An object of class data.frame with 500 rows and 3 columns.

Details

A small dataset with just three columns.

Source

https://github.com/moreno-betancur/NARFCS/blob/master/datmis.csv

name.blocks Name imputation blocks

Description

This helper function names any unnamed elements in the blocks specification. This is a conve-
nience function.

Usage

name.blocks(x, prefix = "B")

Arguments

x A data.frame, character vector with variable names, or list with variable
names.

prefix A character vector of length 1 with the prefix to be using for naming any un-
named blocks with two or more variables.

https://github.com/moreno-betancur/NARFCS/blob/master/datmis.csv

name.formulas 149

Details

This function will name any unnamed list elements specified in the optional argument blocks.
Unnamed blocks consisting of just one variable will be named after this variable. Unnamed blocks
containing more than one variables will be named by the prefix argument, padded by an integer
sequence stating at 1.

Value

A named list of character vectors with variables names.

See Also

mice

Examples

blocks <- list(c("hyp", "chl"), AGE = "age", c("bmi", "hyp"), "edu")
name.blocks(blocks)

name.formulas Name formula list elements

Description

This helper function names any unnamed elements in the formula list. This is a convenience
function.

Usage

name.formulas(formulas, prefix = "F")

Arguments

formulas A named list of formula’s, or expressions that can be converted into formula’s
by as.formula. List elements correspond to blocks. The block to which the
list element applies is identified by its name, so list names must correspond to
block names. The formulas argument is an alternative to the predictorMatrix
argument that allows for more flexibility in specifying imputation models, e.g.,
for specifying interaction terms.

prefix A character vector of length 1 with the prefix to be using for naming any un-
named blocks with two or more variables.

Details

This function will name any unnamed list elements specified in the optional argument formula.
Unnamed formula’s consisting with just one response variable will be named after this variable.
Unnamed formula’s containing more than one variable will be named by the prefix argument,
padded by an integer sequence stating at 1.

150 ncc

Value

Named list of formulas

See Also

mice

Examples

fully conditionally specified main effects model
form1 <- list(

bmi ~ age + chl + hyp,
hyp ~ age + bmi + chl,
chl ~ age + bmi + hyp

)
form1 <- name.formulas(form1)
imp1 <- mice(nhanes, formulas = form1, print = FALSE, m = 1, seed = 12199)

same model using dot notation
form2 <- list(bmi ~ ., hyp ~ ., chl ~ .)
form2 <- name.formulas(form2)
imp2 <- mice(nhanes, formulas = form2, print = FALSE, m = 1, seed = 12199)
identical(complete(imp1), complete(imp2))

same model using repeated multivariate imputation
form3 <- name.blocks(list(all = bmi + hyp + chl ~ .))
imp3 <- mice(nhanes, formulas = form3, print = FALSE, m = 1, seed = 12199)
cmp3 <- complete(imp3)
identical(complete(imp1), complete(imp3))

same model using predictorMatrix
imp4 <- mice(nhanes, print = FALSE, m = 1, seed = 12199, auxiliary = TRUE)
identical(complete(imp1), complete(imp4))

different model: multivariate imputation for chl and bmi
form5 <- list(chl + bmi ~ ., hyp ~ bmi + age)
form5 <- name.formulas(form5)
imp5 <- mice(nhanes, formulas = form5, print = FALSE, m = 1, seed = 71712)

ncc Number of complete cases

Description

Calculates the number of complete cases.

Usage

ncc(x)

nelsonaalen 151

Arguments

x An R object. Currently supported are methods for the following classes: mids,
data.frame and matrix. Also, x can be a vector.

Value

Number of elements in x with complete data.

Author(s)

Stef van Buuren, 2017

See Also

nic, cci

Examples

ncc(nhanes) # 13 complete cases

nelsonaalen Cumulative hazard rate or Nelson-Aalen estimator

Description

Calculates the cumulative hazard rate (Nelson-Aalen estimator)

Usage

nelsonaalen(data, timevar, statusvar)

Arguments

data A data frame containing the data.

timevar The name of the time variable in data.

statusvar The name of the event variable, e.g. death in data.

Details

This function is useful for imputing variables that depend on survival time. White and Royston
(2009) suggested using the cumulative hazard to the survival time H0(T) rather than T or log(T) as
a predictor in imputation models. See section 7.1 of Van Buuren (2012) for an example.

Value

A vector with nrow(data) elements containing the Nelson-Aalen estimates of the cumulative haz-
ard function.

152 nhanes

Author(s)

Stef van Buuren, 2012

References

White, I. R., Royston, P. (2009). Imputing missing covariate values for the Cox model. Statistics in
Medicine, 28(15), 1982-1998.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

require(MASS)

leuk$status <- 1 ## no censoring occurs in leuk data (MASS)
ch <- nelsonaalen(leuk, time, status)
plot(x = leuk$time, y = ch, ylab = "Cumulative hazard", xlab = "Time")

See example on http://www.engineeredsoftware.com/lmar/pe_cum_hazard_function.htm
time <- c(43, 67, 92, 94, 149, rep(149, 7))
status <- c(rep(1, 5), rep(0, 7))
eng <- data.frame(time, status)
ch <- nelsonaalen(eng, time, status)
plot(x = time, y = ch, ylab = "Cumulative hazard", xlab = "Time")

nhanes NHANES example - all variables numerical

Description

A small data set with non-monotone missing values.

Format

A data frame with 25 observations on the following 4 variables.

age Age group (1=20-39, 2=40-59, 3=60+)

bmi Body mass index (kg/m**2)

hyp Hypertensive (1=no,2=yes)

chl Total serum cholesterol (mg/dL)

Details

A small data set with all numerical variables. The data set nhanes2 is the same data set, but with
age and hyp treated as factors.

https://stefvanbuuren.name/fimd/sec-toomany.html#a-further-improvement-survival-as-predictor-variable

nhanes2 153

Source

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall. Table
6.14.

See Also

nhanes2

Examples

create 5 imputed data sets
imp <- mice(nhanes)

print the first imputed data set
complete(imp)

nhanes2 NHANES example - mixed numerical and discrete variables

Description

A small data set with non-monotone missing values.

Format

A data frame with 25 observations on the following 4 variables.

age Age group (1=20-39, 2=40-59, 3=60+)

bmi Body mass index (kg/m**2)

hyp Hypertensive (1=no,2=yes)

chl Total serum cholesterol (mg/dL)

Details

A small data set with missing data and mixed numerical and discrete variables. The data set nhanes
is the same data set, but with all data treated as numerical.

Source

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall. Table
6.14.

See Also

nhanes

154 nic

Examples

create 5 imputed data sets
imp <- mice(nhanes2)

print the first imputed data set
complete(imp)

nic Number of incomplete cases

Description

Calculates the number of incomplete cases.

Usage

nic(x)

Arguments

x An R object. Currently supported are methods for the following classes: mids,
data.frame and matrix. Also, x can be a vector.

Value

Number of elements in x with incomplete data.

Author(s)

Stef van Buuren, 2017

See Also

ncc, cci

Examples

nic(nhanes) # the remaining 12 rows
nic(nhanes[, c("bmi", "hyp")]) # number of cases with incomplete bmi and hyp

nimp 155

nimp Number of imputations per block

Description

Calculates the number of cells within a block for which imputation is requested.

Usage

nimp(where, blocks = make.blocks(where))

Arguments

where A data frame or matrix with logicals of the same dimensions as data indicat-
ing where in the data the imputations should be created. The default, where =
is.na(data), specifies that the missing data should be imputed. The where
argument may be used to overimpute observed data, or to skip imputations for
selected missing values. Note: Imputation methods that generate imptutations
outside of mice, like mice.impute.panImpute() may depend on a complete
predictor space. In that case, a custom where matrix can not be specified.

blocks List of vectors with variable names per block. List elements may be named to
identify blocks. Variables within a block are imputed by a multivariate impu-
tation method (see method argument). By default each variable is placed into
its own block, which is effectively fully conditional specification (FCS) by uni-
variate models (variable-by-variable imputation). Only variables whose names
appear in blocks are imputed. The relevant columns in the where matrix are
set to FALSE of variables that are not block members. A variable may appear
in multiple blocks. In that case, it is effectively re-imputed each time that it is
visited.

Value

A numeric vector of length length(blocks) containing the number of cells that need to be imputed
within a block.

See Also

mice

Examples

where <- is.na(nhanes)

standard FCS
nimp(where)

user-defined blocks
nimp(where, blocks = name.blocks(list(c("bmi", "hyp"), "age", "chl")))

156 norm.draw

norm.draw Draws values of beta and sigma by Bayesian linear regression

Description

This function draws random values of beta and sigma under the Bayesian linear regression model
as described in Rubin (1987, p. 167). This function can be called by user-specified imputation
functions.

Usage

norm.draw(y, ry, x, rank.adjust = TRUE, ...)

.norm.draw(y, ry, x, rank.adjust = TRUE, ...)

Arguments

y Incomplete data vector of length n

ry Vector of missing data pattern (FALSE=missing, TRUE=observed)

x Matrix (n x p) of complete covariates.

rank.adjust Argument that specifies whether NA’s in the coefficients need to be set to zero.
Only relevant when ls.meth = "qr" AND the predictor matrix is rank-deficient.

... Other named arguments.

Value

A list containing components coef (least squares estimate), beta (drawn regression weights) and
sigma (drawn value of the residual standard deviation).

Author(s)

Gerko Vink, 2018, for this version, based on earlier versions written by Stef van Buuren, Karin
Groothuis-Oudshoorn, 2017

References

Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

parlmice 157

parlmice Wrapper function that runs MICE in parallel

Description

This function is included for backward compatibility. The function is superseded by futuremice.

Usage

parlmice(
data,
m = 5,
seed = NA,
cluster.seed = NA,
n.core = NULL,
n.imp.core = NULL,
cl.type = "PSOCK",
...

)

Arguments

data A data frame or matrix containing the incomplete data. Similar to the first argu-
ment of mice.

m The number of desired imputated datasets. By default $m=5$ as with mice

seed A scalar to be used as the seed value for the mice algorithm within each parallel
stream. Please note that the imputations will be the same for all streams and,
hence, this should be used if and only if n.core = 1 and if it is desired to obtain
the same output as under mice.

cluster.seed A scalar to be used as the seed value. It is recommended to put the seed value
here and not outside this function, as otherwise the parallel processes will be
performed with separate, random seeds.

n.core A scalar indicating the number of cores that should be used.

n.imp.core A scalar indicating the number of imputations per core.

cl.type The cluster type. Default value is "PSOCK". Posix machines (linux, Mac) gen-
erally benefit from much faster cluster computation if type is set to type =
"FORK".

... Named arguments that are passed down to function mice or makeCluster.

Details

This function relies on package parallel, which is a base package for R versions 2.14.0 and later.
We have chosen to use parallel function parLapply to allow the use of parlmice on Mac, Linux
and Windows systems. For the same reason, we use the Parallel Socket Cluster (PSOCK) type by
default.

158 parlmice

On systems other than Windows, it can be hugely beneficial to change the cluster type to FORK, as it
generally results in improved memory handling. When memory issues arise on a Windows system,
we advise to store the multiply imputed datasets, clean the memory by using rm and gc and make
another run using the same settings.

This wrapper function combines the output of parLapply with function ibind in mice. A mids
object is returned and can be used for further analyses.

Note that if a seed value is desired, the seed should be entered to this function with argument
seed. Seed values outside the wrapper function (in an R-script or passed to mice) will not result to
reproducible results. We refer to the manual of parallel for an explanation on this matter.

Value

A mids object as defined by mids-class

Author(s)

Gerko Vink, Rianne Schouten

References

Schouten, R. and Vink, G. (2017). parlmice: faster, paraleller, micer. https://www.gerkovink.
com/parlMICE/Vignette_parlMICE.html

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

parallel, parLapply, makeCluster, mice, mids-class

Examples

150 imputations in dataset nhanes, performed by 3 cores
Not run:
imp1 <- parlmice(data = nhanes, n.core = 3, n.imp.core = 50)
Making use of arguments in mice.
imp2 <- parlmice(data = nhanes, method = "norm.nob", m = 100)
imp2$method
fit <- with(imp2, lm(bmi ~ hyp))
pool(fit)

End(Not run)

https://www.gerkovink.com/parlMICE/Vignette_parlMICE.html
https://www.gerkovink.com/parlMICE/Vignette_parlMICE.html
https://stefvanbuuren.name/fimd/parallel-computation.html

pattern 159

pattern Datasets with various missing data patterns

Description

Four simple datasets with various missing data patterns

Format

list("pattern1") Data with a univariate missing data pattern

list("pattern2") Data with a monotone missing data pattern

list("pattern3") Data with a file matching missing data pattern

list("pattern4") Data with a general missing data pattern

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Details

Van Buuren (2012) uses these four artificial datasets to illustrate various missing data patterns.

Examples

pattern4

data <- rbind(pattern1, pattern2, pattern3, pattern4)
mdpat <- cbind(expand.grid(rec = 8:1, pat = 1:4, var = 1:3), r = as.numeric(as.vector(is.na(data))))

types <- c("Univariate", "Monotone", "File matching", "General")
tp41 <- lattice::levelplot(r ~ var + rec | as.factor(pat),

data = mdpat,
as.table = TRUE, aspect = "iso",
shrink = c(0.9),
col.regions = mdc(1:2),
colorkey = FALSE,
scales = list(draw = FALSE),
xlab = "", ylab = "",
between = list(x = 1, y = 0),
strip = lattice::strip.custom(
bg = "grey95", style = 1,
factor.levels = types

)
)
print(tp41)

md.pattern(pattern4)
p <- md.pairs(pattern4)
p

https://stefvanbuuren.name/fimd/missing-data-pattern.html

160 pool

proportion of usable cases
p$mr / (p$mr + p$mm)

outbound statistics
p$rm / (p$rm + p$rr)

fluxplot(pattern2)

pool Combine estimates by pooling rules

Description

The pool() function combines the estimates from m repeated complete data analyses. The typical
sequence of steps to perform a multiple imputation analysis is:

1. Impute the missing data by the mice() function, resulting in a multiple imputed data set (class
mids);

2. Fit the model of interest (scientific model) on each imputed data set by the with() function,
resulting an object of class mira;

3. Pool the estimates from each model into a single set of estimates and standard errors, resulting
in an object of class mipo;

4. Optionally, compare pooled estimates from different scientific models by the D1() or D3()
functions.

A common error is to reverse steps 2 and 3, i.e., to pool the multiply-imputed data instead of
the estimates. Doing so may severely bias the estimates of scientific interest and yield incorrect
statistical intervals and p-values. The pool() function will detect this case.

Usage

pool(object, dfcom = NULL, rule = NULL, custom.t = NULL)

pool.syn(object, dfcom = NULL, rule = "reiter2003")

Arguments

object An object of class mira (produced by with.mids() or as.mira()), or a list
with model fits.

dfcom A positive number representing the degrees of freedom in the complete-data
analysis. Normally, this would be the number of independent observation mi-
nus the number of fitted parameters. The default (dfcom = NULL) extract this
information in the following order: 1) the component residual.df returned
by glance() if a glance() function is found, 2) the result of df.residual(
applied to the first fitted model, and 3) as 999999. In the last case, the warn-
ing "Large sample assumed" is printed. If the degrees of freedom is incorrect,
specify the appropriate value manually.

pool 161

rule A string indicating the pooling rule. Currently supported are "rubin1987" (de-
fault, for missing data) and "reiter2003" (for synthetic data created from a
complete data set).

custom.t A custom character string to be parsed as a calculation rule for the total vari-
ance t. The custom rule can use the other calculated pooling statistics where
the dimensions must come from .data$. The default t calculation would have
the form ".data$ubar + (1 + 1 / .data$m) * .data$b". See examples for an
example.

Details

The pool() function averages the estimates of the complete data model, computes the total variance
over the repeated analyses by Rubin’s rules (Rubin, 1987, p. 76), and computes the following
diagnostic statistics per estimate:

1. Relative increase in variance due to nonresponse r;

2. Residual degrees of freedom for hypothesis testing df;

3. Proportion of total variance due to missingness lambda;

4. Fraction of missing information fmi.

The degrees of freedom calculation for the pooled estimates uses the Barnard-Rubin adjustment for
small samples (Barnard and Rubin, 1999).

The pool.syn() function combines estimates by Reiter’s partially synthetic data pooling rules (Re-
iter, 2003). This combination rule assumes that the data that is synthesised is completely observed.
Pooling differs from Rubin’s method in the calculation of the total variance and the degrees of
freedom.

Pooling requires the following input from each fitted model:

1. the estimates of the model;

2. the standard error of each estimate;

3. the residual degrees of freedom of the model.

The pool() and pool.syn() functions rely on the broom::tidy and broom::glance for extracting
these parameters.

Since mice 3.0+, the broom package takes care of filtering out the relevant parts of the complete-
data analysis. It may happen that you’ll see the messages like Error: No tidy method for objects
of class ... or Error: No glance method for objects of class The message means that
your complete-data method used in with(imp, ...) has no tidy or glance method defined in the
broom package.

The broom.mixed package contains tidy and glance methods for mixed models. If you are using
a mixed model, first run library(broom.mixed) before calling pool().

If no tidy or glance methods are defined for your analysis tabulate the m parameter estimates
and their variance estimates (the square of the standard errors) from the m fitted models stored in
fit$analyses. For each parameter, run pool.scalar to obtain the pooled parameters estimate,
its variance, the degrees of freedom, the relative increase in variance and the fraction of missing
information.

162 pool

An alternative is to write your own glance() and tidy() methods and add these to broom according
to the specifications given in https://broom.tidymodels.org. In versions prior to mice 3.0
pooling required that coef() and vcov() methods were available for fitted objects. This feature is
no longer supported. The reason is that vcov() methods are inconsistent across packages, leading
to buggy behaviour of the pool() function.

Since mice 3.13.2 function pool() uses the robust the standard error estimate for pooling when it
can extract robust.se from the tidy() object.

Value

An object of class mipo, which stands for ’multiple imputation pooled outcome’. For rule "reiter2003"
values for lambda and fmi are set to NA, as these statistics do not apply for data synthesised from
fully observed data.

References

Barnard, J. and Rubin, D.B. (1999). Small sample degrees of freedom with multiple imputation.
Biometrika, 86, 948-955.

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

Reiter, J.P. (2003). Inference for Partially Synthetic, Public Use Microdata Sets. Survey Methodol-
ogy, 29, 181-189.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

with.mids, as.mira, pool.scalar, glance, tidy https://github.com/amices/mice/issues/
142, https://github.com/amices/mice/issues/274

Examples

impute missing data, analyse and pool using the classic MICE workflow
imp <- mice(nhanes, maxit = 2, m = 2)
fit <- with(data = imp, exp = lm(bmi ~ hyp + chl))
summary(pool(fit))

generate fully synthetic data, analyse and pool
imp <- mice(cars,

maxit = 2, m = 2,
where = matrix(TRUE, nrow(cars), ncol(cars))

)
fit <- with(data = imp, exp = lm(speed ~ dist))
summary(pool.syn(fit))

use a custom pooling rule for the total variance about the estimate
e.g. use t = b + b/m instead of t = ubar + b + b/m
imp <- mice(nhanes, maxit = 2, m = 2)
fit <- with(data = imp, exp = lm(bmi ~ hyp + chl))
pool(fit, custom.t = ".data$b + .data$b / .data$m")

https://broom.tidymodels.org
https://doi.org/10.18637/jss.v045.i03
https://github.com/amices/mice/issues/142
https://github.com/amices/mice/issues/142
https://github.com/amices/mice/issues/274

pool.compare 163

pool.compare Compare two nested models fitted to imputed data

Description

This function is deprecated in V3. Use D1 or D3 instead.

Usage

pool.compare(fit1, fit0, method = c("wald", "likelihood"), data = NULL)

Arguments

fit1 An object of class ’mira’, produced by with.mids().

fit0 An object of class ’mira’, produced by with.mids(). The model in fit0 is a
nested fit0 of fit1.

method Either "wald" or "likelihood" specifying the type of comparison. The default
is "wald".

data No longer used.

Details

Compares two nested models after m repeated complete data analysis

The function is based on the article of Meng and Rubin (1992). The Wald-method can be found
in paragraph 2.2 and the likelihood method can be found in paragraph 3. One could use the Wald
method for comparison of linear models obtained with e.g. lm (in with.mids()). The likelihood
method should be used in case of logistic regression models obtained with glm() in with.mids().

The function assumes that fit1 is the larger model, and that model fit0 is fully contained in fit1.
In case of method='wald', the null hypothesis is tested that the extra parameters are all zero.

Value

A list containing several components. Component call is the call to the pool.compare function.
Component call11 is the call that created fit1. Component call12 is the call that created the
imputations. Component call01 is the call that created fit0. Component call02 is the call that
created the imputations. Components method is the method used to compare two models: ’Wald’
or ’likelihood’. Component nmis is the number of missing entries for each variable. Component m
is the number of imputations. Component qhat1 is a matrix, containing the estimated coefficients
of the m repeated complete data analyses from fit1. Component qhat0 is a matrix, containing the
estimated coefficients of the m repeated complete data analyses from fit0. Component ubar1 is the
mean of the variances of fit1, formula (3.1.3), Rubin (1987). Component ubar0 is the mean of the
variances of fit0, formula (3.1.3), Rubin (1987). Component qbar1 is the pooled estimate of fit1,
formula (3.1.2) Rubin (1987). Component qbar0 is the pooled estimate of fit0, formula (3.1.2)
Rubin (1987). Component Dm is the test statistic. Component rm is the relative increase in variance

164 pool.r.squared

due to nonresponse, formula (3.1.7), Rubin (1987). Component df1: df1 = under the null hypothesis
it is assumed that Dm has an F distribution with (df1,df2) degrees of freedom. Component df2: df2.
Component pvalue is the P-value of testing whether the model fit1 is statistically different from
the smaller fit0.

Author(s)

Karin Groothuis-Oudshoorn and Stef van Buuren, 2009

References

Li, K.H., Meng, X.L., Raghunathan, T.E. and Rubin, D. B. (1991). Significance levels from repeated
p-values with multiply-imputed data. Statistica Sinica, 1, 65-92.

Meng, X.L. and Rubin, D.B. (1992). Performing likelihood ratio tests with multiple-imputed data
sets. Biometrika, 79, 103-111.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

lm.mids, glm.mids

pool.r.squared Pools R^2 of m models fitted to multiply-imputed data

Description

The function pools the coefficients of determination R^2 or the adjusted coefficients of determina-
tion (R^2_a) obtained with the lm modeling function. For pooling it uses the Fisher z-transformation.

Usage

pool.r.squared(object, adjusted = FALSE)

Arguments

object An object of class ’mira’ or ’mipo’, produced by lm.mids, with.mids, or pool
with lm as modeling function.

adjusted A logical value. If adjusted=TRUE then the adjusted R^2 is calculated. The
default value is FALSE.

Value

Returns a 1x4 table with components. Component est is the pooled R^2 estimate. Component
lo95 is the 95 \ Component hi95 is the 95 \ Component fmi is the fraction of missing information
due to nonresponse.

https://doi.org/10.18637/jss.v045.i03

pool.scalar 165

Author(s)

Karin Groothuis-Oudshoorn and Stef van Buuren, 2009

References

Harel, O (2009). The estimation of R^2 and adjusted R^2 in incomplete data sets using multiple
imputation, Journal of Applied Statistics, 36:1109-1118.

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

pool,pool.scalar

Examples

imp <- mice(nhanes, print = FALSE, seed = 16117)
fit <- with(imp, lm(chl ~ age + hyp + bmi))

input: mira object
pool.r.squared(fit)
pool.r.squared(fit, adjusted = TRUE)

input: mipo object
est <- pool(fit)
pool.r.squared(est)
pool.r.squared(est, adjusted = TRUE)

pool.scalar Multiple imputation pooling: univariate version

Description

Pools univariate estimates of m repeated complete data analysis

Usage

pool.scalar(Q, U, n = Inf, k = 1, rule = c("rubin1987", "reiter2003"))

pool.scalar.syn(Q, U, n = Inf, k = 1, rule = "reiter2003")

https://doi.org/10.18637/jss.v045.i03

166 pool.scalar

Arguments

Q A vector of univariate estimates of m repeated complete data analyses.

U A vector containing the corresponding m variances of the univariate estimates.

n A number providing the sample size. If nothing is specified, an infinite sample
n = Inf is assumed.

k A number indicating the number of parameters to be estimated. By default, k =
1 is assumed.

rule A string indicating the pooling rule. Currently supported are "rubin1987" (de-
fault, for missing data) and "reiter2003" (for synthetic data created from a
complete data set).

Details

The function averages the univariate estimates of the complete data model, computes the total vari-
ance over the repeated analyses, and computes the relative increase in variance due to missing data
or data synthesisation and the fraction of missing information.

Value

Returns a list with components.

m: Number of imputations.

qhat: The m univariate estimates of repeated complete-data analyses.

u: The corresponding m variances of the univariate estimates.

qbar: The pooled univariate estimate, formula (3.1.2) Rubin (1987).

ubar: The mean of the variances (i.e. the pooled within-imputation variance), formula (3.1.3)
Rubin (1987).

b: The between-imputation variance, formula (3.1.4) Rubin (1987).

t: The total variance of the pooled estimated, formula (3.1.5) Rubin (1987).

r: The relative increase in variance due to nonresponse, formula (3.1.7) Rubin (1987).

df: The degrees of freedom for t reference distribution by the method of Barnard-Rubin (1999).

fmi: The fraction missing information due to nonresponse, formula (3.1.10) Rubin (1987). (Not
defined for synthetic data.)

Author(s)

Karin Groothuis-Oudshoorn and Stef van Buuren, 2009; Thom Volker, 2021

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

Reiter, J.P. (2003). Inference for Partially Synthetic, Public Use Microdata Sets. Survey Methodol-
ogy, 29, 181-189.

pool.table 167

See Also

pool

Examples

missing data imputation with with manual pooling
imp <- mice(nhanes, maxit = 2, m = 2, print = FALSE, seed = 18210)
fit <- with(data = imp, lm(bmi ~ age))

manual pooling
summary(fit$analyses[[1]])
summary(fit$analyses[[2]])
pool.scalar(Q = c(-1.5457, -1.428), U = c(0.9723^2, 1.041^2), n = 25, k = 2)

check: automatic pooling using broom
pool(fit)

manual pooling for synthetic data created from complete data
imp <- mice(cars,

maxit = 2, m = 2, print = FALSE, seed = 18210,
where = matrix(TRUE, nrow(cars), ncol(cars))

)
fit <- with(data = imp, lm(speed ~ dist))

manual pooling: extract Q and U
summary(fit$analyses[[1]])
summary(fit$analyses[[2]])
pool.scalar.syn(Q = c(0.12182, 0.13209), U = c(0.02121^2, 0.02516^2), n = 50, k = 2)

check: automatic pooling using broom
pool.syn(fit)

pool.table Combines estimates from a tidy table

Description

Combines estimates from a tidy table

Usage

pool.table(
w,
type = c("all", "minimal", "tests"),
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
dfcom = Inf,
custom.t = NULL,

168 pool.table

rule = c("rubin1987", "reiter2003"),
...

)

Arguments

w A data.frame with parameter estimates in tidy format (see details).

type A string, either "minimal", "tests" or "all". Use minimal to mimick the
output of summary(pool(fit)). The default is "all".

conf.int Logical indicating whether to include a confidence interval.

conf.level Confidence level of the interval, used only if conf.int = TRUE. Number between
0 and 1.

exponentiate Flag indicating whether to exponentiate the coefficient estimates and confidence
intervals (typical for logistic regression).

dfcom A positive number representing the degrees of freedom of the residuals in the
complete-data analysis. The dfcom argument is used for the Barnard-Rubin ad-
justment. In a linear regression, dfcom would be equivalent to the number of in-
dependent observation minus the number of fitted parameters, but the expression
becomes more complex for regularized, proportional hazards, or other semi-
parametric techniques. Only used if w lacks a column named "df.residual".

custom.t A custom character string to be parsed as a calculation rule for the total variance
t. The custom rule can use the other calculated pooling statistics. The default t
calculation has the form ".data$ubar + (1 + 1 / .data$m) * .data$b".

rule A string indicating the pooling rule. Currently supported are "rubin1987" (de-
fault, for analyses applied to multiply-imputed incomplete data) and "reiter2003"
(for analyses applied to synthetic data created from complete data).

... Arguments passed down

Details

The input data w is a data.frame with columns named:

term a character or factor with the parameter names
estimate a numeric vector with parameter estimates
std.error a numeric vector with standard errors of estimate
residual.df a numeric vector with the degrees of freedom

Columns 1-3 are obligatory. Column 4 is optional. Usually, all entries in column 4 are the same.
The user can omit column 4, and specify argument pool.table(..., dfcom = ...) instead. If
both are given, then column residual.df takes precedence. If neither are specified, then mice
tries to calculate the residual degrees of freedom. If that fails (e.g. because there is no information
on sample size), mice sets dfcom = Inf. The value dfcom = Inf is acceptable for large samples (n
> 1000) and relatively concise parametric models.

pool.table 169

Value

pool.table() returns a data.frame with aggregated estimates, standard errors, confidence inter-
vals and statistical tests.

The meaning of the columns is as follows:

term Parameter name
m Number of multiple imputations
estimate Pooled complete data estimate
std.error Standard error of estimate
statistic t-statistic = estimate / std.error
df Degrees of freedom for statistic
p.value One-sided P-value under null hypothesis
conf.low Lower bound of c.i. (default 95 pct)
conf.high Upper bound of c.i. (default 95 pct)
riv Relative increase in variance
fmi Fraction of missing information
ubar Within-imputation variance of estimate
b Between-imputation variance of estimate
t Total variance, of estimate
dfcom Residual degrees of freedom in complete data

Examples

conventional mice workflow
imp <- mice(nhanes2, m = 2, maxit = 2, seed = 1, print = FALSE)
fit <- with(imp, lm(chl ~ age + bmi + hyp))
pld1 <- pool(fit)
pld1$pooled

using pool.table() on tidy table
tbl <- summary(fit)[, c("term", "estimate", "std.error", "df.residual")]
tbl
pld2 <- pool.table(tbl, type = "minimal")
pld2

identical(pld1$pooled, pld2)

conventional workflow: all numerical output
all1 <- summary(pld1, type = "all", conf.int = TRUE)
all1

pool.table workflow: all numerical output
all2 <- pool.table(tbl)
all2

class(all1) <- "data.frame"
identical(all1, all2)

170 pops

popmis Hox pupil popularity data with missing popularity scores

Description

Hox pupil popularity data with some missing popularity scores

Format

A data frame with 2000 rows and 7 columns:

pupil Pupil number within school

school School number

popular Pupil popularity with 848 missing entries

sex Pupil gender

texp Teacher experience (years)

const Constant intercept term

teachpop Teacher popularity

Details

The original, complete dataset was generated by Joop Hox as an example of well-behaved multilevel
data set. The distributed data contains missing data in pupil popularity.

Source

Hox, J. J. (2002) Multilevel analysis. Techniques and applications. Mahwah, NJ: Lawrence Erl-
baum.

Examples

popmis[1:3,]

pops Project on preterm and small for gestational age infants (POPS)

Description

Subset of data from the POPS study, a national, prospective study on preterm children, including
all liveborn infants <32 weeks gestational age and/or <1500 g from 1983 (n = 1338).

Format

pops is a data frame with 959 rows and 86 columns. pops.pred is the 86 by 86 binary predictor
matrix used for specifying the multiple imputation model.

potthoffroy 171

Details

The data set concerns of subset of 959 children that survived up to the age of 19 years.

Hille et al (2005) divided the 959 survivors into three groups: Full responders (examined at an
outpatient clinic and completed the questionnaires, n = 596), postal responders (only completed the
mailed questionnaires, n = 109), non-responders (did not respond to any of the mailed requests or
telephone calls, or could not be traced, n = 254).

Compared to the postal and non-responders, the full response group consists of more girls, contains
more Dutch children, has higher educational and social economic levels and has fewer handicaps.
The responders form a highly selective subgroup in the total cohort.

Multiple imputation of this data set has been described in Hille et al (2007) and Van Buuren (2012),
chapter 8.

Note

This dataset is not part of mice.

Source

Hille, E. T. M., Elbertse, L., Bennebroek Gravenhorst, J., Brand, R., Verloove-Vanhorick, S. P.
(2005). Nonresponse bias in a follow-up study of 19-year-old adolescents born as preterm infants.
Pediatrics, 116(5):662666.

Hille, E. T. M., Weisglas-Kuperus, N., Van Goudoever, J. B., Jacobusse, G. W., Ens-Dokkum, M.
H., De Groot, L., Wit, J. M., Geven, W. B., Kok, J. H., De Kleine, M. J. K., Kollee, L. A. A., Mulder,
A. L. M., Van Straaten, H. L. M., De Vries, L. S., Van Weissenbruch, M. M., Verloove-Vanhorick,
S. P. (2007). Functional outcomes and participation in young adulthood for very preterm and very
low birth weight infants: The Dutch project on preterm and small for gestational age infants at 19
years of age. Pediatrics, 120(3):587595.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

pops <- data(pops)

potthoffroy Potthoff-Roy data

Description

Data from Potthoff-Roy (1964) with repeated measures on dental fissures.

https://stefvanbuuren.name/fimd/sec-selective.html#pops-study-19-years-follow-up

172 potthoffroy

Format

tbs is a data frame with 27 rows and 6 columns:

id Person number

sex Sex M/F

d8 Distance at age 8 years

d10 Distance at age 10 years

d12 Distance at age 12 years

d14 Distance at age 14 years

Details

This data set is the famous Potthoff-Roy data, used to demonstrate MANOVA on repeated measure
data. Potthoff and Roy (1964) published classic data on a study in 16 boys and 11 girls, who at ages
8, 10, 12, and 14 had the distance (mm) from the center of the pituitary gland to the pteryomaxillary
fissure measured. Changes in pituitary-pteryomaxillary distances during growth is important in or-
thodontic therapy. The goals of the study were to describe the distance in boys and girls as simple
functions of age, and then to compare the functions for boys and girls. The data have been reana-
lyzed by many authors including Jennrich and Schluchter (1986), Little and Rubin (1987), Pinheiro
and Bates (2000), Verbeke and Molenberghs (2000) and Molenberghs and Kenward (2007). See
Chapter 9 of Van Buuren (2012) for a challenging exercise using these data.

Source

Potthoff, R. F., Roy, S. N. (1964). A generalized multivariate analysis of variance model usefully
especially for growth curve problems. Biometrika, 51(3), 313-326.

Little, R. J. A., Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: John Wiley
& Sons.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

create missing values at age 10 as in Little and Rubin (1987)

phr <- potthoffroy
idmis <- c(3, 6, 9, 10, 13, 16, 23, 24, 27)
phr[idmis, 4] <- NA
phr

md.pattern(phr)

https://stefvanbuuren.name/fimd/ex-ch-longitudinal.html

print.mira 173

print.mira Print a mira object

Description

Print a mira object

Print a mice.anova object

Print a summary.mice.anova object

Usage

S3 method for class 'mira'
print(x, ...)

S3 method for class 'mice.anova'
print(x, ...)

S3 method for class 'mice.anova.summary'
print(x, ...)

Arguments

x An object of class mice.anova

... Other arguments

Value

NULL

NULL

NULL

See Also

mira

mipo

mipo

174 quickpred

quickpred Quick selection of predictors from the data

Description

Selects predictors according to simple statistics

Usage

quickpred(
data,
mincor = 0.1,
minpuc = 0,
include = "",
exclude = "",
method = "pearson"

)

Arguments

data Matrix or data frame with incomplete data.
mincor A scalar, numeric vector (of size ncol(data)) or numeric matrix (square, of

size ncol(data) specifying the minimum threshold(s) against which the abso-
lute correlation in the data is compared.

minpuc A scalar, vector (of size ncol(data)) or matrix (square, of size ncol(data)
specifying the minimum threshold(s) for the proportion of usable cases.

include A string or a vector of strings containing one or more variable names from
names(data). Variables specified are always included as a predictor.

exclude A string or a vector of strings containing one or more variable names from
names(data). Variables specified are always excluded as a predictor.

method A string specifying the type of correlation. Use 'pearson' (default), 'kendall'
or 'spearman'. Can be abbreviated.

Details

This function creates a predictor matrix using the variable selection procedure described in Van
Buuren et al.~(1999, p.~687–688). The function is designed to aid in setting up a good imputation
model for data with many variables.

Basic workings: The procedure calculates for each variable pair (i.e. target-predictor pair) two
correlations using all available cases per pair. The first correlation uses the values of the target and
the predictor directly. The second correlation uses the (binary) response indicator of the target and
the values of the predictor. If the largest (in absolute value) of these correlations exceeds mincor,
the predictor will be added to the imputation set. The default value for mincor is 0.1.

In addition, the procedure eliminates predictors whose proportion of usable cases fails to meet the
minimum specified by minpuc. The default value is 0, so predictors are retained even if they have
no usable case.

quickpred 175

Finally, the procedure includes any predictors named in the include argument (which is useful
for background variables like age and sex) and eliminates any predictor named in the exclude
argument. If a variable is listed in both include and exclude arguments, the include argument
takes precedence.

Advanced topic: mincor and minpuc are typically specified as scalars, but vectors and squares
matrices of appropriate size will also work. Each element of the vector corresponds to a row of the
predictor matrix, so the procedure can effectively differentiate between different target variables.
Setting a high values for can be useful for auxiliary, less important, variables. The set of predictor
for those variables can remain relatively small. Using a square matrix extends the idea to the
columns, so that one can also apply cellwise thresholds.

Value

A square binary matrix of size ncol(data).

Note

quickpred() uses data.matrix to convert factors to numbers through their internal codes. Espe-
cially for unordered factors the resulting quantification may not make sense.

Author(s)

Stef van Buuren, Aug 2009

References

van Buuren, S., Boshuizen, H.C., Knook, D.L. (1999) Multiple imputation of missing blood pres-
sure covariates in survival analysis. Statistics in Medicine, 18, 681–694.

van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

mice, mids

Examples

default: include all predictors with absolute correlation over 0.1
quickpred(nhanes)

all predictors with absolute correlation over 0.4
quickpred(nhanes, mincor = 0.4)

include age and bmi, exclude chl
quickpred(nhanes, mincor = 0.4, inc = c("age", "bmi"), exc = "chl")

only include predictors with at least 30% usable cases
quickpred(nhanes, minpuc = 0.3)

use low threshold for bmi, and high thresholds for hyp and chl

https://doi.org/10.18637/jss.v045.i03

176 selfreport

pred <- quickpred(nhanes, mincor = c(0, 0.1, 0.5, 0.5))
pred

use it directly from mice
imp <- mice(nhanes, pred = quickpred(nhanes, minpuc = 0.25, include = "age"))

selfreport Self-reported and measured BMI

Description

Dataset containing height and weight data (measured, self-reported) from two studies.

Format

A data frame with 2060 rows and 15 variables:

src Study, either krul or mgg (factor)

id Person identification number

pop Population, all NL (factor)

age Age of respondent in years

sex Sex of respondent (factor)

hm Height measured (cm)

wm Weight measured (kg)

hr Height reported (cm)

wr Weight reported (kg)

prg Pregnancy (factor), all Not pregnant

edu Educational level (factor)

etn Ethnicity (factor)

web Obtained through web survey (factor)

bm BMI measured (kg/m2)

br BMI reported (kg/m2)

Details

This dataset combines two datasets: krul data (Krul, 2010) (1257 persons) and the mgg data (Van
Keulen 2011; Van der Klauw 2011) (803 persons). The krul dataset contains height and weight
(both measures and self-reported) from 1257 Dutch adults, whereas the mgg dataset contains self-
reported height and weight for 803 Dutch adults. Section 7.3 in Van Buuren (2012) shows how the
missing measured data can be imputed in the mgg data, so corrected prevalence estimates can be
calculated.

selfreport 177

Source

Krul, A., Daanen, H. A. M., Choi, H. (2010). Self-reported and measured weight, height and
body mass index (BMI) in Italy, The Netherlands and North America. European Journal of Public
Health, 21(4), 414-419.

Van Keulen, H.M.„ Chorus, A.M.J., Verheijden, M.W. (2011). Monitor Convenant Gezond Gewicht
Nulmeting (determinanten van) beweeg- en eetgedrag van kinderen (4-11 jaar), jongeren (12-17
jaar) en volwassenen (18+ jaar). TNO/LS 2011.016. Leiden: TNO.

Van der Klauw, M., Van Keulen, H.M., Verheijden, M.W. (2011). Monitor Convenant Gezond
Gewicht Beweeg- en eetgedrag van kinderen (4-11 jaar), jongeren (12-17 jaar) en volwassenen
(18+ jaar) in 2010 en 2011. TNO/LS 2011.055. Leiden: TNO. (in Dutch)

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

md.pattern(selfreport[, c("age", "sex", "hm", "hr", "wm", "wr")])

FIMD Section 7.3.5 Application

bmi <- function(h, w) {
return(w / (h / 100)^2)

}
init <- mice(selfreport, maxit = 0)
meth <- init$meth
meth["bm"] <- "~bmi(hm,wm)"
pred <- init$pred
pred[, c("src", "id", "web", "bm", "br")] <- 0
imp <- mice(selfreport, pred = pred, meth = meth, seed = 66573, maxit = 2, m = 1)
imp <- mice(selfreport, pred=pred, meth=meth, seed=66573, maxit=20, m=10)

Like FIMD Figure 7.6

cd <- complete(imp, 1)
xy <- xy.coords(cdbm, cdbr - cd$bm)
plot(xy,

col = mdc(2), xlab = "Measured BMI", ylab = "Reported - Measured BMI",
xlim = c(17, 45), ylim = c(-5, 5), type = "n", lwd = 0.7

)
polygon(x = c(30, 20, 30), y = c(0, 10, 10), col = "grey95", border = NA)
polygon(x = c(30, 40, 30), y = c(0, -10, -10), col = "grey95", border = NA)
abline(0, 0, lty = 2, lwd = 0.7)

idx <- cd$src == "krul"
xyc <- xy
xyc$x <- xy$x[idx]
xyc$y <- xy$y[idx]
xys <- xy
xys$x <- xy$x[!idx]
xys$y <- xy$y[!idx]
points(xyc, col = mdc(1), cex = 0.7)

https://stefvanbuuren.name/fimd/sec-prevalence.html#sec:srcdata

178 stripplot.mids

points(xys, col = mdc(2), cex = 0.7)
lines(lowess(xyc), col = mdc(4), lwd = 2)
lines(lowess(xys), col = mdc(5), lwd = 2)
text(1:4, x = c(40, 28, 20, 32), y = c(4, 4, -4, -4), cex = 3)
box(lwd = 1)

squeeze Squeeze the imputed values to be within specified boundaries.

Description

This function replaces any values in x that are lower than bounds[1] by bounds[1], and replaces
any values higher than bounds[2] by bounds[2].

Usage

squeeze(x, bounds = c(min(x[r]), max(x[r])), r = rep.int(TRUE, length(x)))

Arguments

x A numerical vector with values

bounds A numerical vector of length 2 containing the lower and upper bounds. By
default, the bounds are to the minimum and maximum values in x.

r A logical vector of length length(x) that is used to select a subset in x before
calculating automatic bounds.

Value

A vector of length length(x).

Author(s)

Stef van Buuren, 2011.

stripplot.mids Stripplot of observed and imputed data

Description

Plotting methods for imputed data using lattice. stripplot produces one-dimensional scatterplots.
The function automatically separates the observed and imputed data. The functions extend the usual
features of lattice.

stripplot.mids 179

Usage

S3 method for class 'mids'
stripplot(
x,
data,
na.groups = NULL,
groups = NULL,
as.table = TRUE,
theme = mice.theme(),
allow.multiple = TRUE,
outer = TRUE,
drop.unused.levels = lattice::lattice.getOption("drop.unused.levels"),
panel = lattice::lattice.getOption("panel.stripplot"),
default.prepanel = lattice::lattice.getOption("prepanel.default.stripplot"),
jitter.data = TRUE,
horizontal = FALSE,
...,
subscripts = TRUE,
subset = TRUE

)

Arguments

x A mids object, typically created by mice() or mice.mids().

data Formula that selects the data to be plotted. This argument follows the lattice
rules for formulas, describing the primary variables (used for the per-panel dis-
play) and the optional conditioning variables (which define the subsets plotted
in different panels) to be used in the plot.
The formula is evaluated on the complete data set in the long form. Legal vari-
able names for the formula include names(x$data) plus the two administrative
factors .imp and .id.
Extended formula interface: The primary variable terms (both the LHS y and
RHS x) may consist of multiple terms separated by a ‘+’ sign, e.g., y1 + y2
~ x | a * b. This formula would be taken to mean that the user wants to plot
both y1 ~ x | a * b and y2 ~ x | a * b, but with the y1 ~ x and y2 ~ x in separate
panels. This behavior differs from standard lattice. Only combine terms of the
same type, i.e. only factors or only numerical variables. Mixing numerical and
categorical data occasionally produces odds labeling of vertical axis.
For convenience, in stripplot() and bwplot the formula y~.imp may be ab-
breviated as y. This applies only to a single y, and does not (yet) work for
y1+y2~.imp.

na.groups An expression evaluating to a logical vector indicating which two groups are
distinguished (e.g. using different colors) in the display. The environment in
which this expression is evaluated in the response indicator is.na(x$data).
The default na.group = NULL contrasts the observed and missing data in the
LHS y variable of the display, i.e. groups created by is.na(y). The expression
y creates the groups according to is.na(y). The expression y1 & y2 creates

180 stripplot.mids

groups by is.na(y1) & is.na(y2), and y1 | y2 creates groups as is.na(y1) |
is.na(y2), and so on.

groups This is the usual groups arguments in lattice. It differs from na.groups be-
cause it evaluates in the completed data data.frame(complete(x, "long",
inc=TRUE)) (as usual), whereas na.groups evaluates in the response indicator.
See xyplot for more details. When both na.groups and groups are specified,
na.groups takes precedence, and groups is ignored.

as.table See xyplot.

theme A named list containing the graphical parameters. The default function mice.theme
produces a short list of default colors, line width, and so on. The extensive list
may be obtained from trellis.par.get(). Global graphical parameters like
col or cex in high-level calls are still honored, so first experiment with the
global parameters. Many setting consists of a pair. For example, mice.theme
defines two symbol colors. The first is for the observed data, the second for the
imputed data. The theme settings only exist during the call, and do not affect
the trellis graphical parameters.

allow.multiple See xyplot.

outer See xyplot.
drop.unused.levels

See xyplot.

panel See xyplot.
default.prepanel

See xyplot.

jitter.data See panel.xyplot.

horizontal See xyplot.

... Further arguments, usually not directly processed by the high-level functions
documented here, but instead passed on to other functions.

subscripts See xyplot.

subset See xyplot.

Details

The argument na.groups may be used to specify (combinations of) missingness in any of the vari-
ables. The argument groups can be used to specify groups based on the variable values themselves.
Only one of both may be active at the same time. When both are specified, na.groups takes prece-
dence over groups.

Use the subset and na.groups together to plots parts of the data. For example, select the first
imputed data set by by subset=.imp==1.

Graphical parameters like col, pch and cex can be specified in the arguments list to alter the plotting
symbols. If length(col)==2, the color specification to define the observed and missing groups.
col[1] is the color of the ’observed’ data, col[2] is the color of the missing or imputed data.
A convenient color choice is col=mdc(1:2), a transparent blue color for the observed data, and a
transparent red color for the imputed data. A good choice is col=mdc(1:2), pch=20, cex=1.5.
These choices can be set for the duration of the session by running mice.theme().

stripplot.mids 181

Value

The high-level functions documented here, as well as other high-level Lattice functions, return
an object of class "trellis". The update.trellis method can be used to subsequently update
components of the object, and the print.trellis method (usually called by default) will plot it on
an appropriate plotting device.

Note

The first two arguments (x and data) are reversed compared to the standard Trellis syntax imple-
mented in lattice. This reversal was necessary in order to benefit from automatic method dispatch.

In mice the argument x is always a mids object, whereas in lattice the argument x is always a
formula.

In mice the argument data is always a formula object, whereas in lattice the argument data is
usually a data frame.

All other arguments have identical interpretation.

Author(s)

Stef van Buuren

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Examples

imp <- mice(boys, maxit = 1)

stripplot, all numerical variables
Not run:
stripplot(imp)

End(Not run)

same, but with improved display
Not run:
stripplot(imp, col = c("grey", mdc(2)), pch = c(1, 20))

End(Not run)

distribution per imputation of height, weight and bmi
labeled by their own missingness
Not run:
stripplot(imp, hgt + wgt + bmi ~ .imp,

cex = c(2, 4), pch = c(1, 20), jitter = FALSE,
layout = c(3, 1)

)

https://doi.org/10.18637/jss.v045.i03

182 summary.mira

End(Not run)

same, but labeled with the missingness of wgt (just four cases)
Not run:
stripplot(imp, hgt + wgt + bmi ~ .imp,

na = wgt, cex = c(2, 4), pch = c(1, 20), jitter = FALSE,
layout = c(3, 1)

)

End(Not run)

distribution of age and height, labeled by missingness in height
most height values are missing for those around
the age of two years
some additional missings occur in region WEST
Not run:
stripplot(imp, age + hgt ~ .imp | reg, hgt,

col = c(grDevices::hcl(0, 0, 40, 0.2), mdc(2)), pch = c(1, 20)
)

End(Not run)

heavily jitted relation between two categorical variables
labeled by missingness of gen
aggregated over all imputed data sets
Not run:
stripplot(imp, gen ~ phb, factor = 2, cex = c(8, 1), hor = TRUE)

End(Not run)

circle fun
stripplot(imp, gen ~ .imp,

na = wgt, factor = 2, cex = c(8.6),
hor = FALSE, outer = TRUE, scales = "free", pch = c(1, 19)

)

summary.mira Summary of a mira object

Description

Summary of a mira object

Print a mice.anova object

Usage

S3 method for class 'mira'
summary(object, type = c("tidy", "glance", "summary"), dfcom = NULL, ...)

supports.transparent 183

S3 method for class 'mice.anova'
summary(object, ...)

Arguments

object A mira object

type A length-1 character vector indicating the type of summary. There are three
choices: type = "tidy" return the parameters estimates of each analyses as a
data frame. type = "glance" return the fit statistics of each analysis as a data
frame. type = "summary" returns a list of length m with the analysis results. The
default is "tidy".

dfcom Manually supplied degrees of freedom. For internal use by pool().

... Other parameters passed down to print() and summary()

Value

NULL

NULL

See Also

mira

mipo

supports.transparent Supports semi-transparent foreground colors?

Description

This function is used by mdc() to find out whether the current device supports semi-transparent
foreground colors.

Usage

supports.transparent()

Details

The function calls the function dev.capabilities() from the package grDevices. The function
return FALSE if the status of the current device is unknown.

Value

TRUE or FALSE

184 tbc

See Also

mdc dev.capabilities

Examples

supports.transparent()

tbc Terneuzen birth cohort

Description

Data of subset of the Terneuzen Birth Cohort data on child growth.

Format

tbs is a data frame with 3951 rows and 11 columns:

id Person number

occ Occasion number

nocc Number of occasions

first Is this the first record for this person? (TRUE/FALSE)

typ Type of data (all observed)

age Age (years)

sex Sex 1=M, 2=F

hgt.z Height Z-score

wgt.z Weight Z-score

bmi.z BMI Z-score

ao Adult overweight (0=no, 1=yes)

tbc.target is a data frame with 2612 rows and 3 columns:

id Person number

ao Adult overweight (0=no, 1=yes)

bmi.z.jv BMI Z-score as young adult (18-29 years)

Details

This tbc data set is a random subset of persons from a much larger collection of data from the
Terneuzen Birth Cohort. The total cohort comprises of 2604 unique persons, whereas the subset
in tbc covers 306 persons. The tbc.target is an auxiliary data set containing two outcomes at
adult age. For more details, see De Kroon et al (2008, 2010, 2011). The imputation methodology
is explained in Chapter 9 of Van Buuren (2012).

toenail 185

Source

De Kroon, M. L. A., Renders, C. M., Kuipers, E. C., van Wouwe, J. P., van Buuren, S., de Jonge,
G. A., Hirasing, R. A. (2008). Identifying metabolic syndrome without blood tests in young adults
- The Terneuzen birth cohort. European Journal of Public Health, 18(6), 656-660.

De Kroon, M. L. A., Renders, C. M., Van Wouwe, J. P., Van Buuren, S., Hirasing, R. A. (2010).
The Terneuzen birth cohort: BMI changes between 2 and 6 years correlate strongest with adult
overweight. PLoS ONE, 5(2), e9155.

De Kroon, M. L. A. (2011). The Terneuzen Birth Cohort. Detection and Prevention of Overweight
and Cardiometabolic Risk from Infancy Onward. Dissertation, Vrije Universiteit, Amsterdam.
https://research.vu.nl/en/publications/the-terneuzen-birth-cohort-detection-and-prevention-of-overweight

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

data <- tbc
md.pattern(data)

toenail Toenail data

Description

The toenail data come from a Multicenter study comparing two oral treatments for toenail infection.
Patients were evaluated for the degree of separation of the nail. Patients were randomized into two
treatments and were followed over seven visits - four in the first year and yearly thereafter. The
patients have not been treated prior to the first visit so this should be regarded as the baseline.

Format

A data frame with 1908 observations on the following 5 variables:

ID a numeric vector giving the ID of patient

outcome a numeric vector giving the response (0=none or mild seperation, 1=moderate or severe)

treatment a numeric vector giving the treatment group

month a numeric vector giving the time of the visit (not exactly monthly intervals hence not round
numbers)

visit a numeric vector giving the number of the visit

Details

This dataset was copied from the DPpackage, which is scheduled to be discontinued from CRAN
in August 2019.

https://research.vu.nl/en/publications/the-terneuzen-birth-cohort-detection-and-prevention-of-overweight
https://stefvanbuuren.name/fimd/sec-rastering.html#terneuzen-birth-cohort

186 toenail2

Source

De Backer, M., De Vroey, C., Lesaffre, E., Scheys, I., and De Keyser, P. (1998). Twelve weeks of
continuous oral therapy for toenail onychomycosis caused by dermatophytes: A double-blind com-
parative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day. Journal of the American
Academy of Dermatology, 38, 57-63.

References

Lesaffre, E. and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic
random-effects model: An example. Journal of the Royal Statistical Society, Series C, 50, 325-335.

G. Fitzmaurice, N. Laird and J. Ware (2004) Applied Longitudinal Analysis, Wiley and Sons, New
York, USA.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

toenail2

toenail2 Toenail data

Description

The toenail data come from a Multicenter study comparing two oral treatments for toenail infection.
Patients were evaluated for the degree of separation of the nail. Patients were randomized into two
treatments and were followed over seven visits - four in the first year and yearly thereafter. The
patients have not been treated prior to the first visit so this should be regarded as the baseline.

Format

A data frame with 1908 observations on the following 5 variables:

patientID a numeric vector giving the ID of patient

outcome a factor with 2 levels giving the response

treatment a factor with 2 levels giving the treatment group

time a numeric vector giving the time of the visit (not exactly monthly intervals hence not round
numbers)

visit an integer giving the number of the visit

Details

Apart from formatting, this dataset is identical to toenail. The formatting is taken identical to
data("toenail", package = "HSAUR3").

https://stefvanbuuren.name/fimd/sec-catoutcome.html#example

version 187

Source

De Backer, M., De Vroey, C., Lesaffre, E., Scheys, I., and De Keyser, P. (1998). Twelve weeks of
continuous oral therapy for toenail onychomycosis caused by dermatophytes: A double-blind com-
parative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day. Journal of the American
Academy of Dermatology, 38, 57-63.

References

Lesaffre, E. and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic
random-effects model: An example. Journal of the Royal Statistical Society, Series C, 50, 325-335.

G. Fitzmaurice, N. Laird and J. Ware (2004) Applied Longitudinal Analysis, Wiley and Sons, New
York, USA.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

See Also

toenail

version Echoes the package version number

Description

Echoes the package version number

Usage

version(pkg = "mice")

Arguments

pkg A character vector with the package name.

Value

A character vector containing the package name, version number and installed directory.

Author(s)

Stef van Buuren, Oct 2010

Examples

version()
version("base")

https://stefvanbuuren.name/fimd/sec-catoutcome.html#example

188 walking

walking Walking disability data

Description

Two items YA and YB measuring walking disability in samples A, B and E.

Format

A data frame with 890 rows on the following 5 variables:

sex Sex of respondent (factor)

age Age of respondent

YA Item administered in samples A and E (factor)

YB Item administered in samples B and E (factor)

src Source: Sample A, B or E (factor)

Details

Example dataset to demonstrate imputation of two items (YA and YB). Item YA is administered to
sample A and sample E, item YB is administered to sample B and sample E, so sample E acts as
a bridge study. Imputation using a bridge study is better than simple equating or than imputation
under independence.

Item YA corresponds to the HAQ8 item, and item YB corresponds to the GAR9 items from Van
Buuren et al (2005). Sample E (as well as sample B) is the Euridiss study (n=292), sample A is the
ERGOPLUS study (n=306).

See Van Buuren (2018) section 9.4 for more details on the imputation methodology.

References

van Buuren, S., Eyres, S., Tennant, A., Hopman-Rock, M. (2005). Improving comparability of
existing data by Response Conversion. Journal of Official Statistics, 21(1), 53-72.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman &
Hall/CRC. Boca Raton, FL.

Examples

md.pattern(walking)

micemill <- function(n) {
for (i in 1:n) {
imp <<- mice.mids(imp) # global assignment
cors <- with(imp, cor(as.numeric(YA),

as.numeric(YB),
method = "kendall"

))

https://stefvanbuuren.name/fimd/sec-codingsystems.html#sec:impbridge

windspeed 189

tau <<- rbind(tau, unlist(cors$analyses)) # global assignment
}

}

plotit <- function() {
matplot(

x = 1:nrow(tau), y = tau,
ylab = expression(paste("Kendall's ", tau)),
xlab = "Iteration", type = "l", lwd = 1,
lty = 1:10, col = "black"

)
}

tau <- NULL
imp <- mice(walking, max = 0, m = 10, seed = 92786)
pred <- imp$pred
pred[, c("src", "age", "sex")] <- 0
imp <- mice(walking, max = 0, m = 3, seed = 92786, pred = pred)
micemill(5)
plotit()

to get figure 9.8 van Buuren (2018) use m=10 and micemill(20)

windspeed Subset of Irish wind speed data

Description

Subset of Irish wind speed data

Format

A data frame with 433 rows and 6 columns containing the daily average wind speeds within the
period 1961-1978 at meteorological stations in the Republic of Ireland. The data are a random
sample from a larger data set.

RochePt Roche Point

Rosslare Rosslare

Shannon Shannon

Dublin Dublin

Clones Clones

MalinHead Malin Head

Details

The original data set is much larger and was analyzed in detail by Haslett and Raftery (1989). Van
Buuren et al (2006) used this subset to investigate the influence of extreme MAR mechanisms on
the quality of imputation.

190 with.mids

References

Haslett, J. and Raftery, A. E. (1989). Space-time Modeling with Long-memory Dependence: Assess-
ing Ireland’s Wind Power Resource (with Discussion). Applied Statistics 38, 1-50. https://lib.
stat.cmu.edu/datasets/wind.desc and https://lib.stat.cmu.edu/datasets/wind.data

van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn C.G.M., Rubin, D.B. (2006) Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 12,
1049–1064.

Examples

windspeed[1:3,]

with.mids Evaluate an expression in multiple imputed datasets

Description

Performs a computation of each of imputed datasets in data.

Usage

S3 method for class 'mids'
with(data, expr, ...)

Arguments

data An object of type mids, which stands for ’multiply imputed data set’, typically
created by a call to function mice().

expr An expression to evaluate for each imputed data set. Formula’s containing a dot
(notation for "all other variables") do not work.

... Not used

Value

An object of S3 class mira

Note

Version 3.11.10 changed to tidy evaluation on a quosure. This change should not affect any code
that worked on previous versions. It turned out that the latter statement was not true (#292). Version
3.12.2 reverts to the old with() function.

Author(s)

Karin Oudshoorn, Stef van Buuren 2009, 2012, 2020

https://lib.stat.cmu.edu/datasets/wind.desc
https://lib.stat.cmu.edu/datasets/wind.desc
https://lib.stat.cmu.edu/datasets/wind.data

xyplot.mads 191

References

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

mids, mira, pool, D1, D3, pool.r.squared

Examples

imp <- mice(nhanes2, m = 2, print = FALSE, seed = 14221)

descriptive statistics
getfit(with(imp, table(hyp, age)))

model fitting and testing
fit1 <- with(imp, lm(bmi ~ age + hyp + chl))
fit2 <- with(imp, glm(hyp ~ age + chl, family = binomial))
fit3 <- with(imp, anova(lm(bmi ~ age + chl)))

xyplot.mads Scatterplot of amputed and non-amputed data against weighted sum
scores

Description

Plotting method to investigate relation between amputed data and the weighted sum scores. Based
on lattice, xyplot produces scatterplots. The function plots the variables against the weighted sum
scores. The function automatically separates the amputed and non-amputed data to see the relation
between the amputation and the weighted sum scores.

Usage

S3 method for class 'mads'
xyplot(
x,
data,
which.pat = NULL,
standardized = TRUE,
layout = NULL,
colors = mdc(1:2),
...

)

https://doi.org/10.18637/jss.v045.i03

192 xyplot.mids

Arguments

x A mads object, typically created by ampute.

data A string or vector of variable names that needs to be plotted. As a default, all
variables will be plotted.

which.pat A scalar or vector indicating which patterns need to be plotted. As a default, all
patterns are plotted.

standardized Logical. Whether the scatterplots need to be created from standardized data or
not. Default is TRUE.

layout A vector of two values indicating how the scatterplots of one pattern should be
divided over the plot. For example, c(2, 3) indicates that the scatterplots of six
variables need to be placed on 3 rows and 2 columns. There are several defaults
for different #variables. Note that for more than 9 variables, multiple plots will
be created automatically.

colors A vector of two RGB values defining the colors of the non-amputed and amputed
data respectively. RGB values can be obtained with hcl.

... Not used, but for consistency with generic

Value

A list containing the scatterplots. Note that a new pattern will always be shown in a new plot.

Note

The mads object contains all the information you need to make any desired plots. Check mads or
the vignette Multivariate Amputation using Ampute to understand the contents of class object mads.

Author(s)

Rianne Schouten, 2016

See Also

ampute, mads

xyplot.mids Scatterplot of observed and imputed data

Description

Plotting methods for imputed data using lattice. xyplot() produces a conditional scatterplots. The
function automatically separates the observed (blue) and imputed (red) data. The function extends
the usual features of lattice.

xyplot.mids 193

Usage

S3 method for class 'mids'
xyplot(
x,
data,
na.groups = NULL,
groups = NULL,
as.table = TRUE,
theme = mice.theme(),
allow.multiple = TRUE,
outer = TRUE,
drop.unused.levels = lattice::lattice.getOption("drop.unused.levels"),
...,
subscripts = TRUE,
subset = TRUE

)

Arguments

x A mids object, typically created by mice() or mice.mids().

data Formula that selects the data to be plotted. This argument follows the lattice
rules for formulas, describing the primary variables (used for the per-panel dis-
play) and the optional conditioning variables (which define the subsets plotted
in different panels) to be used in the plot.
The formula is evaluated on the complete data set in the long form. Legal vari-
able names for the formula include names(x$data) plus the two administrative
factors .imp and .id.
Extended formula interface: The primary variable terms (both the LHS y and
RHS x) may consist of multiple terms separated by a ‘+’ sign, e.g., y1 + y2
~ x | a * b. This formula would be taken to mean that the user wants to plot
both y1 ~ x | a * b and y2 ~ x | a * b, but with the y1 ~ x and y2 ~ x in separate
panels. This behavior differs from standard lattice. Only combine terms of the
same type, i.e. only factors or only numerical variables. Mixing numerical and
categorical data occasionally produces odds labeling of vertical axis.

na.groups An expression evaluating to a logical vector indicating which two groups are
distinguished (e.g. using different colors) in the display. The environment in
which this expression is evaluated in the response indicator is.na(x$data).
The default na.group = NULL contrasts the observed and missing data in the
LHS y variable of the display, i.e. groups created by is.na(y). The expression
y creates the groups according to is.na(y). The expression y1 & y2 creates
groups by is.na(y1) & is.na(y2), and y1 | y2 creates groups as is.na(y1) |
is.na(y2), and so on.

groups This is the usual groups arguments in lattice. It differs from na.groups be-
cause it evaluates in the completed data data.frame(complete(x, "long",
inc=TRUE)) (as usual), whereas na.groups evaluates in the response indicator.
See xyplot for more details. When both na.groups and groups are specified,
na.groups takes precedence, and groups is ignored.

194 xyplot.mids

as.table See xyplot.

theme A named list containing the graphical parameters. The default function mice.theme
produces a short list of default colors, line width, and so on. The extensive list
may be obtained from trellis.par.get(). Global graphical parameters like
col or cex in high-level calls are still honored, so first experiment with the
global parameters. Many setting consists of a pair. For example, mice.theme
defines two symbol colors. The first is for the observed data, the second for the
imputed data. The theme settings only exist during the call, and do not affect
the trellis graphical parameters.

allow.multiple See xyplot.

outer See xyplot.
drop.unused.levels

See xyplot.

... Further arguments, usually not directly processed by the high-level functions
documented here, but instead passed on to other functions.

subscripts See xyplot.

subset See xyplot.

Details

The argument na.groups may be used to specify (combinations of) missingness in any of the vari-
ables. The argument groups can be used to specify groups based on the variable values themselves.
Only one of both may be active at the same time. When both are specified, na.groups takes prece-
dence over groups.

Use the subset and na.groups together to plots parts of the data. For example, select the first
imputed data set by by subset=.imp==1.

Graphical parameters like col, pch and cex can be specified in the arguments list to alter the plotting
symbols. If length(col)==2, the color specification to define the observed and missing groups.
col[1] is the color of the ’observed’ data, col[2] is the color of the missing or imputed data.
A convenient color choice is col=mdc(1:2), a transparent blue color for the observed data, and a
transparent red color for the imputed data. A good choice is col=mdc(1:2), pch=20, cex=1.5.
These choices can be set for the duration of the session by running mice.theme().

Value

The high-level functions documented here, as well as other high-level Lattice functions, return
an object of class "trellis". The update.trellis method can be used to subsequently update
components of the object, and the print.trellis method (usually called by default) will plot it on
an appropriate plotting device.

Note

The first two arguments (x and data) are reversed compared to the standard Trellis syntax imple-
mented in lattice. This reversal was necessary in order to benefit from automatic method dispatch.

In mice the argument x is always a mids object, whereas in lattice the argument x is always a
formula.

xyplot.mids 195

In mice the argument data is always a formula object, whereas in lattice the argument data is
usually a data frame.

All other arguments have identical interpretation.

Author(s)

Stef van Buuren

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

Examples

imp <- mice(boys, maxit = 1)

xyplot: scatterplot by imputation number
observe the erroneous outlying imputed values
(caused by imputing hgt from bmi)
xyplot(imp, hgt ~ age | .imp, pch = c(1, 20), cex = c(1, 1.5))

same, but label with missingness of wgt (four cases)
xyplot(imp, hgt ~ age | .imp, na.group = wgt, pch = c(1, 20), cex = c(1, 1.5))

https://doi.org/10.18637/jss.v045.i03

Index

∗ classes
mads, 62
mids, 138
mira, 146

∗ datagen
mice.impute.2l.bin, 80
mice.impute.2l.lmer, 81
mice.impute.2l.norm, 82
mice.impute.2lonly.mean, 86
mice.impute.cart, 93
mice.impute.jomoImpute, 95
mice.impute.lasso.logreg, 96
mice.impute.lasso.norm, 98
mice.impute.lasso.select.logreg,

99
mice.impute.lasso.select.norm, 101
mice.impute.lda, 102
mice.impute.logreg, 104
mice.impute.logreg.boot, 105
mice.impute.mean, 106
mice.impute.midastouch, 108
mice.impute.mnar.logreg, 110
mice.impute.mpmm, 113
mice.impute.norm, 115
mice.impute.norm.boot, 116
mice.impute.norm.nob, 117
mice.impute.norm.predict, 119
mice.impute.panImpute, 120
mice.impute.passive, 122
mice.impute.pmm, 123
mice.impute.polr, 126
mice.impute.polyreg, 128
mice.impute.quadratic, 130
mice.impute.rf, 132
mice.impute.ri, 134
mice.impute.sample, 135

∗ datasets
boys, 15
brandsma, 16

employee, 38
fdd, 41
fdgs, 43
leiden85, 61
mammalsleep, 73
mnar_demo_data, 148
nhanes, 152
nhanes2, 153
pattern, 159
popmis, 170
pops, 170
potthoffroy, 171
selfreport, 176
tbc, 184
toenail, 185
toenail2, 186
walking, 188
windspeed, 189

∗ hplot
bwplot.mids, 19
densityplot.mids, 35
mdc, 78
stripplot.mids, 178
supports.transparent, 183
xyplot.mids, 192

∗ htest
pool.compare, 163
pool.r.squared, 164

∗ iteration
mice.mids, 136

∗ manip
cbind, 22
complete.mids, 27
filter.mids, 45
getfit, 53
ibind, 56
mids2mplus, 144
mids2spss, 145

∗ mids

196

INDEX 197

as.mids, 12
∗ misc

fico, 44
flux, 48
fluxplot, 49
nelsonaalen, 151
quickpred, 174
version, 187

∗ multivariate-2l
mice.impute.jomoImpute, 95
mice.impute.panImpute, 120

∗ multivariate
glm.mids, 55
lm.mids, 61
with.mids, 190

∗ none
convergence, 30

∗ univariate imputation functions
mice.impute.cart, 93
mice.impute.lasso.logreg, 96
mice.impute.lasso.norm, 98
mice.impute.lasso.select.logreg,

99
mice.impute.lasso.select.norm, 101
mice.impute.lda, 102
mice.impute.logreg, 104
mice.impute.logreg.boot, 105
mice.impute.mean, 106
mice.impute.midastouch, 108
mice.impute.mnar.logreg, 110
mice.impute.mpmm, 113
mice.impute.norm, 115
mice.impute.norm.boot, 116
mice.impute.norm.nob, 117
mice.impute.norm.predict, 119
mice.impute.pmm, 123
mice.impute.polr, 126
mice.impute.polyreg, 128
mice.impute.quadratic, 130
mice.impute.rf, 132
mice.impute.ri, 134

∗ univariate-2lonly
mice.impute.2lonly.mean, 86
mice.impute.2lonly.norm, 88
mice.impute.2lonly.pmm, 91

∗ univariate-2l
mice.impute.2l.bin, 80
mice.impute.2l.lmer, 81

mice.impute.2l.norm, 82
mice.impute.2l.pan, 84

∗ univar
cc, 25
cci, 26
ic, 57
ici, 58
md.pairs, 76
md.pattern, 77

.norm.draw (norm.draw), 156

.pmm.match, 5
2l.pan (mice.impute.2l.pan), 84
2lonly.mean (mice.impute.2lonly.mean),

86
2lonly.norm (mice.impute.2lonly.norm),

88
2lonly.pmm (mice.impute.2lonly.pmm), 91

ampute, 6, 18, 19, 62, 65, 192
ampute.continuous, 7
ampute.default.freq, 7
ampute.default.odds, 8
ampute.default.patterns, 7
ampute.default.type, 8
ampute.default.weights, 7
ampute.discrete, 7
anova.mira, 10
appendbreak, 11
as.mids, 12, 138
as.mira, 13, 162
as.mitml.result, 14

base::cbind, 22
boys, 15
brandsma, 16
bwplot, 19, 21, 22, 141
bwplot (bwplot.mids), 19
bwplot.mads, 10, 18, 62
bwplot.mids, 19

cart (mice.impute.cart), 93
cbind, 22, 24, 138
cc, 25, 27, 57
cci, 26, 26, 58, 151, 154
complete, 136, 141
complete (complete.mids), 27
complete.cases, 27
complete.mids, 27
construct.blocks, 29

198 INDEX

convergence, 30

D1, 31, 163, 191
D2, 33
D3, 34, 163, 191
data.enders.employee, 39
data.matrix, 175
densityplot, 141
densityplot (densityplot.mids), 35
densityplot.mids, 35
dev.capabilities, 184

employee, 38
estimice, 39
extractBS, 40

fdd, 41
fdgs, 43
fico, 44, 49, 51
filter, 46, 138
filter.mids, 45
fix.coef, 35, 47
flux, 45, 48, 51
fluxplot, 45, 49, 49
formula, 55, 62
furrr, 52, 53
future, 53
future_map, 52, 53
futuremice, 51, 51, 52, 157

gc, 158
getfit, 53
getqbar, 54
glance, 162
glm, 55, 105, 106
glm.fit, 105, 106
glm.mids, 55, 164

hazard (nelsonaalen), 151
hcl, 79, 192

ibind, 24, 52, 56, 138, 158
ic, 57, 58
ici, 26, 27, 57, 58
ici,data.frame-method (ici), 58
ici,matrix-method (ici), 58
ici,mids-method (ici), 58
is.mads, 58
is.mids, 59
is.mipo, 59

is.mira, 60
is.mitml.result, 60

jomoImpute, 95, 96

lasso.logreg
(mice.impute.lasso.logreg), 96

lasso.norm (mice.impute.lasso.norm), 98
lasso.select.logreg

(mice.impute.lasso.select.logreg),
99

lasso.select.norm
(mice.impute.lasso.select.norm),
101

lda, 104
leiden85, 61
lm, 55, 62
lm.mids, 61, 164

mads, 9, 10, 18, 19, 62, 192
make.blocks, 30, 65, 66, 68, 71, 73
make.blots, 66
make.calltype, 66
make.formulas, 68
make.method, 69
make.post, 70
make.predictorMatrix, 68, 71, 73
make.visitSequence, 71
make.where, 72
makeCluster, 157, 158
mammalsleep, 73
matchindex, 74
md.pairs, 76
md.pattern, 7, 45, 49, 51, 77
mdc, 78, 184
mean, 107
mgg (selfreport), 176
mice, 6, 8, 22, 28, 31, 51–53, 70, 72, 94,

104–107, 118, 122, 128, 130, 133,
136, 138, 143, 149, 150, 155, 157,
158, 175

mice.impute.2l.bin, 80, 82, 84, 85
mice.impute.2l.lmer, 81, 81, 84, 85
mice.impute.2l.norm, 81, 82, 82, 85
mice.impute.2l.pan, 81, 82, 84, 84, 88, 89,

91, 92
mice.impute.2lonly.mean, 86, 89, 92
mice.impute.2lonly.norm, 87, 88, 88, 92
mice.impute.2lonly.pmm, 87–89, 91

INDEX 199

mice.impute.cart, 93, 98, 99, 101, 102,
104–107, 110, 112, 114, 116–118,
120, 125, 128, 130, 131, 133, 135

mice.impute.jomoImpute, 95, 121
mice.impute.lasso.logreg, 94, 96, 99, 101,

102, 104–107, 110, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.lasso.norm, 94, 98, 98, 101,
102, 104–107, 110, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.lasso.select.logreg, 94, 98,
99, 99, 102, 104–107, 110, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.lasso.select.norm, 94, 98,
99, 101, 101, 104–107, 110, 112,
114, 116–118, 120, 125, 128, 130,
131, 133, 135

mice.impute.lda, 94, 98, 99, 101, 102, 102,
105–107, 110, 112, 114, 116–118,
120, 125, 128, 130, 131, 133, 135

mice.impute.logreg, 94, 98, 99, 101, 102,
104, 104, 106, 107, 110, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.logreg.boot, 94, 98, 99, 101,
102, 104, 105, 105, 107, 110, 112,
114, 116–118, 120, 125, 128, 130,
131, 133, 135

mice.impute.mean, 94, 98, 99, 101, 102,
104–106, 106, 110, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.midastouch, 94, 98, 99, 101,
102, 104–107, 108, 112, 114,
116–118, 120, 125, 128, 130, 131,
133, 135

mice.impute.mnar.logreg, 94, 98, 99, 101,
102, 104–107, 110, 110, 114,
116–118, 120, 125, 128, 130, 131,
133–135

mice.impute.mnar.norm
(mice.impute.mnar.logreg), 110

mice.impute.mpmm, 94, 98, 99, 101, 102,
104–107, 110, 112, 113, 116–118,
120, 125, 128, 130, 131, 133, 135

mice.impute.norm, 89, 94, 98, 99, 101, 102,
104–107, 110, 112, 114, 115,
117–120, 125, 128, 130, 131, 133,
135

mice.impute.norm.boot, 94, 98, 99, 101,
102, 104–107, 110, 112, 114, 116,
116, 118, 120, 125, 128, 130, 131,
133, 135

mice.impute.norm.nob, 94, 98, 99, 101, 102,
104–107, 110, 112, 114, 116, 117,
117, 120, 125, 128, 130, 131, 133,
135

mice.impute.norm.predict, 94, 98, 99, 101,
102, 104–107, 110, 112, 114,
116–118, 119, 125, 128, 130, 131,
133, 135

mice.impute.panImpute, 96, 120
mice.impute.passive, 122
mice.impute.pmm, 92, 94, 98, 99, 101, 102,

104–107, 110, 112, 114, 116–120,
123, 128, 130, 131, 133, 135

mice.impute.polr, 94, 98, 99, 101, 102,
104–107, 110, 112, 114, 116–118,
120, 125, 126, 130, 131, 133, 135

mice.impute.polyreg, 94, 98, 99, 101–107,
110, 112, 114, 116–118, 120, 125,
128, 128, 131, 133, 135

mice.impute.quadratic, 94, 98, 99, 101,
102, 104–107, 110, 112, 114,
116–118, 120, 125, 128, 130, 130,
133, 135

mice.impute.rf, 94, 98, 99, 101, 102,
104–107, 110, 112, 114, 116–118,
120, 125, 128, 130, 131, 132, 135

mice.impute.ri, 94, 98, 99, 101, 102,
104–107, 110, 112, 114, 116–118,
120, 125, 128, 130, 131, 133, 134

mice.impute.sample, 135
mice.mids, 136, 138
mice.theme, 137
mids, 24, 28, 31, 55, 56, 62, 127, 136, 138,

145–147, 175, 191
mids-class (mids), 138
mids2mplus, 144
mids2spss, 145, 145
mipo, 143, 147, 173, 183
mira, 14, 54, 55, 62, 143, 146, 173, 183, 190,

191

200 INDEX

mira-class (mira), 146
mnar.logreg (mice.impute.mnar.logreg),

110
mnar.norm (mice.impute.mnar.logreg), 110
mnar_demo_data, 148
mpmm (mice.impute.mpmm), 113
multinom, 128, 130

na.omit, 26
name.blocks, 30, 148
name.formulas, 149
ncc, 150, 154
nelsonaalen, 151
nhanes, 152, 153
nhanes2, 153, 153
nic, 151, 154
nimp, 155
norm (mice.impute.norm), 115
norm.boot (mice.impute.norm.boot), 116
norm.draw, 156
norm.nob (mice.impute.norm.nob), 117
norm.predict

(mice.impute.norm.predict), 119

panel.xyplot, 141, 180
panImpute, 121
parallel, 157, 158
parLapply, 158
parlmice, 157
pattern, 159
pattern1 (pattern), 159
pattern2 (pattern), 159
pattern3 (pattern), 159
pattern4 (pattern), 159
plan, 52, 53
plot.mids (mids), 138
pmm (mice.impute.pmm), 123
polr, 128, 130
pool, 160, 165, 167, 191
pool.compare, 163
pool.r.squared, 164, 191
pool.scalar, 161, 162, 165, 165
pool.table, 167
popmis, 170
pops, 170
potthoffroy, 171
print.mads (mads), 62
print.mice.anova (print.mira), 173
print.mids (mids), 138

print.mira, 173
print.trellis, 21, 37, 181, 194

quadratic (mice.impute.quadratic), 130
quickpred, 174

randomForest, 133
ranger, 133
rbind, 138
rbind (cbind), 22
rgb, 79
ri (mice.impute.ri), 134
rm, 158
rpart, 94
rpart.control, 93, 94

selfreport, 176
set.seed, 136
sleep (mammalsleep), 73
squeeze, 178
stripplot, 141
stripplot (stripplot.mids), 178
stripplot.mids, 178
summary.mads (mads), 62
summary.mice.anova (summary.mira), 182
summary.mids (mids), 138
summary.mira, 182
supports.transparent, 183

tbc, 184
terneuzen (tbc), 184
testModels, 32, 33
tidy, 162
toenail, 185, 187
toenail2, 186, 186
train, 133
transparent (supports.transparent), 183
trellis.par.set, 79

update.trellis, 21, 37, 181, 194

version, 187

walking, 188
windspeed, 189
with, 141
with (with.mids), 190
with.mids, 54, 55, 62, 147, 162, 190
with.mitml.list, 14

INDEX 201

xyplot, 20, 21, 36, 37, 79, 141, 143, 180, 193,
194

xyplot (xyplot.mids), 192
xyplot.mads, 10, 62, 191
xyplot.mids, 192

	.pmm.match
	ampute
	anova.mira
	appendbreak
	as.mids
	as.mira
	as.mitml.result
	boys
	brandsma
	bwplot.mads
	bwplot.mids
	cbind
	cc
	cci
	complete.mids
	construct.blocks
	convergence
	D1
	D2
	D3
	densityplot.mids
	employee
	estimice
	extractBS
	fdd
	fdgs
	fico
	filter.mids
	fix.coef
	flux
	fluxplot
	futuremice
	getfit
	getqbar
	glm.mids
	ibind
	ic
	ici
	is.mads
	is.mids
	is.mipo
	is.mira
	is.mitml.result
	leiden85
	lm.mids
	mads
	make.blocks
	make.blots
	make.calltype
	make.formulas
	make.method
	make.post
	make.predictorMatrix
	make.visitSequence
	make.where
	mammalsleep
	matchindex
	md.pairs
	md.pattern
	mdc
	mice.impute.2l.bin
	mice.impute.2l.lmer
	mice.impute.2l.norm
	mice.impute.2l.pan
	mice.impute.2lonly.mean
	mice.impute.2lonly.norm
	mice.impute.2lonly.pmm
	mice.impute.cart
	mice.impute.jomoImpute
	mice.impute.lasso.logreg
	mice.impute.lasso.norm
	mice.impute.lasso.select.logreg
	mice.impute.lasso.select.norm
	mice.impute.lda
	mice.impute.logreg
	mice.impute.logreg.boot
	mice.impute.mean
	mice.impute.midastouch
	mice.impute.mnar.logreg
	mice.impute.mpmm
	mice.impute.norm
	mice.impute.norm.boot
	mice.impute.norm.nob
	mice.impute.norm.predict
	mice.impute.panImpute
	mice.impute.passive
	mice.impute.pmm
	mice.impute.polr
	mice.impute.polyreg
	mice.impute.quadratic
	mice.impute.rf
	mice.impute.ri
	mice.impute.sample
	mice.mids
	mice.theme
	mids
	mids2mplus
	mids2spss
	mira
	mnar_demo_data
	name.blocks
	name.formulas
	ncc
	nelsonaalen
	nhanes
	nhanes2
	nic
	nimp
	norm.draw
	parlmice
	pattern
	pool
	pool.compare
	pool.r.squared
	pool.scalar
	pool.table
	popmis
	pops
	potthoffroy
	print.mira
	quickpred
	selfreport
	squeeze
	stripplot.mids
	summary.mira
	supports.transparent
	tbc
	toenail
	toenail2
	version
	walking
	windspeed
	with.mids
	xyplot.mads
	xyplot.mids
	Index

