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acceptance_rates

mcmcsae-package Markov Chain Monte Carlo Small Area Estimation

Description

Fit multi-level models with possibly correlated random effects using MCMC.

Details

Functions to fit multi-level models with Gaussian, binomial, multinomial, negative binomial or
Poisson likelihoods using MCMC. Models with a linear predictor consisting of various possibly
correlated random effects are supported, allowing flexible modelling of temporal, spatial or other
kinds of dependence structures. For Gaussian models the variance can be modelled too. By mod-
elling variances at the unit level the marginal distribution can be changed to a Student-t or Laplace
distribution, which may account better for outliers. The package has been developed with appli-
cations to small area estimation in official statistics in mind. The posterior samples for the model
parameters can be passed to a prediction function to generate samples from the posterior predic-
tive distribution for user-defined quantities such as finite population domain means. For model
assessment, posterior predictive checks and DIC/WAIC criteria can easily be computed.

acceptance_rates Return Metropolis-Hastings acceptance rates

Description

Return Metropolis-Hastings acceptance rates

Usage

acceptance_rates(obj, aggregate.chains = FALSE)

Arguments

obj an mcdraws object, i.e. the output of function MCMCsim.

aggregate.chains

whether to return averages over chains or results per chain.

Value

A list of acceptance rates.
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Examples

ex <- mcmcsae_example()
# specify a model that requires MH sampling (in this case for a modelled
#  degrees of freedom parameter in the variance part of the model)
sampler <- create_sampler(ex$model, data=ex$dat,
family = f_gaussian(var.model = ~vfac(factor="fA", prior=pr_invchisq(df="modeled")))
)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
(summary(sim))
acceptance_rates(sim)

aggrMatrix Utility function to construct a sparse aggregation matrix from a factor

Description

Utility function to construct a sparse aggregation matrix from a factor

Usage

aggrMatrix(fac, w = 1, mean = FALSE, facnames = FALSE)

Arguments
fac factor variable.
w vector of weights associated with the levels of fac.
mean if TRUE, aggregation will produce (weighted) means instead of sums.
facnames whether the factor levels should be used as column names for the aggregation
matrix.
Value

A sparse aggregation matrix of class tabMatrix.

Examples

n <- 1000

f <- sample(1:100, n, replace=TRUE)

X <= runif(n)

M <- aggrMatrix(f)

all.equal(crossprod_mv(M, x), as.vector(tapply(x, f, sum)))
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brt Create a model component object for a BART (Bayesian Additive Re-
gression Trees) component in the linear predictor
Description
This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates a BART term in the model’s linear predictor. To use this model com-
ponent one needs to have R package dbarts installed.
Usage
brt(
formula,
X = NULL,
n.trees = 75L,
name = "",
debug = FALSE,
keepTrees = FALSE,
)
Arguments
formula a formula specifying the predictors to be used in the BART model component.
Variable names are looked up in the data frame passed as data argument to
create_sampler or generate_data, or in environment (formula).
X a design matrix can be specified directly, as an alternative to the creation of one
based on formula. If X is specified formula is ignored.
n.trees number of trees used in the BART ensemble.
name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ’bart’ with the number
of the model term attached.
debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.
keepTrees whether to store the trees ensemble for each Monte Carlo draw. This is required
for prediction based on new data. The default is FALSE to save memory.
parameters passed to dbarts.
Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.
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References

H.A. Chipman, E.I. Georgea and R.E. McCulloch (2010). BART: Bayesian additive regression
trees. The Annals of Applied Statistics 4(1), 266-298.

J.H. Friedman (1991). Multivariate adaptive regression splines. The Annals of Statistics 19, 1-67.

Examples

# generate data, based on an example in Friedman (1991)
gendat <- function(n=150L, p=10L, sigma=1) {
x <= matrix(runif(n * p), n, p)
mu <- 1@xsin(pi*x[, 11 * x[, 21) + 20x(x[, 3] - 0.5)*2 + 10*x[, 4] + 5xx[, 5]
y <- mu + sigma * rnorm(n)
data.frame(x=x, mu=mu, y=y)

}

train <- gendat()
test <- gendat(n=25)

# keep trees for later prediction based on new data

sampler <- create_sampler(
y ~ brt(~ . -y, name="bart", keepTrees=TRUE),
family = f_gaussian(var.prior=pr_invchisq(df=3, scale=var(train$y))),
data = train

)

# increase burnin and n.iter below to improve MCMC convergence

sim <- MCMCsim(sampler, n.chain=2, burnin=100, n.iter=200, thin=2,
store.all=TRUE, verbose=FALSE)

(summ <- summary(sim))

plot(train$mu, summ$bart[, "Mean”]); abline(@, 1)

# NB prediction is currently slow

pred <- predict(sim, newdata=test,
iters=sample(seq_len(n_draws(sim)), 50),
show.progress=FALSE

)

(summpred <- summary(pred))

plot(test$mu, summpred[, "Mean”]); abline(@, 1)

CG_control Set options for the conjugate gradient (CG) sampler

Description

Set options for the conjugate gradient (CG) sampler
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Usage

CG_control(
max.it = NULL,
stop.criterion = NULL,
preconditioner = c("GMRF", "GMRF2", "GMRF3", "identity"),
scale = 1,
chol.control = chol_control(),
verbose = FALSE

Arguments

max.it maximum number of CG iterations.
stop.criterion total squared error stop criterion for the CG algorithm.
preconditioner one of "GMRF", "GMRF2", "GMRF3" and "identity".

scale scale parameter; only used by the "GMRF3" preconditioner.

chol.control  options for Cholesky decomposition, see chol_control.

verbose whether diagnostic information about the CG sampler is shown.
Value

A list of options used by the conjugate gradients algorithm.

chol_control Set options for Cholesky decomposition

Description
These options are only effective in case the matrix to be decomposed is sparse, i.p. of class
dsCMatrix-class.

Usage

chol_control(perm = NULL, super = NA, ordering = @L, inplace = TRUE)

Arguments
perm logical scalar, see Cholesky. If NULL, the default, the choice is left to a simple
heuristic.
super logical scalar, see Cholesky.
ordering an integer scalar passed to CHOLMOD routines determining which reordering
schemes are tried to limit sparse Cholesky fill-in.
inplace whether sparse Cholesky updates should re-use the same memory location.
Value

A list with specified options used for Cholesky decomposition.
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combine_chains Combine multiple medraws objects into a single one by combining
their chains

Description

This function can be used to combine the results of parallel simulations.

Usage

combine_chains(...)

Arguments

objects of class mcdraws.

Value

A combined object of class mcdraws where the number of stored chains equals the sum of the
numbers of chains in the input objects.

combine_iters Combine multiple mcdraws objects into a single one by combining
their draws

Description

This function is used to combine the results of parallel posterior predictive simulations.

Usage

combine_iters(...)

Arguments

objects of class mcdraws

Value

A combined object of class mcdraws where the number of stored draws equals the sum of the
numbers of draws in the input objects.
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computeDesignMatrix Compute a list of design matrices for all terms in a model formula, or
based on a sampler environment

Description

If sampler is provided instead of formula, the design matrices are based on the model used to create
the sampler environment. In that case, if data is NULL, the design matrices stored in sampler are
returned, otherwise the design matrices are computed for the provided data based on the sampler’s
model. The output is a list of dense or sparse design matrices for the model components with respect
to data.

Usage

computeDesignMatrix(formula = NULL, data = NULL, labels = TRUE)

Arguments
formula model formula.
data data frame to be used in deriving the design matrices.
labels if TRUE, column names are assigned.

Value

A list of design matrices.

Examples

n <- 1000
dat <- data.frame(
X = rnorm(n),
f = factor(sample(1:50, n, replace=TRUE))

)
str(computeDesignMatrix(~ x, dat)[[1]1]1)
model <- ~ reg(~x, name="beta") + gen(~x, factor=~f, name="v")

X <- computeDesignMatrix(model, dat)
str(X)
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correlation Correlation factor structures in generic model components

Description

Element ’factor’ of a model component created using function gen is a formula composed of several
possible terms described below. It is used to derive a (typically sparse) precision matrix for a set
of coefficients, and possibly a matrix representing a set of linear constraints to be imposed on the
coefficient vector.

iid(f) Independent effects corresponding to the levels of factor f.

RWI1(f, circular=FALSE, w=NULL) First-order random walk over the levels of factor f. The
random walk can be made circular and different (fixed) weights can be attached to the inno-
vations. If specified, w must be a positive numeric vector of length one less than the number
of factor levels. For example, if the levels correspond to different times, it would often be
reasonable to choose w proportional to the reciprocal time differences. For equidistant times
there is generally no need to specify w.

RW2(f) Second-order random walk.

ARI(f, phi, w=NULL, control=NULL) First-order autoregressive correlation structure among the
levels of f. Argument phi can be a single numerical value of the autoregressive parameter,
or an appropriate prior specification if phi should be inferred. If not supplied, a uniform prior
on (-1, 1] is assumed. For irregularly spaced AR(1) processes weights can be specified, in the
same way as for RW1.

season(f, period) Dummy seasonal with period period.

spatial(f, graph, snap, queen) CAR spatial correlation. Argument graph can either be an object
of (S4) class SpatialPolygonsDataFrame or an object of (S3) class sf. The latter can be
obtained, e.g., by reading in a shape file using function st_read. Arguments snap and queen
are passed to poly2nb, which computes a neighbours list. Alternatively, a neighbours list
object of class nb can be passed directly as argument graph.

splines(f, knots, degree) P-splines, i.e. penalised B-splines structure over the domain of a quan-
titative variable f. Arguments knots and degree are passed to splineDesign. If knots is a
single value it is interpreted as the number of knots, otherwise as a vector of knot positions.
By default 40 equally spaced knots are used, and a degree of 3.

custom(f, D=NULL, Q=NULL, R=NULL, derive.constraints=NULL) Either a custom precision
or incidence matrix associated with factor f can be passed to argument Q or D. Optionally a
constraint matrix can be supplied as R, or constraints can be derived from the null space of the
precision matrix by setting derive.constraints=TRUE.

Usage

iid(name)
RW1(name, circular = FALSE, w = NULL)

RW2(name)
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AR1(name, phi, w = NULL, control = NULL)

season(name, period)

spatial(
name,
graph = NULL,
snap = sqgrt(.Machine$double.eps),
queen = TRUE,

poly.df = NULL,
derive.constraints = FALSE

)
splines(name, knots, degree)

custom(name, D = NULL, Q = NULL, R = NULL, derive.constraints = NULL)

Arguments

name name of a variable, unquoted.

circular whether the random walk is circular.

w a vector of weights.

phi prior distribution, or fixed value, for an autoregressive parameter. The default is
a uniform prior over the interval [-1, 1]. A single numeric value is interpreted as
a fixed value, corresponding to a degenerate prior, which can also be specified
as pr_fixed(value). Alternatively, 1ink{pr_truncnormal} can be used to
specify a truncated normal prior.

control options for Metropolis-Hastings sampling from the conditional posterior for an
autoregressive parameter. These options can be set using function set_MH. Sup-
ported proposal types are "TN" and "RWTN". By default an independence
truncated normal proposal (type="TN"), or a random walk truncated normal
proposal (type="RWTN") with adaptive scale initialised at 0.025 is used, de-
pending on whether the specified random effects’ distribution is Gaussian or
non-Gaussian.

period a positive integer specifying the seasonal period.

graph either a spatial object of class SpatialPolygons, sf, sfc, or a neighbours list
of class nb.

shap passed to poly2nb. Ignored if graph is a neighbours list.

qgueen passed to poly2nb. Ignored if graph is a neighbours list.

poly.df a spatial data frame. DEPRECATED, use argument graph instead.

derive.constraints
whether to derive the constraint matrix for an IGMRF model component numer-
ically from the precision matrix. The use of derive.constraints in function
spatial is DEPRECATED, as it is no longer needed.

knots passed to splineDesign.



correlation 13

degree passed to splineDesign.

D custom incidence matrix.

Q custom precision matrix.

R custom restriction matrix.
References

B. Allevius (2018). On the precision matrix of an irregularly sampled AR(1) process. arXiv:1801.03791v2.
H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

Examples

## Not run:
# example of CAR spatial random effects
if (requireNamespace("sf")) {
# 1. load a shape file of counties in North Carolina
nc <- sf::st_read(system.file("shape/nc.shp”, package="sf"))
# 2. generate some data according to a model with a few regression
# effects, as well as spatial random effects
gd <- generate_data(
~ reg(~ AREA + BIR74, prior=pr_normal(precision=1), name="beta") +

gen(factor = ~ spatial(NAME, graph=nc), name="vs"),
family=f_gaussian(var.prior = pr_invchisq(df=10, scale=1)),
data = nc

)
# add the generated target variable and the spatial random effects to the
# spatial dataframe object
nc$y <- gdsy
nc$vs_true <- gd$pars$vs
# 3. fit a model to the generated data, and see to what extent the
# parameters used to generate the data, gd$pars, are reproduced
sampler <- create_sampler(
y ~ reg(~ AREA + BIR74, prior=pr_normal(precision=1), name="beta") +
gen(factor = ~ spatial (NAME, graph=nc), name="vs"),
data=nc
)
# increase burnin and n.iter below to improve MCMC convergence
sim <- MCMCsim(sampler, store.all=TRUE, burnin=100, n.iter=200, n.chain=2, verbose=FALSE)
(summ <- summary(sim))
nc$vs <- summ$vs[, "Mean”]
plot(ncfc("vs_true”, "vs")1)
plot(gd$pars$vs, summ$vs[, "Mean”]); abline(@, 1, col="red")
3

## End(Not run)
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create_cMVN_sampler

create_cMVN_sampler Set up a function for direct sampling from a constrained multivariate

normal distribution

Description

Set up a function for direct sampling from a constrained multivariate normal distribution

Usage
create_cMVN_sampler(
D = NULL,
Q = NULL,
update.Q = FALSE,
R = NULL,
r = NULL,
eps1 = sqgrt(.Machine$double.eps),
eps2 = sqrt(.Machine$double.eps),
chol.control = chol_control(perm = TRUE)
)
Arguments
D factor of precision matrix Q such that Q=D’D.
Q precision matrix.
update.Q whether to update (D and) Q for each draw.
R equality restriction matrix.
r rhs vector for equality constraints R’z = r, where R’ denotes the transpose of
R.
eps1 scalar parameter to control numerical robustness against singularity of Q.
eps2 scalar parameter associated with the constraint part to control numerical robust-

ness.

chol.control  options for Cholesky decomposition, see chol_control.

Value

An environment with precomputed quantities and a method ’draw’ for sampling from a multivariate
normal distribution subject to equality constraints.
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create_sampler

Create a sampler object

Description

This function sets up a sampler object, based on the specification of a model. The object contains
functions to draw a set of model parameters from their prior and conditional posterior distributions,
and to generate starting values for the MCMC simulation. The functions share a common environ-
ment containing precomputed quantities such as design matrices based on the model and the data.
The sampler object is the main input for the MCMC simulation function MCMCsim.

Usage

create_sampler(

formula,
data = NULL,

family = "gaussian”,

ny = NULL,
ry = NULL,
r.mod = NULL,

sigma.fixed =

NULL,

sigma.mod = NULL,

Q0 = NULL,

formula.V = NULL,

logJacobian =

NULL,

linpred = NULL,
compute.weights = FALSE,

block = NULL,

prior.only = FALSE,
control = sampler_control()

Arguments

formula

data

formula to specify the response variable and additive model components. The
model components form the linear predictor part of the model. A model compo-
nent on the right hand side can be either a regression term specified by reg(. . .),
a covariates subject to error term specified by mec(...), or a generic random
effect term specified by gen(. . .). See for details the help pages for these model
component creation functions. An offset can be specified as offset(...).
Other terms in the formula are collectively interpreted as ordinary regression
effects, treated in the same way as a reg(...) term, but without the option to
change the prior.

data frame with n rows in which the variables specified in model components
can be found.
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family

ny
ry

r.mod

sigma.fixed

sigma.mod

Qo

formula.V

create_sampler

character string describing the data distribution. The default is *gaussian’. Other
options are ’binomial’, 'multinomial’, *negbinomial’ for the negative binomial
distribution, ’poisson’, and ’gamma’. Alternatively, functions starting with ’f_’
followed by the family name can be used to specify the sampling distribution
and possibly further options. See f_gaussian, f_binomial, f_multinomial,
f_negbinomial, f_poisson, f_gamma and f_gaussian_gamma. For categorical
or multinomial data, use family="multinomial” or family=f_multinomial()
where the second form allows to additionally specify the number of trials (if not
equal to 1). A stick-breaking representation of the multinomial distribution is
used for model fitting, and the logistic link function relates each category ex-
cept the last to a linear predictor. The categories can be referenced in the model
specification formula by ’cat_’.

NO LONGER USED. Please use f_binomial to specify the numbers of trials.

NO LONGER USED. Please use f_negbinomial to specify further options for
the negative binomial sampling distribution.

NO LONGER USED. Please use f_negbinomial to specify further options for
the negative binomial sampling distribution.

for Gaussian models, if TRUE the residual standard deviation parameter ’sigma_’
is fixed at 1. In that case argument sigma.mod is ignored. This is convenient
for Fay-Herriot type models with (sampling) variances assumed to be known.
Default is FALSE. DEPRECATED, please use f_gaussian to specify variance
options. In particular, a fixed scalar variance parameter with value 1 can be
specified with var.prior=pr_fixed(value=1).

prior for the variance parameter of a gaussian sampling distribution. This can
be specified by a call to one of the prior specification functions pr_invchisq,
pr_exp, pr_gig or pr_fixed for inverse chi-squared, exponential, generalised
inverse gaussian or degenerate prior distribution, respectively. The default is an
improper prior pr_invchisq(df=0, scale=1). A half-t prior on the standard
deviation can be specified using pr_invchisq with a chi-squared distributed
scale parameter. DEPRECATED, please use f_gaussian to specify variance
options. In particular, to change the default prior for the scalar variance param-
eter use argument var.prior.

n x n data-level precision matrix for a Gaussian model. It defaults to the unit
matrix. If an n-vector is provided it will be expanded to a (sparse) diagonal
matrix with QO on its diagonal. If a name is supplied it will be looked up in
data and subsequently expanded to a diagonal matrix. DEPRECATED, please
use f_gaussian, in particular its precision argument, to specify unequal vari-
ances, or a non-diagonal precision matrix.

a formula specifying the terms of a variance model in the case of a Gaussian
likelihood. Currently two types of terms are supported: a regression term for
the log-variance specified with vreg(...), and a term vfac(...) for multi-
plicative modelled factors at a certain level specified by a factor variable. By
using unit-level inverse-chi-squared factors the marginal sampling distribution
becomes a Student-t distribution, and by using unit-level exponential factors it
becomes a Laplace or double exponential distribution. DEPRECATED, please
use f_gaussian, in particular its var.model argument, to specify a variance
model.
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logJacobian if the data are transformed the logarithm of the Jacobian can be supplied so that
it is incorporated in all log-likelihood computations. This can be useful for com-
paring information criteria for different transformations. It should be supplied
as a vector of the same size as the response variable, and is currently only sup-
ported if family="gaussian". For example, when a log-transformation is used
on response vector y, the vector -log(y) should be supplied. DEPRECATED,
this argument has moved to f_gaussian.

linpred a list of matrices defining (possibly out-of-sample) linear predictors to be sim-
ulated. This allows inference on e.g. (sub)population totals or means. The
list must be of the form 1ist(name_1=X_1, ...) where the names refer to the
model component names and predictions are computed by summing X_1i %*%
pLLname_i]]. Alternatively, linpred="fitted" can be used as a short-cut for
simulations of the full in-sample linear predictor.

compute.weights
if TRUE weights are computed for each element of 1inpred. Note that for a large
dataset in combination with vector-valued linear predictors the weights can take
up a lot of memory. By default only means are stored in the simulation carried
out using MCMCsim.

block DEPRECATED, please use argument control instead, see also sampler_control.
Note that this parameter is now by default set to TRUE.

prior.only whether a sampler is set up only for sampling from the prior or for sampling
from both prior and posterior distributions. Default FALSE. If TRUE there is no
need to specify a response in formula. This is used by generate_data, which
samples from the prior predictive distribution.

control a list with further computational options. These options can be specified using
function sampler_control.

Details

The right hand side of the formula argument to create_sampler can be used to specify additive
model components. Currently four model components are supported: reg(...) for regression
or ’fixed’ effects, gen(...) for generic random effects, mec(...) for measurement in covariates
effects, and brt (. ..) for a Bayesian additive regression trees component. Note that an offset can
be added separately, in the usual way using offset(...).

For gaussian models, formula.V can be used to specify the variance structure of the model. Cur-
rently two specialised variance model components are supported, vreg(. . .) for regression effects
predicting the log-variance and vfac(...) for modelled variance factors.

Value

A sampler object, which is the main input for the MCMC simulation function MCMCsim. The sam-
pler object is an environment with precomputed quantities and functions. The main functions are
rprior, which returns a sample from the prior distributions, draw, which returns a sample from the
full conditional posterior distributions, and start, which returns a list with starting values for the
Gibbs sampler. If prior.only is TRUE, functions draw and start are not created.



18 create_ TMVN_sampler

References
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Examples
# first generate some data
n <- 200
X <= rnorm(n)
y <= 0.5 + 2*x + @.3*rnorm(n)
# create a sampler for a simple linear regression model

sampler <- create_sampler(y ~ x)
sim <- MCMCsim(sampler)
(summary(sim))

y <= rbinom(n, 1, 1 / (1 + exp(-(0.5 + 2*x))))

# create a sampler for a binary logistic regression model
sampler <- create_sampler(y ~ x, family="binomial")

sim <- MCMCsim(sampler)

(summary(sim))

create_TMVN_sampler Set up a sampler object for sampling from a possibly truncated and
degenerate multivariate normal distribution

Description

This function sets up an object for multivariate normal sampling based on a specified precision
matrix. Linear equality and inequality restrictions are supported. For sampling under inequality
restrictions four algorithms are available. The default in that case is an exact Hamiltonian Monte
Carlo algorithm (Pakman and Paninski, 2014). A related algorithm is the zig-zag Hamiltonian
Monte Carlo method (Nishimura et al., 2021) in which momentum is sampled from a Laplace
instead of normal distribution. Alternatively, a Gibbs sampling algorithm can be used (Rodriguez-
Yam et al., 2004). The fourth option is a data augmentation method that samples from a smooth
approximation to the truncated multivariate normal distribution (Souris et al., 2018).
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Usage
create_TMVN_sampler(
Q,
mu = NULL,
Xy = NULL,

update.Q = FALSE,

update.mu = update.Q,

name = "x",

coef.names = NULL,

constraints = NULL,
check.constraints = FALSE,
method = NULL,

reduce = NULL,

chol.control = chol_control(),

debug = FALSE

)
Arguments

Q precision matrix of the (unconstrained) multivariate normal distribution.

mu mean of the (unconstrained) multivariate normal distribution.

Xy alternative to specifying mu; in this case mu is computed as Q™' Xy.

update.Q whether Q is updated for each draw. Currently only supported by methods ’di-
rect’ and "THMC’.

update.mu whether mu is updated for each draw. By default equal to update.Q. Currently
only supported by methods ’direct” and "HMC’.

name name of the TMVN vector parameter.

coef.names optional labels for the components of the vector parameter.

constraints optional linear equality and/or inequality constraints. Use function set_constraints

to specify the constraint matrices and right-hand sides.
check.constraints
if TRUE check whether the starting values satisfy all constraints.

method sampling method. The options are "direct”" for direct sampling from the un-
constrained or equality constrained multivariate normal (MVN). For inequality
constrained MVN sampling three methods are supported: "HMC" for (exact)
Hamiltonian Monte Carlo, "HMCZigZag" for (exact) Hamiltonian Monte Carlo
with Laplace momentum, "Gibbs" for a component-wise Gibbs sampling ap-
proach, and "soft TMVN" for a data augmentation method that samples from
a smooth approximation to the truncated MVN. Alternatively, the method set-
ting functions m_direct, m_HMC, m_HMC_ZigZag, m_Gibbs or m_softTMVN can
be used to select the method and possibly set some of its options to non-default
values, see TMVN-methods.

reduce whether to a priori restrict the simulation to the subspace defined by the equality
constraints.

chol.control  options for Cholesky decomposition, see chol_control.
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debug if TRUE a breakpoint is set at the beginning of the TMVN sampling function
draw.

Details

The componentwise Gibbs sampler uses univariate truncated normal samplers as described in Botev
and L’Ecuyer (2016). These samplers are implemented in R package TruncatedNormal, but here
translated to C++ for an additional speed-up.

Value

An environment for sampling from a possibly degenerate and truncated multivariate normal distri-
bution.

Author(s)

Harm Jan Boonstra, with help from Grzegorz Baltissen

References

Z.1. Botev and P. L’Ecuyer (2016). Simulation from the Normal Distribution Truncated to an Inter-
val in the Tail. in VALUETOOLS.

Y. Cong, B. Chen and M. Zhou (2017). Fast simulation of hyperplane-truncated multivariate normal
distributions. Bayesian Analysis 12(4), 1017-1037.

Y. Li and S.K. Ghosh (2015). Efficient sampling methods for truncated multivariate normal and
student-t distributions subject to linear inequality constraints. Journal of Statistical Theory and
Practice 9(4), 712-732.

A. Nishimura, Z. Zhang and M.A. Suchard (2024). Zigzag path connects two Monte Carlo sam-
plers: Hamiltonian counterpart to a piecewise deterministic Markov process. Journal of the Ameri-
can Statistical Association, 1-13.

A. Pakman and L. Paninski (2014). Exact Hamiltonian Monte Carlo for truncated multivariate
gaussians. Journal of Computational and Graphical Statistics 23(2), 518-542.

G. Rodriguez-Yam, R.A. Davis and L.L. Scharf (2004). Efficient Gibbs sampling of truncated
multivariate normal with application to constrained linear regression. Unpublished manuscript.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.

A. Souris, A. Bhattacharya and P. Debdeep (2019). The Soft Multivariate Truncated Normal Dis-
tribution with Applications to Bayesian Constrained Estimation. arXiv:1807.09155v2.

K.A. Valeriano, C.E. Galarza and L.A. Matos (2023). Moments and random number generation for
the truncated elliptical family of distributions. Statistics and Computing 33(1), 1-20.

Examples

S <- cbind(diag(2), c(-1, 1), c(1.1, -1)) # inequality matrix
# S'x >= 0 represents the wedge x1 <= x2 <= 1.1 x1

C <- set_constraints(S=S) # create a constraints object

# example taken from Pakman and Paninski (2014)

# 1. exact Hamiltonian Monte Carlo (Pakman and Paninski, 2014)
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sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), constraints=C, method="HMC")

sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)

summary (sim)

plot(as.matrix(sim$x), pch=".")

# 2. exact Hamiltonian Monte Carlo with Laplace momentum (Nishimura et al., 2021)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), constraints=C, method="HMCZigZag")
sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)

summary (sim)

plot(as.matrix(sim$x), pch=".")

# 3. Gibbs sampling approach (Rodriguez-Yam et al., 2004)

sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), constraints=C, method="Gibbs")
sim <- MCMCsim(sampler, burnin=500, n.iter=2000, verbose=FALSE)

summary (sim)

plot(as.matrix(sim$x), pch=".")

# 4. soft TMVN approximation (Souris et al., 2018)

sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), constraints=C, method="softTMVN")
sim <- MCMCsim(sampler, n.iter=600, verbose=FALSE)

summary (sim)

plot(as.matrix(sim$x), pch=".")

f_binomial Specify a binomial sampling distribution

Description
This function can be used in the family argument of create_sampler or generate_data to spec-
ify a binomial sampling distribution. This includes the special case of binary (Bernoulli) data.
Usage

f_binomial(link = c("logit", "probit"), n.trial = NULL)

Arguments
link the name of a link function. Currently the only allowed link functions for the
binomial distribution are "logit"” (default) and "probit”.
n.trial the number of binomial trials. This can be specified either as a formula for a
variable number of trials, or as a scalar value for a common number of trials for
all units.
Value

A family object.
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f_gamma Specify a Gamma sampling distribution

Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a Gamma sampling distribution.

Usage
f_gamma(
link = "log",
shape.vec = ~1,

shape.prior = pr_gamma(@.1, 0.1),
control = set_MH(type = "RWLN", scale = 0.2, adaptive = TRUE)

)
Arguments
link the name of a link function. Currently the only allowed link function for the
gamma distribution is "log".
shape.vec optional formula specification of unequal shape parameter.
shape.prior prior for gamma shape parameter. Supported prior distributions: pr_fixed with
a default value of 1, pr_exp and pr_gamma. The current default is pr_gamma(shape=0.1,
rate=0.1).
control options for the Metropolis-Hastings algorithm employed in case the shape pa-
rameter is to be inferred. Function set_MH can be used to change the default
options. The two choices of proposal distribution type supported are "RWLN"
for a random walk proposal on the log-shape scale, and "gamma" for an approx-
imating gamma proposal, found using an iterative algorithm. In the latter case,
a Metropolis-Hastings accept-reject step is currently omitted, so the sampling
algorithm is an approximate one, though often quite accurate and efficient.
Value
A family object.
References

J.W. Miller (2019). Fast and Accurate Approximation of the Full Conditional for Gamma Shape
Parameters. Journal of Computational and Graphical Statistics 28(2), 476-480.
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f_gaussian

Specify a Gaussian sampling distribution

Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a Gaussian sampling distribution.

Usage

f_gaussian(

link = "identity",
var.prior = pr_invchisq(df = @, scale = 1),

var.vec = ~1,

prec.mat = NULL,
var.model = NULL,

logJacobian =

Arguments

link

var.prior

var.vec

prec.mat

var.model

NULL

the name of a link function. Currently the only allowed link functions for the
Gaussian distribution is "identity".

prior for the variance parameter of a Gaussian sampling distribution. This can
be specified by a call to one of the prior specification functions pr_invchisq,
pr_exp, pr_gig or pr_fixed for inverse chi-squared, exponential, generalised
inverse gaussian or degenerate prior distribution, respectively. The default is an
improper prior pr_invchisq(df=0, scale=1). A half-t prior on the standard
deviation can be specified using pr_invchisq with a chi-squared distributed
scale parameter.

a formula to specify unequal variances, i.e. heteroscedasticity. The default cor-
responds to equal variances.

a possibly non-diagonal positive-definite symmetric matrix interpreted as the
precision matrix, i.e. inverse of the covariance matrix. If this argument is speci-
fied var.vec is ignored.

a formula specifying the terms of a variance model in the case of a Gaussian
likelihood. Several types of terms are supported: a regression term for the log-
variance specified with vreg(...), and a term vfac(...) for multiplicative
modelled factors at a certain level specified by a factor variable. By using unit-
level inverse-chi-squared factors the marginal sampling distribution becomes a
Student-t distribution, and by using unit-level exponential factors it becomes a
Laplace or double exponential distribution. In addition, reg and gen can be used
to specify regression or random effect terms. In that case the prior distribution
of the coefficients is not exactly normal, but instead Multivariate Log inverse
Gamma (MLiG), see also pr_MLiG.
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logJacobian

Value

A family object.

f_gaussian_gamma

if the data are transformed the logarithm of the Jacobian can be supplied so that
it is incorporated in all log-likelihood computations. This can be useful for com-
paring information criteria for different transformations. It should be supplied
as a vector of the same size as the response variable, and is currently only sup-
ported if family="gaussian". For example, when a log-transformation is used
on response vector y, the vector -1log(y) should be supplied.

f_gaussian_gamma

Specify a Gaussian-Gamma sampling distribution

Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a Gaussian-Gamma sampling distribution, i.e., a Gaussian sampling distribution whose variances
are observed subject to error according to a Gamma distribution.

Usage
f_gaussian_gamma(link = "identity"”, var.model, ...)
Arguments
link the name of a link function. Currently the only allowed link function for this
distribution family is "identity".
var.model a formula specifying the terms of a variance model. The left-hand side of the
formula should specify the observed variances, unless the family object is used
for data generation only. Several types of model terms on the right-hand side
of the formula are supported: a regression term for the log-variance specified
with vreg(...), and a term vfac(. . .) for multiplicative modelled factors at a
certain level specified by a factor variable. In addition, reg and gen can be used
to specify regression or random effect terms. In that case the prior distribution
of the coefficients is not exactly normal, but instead Multivariate Log inverse
Gamma (MLiG), see also pr_MLiG.
further arguments passed to f_gamma.
Value

A family object.
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f_multinomial Specify a multinomial sampling distribution

Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a multinomial sampling distribution. This includes the special case of categorical (multinoulli)
data.

Usage

f_multinomial(link = "logit", n.trial = NULL, K = NULL)

Arguments
link the name of a link function. Currently the only allowed link function for the
multinomial distribution is "logit".
n.trial the number of multinomial trials. This can be specified either as a formula for a
variable number of trials, or as a scalar value for a common number of trials for
all units.
K number of categories for multinomial model; only used for prior predictive sam-
pling.
Value
A family object.
f_negbinomial Specify a negative binomial sampling distribution
Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a negative binomial sampling distribution.

Usage

f_negbinomial(
link = "log",
shape.vec = ~1,
inv.shape.prior = pr_invchisq(df = 1, scale = 1),
control = negbin_control()
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Arguments
link the name of a link function. Currently the only allowed link function for the
negative binomial sampling distribution is "log".
shape.vec optional formula specification of unequal shape values. The negative binomial

(vector) shape parameter is then equal to this vector of shape values, multiplied
by the scalar shape parameter, whose prior is specified through inv. shape.prior.

inv.shape.prior
Prior on the (scalar) reciprocal shape parameter, i.e. the overdispersion pa-
rameter. Supported prior distributions are pr_fixed with a default value of 1,
pr_invchisqand pr_gig. The current defaultis pr_invchisq(df=1, scale=1).

control a list with computational options. These options can be specified using function
negbin_control.

Details

The negative binomial distribution with shape r and probability p has density

_I'ly+r) oy
p(ylr,p) = W(l -p)'p

with mean 1 = E(y|r,p) = £, and variance V(y|r,p) = u(1 + p/r). The second term of
the variance can be interpreted as overdispersion with respect to a Poisson distribution, which
would correspond to the limit 7 — oo. So the reciprocal shape 1/r is an overdispersion param-
eter, which typically is inferred. It is assigned a default prior, which may be changed through

argument inv.shape.prior.

The only supported link function is "log". Strictly speaking the relation between mean p and linear
predictor 7 is

log i = logr + log =logr+mn

p
L—p
This way the likelihood function has the same form as that of logistic binomial regression, so that a
Polya-Gamma data augmentation sampling algorithm can be employed. Note that the fact that the
linear predictor 1 does not include log r effectively changes the interpretation of its intercept.

Value

A family object.

References

N. Polson, J.G. Scott and J. Windle (2013). Bayesian Inference for Logistic Models Using Polya-
Gamma Latent Variables. Journal of the American Statistical Association 108(504), 1339-1349.

M. Zhou and L. Carin (2015). Negative Binomial Process Count and Mixture Modeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37(2), 307-320.
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f_poisson Specify a Poisson sampling distribution

Description

This function can be used in the family argument of create_sampler or generate_data to spec-
ify a Poisson sampling distribution.

Usage
f_poisson(link = "log", control = poisson_control())
Arguments
link the name of a link function. Currently the only allowed link function for the
Poisson distribution is "1log".
control a list with computational options. These options can be specified using function
poisson_control
Value
A family object.
gen Create a model component object for a generic random effects com-
ponent in the linear predictor
Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data.

Usage

gen(
formula = ~1,
factor = NULL,
remove.redundant = FALSE,
drop.empty.levels = FALSE,
X = NULL,
var = NULL,
prior = NULL,
Q0 = NULL,
PX = NULL,
priorA = NULL,
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strucA = GMRF_structure(),
GMRFconstr = NULL,
constraints@ = NULL,
constraintsA = NULL,
formula.gl = NULL,

a = 1000,

name = "",

sparse = NULL,

control = gen_control(),
debug = FALSE

gen

Arguments

formula

factor

a model formula specifying the effects that vary over the levels of the factor vari-
able(s) specified by argument factor. Defaults to ~1, corresponding to random
intercepts. If X is specified formula is ignored. Variable names are looked up in
the data frame passed as data argument to create_sampler or generate_data,
or in environment (formula).

a formula with factors by which the effects specified in the formula argument
vary. Often only one such factor is needed but multiple factors are allowed so
that interaction terms can be modelled conveniently. The formula must take

the form ~ f1(fac1, ...) * f2(fac2, ...) ..., where facl, fac2 are factor
variables and f1, f2 determine the correlation structure assumed between levels
of each factor, and the . . . indicate that for some correlation types further argu-

ments can be passed. Correlation structures currently supported include iid for
independent identically distributed effects, RW1 and RW2 for random walks of first
or second order over the factor levels, AR1 for first-order autoregressive effects,
season for seasonal effects, spatial for spatial (CAR) effects and custom for
supplying a custom precision matrix corresponding to the levels of the factor.
For further details about the correlation structures, and further arguments that
can be passed, see correlation. Argument factor is ignored if X is specified.
The factor variables are looked up in the data frame passed as data argument to
create_sampler or generate_data, or in environment (formula).

remove.redundant

whether redundant columns should be removed from the model matrix associ-
ated with formula. Default is FALSE.

drop.empty.levels

var

whether to remove factor levels without observations.

A (possibly sparse) design matrix. If X is specified, formula and factor are
only used to derive the random effects’ structured precision matrix.

the (co)variance structure among the varying effects defined by formula over
the levels of the factors defined by factor. The default is "unstructured”,
meaning that a full covariance matrix parametrization is used. For uncorrelated
effects with unequal variances use var="diagonal”. For uncorrelated effects
with equal variances use var="scalar"”. In the case of a single varying effect
there is no difference between these choices.
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prior the prior specification for the variance parameters of the random effects. These
can currently be specified by a call to pr_invwishart in case var="unstructured”
or by a call to pr_invchisq otherwise. See the documentation of those prior
specification functions for more details.

Qo precision matrix associated with formula. This can only be used in combination
with var="scalar".

PX whether parameter expansion should be used. Default is TRUE, which applies
parameter expansion with default options. The only exception is that for gamma
sampling distributions the default is FALSE, i.e. no parameter expansion. Al-
ternative options can be specified by supplying a list with one or more of the
following components:

prior prior for the multiplicative expansion parameter. Defaults to a normal
prior with mean 0 and standard deviation 1, unless the sampling distribution
is gamma in which case the default is a Multivariate Log inverse Gamma
prior. The default parameters can be changed using functions pr_normal
or pr_MLiG.

vector whether a redundant multiplicative expansion parameter is used for each
varying effect specified by formula. The default is TRUE except when
var="scalar”. If FALSE a single redundant multiplicative parameter is
used.

data.scale whether the data level scale is used as a variance factor for the ex-
pansion parameters. Default is TRUE.

priorA prior distribution for scale factors at the variance scale associated with QA. In
case of IGMRF models the scale factors correspond to the innovations. The
default NULL means not to use any local scale factors. A prior can currently be
specified using pr_invchisq or pr_exp.

strucA this option can be used to modify the default structure encoded by factor to a
’bym?2’ or ’leroux’ structure. See GMRF_structure for details.

GMRFconstr whether constraints corresponding to the null-vectors of the precision matrix
are to be imposed on the vector of coefficients. By default this is TRUE for
improper or intrinsic Gaussian Markov Random Field model components, i.e.
components with a singular precision matrix such as random walks or CAR
spatial components.

constraintse@ an optional set of linear (in)equality restrictions acting on the coefficients de-
fined by formula, for each level defined by factor. The constraint matrices,
which can be specified using function set_constraints, must have number of
rows equal to the number of columns of the design matrix derived from formula,
each column corresponding to a linear constraint. Currently only constraints
with zero right-hand side are supported.

constraintsA  an optional set of linear (in)equality restrictions acting on the coefficients de-
fined by factor, for each effect defined by formula. The constraint matrices,
which can be specified using function set_constraints, must have number of
rows equal to the number of levels defined by factor, each column correspond-
ing to a linear constraint. The overall set of constraints imposed on the full vector
of coefficients is determined by constraints@ and constraintsA together. If
GMRFconstr=TRUE, these user-defined constraints (if any) are supplemented by
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equality constraints corresponding to the null-vectors of the singular precision
matrix in case of an intrinsic Gaussian Markov Random Field. Currently only
constraints with zero right-hand side are supported.

formula.gl a formula of the form ~ glreg(...) for group-level predictors around which
the random effect component is hierarchically centred. See glreg for details.

a only used in case the effects are MLiG distributed, as assumed in case of a
gamma sampling distribution, or for gaussian variance modelling. In those cases
a controls how close the effects’ prior is to a normal prior, see pr_MLiG.

name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be *gen’ with the number
of the model term attached.

sparse whether the model matrix associated with formula should be sparse. The de-
fault is based on a simple heuristic based on storage size.

control a list with further computational options. These options can be specified using
function gen_control.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.

References

J. Besag and C. Kooperberg (1995). On Conditional and Intrinsic Autoregression. Biometrika
82(4), 733-746.

C.M. Carvalho, N.G. Polson and J.G. Scott (2010). The horseshoe estimator for sparse signals.
Biometrika 97(2), 465-480.

L. Fahrmeir, T. Kneib and S. Lang (2004). Penalized Structured Additive Regression for Space-
Time Data: a Bayesian Perspective. Statistica Sinica 14, 731-761.

A. Gelman (2006). Prior distributions for variance parameters in hierarchical models. Bayesian
Analysis 1(3), 515-533.

A. Gelman, D.A. Van Dyk, Z. Huang and W.J. Boscardin (2008). Using Redundant Parameteriza-
tions to Fit Hierarchical Models. Journal of Computational and Graphical Statistics 17(1), 95-122.

T. Park and G. Casella (2008). The Bayesian Lasso. Journal of the American Statistical Association
103(482), 681-686.

H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman & Hall/CRC.
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generate_data Generate a data vector according to a model

Description

This function generates draws from the prior predictive distribution. Parameter values are drawn
from their priors, and consequently data is generated from the sampling distribution given these
parameter values.

Usage

generate_data(
formula,
data = NULL,
family = "gaussian”,
ny = NULL,
ry = NULL,
r.mod = NULL,
sigma.fixed = NULL,
sigma.mod = NULL,
Q0 = NULL,
formula.V = NULL,
linpred = NULL

)
Arguments
formula A model formula, see create_sampler. Any left-hand side of the formula is
ignored.
data see create_sampler.
family sampling distribution family, see create_sampler.
ny NO LONGER USED; see create_sampler.
ry NO LONGER USED:; see create_sampler.
r.mod NO LONGER USED; see create_sampler.
sigma.fixed DEPRECATED:; see create_sampler.
sigma.mod DEPRECATED; see create_sampler.
Qo DEPRECATED; see create_sampler.
formula.V DEPRECATED; see create_sampler.
linpred see create_sampler.
Value

A list with a generated data vector and a list of prior means of the parameters. The parameters are
drawn from their priors.
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Examples

n <- 250
dat <- data.frame(
x = rnorm(n),
g = factor(sample(1:10, n, replace=TRUE)),
ny = 10
)
gd <- generate_data(
~ reg(~ 1 + x, prior=pr_normal(precision=10, mean=c(@, 1)), name="beta") +
gen(factor = ~ g, name="v"),
family=f_binomial(n.trial = ~ ny), data=dat
)
gd
plot(dat$x, gd$y)

gen_control Set computational options for the sampling algorithms used for a ’gen’
model component

Description

Set computational options for the sampling algorithms used for a ’gen’ model component

Usage

gen_control (MHprop = c("GiG", "LNRW"))

Arguments
MHprop MH proposal for the variance component in case of a MLiG prior on the coef-
ficients. The two options are "GiG" for a generalized inverse gamma proposal,
and "LNRW" for a log-normal random walk proposal. The former should ap-
proximate the conditional posterior quite well provided MLiG parameter a is
large, such that the coefficients’ prior is approximately normal.
Value

A list of computational options regarding a "gen’ model component.
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get_draw Extract a list of parameter values for a single draw

Description

Extract a list of parameter values for a single draw

Usage

get_draw(obj, iter, chain)

Arguments
obj an object of class mcdraws.
iter iteration number.
chain chain number.

Value

A list with all parameter values of draw iter from chain chain.

Examples

ex <- mcmcsae_example(n=50)

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
get_draw(sim, iter=20, chain=3)

glreg Create a model object for group-level regression effects within a
generic random effects component.

Description

This function is intended to be used to specify the formula.gl argument to the gen model compo-
nent specification function. Group-level predictors and hierarchical centring are not used by default,
and they currently cannot be used in a model component that is sampled together with another model
component in the same Gibbs block.
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Usage

glreg(

GMREF structure

formula = NULL,
remove.redundant = FALSE,

prior = NULL,

Qo =
data

name =

Arguments

formula

a formula specifying the group-level predictors to be used within a model com-
ponent. If no data is supplied the group-level predictors are derived as group-
level means from the unit-level data passed as data argument to create_sampler
or generate_data.

remove.redundant

prior

Qo

data

name

Value

whether redundant columns should be removed from the design matrix. Default
is FALSE.

prior specification for the group-level effects. Currently only normal priors with
mean 0 can be specified, using function pr_normal.

prior precision matrix for the group-level effects. The default is a zero matrix
corresponding to a noninformative improper prior. DEPRECATED, please use
argument prior instead, i.e. prior = pr_normal(precision =Q@.value).

group-level data frame in which the group-level variables specified in formula
are looked up.

the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default this name will be the name of the
corresponding generic random effects component appended by *_gl’.

An object with precomputed quantities for sampling from prior or conditional posterior distributions
for this model component. Only intended for internal use by other package functions.

GMRF _structure

Set up a GMRF structure for a generic model component

Description

This function is used to specify a (non-default) GMREF structure to pass to argument strucA of

function gen.
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Usage

GMRF_structure(
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type = c("default”, "bym2", "leroux”, "Leroux"),

scale.precision = (type == "bym2"),
prior
control = NULL
)
Arguments
type one of "default", "bym2" or "leroux". The default choice corresponds to the

scale.precision

prior

control

Value

precision matrix () 4 as specified by argument factor of gen. Type "bym2"
modifies the default structure to one with covariance matrix QSQAT + (1 =9
where QZ* is the generalised inverse of @4, by default scaled such that the
geometric mean of the marginal variances equals 1. Type "leroux" modifies the
default structure to one with precision matrix ¢pQ 4 + (1 — ¢)I.

whether to scale the structured precision matrix. By default set to TRUE only for
type "bym2".

prior for the parameter ph: in the "bym2" or "leroux" extension. Supported
priors can be set using functions pr_fixed or pr_unif.

options for the Metropolis-Hastings sampler used to sample from the full con-
ditional distribution of parameter ph: in case of "bym2" or "leroux" exten-
sions. If NULL a reasonable default configuration is used. A user can change
these settings using function set_MH. Supported proposal distribution types are
"RWTN", "RWN", "unif" and "beta".

An environment defining the desired GMREF structure, for use by other package functions.

References

B. Leroux, X. Lei and N. Breslow (1999). Estimation of Disease Rates in Small Areas: A New
Mixed Model for Spatial Dependence. In M. Halloran and D. Berry (Eds.), Statistical Models in
Epidemiology, the Environment and Clinical Trials, 135-178.

A. Riebler, S.H. Sorbye, D. Simpson and H. Rue (2016). An intuitive Bayesian spatial model for
disease mapping that accounts for scaling. Statistical methods in medical research, 25(4), 1145-

1165.

labels

Get and set the variable labels of a draws component object for a
vector-valued parameter
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Description

Get and set the variable labels of a draws component object for a vector-valued parameter

Usage

## S3 method for class 'dc'
labels(object, ...)

labels(object) <- value

Arguments
object a draws component object.
currently not used.
value a vector of labels.
Value

The extractor function returns the variable labels.

Examples

ex <- mcmcsae_example()

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=50, n.iter=100, n.chain=1, store.all=TRUE)
labels(sim$beta)

labels(sim$v)

labels(sim$beta) <- c("a”", "b")

labels(sim$beta)

matrix-vector Fast matrix-vector multiplications

Description

Functions for matrix-vector multiplies like %*% and crossprod, but often faster for the matrix types
supported. The return value is always a numeric vector.

Usage

M %mxv% v

crossprod_mv(M, v)
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Arguments
M a matrix of class matrix’, ’"dgCMatrix’, ’dsCMatrix’, ’tabMatrix’, or ’ddiMa-
trix’.
v a numeric vector.
Value

For %m*v% the vector Mv and for crossprod_mv the vector M’v where M’ denotes the transpose
of M.

Examples

M <- matrix(rnorm(10%*10), 10, 10)

x <= rnorm(10)

M %m*xv% x

crossprod_mv(M, x)

M <- Matrix::rsparsematrix(100, 100, nnz=100)
X <= rnorm(100)

M %m*v% X

crossprod_mv(M, x)

maximize_log_lh_p Maximise the log-likelihood or log-posterior as defined by a sampler
closure

Description

Maximise the log-likelihood or log-posterior as defined by a sampler closure

Usage

maximize_log_lh_p(
sampler,
type = c("11h", "lpost"),
method = "BFGS",

control = list(fnscale = -1),
)
Arguments
sampler sampler function closure, i.e. the return value of a call to create_sampler.
type either "llh" (default) or "lpost", for optimization of the log-likelihood, or the
log-posterior, respectively.
method optimization method, passed to optim.
control control parameters, passed to optim.

other parameters passed to optim.
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Value

A list of parameter values that, provided the optimisation was successful, maximize the (log-
)likelihood or (log-)posterior.

Examples

n <- 1000
dat <- data.frame(
X = rnorm(n),
f = factor(sample(1:50, n, replace=TRUE))
)
df <- generate_data(
~ reg(~x, name="beta", prior=pr_normal(precision=1)) + gen(~x, factor=~f, name="v"),
family=f_gaussian(var.prior=pr_fixed(value=1)), data=dat
)
dat$y <- dfsy
sampler <- create_sampler(y ~ x + gen(~x, factor=~f, name="v"), data=dat)
opt <- maximize_log_lh_p(sampler)
str(opt)
plot(df$pars$v, opt$pars$v); abline(0, 1, col="red")

MCMC-diagnostics Compute MCMC diagnostic measures

Description

R_hat computes Gelman-Rubin convergence diagnostics based on the MCMC output in a model
component, and n_eff computes the effective sample sizes, .i.e. estimates for the number of inde-
pendent samples from the posterior distribution.

Usage
R_hat(dc)

n_eff(dc, useFFT = TRUE, lag.max, cl = NULL)

Arguments
dc a draws component (dc) object corresponding to a model parameter.
useFFT whether to use the Fast Fourier Transform algorithm. Default is TRUE as this is
typically faster.
lag.max the lag up to which autocorrelations are computed in case useFFT=FALSE.

cl a cluster for parallel computation.
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Value

In case of R_hat the split R-hat convergence diagnostic for each component of the vector parameter,
and in case of n_eff the effective number of independent samples for each component of the vector
parameter.

References

A. Gelman and D. B. Rubin (1992). Inference from Iterative Simulation Using Multiple Sequences.
Statistical Science 7, 457-511.

A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin (2013). Bayesian Data
Analysis, 3rd edition. Chapman & Hall/CRC.

Examples

ex <- mcmcsae_example()

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
n_eff(sim$beta)

n_eff(sim$v_sigma)

n_eff(sim$v_rho)

R_hat(sim$beta)

R_hat(sim$1llh_)

R_hat(sim$v_sigma)

MCMC-object-conversion
Convert a draws component object to another format

Description

Use to_mcmc to convert a draws component to class memc.1list, allowing one to use MCMC di-
agnostic functions provided by package coda. Use as.array to convert to an array of dimension
(draws, chains, parameters). The array format is supported by some packages for analysis or
visualisation of MCMC simulation results, e.g. bayesplot. Use as.matrix to convert to a matrix,
concatenating the chains. Finally, use to_draws_array to convert either a draws component or
(a subset of components of) an mcdraws object to a draws_array object as defined in package
posterior.

Usage
to_mcme (x)

to_draws_array(x, components = NULL)

## S3 method for class 'dc'
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as.array(x, ...)

## S3 method for class 'dc'

as.matrix(x, colnames = TRUE, ...)
Arguments
X a component of an mcdraws object corresponding to a scalar or vector model
parameter.
components optional character vector of names of draws components in an mcdraws object.
This can be used to select a subset of components to convert to draws_array
format.

currently ignored.

colnames whether column names should be set.

Value

The draws component(s) coerced to an mcmc.list object, a draws_array object, an array, or a
matrix.

Examples

## Not run:
data(iris)
sampler <- create_sampler(Sepal.Length ~ reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100@, n.chain=2, n.iter=200)
summary (sim)
if (require(”coda”, quietly=TRUE)) {
mcbheta <- to_mcmc(sim$beta)
geweke.diag(mcbeta)
3
if (require("posterior”, quietly=TRUE)) {
mcbeta <- to_draws_array(sim$beta)

mcbeta
draws <- to_draws_array(sim)
str(draws)

3

str(as.array(sim$beta))
str(as.matrix(sim$beta))

# generate some example data

n <- 250

dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gdsy

sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)

sim <- MCMCsim(sampler, burnin=100, n.chain=2, n.iter=300)

str(sim$beta)

str(as.array(sim$beta))

bayesplot::mcmc_hist(as.array(sim$beta))
bayesplot::mcmc_dens_overlay(as.array(sim$beta))
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# fake data simulation check:
bayesplot::mcmc_recover_intervals(as.array(sim$beta), gd$pars$beta)
bayesplot::mcmc_recover_hist(as.array(sim$beta), gd$parss$beta)

ex <- mcmcsae_example()

plot(ex$dat$fT, ex$dat$y)

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.chain=2, n.iter=200, store.all=TRUE)
str(sim$beta)

str(as.matrix(sim$beta))

# fake data simulation check:
bayesplot::mcmc_recover_intervals(as.matrix(sim$beta), ex$pars$beta)
bayesplot::mcmc_recover_intervals(as.matrix(sim$u), ex$parss$u)

## End(Not run)

mcmcsae_example Generate artificial data according to an additive spatio-temporal
model

Description

This function is used to generate data for several examples.

Usage

mcmcsae_example(n = 100L, family = "gaussian")
Arguments

n the size of the generated dataset.

family sampling distribution family, see create_sampler.
Value

A list containing the generated dataset, the values of the model parameters, and the model speci-
fication as a formula.

Examples

ex <- mcmcsae_example()
str(ex)
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MCMCsim Run a Markov Chain Monte Carlo simulation

Description

Given a sampler object this function runs a MCMC simulation and stores the posterior draws. A
sampler object for a wide class of multilevel models can be created using create_sampler, but
users can also define their own sampler functions, see below. MCMCsim allows to choose the param-
eters for which simulation results must be stored. It is possible to define derived quantities that will
also be stored. To save memory, it is also possible to only store Monte Carlo means/standard errors
for some large vector parameters, say. Another way to use less memory is to save the simulation
results of large vector parameters to file. For parameters specified in plot. trace trace plots or pair
plots of multiple parameters are displayed during the simulation.

Usage

MCMCsim(
sampler,
from.prior = FALSE,
n.iter = 1000L,
n.chain = 3L,

thin = 1L,

burnin = if (from.prior) 0L else 250L,
start = NULL,

store,

store.all = FALSE,

pred = NULL,

store.mean,

store.sds = FALSE,

to.file = NULL,

filename = "MCdraws_",
write.single.prec = FALSE,
verbose = TRUE,

n.progress = n.iter%/%10L,
trace.convergence = NULL,
stop.on.convergence = FALSE,
convergence.bound = 1.05,
plot.trace = NULL,
add.to.plot = TRUE,
plot.type = "1",

n.cores = 1L,

cl = NULL,

seed = NULL,

export = NULL
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Arguments

sampler

from.prior

n.iter
n.chain
thin
burnin

start

store

store.all

pred

store.mean

store.sds

to.file

filename
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sampler object created by create_sampler.

whether to sample from the prior. By default from.prior=FALSE and samples
are taken from the posterior.

number of draws after burnin.

number of independent chains.

only every thin’th draw is kept.

number of draws to discard at the beginning of each chain.

an optional function to generate starting values or a list containing for each chain
anamed list of starting values. It may be used to provide starting values for some

or all parameters. The sampler object’s own start function, if it exists, is called
to generate any starting values not provided by the user.

vector of names of parameters to store MCMC draws for. By default, simula-
tions are stored for all parameters returned by sampler$store_default.

if TRUE simulation vectors of all parameters returned by the sampling function of
sampler will be stored. The default is FALSE, and in that case only simulations
for the parameters named in store are stored.

list of character strings defining derived quantities to be computed (and stored)
for each draw.

vector of names of parameters for which only the mean (per chain) is to be
stored. This may be useful for large vector parameters (e.g. regression residuals)
for which storing complete MCMC output would use too much memory. The
function sampler$store_mean_default exists it provides the default.

if TRUE store for all parameters in store.mean, besides the mean, also the stan-
dard deviation. Default is FALSE.

vector of names of parameters to write to file.

name of file to write parameter draws to. Each named parameter is written to a
separate file, named filename_parametername.

write.single.prec

verbose

n.progress

Whether to write to file in single precision. Default is FALSE.
if FALSE no output is sent to the screen during the simulation. TRUE by default.
update diagnostics and plots after so many iterations.

trace.convergence

vector of names of parameters for which Gelman-Rubin R-hat diagnostics are
printed to the screen every n.progress iterations.

stop.on.convergence

if TRUE stop the simulation if the R-hat diagnostics for all parameters in trace.convergence

are less than convergence.bound.

convergence.bound

plot.trace

threshold used with stop.on.convergence.

character vector of parameter names for which to plot draws during the simula-
tion. For one or two parameters trace plots will be shown, and if more parame-
ters are specified the results will be displayed in a pairs plot. For vector param-
eters a specific component can be selected using brackets, e.g. "betal[2]".
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MCMCsim
add.to.plot if TRUE the plot is updated every n.progress iterations, otherwise a new plot
(with new scales) is created after every n.progress iterations.
plot. type default is "1" (lines).
n.cores the number of cpu cores to use. Default is 1, i.e. no parallel computation. If an

existing cluster cl is provided, n.cores will be set to the number of workers in
that cluster.

cl an existing cluster can be passed for parallel computation. If NULL and n. cores
> 1, a new cluster is created.

seed a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

export a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in pred depend on global variables.

Details

A sampler object is an environment containing data and functions to use for sampling. The follow-
ing elements of the sampler object are used by MCMCsim:

start function to generate starting values.

draw function to draw samples, typically from a full conditional posterior distribution.

rprior function to draw from a prior distribution.

coef.names list of vectors of parameter coefficient names, for vector parameters.

MHpars vector of names of parameters that are sampled using a Metropolis-Hastings (MH) sam-
pler; acceptance rates are kept for these parameters.

adapt function of acceptance rates of MHpars to adapt MH-kernel, called every 100 iterations dur-
ing the burn-in period.

Value

An object of class mcdraws containing posterior draws as well as some meta information.

Examples

# 1. create a sampler function

sampler <- new.env()

sampler$draw <- function(p) list(x=rnorm(1L), y=runif(1L))
# 2. do the simulation

sim <- MCMCsim(sampler, store=c("x", "y"))

str(sim)

summary (sim)

# example that requires start values or a start function
sampler$draw <- function(p) list(x=rnorm(1L), y=p$x * runif(1L))
sampler$start <- function(p) list(x=rnorm(1L), y=runif(1L))

sim <- MCMCsim(sampler, store=c("x", "y"))

summary (sim)

plot(sim, c("x", "y"))



mc_offset 45

# example using create_sampler; first generate some data

n <- 100

dat <- data.frame(x=runif(n), f=as.factor(sample(1:4, n, replace=TRUE)))

gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gds$y

sampler <- create_sampler(y ~ x + f, data=dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=400, n.chain=2)

(summary(sim))
gd$pars
mc_offset Create a model component object for an offset, i.e. fixed, non-
parametrised term in the linear predictor
Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data.

Usage
mc_offset(formula, value = NULL, name = "")
Arguments
formula model formula.
value alternative specification of an offset as a single scalar value that is the same for
each data unit.
name the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be *'mc_offset’ with the
number of the model term attached.
Value

An model component object with data and methods needed for dealing with an offset term in model
estimation, and prior and posterior prediction, intended for internal use by other package functions.
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mec Create a model component object for a regression (fixed effects) com-
ponent in the linear predictor with measurement errors in quantitative
covariates
Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates an additive regression term in the model’s linear predictor. Covari-
ates are assumed to be measured subject to normally distributed errors with zero mean and variance
specified using the formula or V arguments. Note that this means that formula should only con-
tain quantitative variables, and no intercept. By default, the prior for the regression coefficients

is improper uniform. A proper normal prior can be set up using function pr_normal, and passed

to argument prior. It should be noted that pr_normal expects a precision matrix as input for its
second argument, and that the prior variance (matrix) is taken to be the inverse of this precision
matrix, where in case the model’s family is "gaussian” this matrix is additionally multiplied by
the residual scalar variance parameter sigma_*2.

Usage
mec (
formula = ~1,
sparse = NULL,
X = NULL,
V = NULL,
prior = NULL,
Q0 = NULL,
bo = NULL,
constraints = NULL,
name = "",
debug = FALSE
)
Arguments
formula a formula specifying the predictors subject to measurement error and possibly
their variances as well. In the latter case the formula syntax ~ (x1 | V.x1) +
(x2 | V.x2) + ... should be used where x1, x2, ... are the names of (quan-
titative) predictors and V.x1, V.x2, ... are the names of the variables holding
the corresponding measurement error variances. If only the predictors are spec-
ified the formula has the usual form ~x1 +x2+ .... In that case variances
should be specified using argument V. All variable names are looked up in the
data frame passed as data argument to create_sampler or generate_data, or
in environment(formula).
sparse whether the model matrix associated with formula should be sparse. The de-

fault is to base this on a simple heuristic.
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prior

Qo

bo

constraints

name

debug

Value
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a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

measurement error variance; can contain zeros

prior specification for the regression coefficients. Currently only normal priors
are supported, specified using function pr_normal.

prior precision matrix for the regression effects. The default is a zero matrix
corresponding to a noninformative improper prior. It can be specified as a scalar
value, as a numeric vector of appropriate length, or as a matrix object. DEP-
RECATED, please use argument prior instead, i.e. prior = pr_normal(mean
=b0.value, precision =0Q0.value).

prior mean for the regression effect. Defaults to a zero vector. It can be specified
as a scalar value or as a numeric vector of appropriate length. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b@.value,
precision =Q0@.value).

optional linear equality and/or inequality constraints imposed on the vector of
regression coefficients. Use function set_constraints to specify the constraint
matrices and right-hand sides.

the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be ‘reg’ with the number
of the model term attached.

if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.

References

L.M. Ybarra and S.L. Lohr (2008). Small area estimation when auxiliary information is measured
with error. Biometrika 95(4), 919-931.

S. Arima, G.S. Datta and B. Liseo (2015). Bayesian estimators for small area models when auxiliary
information is measured with error. Scandinavian Journal of Statistics 42(2), 518-529.

Examples

# example of Ybarra and Lohr (2008)

m <- 50

X <= rnorm(m, mean=5, sd=3) # true covariate values

v <= rnorm(m, sd=2)

theta <- 1 + 3*X + v # true values

psi <- rgamma(m, shape=4.5, scale=2)

e <- rnorm(m, sd=sqrt(psi)) # sampling error

y <- theta + e # direct estimates

C <- c(rep(3, 10), rep(@, 40)) # measurement error for first 10 values
W <= X + rnorm(m, sd=sqrt(C)) # covariate subject to measurement error
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# fit Ybarra-Lohr model
sampler <- create_sampler(
y ~ 1+ mec(~ @ + W, V=C, name="ME") + gen(factor=~local_ ),
family=f_gaussian(var.prior=pr_fixed(1), var.vec=~psi),
linpred="fitted"
)
sim <- MCMCsim(sampler, n.iter=800, n.chain=2, store.all=TRUE, verbose=FALSE)
(summ <- summary(sim))
plot(X, W, xlab="true X", ylab="inferred X")
points(X, summ$ME_X[, "Mean"], col="green")
abline(@, 1, col="red")
legend("topleft”, legend=c("prior mean"”, "posterior mean”), col=c("black”, "green"), pch=c(1,1))

model-information-criteria
Compute DIC, WAIC and leave-one-out cross-validation model mea-
sures

Description

Compute the Deviance Information Criterion (DIC) or Watanabe-Akaike Information Criterion
(WAIC) from an object of class mcdraws output by MCMCsim. Method waic.mcdraws computes
WAIC using package loo. Method 1oo.mcdraws also depends on package loo to compute a Pareto-
smoothed importance sampling (PSIS) approximation to leave-one-out cross-validation.

Usage

compute_DIC(x, use.pV = FALSE)

compute_WAIC(

X,

diagnostic = FALSE,
batch.size = NULL,
show.progress = TRUE,
cl = NULL,

n.cores = 1L

## S3 method for class 'mcdraws'
waic(x, by.unit = FALSE, ...)

## S3 method for class 'mcdraws'
loo(x, by.unit = FALSE, r_eff = FALSE, n.cores = 1L, ...)
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Arguments
X an object of class mcdraws.
use.pV whether half the posterior variance of the deviance should be used as an alterna-
tive estimate of the effective number of model parameters for DIC.
diagnostic whether vectors of log-pointwise-predictive-densities and pointwise contribu-
tions to the WAIC effective number of model parameters should be returned.
batch.size number of data units to process per batch.

show.progress  whether to show a progress bar.

cl an existing cluster can be passed for parallel computation. If cl is provided,
n.cores will be set to the number of workers in that cluster. If NULL and
n.cores > 1, a new cluster is created.

n.cores the number of cpu cores to use. Default is one, i.e. no parallel computation.

by.unit if TRUE the computation is carried out unit-by-unit, which is slower but uses
much less memory.

Other arguments, passed to 1oo. Not currently used by waic.mcdraws.

r_eff whether to compute relative effective sample size estimates for the likelihood
of each observation. This takes more time, but should result in a better PSIS
approximation. See loo.

Value

For compute_DIC a vector with the deviance information criterion and effective number of model
parameters. For compute_WAIC a vector with the WAIC model selection criterion and WAIC ef-
fective number of model parameters. Method waic returns an object of class waic, loo, see the
documentation for waic in package loo. Method loo returns an object of class psis_loo, see 1oo.

References

D. Spiegelhalter, N. Best, B. Carlin and A. van der Linde (2002). Bayesian Measures of Model
Complexity and Fit. Journal of the Royal Statistical Society B 64 (4), 583-639.

S. Watanabe (2010). Asymptotic equivalence of Bayes cross validation and widely applicable in-
formation criterion in singular learning theory. Journal of Machine Learning 11, 3571-3594.

A. Gelman, J. Hwang and A. Vehtari (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24, 997-1016.

A. Vehtari, D. Simpson, A. Gelman, Y. Yao and J. Gabry (2024). Pareto smoothed importance
sampling. arXiv:1507.02646v9.

A. Vehtari, A. Gelman and J. Gabry (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27, 1413-1432.
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Examples

ex <- mcmcsae_example(n=100)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, n.chain=4, store.all=TRUE)
compute_DIC(sim)
compute_WAIC(sim)
if (require(loo)) {
waic(sim)
loo(sim, r_eff=TRUE)
3

model_matrix Compute possibly sparse model matrix

Description

Compute possibly sparse model matrix

Usage

model_matrix(
formula,
data = NULL,
contrasts.arg = NULL,
drop.unused.levels = FALSE,
sparse = NULL,
drop@ = TRUE,
catsep = "",
by = NULL,
tabM = FALSE

Arguments

formula model formula.

data data frame containing all variables used in formula. These variables should not
contain missing values. An error is raised in case any of them does.

contrasts.arg specification of contrasts for factor variables. Currently supported are "contr.none"
(no contrasts applied), "contr.treatment" (first level removed) and "contr.SAS"
(last level removed). Alternatively, a named list specifying a single level per
factor variable can be passed.

drop.unused. levels
whether empty levels of individual factor variables should be removed.
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sparse if TRUE a sparse matrix of class dgCMatrix is returned. This can be efficient
for large datasets and a model containing categorical variables with many cate-
gories. If sparse=NULL, the default, whether a sparse or dense model matrix is
returned is based on a simple heuristic.

drop@ whether to drop any remaining explicit zeros in resulting sparse matrix.

catsep separator for concatenating factor variable names and level names. By default it
is the empty string, reproducing the labels of model.matrix.

by a vector by which to aggregate the result.
tabM if TRUE return a list of tabMatrix objects.
Value

Design matrix X, either an ordinary matrix or a sparse dgCMatrix.

negbin_control Set computational options for the sampling algorithms

Description

Set computational options for the sampling algorithms

Usage

negbin_control (CRT.approx.m = 20L)

Arguments
CRT.approx.m  scalar integer specifying the degree of approximation to sampling from a Chi-

nese Restaurant Table distribution. The approximation is based on Le Cam’s
theorem. Larger values yield a slower but more accurate sampler.

Value

A list with computational options for the sampling algorithm.
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n_chains-n_draws-n_vars
Get the number of chains, samples per chain or the number of vari-
ables in a simulation object

Description

Get the number of chains, samples per chain or the number of variables in a simulation object

Usage

n_chains(obj)

n_draws (obj)

n_vars(dc)

Arguments
obj an mcdraws object or a draws component (dc) object.
dc a draws component object.

Value

The number of chains or retained samples per chain or the number of variables.

Examples

ex <- mcmcsae_example(n=50)

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=5, store.all=TRUE)
n_chains(sim); n_chains(sim$beta)

n_draws(sim); n_draws(sim$beta)

n_vars(sim$beta); n_vars(sim$sigma_); n_vars(sim$llh_); n_vars(sim$v)

plot(sim, "beta")

n_chains(subset(sim$beta, chains=1:2))

n_draws(subset(sim$beta, draws=sample(1:n_draws(sim), 100)))

n_vars(subset(sim$u, vars=1:2))
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par_names Get the parameter names from an mcdraws object

Description

Get the parameter names from an mcdraws object

Usage

par_names(obj)

Arguments

obj an mcdraws object.

Value

The names of the parameters whose MCMC simulations are stored in obj.

Examples

data(iris)
sampler <- create_sampler(Sepal.Length ~

reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
(summary(sim))
par_names(sim)

plot.dc Trace, density and autocorrelation plots for (parameters of a) draws
component (dc) object

Description

Trace, density and autocorrelation plots for (parameters of a) draws component (dc) object

Usage

## S3 method for class 'dc'
plot(x, nrows, ncols, ask = FALSE, ...)
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Arguments
X a draws component object.
nrows number of rows in plot layout.
ncols number of columns in plot layout.
ask ask before plotting the next page; default is FALSE.
arguments passed to density.
Examples

ex <- mcmcsae_example(n=50)

sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
plot(sim$u)

plot.mcdraws Trace, density and autocorrelation plots

Description

Trace, density and autocorrelation plots for selected components of an mcdraws object.

Usage
## S3 method for class 'mcdraws'
plot(x, vnames, nrows, ncols, ask = FALSE, ...)
Arguments
X an object of class mcdraws.
vhames optional character vector to select a subset of parameters.
nrows number of rows in plot layout.
ncols number of columns in plot layout.
ask ask before plotting the next page; default is FALSE.

arguments passed to density.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)

non

plot(sim, c("beta”, "u"”, "u_sigma”, "v_sigma"), ask=TRUE)
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plot_coef Plot a set of model coefficients or predictions with uncertainty inter-
vals based on summaries of simulation results or other objects.
Description

This function plots estimates with error bars. Multiple sets of estimates can be compared. The error
bars can either be based on standard errors or on explicitly specified lower and upper bounds. The
function is adapted from function plot.sae in package hbsae, which in turn was adapted from
function coefplot.default from package arm.

Usage

plot_coef(

L

n.se =1,

est.names,

sort.by = NULL,

decreasing = FALSE,

index = NULL,

maxrows = 50L,

maxcols = 6L,

offset = 0.1,

cex.var = 0.8,

mar = c(0.1, 2.1, 5.1, 0.1)

)
Arguments

dc_summary objects (output by the summary method for simulation objects of
class dc), sae objects (output by the functions of package hbsae), or lists. In
case of a list the components used are those with name est for point estimates,
se for standard error based intervals or lower and upper for custom intervals.
Instead of dc_summary objects matrix objects are also supported as long as they
contain columns named "Mean" and "SD" as do dc_summary objects. Named
parameters of other types that do not match any other argument names are passed
to lower-level plot functions.

n.se number of standard errors below and above the point estimates to use for error
bars. By default equal to 1. This only refers to the objects of class dc_summary
and sae.

est.names labels to use in the legend for the components of the . . . argument

sort.by vector by which to sort the coefficients, referring to the first object passed.

decreasing if TRUE, sort in decreasing order (default).

index vector of names or indices of the selected areas to be plotted.

maxrows maximum number of rows in a column.
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maxcols maximum number of columns of estimates on a page.

offset space used between plots of multiple estimates for the same area.

cex.var the font size for the variable names, default=0.8.

mar a numeric vector of the form c(bottom, left, top, right), specifying the

number of lines of margin on each of the four sides of the plot.

Examples

# create artificial data
set.seed(21)
n <- 100
dat <- data.frame(
x=runif(n),
f=factor(sample(1:20, n, replace=TRUE))
)
model <- ~ reg(~ x, prior=pr_normal(precision=1), name="beta") + gen(factor=~f, name="v")
gd <- generate_data(model, data=dat)
dat$y <- gds$y
# fit a base model
model® <- y ~ reg(~ 1, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model@, data=dat)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ@ <- summary(sim))
# fit 'true' model
model <- y ~ reg(~ x, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model, data=dat)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ <- summary(sim))
# compare random effect estimates against true parameter values
plot_coef (summ@$v, summ$v, list(est=gd$pars$v), n.se=2, offset=0.2,

maxrows=10, est.names=c("base model”, "true model”, "true"))
poisson_control Set computational options for the sampling algorithms
Description

Set computational options for the sampling algorithms

Usage

poisson_control(nb.shape = 100)
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Arguments
nb.shape shape parameter of the negative binomial distribution used internally to approx-
imate the Poisson distribution. This should be set to a relatively large value
(default is 100), corresponding to negligible overdispersion, to obtain a good
approximation to the Poisson sampling distribution. However, note that very
large values may cause slow MCMC exploration of the posterior distribution.
Value

A list with computational options for the sampling algorithm.

posterior-moments Get means or standard deviations of parameters from the MCMC out-
put in an mcdraws object

Description

Get means or standard deviations of parameters from the MCMC output in an mcdraws object

Usage

get_means(obj, vnames = NULL)

get_sds(obj, vnames = NULL)

Arguments

obj an object of class mcdraws.

vhames optional character vector to select a subset of parameters.
Value

A list with simulation means or standard deviations.

Examples

ex <- mcmcsae_example(n=50)

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4)

get_means(sim)

get_means(sim, "e_")

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4,
store.mean=c("beta”, "u"), store.sds=TRUE)

summary(sim, "beta")

get_means(sim, "beta")

get_sds(sim, "beta")

get_means(sim, "u")

get_sds(sim, "u")
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predict. mcdraws

predict.mcdraws

Generate draws from the predictive distribution

Description

Generate draws from the predictive distribution

Usage
## S3 method for class

predict(

object,
newdata = NULL,

X. = if (is.null(newdata)) "in-sample” else NULL,
type = c("data”, "link", "response”, "data_cat"),

weights = NULL,
fun. = identity,
labels = NULL,

ppcheck = FALSE,

iters = NULL,
to.file = FALSE,
filename,

write.single.prec = FALSE,
show.progress = TRUE,
verbose = TRUE,

n.cores = 1L,

cl = NULL,

seed = NULL,

export = NULL,

Arguments

object
newdata
X.

type

'mcdraws’

an object of class mcdraws, as output by MCMCsim.

data frame with auxiliary information to be used for prediction.

a list of design matrices; alternatively, X. equals ’in-sample’ or ’linpred’. If
’in-sample’ (the default if newdata is not supplied), the design matrices for in-
sample prediction are used. If ’linpred’ the ’linpred_’ component of object is

used.

the type of predictions. The default is "data”, meaning that new data is gener-

ated according to the predictive distribution. If type="1ink" only the linear pre-
dictor for the mean is generated, and in case type="response" the linear predic-
tor is transformed to the response scale. For Gaussian models type="1ink" and
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weights

fun.

labels

ppcheck

iters

to.file

filename
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type="response” are equivalent. For binomial models type="response" re-
turns the simulations of the latent probabilities, and for negative binomial mod-
els the exponentiated linear predictor, which differs from the mean by a fac-
tor equal to the shape parameter. For multinomial models type="1ink" gener-
ates the linear predictor for all categories except the last, and type="response”
transforms this vector to the probability scale, and type="data" generates the
multinomial data, all in long vector format, where the output for all categories
(except the last) are stacked. For multinomial models and single trials, a further
option is type="data_cat"”, which generates the data as a categorical vector,
with integer coded levels.

an optional formula specifying a vector of nonnegative weights. Weights are
only used for data-generating prediction (type = "data”). A weight w; means
that the sum of w; individual predictions is generated for each unit $i$. For
example, for the poststratification step of Multilevel Regression and Poststratifi-
cation (MRP) the weights are the population counts and the units are the unique
combinations of all auxiliary variables used in the model, typically stored in a
single data.frame.

function applied to the vector of posterior predictions to compute one or multiple
summaries or test statistics. The function can have one or two arguments. The
first argument is always the vector of posterior predictions. The optional second
argument must be named 'p’ and represents a list of model parameters, needed
only when a test statistic depends on them. The function must return an integer
or numeric vector.

optional names for the output object. Must be a vector of the same length as the
result of fun..

if TRUE, function fun. is also applied to the observed data and an MCMC
approximation is computed of the posterior predictive probability that the test
statistic for predicted data is greater than the test statistic for the observed data.

iterations in object to use for prediction. Default NULL means that all draws
from object are used.

if TRUE the predictions are streamed to file.
name of the file to write predictions to in case to.file=TRUE.

write.single.prec

show.progress
verbose
n.cores

cl

seed

export

Whether to write to file in single precision. Default is FALSE.

whether to show a progress bar.

whether to show informative messages.

the number of cpu cores to use. Default is one, i.e. no parallel computation. If
an existing cluster cl is provided, n.cores will be set to the number of workers
in that cluster.

an existing cluster can be passed for parallel computation. If NULL and n. cores
> 1, a new cluster is created.

a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in fun. depend on global variables.

currently not used.
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Value

An object of class dc, containing draws from the posterior (or prior) predictive distribution. If
ppcheck=TRUE posterior predictive p-values are returned as an additional attribute. In case to.file=TRUE
the file name used is returned.

Examples

n <- 250

dat <- data.frame(x=runif(n))

dat$y <- 1 + dat$x + rnorm(n)

sampler <- create_sampler(y ~ x, data=dat)
sim <- MCMCsim(sampler)

summary (sim)

# in-sample prediction

pred <- predict(sim, ppcheck=TRUE)
hist(attr(pred, "ppp"))

# out-of-sample prediction

pred <- predict(sim, newdata=data.frame(x=seq(@, 1, by=0.1)))
summary (pred)

print.dc_summary Display a summary of a dc object

Description

Display a summary of a dc object

Usage

## S3 method for class 'dc_summary'
print(

X!

digits = 3L,

max.lines = 1000L,

tail = FALSE,

sort = NULL,

max.label.length = NULL,

)

Arguments
X an object of class dc_summary.
digits number of digits to use, defaults to 3.

max.lines maximum number of lines to display. If NULL, all elements are displayed.
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tail if TRUE the last instead of first at most max. lines are displayed.

sort column name on which to sort the output.
max.label.length
if specified, printed row labels will be abbreviated to at most this length.

passed on to print.default.

Examples

ex <- mcmcsae_example()

sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim$u), sort="n_eff")

print.mcdraws_summary Print a summary of MCMC simulation results

Description

Display a summary of an mcdraws object, as output by MCMCsim.

Usage

## S3 method for class 'mcdraws_summary'

print(x, digits = 3L, max.lines = 10L, tail = FALSE, sort = NULL, ...)
Arguments

X an object of class mcdraws_summary as output by summary .mcdraws.

digits number of digits to use, defaults to 3.

max.lines maximum number of elements per vector parameter to display. If NULL, all ele-

ments are displayed.
tail if TRUE the last instead of first max.lines of each component are displayed.
sort column name on which to sort the output.

passed on to print.default.

Examples

ex <- mcmcsae_example()

sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim), sort="n_eff")
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pr_exp

pr_beta Create an object representing beta prior distributions

Description

Create an object representing beta prior distributions

Usage

pr_beta(a =1, b =1)

Arguments
a positive shape parameter.
b positive shape parameter.
Value

An environment representing the specified prior, for internal use.

pr_exp Create an object representing exponential prior distributions

Description

Create an object representing exponential prior distributions

Usage

pr_exp(scale = 1)

Arguments

scale scalar or vector scale parameter.

Value

An environment representing the specified prior, for internal use.
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pr_fixed Create an object representing a degenerate prior fixing a parameter
(vector) to a fixed value

Description

Create an object representing a degenerate prior fixing a parameter (vector) to a fixed value

Usage

pr_fixed(value = 1)

Arguments

value scalar or vector value parameter.

Value

An environment representing the specified prior, for internal use.

pr_gamma Create an object representing gamma prior distributions

Description

Create an object representing gamma prior distributions

Usage

pr_gamma(shape = 1, rate = 1)

Arguments

shape scalar or vector shape parameter.

rate scalar or vector rate, i.e. inverse scale, parameter.
Value

An environment representing the specified prior, for internal use.
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pr_gig Create an object representing Generalised Inverse Gaussian (GIG)
prior distributions

Description

Create an object representing Generalised Inverse Gaussian (GIG) prior distributions

Usage

pr_gig(a, b, p)

Arguments
a scalar or vector parameter.
b scalar or vector parameter.
p scalar or vector parameter.
Value

An environment representing the specified prior, for internal use.

pr_invchisq Create an object representing inverse chi-squared priors with possibly
modelled degrees of freedom and scale parameters

Description

Create an object representing inverse chi-squared priors with possibly modelled degrees of freedom
and scale parameters

Usage

pr_invchisq(df = 1, scale = 1)

Arguments

df degrees of freedom parameter. This can be a numeric scalar or vector of length
n, the dimension of the parameter vector. Alternatively, for a scalar degrees of
freedom parameter, df="modeled” or df="modelled" assign a default (gamma)
prior to the degrees of freedom parameter. For more control of this gamma prior
a list can be passed with some of the following components:

alpha0 shape parameter of the gamma distribution
beta0 rate parameter of the gamma distribution
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proposal "RW" for random walk Metropolis-Hastings or "mala" for Metropolis-
adjusted Langevin

tau (starting) scale of Metropolis-Hastings update

adapt whether to adapt the scale of the proposal distribution during burnin to
achieve better acceptance rates.

scale scalar or vector scale parameter. Alternatively, scale="modeled"” or scale="modelled"
puts a default chi-squared prior on the scale parameter. For more control on this
chi-squared prior a list can be passed with some of the following components:
df degrees of freedom (scalar or vector)
scale scale (scalar or vector)

common whether the modelled scale parameter of the inverse chi-squared dis-
tribution is (a scalar parameter) common to all n parameters.

Value

An environment representing the specified prior, for internal use.

pr_invwishart Create an object representing an inverse Wishart prior, possibly with
modelled scale matrix

Description

Create an object representing an inverse Wishart prior, possibly with modelled scale matrix

Usage

pr_invwishart(df = NULL, scale = NULL)

Arguments

df Degrees of freedom parameter. This should be a scalar numeric value. Default
value is the dimension plus one.

scale Either a (known) scale matrix, or scale="modeled" or scale="modelled",
which puts default chi-squared priors on the diagonal elements of the inverse
Wishart scale matrix. For more control on these chi-squared priors a list can be
passed with some of the following components:
df degrees of freedom (scalar or vector) of the chi-squared distribution(s)
scale scale parameter(s) of the chi-squared distribution(s)

common whether the modelled scale parameter of the inverse chi-squared dis-
tribution is (a scalar parameter) common to all n diagonal elements.

Value

An environment representing the specified prior, for internal use.
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References

A. Huang and M.P. Wand (2013). Simple marginally noninformative prior distributions for covari-
ance matrices. Bayesian Analysis 8, 439-452.

pr_MLiG Create an object representing a Multivariate Log inverse Gamma
(MLiG) prior distribution

Description

Create an object representing a Multivariate Log inverse Gamma (MLiG) prior distribution

Usage

pr_MLiG(mean = @, precision = @, labels = NULL, a = 1000)

Arguments

mean scalar or vector parameter for the mean in the large a limit, when the distribution
approaches a normal distribution.

precision scalar or vector parameter for the precision in the large a limit, when the distri-
bution approaches a normal distribution.

labels optional character vector with coefficient labels. If specified, it should have
the same length as at least one of mean and precision, and in that case the
MLIiG prior with these parameters is assigned to these coefficients, while any
coefficients not present in labels will be assigned a non-informative prior with
mean 0 and precision 0.

a scalar parameter that controls how close the prior is to independent normal priors
with mean and precision parameters. The larger this value (default is 1000),
the closer.

Value

An environment representing the specified prior, for internal use.

References

J.R. Bradley, S.H. Holan and C.K. Wikle (2018). Computationally efficient multivariate spatio-
temporal models for high-dimensional count-valued data (with discussion). Bayesian Analysis
13(1), 253-310.
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pr_normal Create an object representing a possibly multivariate normal prior
distribution

Description

Create an object representing a possibly multivariate normal prior distribution

Usage

pr_normal(mean = @, precision = @, labels = NULL)

Arguments
mean scalar or vector mean parameter.
precision scalar, vector or matrix precision parameter.
labels optional character vector with coefficient labels. If specified, it should have
the same length as at least one of mean and precision, and in that case the
normal prior with these parameters is assigned to these coefficients, while any
coefficients not present in labels will be assigned a non-informative prior with
mean 0 and precision 0.
Value

An environment representing the specified prior, for internal use.

pr_truncnormal Create an object representing truncated normal prior distributions

Description

Create an object representing truncated normal prior distributions

Usage

pr_truncnormal(mean = @, precision = 1, lower = @, upper = Inf)

Arguments
mean scalar or vector mean parameter.
precision scalar, vector or matrix precision parameter.
lower lower limit of the truncated interval.
upper lower limit of the truncated interval.

Value

An environment representing the specified prior, for internal use.



68 read_draws
pr_unif Create an object representing uniform prior distributions
Description
Create an object representing uniform prior distributions
Usage
pr_unif(min = @, max = 1)
Arguments
min lower limit.
max upper limit.
Value
An environment representing the specified prior, for internal use.
read_draws Read MCMC draws from a file
Description
Read draws written to file by MCMCsim used with argument to.file.
Usage
read_draws(name, filename = paste@("MCdraws_", name, ".dat"))
Arguments
name name of the parameter to load the corresponding file with posterior draws for.
filename name of the file in which the draws are stored.
Value

An object of class dc containing MCMC draws for a (vector) parameter.
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Examples

## Not run:

# NB this example creates a file "MCdraws_e_.dat” in the working directory
n <- 100

dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gd$y

sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)

# run the MCMC simulation and write draws of residuals to file:

sim <- MCMCsim(sampler, n.iter=500, to.file="e_")

summary (sim)

mcres <- read_draws("e_")

summary (mcres)

## End(Not run)

reg Specify a regression (fixed effects) component in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler
or generate_data. It creates an additive regression term in the model’s linear predictor. By de-
fault, the prior for the regression coefficients is improper uniform. A proper normal prior can be set
up using function pr_normal, and passed to argument prior. It should be noted that pr_normal
expects a precision matrix as input for its second argument, and that the prior variance (matrix) is
taken to be the inverse of this precision matrix, where in case the model’s family is "gaussian”
this matrix is additionally multiplied by the residual scalar variance parameter sigma_*2.

Usage

reg(
formula = ~1,

remove.redundant = FALSE,
sparse = NULL,

X = NULL,

prior = NULL,

Q0 = NULL,

bo = NULL,

constraints = NULL,

name = "",

debug = FALSE
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Arguments

formula

reg

a formula specifying the predictors to be used in the model, in the same way as
the right hand side of the formula argument of R’s 1m function. Variable names
are looked up in the data frame passed as data argument to create_sampler or
generate_data, or in environment(formula).

remove.redundant

sparse

prior

Qo

o]}

constraints

name

debug

Value

whether redundant columns should be removed from the design matrix. Default
is FALSE. But note that treatment contrasts are automatically applied to all factor
variables in formula.

whether the model matrix associated with formula should be sparse. The de-
fault is to base this on a simple heuristic.

a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

prior specification for the regression coefficients. Supported priors can be spec-
ified using functions pr_normal, pr_fixed, or pr_MLiG. The latter prior is only
available in conjunction with a gamma family sampling distribution.

prior precision matrix for the regression effects. The default is a zero matrix
corresponding to a noninformative improper prior. It can be specified as a scalar
value, as a numeric vector of appropriate length, or as a matrix object. DEP-
RECATED, please use argument prior instead, i.e. prior = pr_normal(mean
=b0.value, precision=0Q0.value).

prior mean for the regression effect. Defaults to a zero vector. It can be specified
as a scalar value or as a numeric vector of appropriate length. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b@.value,
precision =Q0@.value).

optional linear equality and/or inequality constraints imposed on the vector of
regression coefficients. Use function set_constraints to specify the constraint
matrices and right-hand sides.

the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be "reg’ with the number
of the model term attached.

if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.

Examples

data(iris)

# default: flat priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
reg(~ Petal.Length + Species, name="beta"),

data=iris
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)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary (sim)

# (weakly) informative normal priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
reg(~ Petal.Length + Species, prior=pr_normal(precision=1e-2), name="beta"),

data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary (sim)
# binary regression
sampler <- create_sampler(Species == "setosa" ~

reg(~ Sepal.Length, prior=pr_normal(precision=0.1), name="beta"),
family="binomial”, data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary (sim)
pred <- predict(sim)
str(pred)
# example with equality constrained regression effects
n <- 500
df <- data.frame(x=runif(n))
df$y <- rnorm(n, 1 + 2xdf$x)
R <- matrix(1, 2, 1)
r <-3
C <- set_constraints(R=R, r=r)
sampler <- create_sampler(y ~ reg(~ 1 + x, constraints=C, name="beta"), data=df)
sim <- MCMCsim(sampler)
summary (sim)
plot(sim, "beta")
summary (transform_dc(sim$beta, fun=function(x) crossprod_mv(R, x) - r))

residuals-fitted-values
Extract draws of fitted values or residuals from an mcdraws object

Description

For a model created with create_sampler and estimated using MCMCsim, these functions return
the posterior draws of fitted values or residuals. In the current implementation the fitted values
correspond to the linear predictor and the residuals are computed as the data vector minus the fitted
values, regardless of the model’s distribution family. For large datasets the returned object can
become very large. One may therefore select a subset of draws or chains or use mean.only=TRUE
to return a vector of posterior means only.

Usage

## S3 method for class 'mcdraws'
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fitted(
object,

residuals-fitted-values

mean.only = FALSE,

units =
chains
draws =

seq_len(n_chains(object)),
seq_len(n_draws(object)),

matrix = FALSE,
type = c("1link"”, "response"),

)

## S3 method for class 'mcdraws'

residuals(

object,

mean.only = FALSE,

units =
chains
draws =
matrix

Arguments

object

mean.only

units

chains
draws

matrix

type

Value

seq_len(n_chains(object)),
seg_len(n_draws(object)),
FALSE,

an object of class mcdraws.

if TRUE only the vector of posterior means is returned. In that case the subsequent
arguments are ignored. Default is FALSE.

the data units (by default all) for which fitted values or residuals should be com-
puted.

optionally, a selection of chains.
optionally, a selection of draws per chain.
whether a matrix should be returned instead of a dc object.

the type of fitted values: "link" for fitted values on the linear predictor scale
(the default), and "response" for fitted values on the response scale. Returned
residuals are always on the response scale.

currently not used.

Either a draws component object or a matrix with draws of fitted values or residuals. The residuals
are always on the response scale, whereas fitted values can be on the scale of the linear predictor or
the response depending on type. If mean.only=TRUE, a vector of posterior means.

Examples

ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)



sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, store.all=TRUE)
fitted(sim, mean.only=TRUE)

summary (fitted(sim))

residuals(sim, mean.only=TRUE)

summary (residuals(sim))
bayesplot::mcmc_intervals(as.matrix(subset(residuals(sim), vars=1:20)))

S Specify a smooth term component of the linear predictor

Description

This function can be used inside the formula specification of the linear predictor in create_sampler
or generate_data. The smooth term is set up by the smooth term specification function s of
package mgcev. The smooth term is usually composed of random (penalised) effects as well as a
few fixed (unpenalised) effects, not including an intercept.

Usage

s(..., unit.precision = FALSE, name = "", debug = FALSE)

Arguments

parameters passed to mgcv::s. Note that variables appearing in ... must be
present in the data frame passed to the data argument of create_sampler or
generate_data.

unit.precision to be implemented.

name the name of the model component. By default the name will be ’s’ with the
number of the model term attached. This name is used in the output of the
MCMC simulation function MCMCsim. The name is appended by ’_f’ for any
unpenalised (fixed) effects, if any, and by ’_r’ for the penalised (random) effects.

debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.
Value
An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.
References

S.N. Wood (2017). Generalized additive models: an introduction with R. Chapman and Hall/CRC.
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Examples

## Not run:

library(mgcv)

set.seed(0)

dat <- gamSim(5, n=200, scale=2)

b <- gam(y ~ x@ + s(x1) + s(x2) + s(x3), data=dat)

sampler <- create_sampler(
y ~ x0 + s(x1) + s(x2) + s(x3), data=dat
)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ <- summary(sim))
plot(
coef(b),
c(summ$regl[, "Mean"],
summ$s2_r[, "Mean”], summ$s2_f[, "Mean"],
summ$s3_r[, "Mean”"], summ$s3_f[, "Mean"],
summ$s4_r[, "Mean”], summ$s4_f[, "Mean"]
)
); abline(o, 1)
predb <- predict(b, newdata=dat[1:5, 1)
pred <- predict(sim, newdata=dat[1:5, ], type="response")
(summpred <- summary(pred))
plot(predb, summpred[, "Mean"]); abline(@, 1)

## End(Not run)

sampler_control

sampler_control Set computational options for the sampling algorithms

Description

Set computational options for the sampling algorithms

Usage

sampler_control(
add.outer.R = TRUE,
add.eps.I = FALSE,
eps = sqrt(.Machine$double.eps),
recompute.e = TRUE,
CcMVN.sampler = FALSE,
CG = NULL,
block = TRUE,
block.V = TRUE,
auto.order.block = TRUE,
chol.control = chol_control(),
max.size.cps.template = 100,
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PG.approx = TRUE,
PG.approx.m = -2L

)

Arguments

add.outer.R

add.eps.I

eps

recompute.e

CcMVN. sampler

CG

block

block.V

whether to add the outer product of a constraint matrix to the conditional poste-
rior precision matrix of coefficients sampled in a block. This is used to resolve
singularity due to intrinsic GMRF components. By default, add. outer.R=NULL,
a simple heuristic is used to decide whether to add the outer product of possibly
a submatrix of the constraint matrix.

whether to add a small positive multiple of the identity matrix to the conditional
posterior precision matrix of coefficients sampled in a block. If needed, this can
resolve singularity as an alternative to add.outer.R=TRUE. The advantage of
add.eps.I=TRUE is that a sparse conditional posterior precision matrix remains
sparse so that sampling is faster, at the cost of slightly deviating from the tar-
get posterior distribution, depending on the value of eps. If add.eps.I=TRUE
add.outer.R will be set to FALSE.

a positive scalar value, used only in case add.eps.I=TRUE. This should be a
small value to ensure that one is not deviating too much from the desired pos-
terior distribution of coefficients sampled in a block. On the other hand, if it is
chosen too small it may not resolve the singularity of the conditional posterior
precision matrix of coefficients sampled in a block.

when FALSE, residuals or linear predictors are only computed at the start of the
simulation. This may give a modest speed-up but in some cases may be less
accurate due to round-off error accumulation. Default is TRUE.

whether an extended linear system including dual variables is used for equality
constrained multivariate normal sampling. If set to TRUE this may improve the
performance of the blocked Gibbs sampler, especially in case of a large number
of equality constraints, typically (intrinsic) GMRF identifiability constraints.

use a conjugate gradient iterative algorithm instead of Cholesky updates for sam-
pling the model’s coefficients. This must be a list with possible components
max.it, stop.criterion, verbose, preconditioner and scale. See the help
for function CG_control, which can be used to specify these options. Conju-
gate gradient sampling is currently an experimental feature that can be used for
blocked Gibbs sampling but with some limitations.

if TRUE, the default, all coefficients are sampled in a single Gibbs block. If
FALSE, the coefficients of each model component are sampled separately in se-
quence. Alternatively, a list of character vectors with names of model compo-
nents can be passed to specify a grouping of model components whose coeffi-
cients should be sampled together in blocks.

if TRUE, the default, all coefficients of reg and gen components in a variance
model formula are sampled in a single block. Alternatively, a list of character
vectors with names of model components whose coefficients should be sampled
together in blocks.
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whether Gibbs blocks should be ordered automatically in such a way that those
with the most sparse design matrices come first. This way of ordering can make
Cholesky updates more efficient.

options for Cholesky decomposition, see chol_control.

maximum allowed size in MB of the sparse matrix serving as a template for the
sparse symmetric crossproduct X’QX of a dgCMatrix X, where Q is a diagonal
matrix subject to change.

whether Polya-Gamma draws for logistic binomial models are approximated by
a hybrid gamma convolution approach. If not, BayesLogit: : rpg is used, which
is exact for some values of the shape parameter.

if PG. approx=TRUE, the number of explicit gamma draws in the sum-of-gammas
representation of the Polya-Gamma distribution. The remainder (infinite) con-
volution is approximated by a single moment-matching gamma draw. Special
values are: -2L for a default choice depending on the value of the shape param-
eter balancing performance and accuracy, -1L for a moment-matching normal
approximation, and @L for a moment-matching gamma approximation.

A list with specified computational options used by various sampling functions.

D. Bates, M. Maechler, B. Bolker and S.C. Walker (2015). Fitting Linear Mixed-Effects Models
Using Ime4. Journal of Statistical Software 67(1), 1-48.

Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam (2008). Algorithm 887: CHOLMOD, su-
pernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical
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auto.order.block
chol.control
max.size.cps.template
PG.approx
PG.approx.m
Value
References
Software 35(3), 1-14.
SBC_test
Description
Simulation based calibration
Usage
SBC_test(
pars,
n.draw = 25L,

n.sim = 20L * n.draw,

burnin = 25L,
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thin = 2L,
show.progress
verbose
n.cores
cl = NULL,
seed = NULL,
export = NULL

1L,

Arguments

pars

n.draw

n.sim

burnin

thin
show.progress
verbose

n.cores

cl

seed

export

Value
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TRUE,

TRUE,

passed to create_sampler (can be all parameters except prior.only)

named list with univariate functions of the parameters to use in test. This list is
passed to argument pred of MCMCsim.

number of posterior draws to retain in posterior simulations.
number of simulation iterations.

burnin to use in posterior simulations, passed to MCMCsim.
thinning to use in posterior simulations, passed to MCMCsim.
whether a progress bar should be shown.

set to FALSE to suppress messages.

the number of cpu cores to use. Default is one, i.e. no parallel computation. If
an existing cluster cl is provided, n.cores will be set to the number of workers
in that cluster.

an existing cluster can be passed for parallel computation. If NULL and n. cores
> 1, a new cluster is created.

a random seed (integer). For parallel computation it is used to independently
seed RNG streams for all workers.

a character vector with names of objects to export to the workers. This may be
needed for parallel execution if expressions in the model formulae depend on
global variables.

A matrix with ranks.

References

M. Modrak, A.H. Moon, S. Kim, P. Buerkner, N. Huurre, K. Faltejskova, A. Gelman and A. Ve-
htari (2023). Simulation-based calibration checking for Bayesian computation: The choice of test
quantities shapes sensitivity. Bayesian Analysis, 1(1), 1-28.

Examples

## Not run:

# this example may take a long time

n <- 10L



78 set_constraints

dat <- data.frame(x=runif(n))
ranks <- SBC_test(~ reg(~ 1 + x, prior=pr_normal(mean=c(0.25, 1), precision=1), name="beta"),
family=f_gaussian(var.prior=pr_invchisq(df=1, scale=list(df=1, scale=1))),
data=dat,
pars=list(mu="betal[1]", beta_x="betal[2]", sigma="sigma_"),
n.draw=9L, n.sim=10L*20L, thin=2L, burnin=20L
)

ranks

## End(Not run)

setup_cluster Set up a cluster for parallel computing

Description
The cluster is set up for a number of workers by loading the memcesae package and setting up
independent RNG streams.

Usage

setup_cluster(n.cores = NULL, seed = NULL, export = NULL)

Arguments

n.cores the number of cpu cores to use.

seed optional random seed for reproducibility.

export a character vector with names of objects to export to the workers.
Value

An object representing the cluster.

set_constraints Set up a system of linear equality and/or inequality constraints

Description

Two-sided inequalities specified by S2, 12, u2 are currently transformed into the one-sided form
S’z >= s, combined with any directly specified constraints of this form. Some basic consistency
checks are carried out, notably regarding the dimensions of the inputs.
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set_constraints(

R = NULL,

r
S =

s = NULL,

S2
12
u2

scale

Arguments

R

r

S2

12
u2

scale

Value

equality constraint matrix each column of which corresponds to a constraint.

right-hand side vector for equality constraints R’z = r, where R’ denotes the
transpose of R.

inequality constraint matrix each column of which corresponds to an inequality
constraint.

rhs vector for inequality constraints S’z >= s, where S’ denotes the transpose
of S.

inequality constraint matrix each column of which corresponds to a two-sided
inequality constraint.

vector of lower bounds for two-sided inequality constraints Iy <= Shx <= us.
vector of upper bounds for two-sided inequality constraints lo <= Sha <= us.

whether to scale the columns of all constraint matrices to unit Euclidean norm.

An environment with constraint matrices and vectors and a method to check whether a numeric
vector satisfies all constraints. Returns NULL in case of no constraints.

set_MH

Set options for Metropolis-Hastings sampling

Description

Set options for Metropolis-Hastings sampling

Usage

set_MH(type = "RWTN", scale = 0.025, adaptive = NULL, ...)
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Arguments

type

scale

adapti

Value

ve

sim_marg_var

a character string defining the proposal distribution. Among supported types
are random walk proposals "RWTN", "RWN" and "RWLN" with truncated nor-
mal, normal and log-normal proposal distributions. Other choices correspond
to independence proposals: "TN" for a truncated normal proposal, "unif" for a
uniform proposal, and "beta" and "gamma" for specific beta and gamma pro-
posal distributions. Not all types are supported for a particular parameter; see
the specific help of the function defining the model component of interest to see
which proposal distribution types are supported.

in case of the "RWTN" proposal, the (initial) scale of the distribution.

in case of the random walk "RWTN" or "RWN" proposals, whether the scale
parameter is adapted based on acceptance rates during the burnin phase of the
MCMC simulation. The default is TRUE in these cases.

additional parameters depending on the proposal type. Supported arguments
are '’ and u’ to pass the lower and upper limits of uniform or random walk
truncated normal proposals (defaults 1=0 and u=1), and ’a’ and ’b’ to pass the
shape parameters of a beta proposal distribution (defaults a=b =0.5).

An environment with variables and methods for Metropolis-Hastings sampling, for use by other

package functions.

sim_marg_var

Compute a Monte Carlo estimate of the marginal variances of a
(I)\GMRF

Description

Estimate marginal variances of a (I)GMREF prior defined in terms of a sparse precision matrix and
possibly a set of equality constraints. The marginal variances might be used to rescale the precision
matrix such that a default prior for a corresponding variance component is more appropriate.

Usage

sim_marg_var(

D,
Q
R
r
epsi
eps?
nSim

NULL,
NULL,
NULL,

1e-09,
1e-09,
100L
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Arguments
D
Q

eps1
eps2

nSim

Value
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factor of precision matrix Q such that Q=D’D.
precision matrix.
equality restriction matrix.

rhs vector for equality constraints R’z = r, where R’ denotes the transpose of
R.

passed to create_cMVN_sampler.
passed to create_cMVN_sampler.

number of Monte Carlo samples used to estimate the marginal variances.

A vector of Monte Carlo estimates of the marginal variances.

References

S.H. Sorbye and H. Rue (2014). Scaling intrinsic Gaussian Markov random field priors in spatial
modelling. Spatial Statistics, 8, 39-51.

stop_cluster

Stop a cluster

Description

Stop a cluster set up by setup_cluster.

Usage

stop_cluster(cl)

Arguments

cl

Value

NULL.

the cluster object.
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subset.dc Select a subset of chains, samples and parameters from a draws com-
ponent (dc) object

Description

Select a subset of chains, samples and parameters from a draws component (dc) object

Usage
## S3 method for class 'dc'
subset(x, chains = NULL, draws = NULL, vars = NULL, ...)
Arguments
X a draws component (dc) object.
chains an integer vector indicating which chains to select.
draws an integer vector indicating which samples to select.
vars an integer vector indicating which parameters to select.
not used.
Value

The selected part of the draws component as an object of class dc.

Examples

n <- 300

dat <- data.frame(x=runif(n), f=as.factor(sample(1:7, n, replace=TRUE)))

gd <- generate_data(~ reg(~ x + f, prior=pr_normal(precision=1), name="beta"), data=dat)
dat$y <- gds$y

sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)

sim <- MCMCsim(sampler)

(summary(sim$beta))

(summary (subset(sim$beta, chains=1)))

(summary (subset(sim$beta, chains=1, draws=sample(1:n_draws(sim), 100))))

(summary (subset(sim$beta, vars=1:2)))
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summary .dc Summarise a draws component (dc) object

Description

Summarise a draws component (dc) object

Usage

## S3 method for class 'dc'
summary (

object,

probs = c(0.05, 0.5, 0.95),

na.rm = FALSE,

time = NULL,

abbr = FALSE,

batch.size = 100L,

)
Arguments
object an object of class dc.
probs vector of probabilities at which to evaluate quantiles.
na.rm whether to remove NA/NaN draws in computing the summaries.
time MCMC computation time; if specified the effective sample size per unit of time
is returned in an extra column labelled ’efficiency’.
abbr if TRUE abbreviate the labels in the output.
batch.size number of parameter columns to process simultaneously. A larger batch size
may speed things up a little, but if an out of memory error occurs it may be a
good idea to use a smaller number and try again. The default is 100.
arguments passed to n_eff.
Value

A matrix with summaries of class dc_summary.

Examples

ex <- mcmcsae_example()

sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)

summary (sim$u)
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summary.mcdra ws

summary .mcdraws

Summarise an mcdraws object

Description

Summarise an mcdraws object

Usage

## S3 method for class 'mcdraws'

summary (

object,

vnames = NULL,

probs = c(0.05, 0.5, 0.95),
na.rm = FALSE,

efficiency = FALSE,

abbr = FALSE,

batch.size = 100L,

)
Arguments
object an object of class mcdraws, typically generated by function MCMCsim.
vhames optional character vector to select a subset of parameters.
probs vector of probabilities at which to evaluate quantiles.
na.rm whether to remove NA/NaN draws in computing the summaries.
efficiency if TRUE the effective sample size per second of computation time is returned as
well.
abbr if TRUE abbreviate the labels in the output.
batch.size number of parameter columns to process simultaneously for vector parameters.
A larger batch size may speed things up a little, but if an out of memory error
occurs it may be a good idea to use a smaller number and try again. The default
is 100.
arguments passed to n_eff.
Value

A list of class mcdraws_summary summarizing object.

Examples

ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
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summary (sim)
par_names(sim)
summary(sim, c("beta”, "v_sigma”, "u_sigma"))

TMVN-methods Functions for specifying the method and corresponding options for
sampling from a possibly truncated and degenerate multivariate nor-
mal distribution

Description

These functions are intended for use in the method argument of create_TMVN_sampler.

Usage

m_direct(use.cholV = NULL)
m_Gibbs(slice = FALSE, eps = sqrt(.Machine$double.eps), diagnostic = FALSE)
m_HMC(Tsim = pi/2, max.events = .Machine$integer.max, diagnostic = FALSE)

m_HMCZigZag(
Tsim = 1,
scale = 1,
prec.eq = NULL,
diagnostic = FALSE,
max.events = .Machine$integer.max,
adapt = FALSE

)

m_softTMVN(
sharpness = 100,
useV = FALSE,
CG = NULL,
PG.approx = TRUE,
PG.approx.m = -2L

)
Arguments
use.cholV whether to use the Cholesky factor of the variance instead of precision matrix
for sampling. If NULL the choice is made based on a simple heuristic.
slice if TRUE, a Gibbs within slice sampler is used.

eps small positive value to control numerical robustness of the algorithm.
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diagnostic

Tsim

max.events

scale

prec.eq

adapt

sharpness

useV

CG

PG.approx
PG.approx.m

Value

transform_dc

whether information about violations of inequalities, bounces off inequality walls
(for ' HMC’ and "THMCZigZag’ methods) or gradient events (for ' HMCZigZag’)
is printed to the screen.

the duration of a Hamiltonian Monte Carlo simulated particle trajectory. This
can be specified as either a single positive numeric value for a fixed simulation
time, or as a function that is applied in each MCMC iteration to generates a
simulation time.

maximum number of events (reflections off inequality walls and for method
"HMCZigZag’ also gradient events). Default is unlimited. Specifying a finite
number may speed up the sampling but may also result in a biased sampling
algorithm.

vector of Laplace scale parameters for method "HMCZigZag’. It must be a
positive numeric vector of length equal to one or the number of variables.

positive numeric vector of length 1 or the number of equality restrictions, to
control the precision by which the equality restrictions are imposed; the larger
prec.eq the more precisely they will be imposed.

experimental feature: if TRUE the rate parameter will be adapted in an attempt to
make the sampling algorithm more efficient.

for method ’soft TMVN’, the sharpness of the soft inequalities; the larger the
better the approximation of exact inequalities. It must be a positive numeric
vector of length one or the number of inequality restrictions.

for method ’soft TMVN’ whether to base computations on variance instead of
precision matrices.

use a conjugate gradient iterative algorithm instead of Cholesky updates for sam-
pling the model’s coefficients. This must be a list with possible components
max.it, stop.criterion, verbose. See the help for function CG_control,
which can be used to specify these options. Currently the preconditioner and
scale options cannot be set for this use case.

see sampler_control.

see sampler_control.

A method object, for internal use only.

transform_dc

Transform one or more draws component objects into a new one by
applying a function

Description

Transform one or more draws component objects into a new one by applying a function
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Usage
transform_dc(..., fun, to.matrix = FALSE, labels = NULL)
Arguments
draws component object(s) of class dc.
fun a function to apply. This function should take as many arguments as there are
input objects. The arguments can be arbitrarily named, but they are assumed to
be in the same order as the input objects. The function should return a vector.
to.matrix if TRUE the output is in matrix format; otherwise it is a draws component object.
labels optional labels for the output object.
Value

Either a matrix or a draws component object.

Examples

ex <- mcmcsae_example(n=50)

sampler <- create_sampler(ex$model, data=ex$dat)

sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
summary (sim$v_sigma)

summary (transform_dc(sim$v_sigma, fun=function(x) x*2))

summary (transform_dc(sim$u, sim$u_sigma, fun=function(x1, x2) abs(x1)/x2))

vfac Create a model component object for a variance factor component in
the variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula.V argument to create_sampler
or generate_data.

Usage
vfac(
factor = "local_",
prior = pr_invchisq(df = 1, scale = 1),
name = "",

debug = FALSE
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Arguments

factor The name of a factor variable. The name "local_" has a special meaning,
and assigns a different variance scale parameter to each data unit. In case of
inverse chi-squared priors this implies that the marginal sampling distribution is
a t distribution. In case of exponential priors the marginal sampling distribution
is a Laplace or double exponential distribution.

prior the prior assigned to the variance factors. Currently the prior can be inverse
chi-squared or exponential, specified by a call to pr_invchisq or pr_exp, re-
spectively. Alternatively, the variance factors can be set to fixed values using
pr_fixed. The default priors are inverse chi-squared with 1 degree of freedom.
See the help pages of the prior specification functions for details on how to set
non-default priors.

name The name of the variance model component. This name is used in the output
of the MCMC simulation function MCMCsim. By default the name will be vfac’
with the number of the variance model term attached.

debug If TRUE a breakpoint is set at the beginning of the posterior draw function asso-
ciated with this model component. Mainly intended for developers.

Value

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.

vreg Create a model component object for a regression component in the
variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula.V argument to create_sampler
or generate_data.

Usage

vreg(
formula = NULL,
remove.redundant = FALSE,
sparse = NULL,
X = NULL,
prior = NULL,
Q0 = NULL,
bo = NULL,
name = ""
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Arguments

formula
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a formula for the regression effects explaining the log-variance. Variable names
are looked up in the data frame passed as data argument to create_sampler or
generate_data, or in environment (formula).

remove.redundant

sparse

prior

Qo

bo

name

Value

whether redundant columns should be removed from the design matrix. Default
is FALSE.

whether the model matrix associated with formula should be sparse. The de-
fault is determined by a simple heuristic based on storage size.

a (possibly sparse) design matrix can be specified directly, as an alternative to
the creation of one based on formula. If X is specified formula is ignored.

prior specification for the coefficients. A normal prior can be specified using
function pr_normal. Alternatively, fixed values for the coefficients can be spec-
ified using pr_fixed, e.g. to generate data with given coefficients.

prior precision matrix for the regression effects. The default is a zero matrix cor-
responding to a noninformative improper prior. DEPRECATED, please use ar-
gument prior instead, i.e. prior = pr_normal(mean =b@.value, precision
=Q0.value).

prior mean for the regression effect. Defaults to a zero vector. DEPRECATED,
please use argument prior instead, i.e. prior = pr_normal(mean = b@.value,
precision =Q@.value).

the name of the model component. This name is used in the output of the MCMC
simulation function MCMCsim. By default the name will be "vreg’ with the num-
ber of the variance model term attached.

An object with precomputed quantities and functions for sampling from prior or conditional poste-
rior distributions for this model component, intended for internal use by other package functions.

References

E. Cepeda and D. Gamerman (2000). Bayesian modeling of variance heterogeneity in normal re-
gression models. Brazilian Journal of Probability and Statistics, 207-221.

T.I. Lin and W.L. Wang (2011). Bayesian inference in joint modelling of location and scale param-
eters of the t distribution for longitudinal data. Journal of Statistical Planning and Inference 141(4),

1543-1553.

weights.mcdraws

Extract weights from an mcdraws object

Description

Extract weights from an mcdraws object
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Usage
## S3 method for class 'mcdraws’
weights(object, ...)

Arguments
object an object of class mcdraws.

currently not used.

Value

A vector with (simulation means of) weights.

Examples

# first create a population data frame

N <- 1000 # population size

pop <- data.frame(x=rnorm(N), area=factor(sample(1:10, N, replace=TRUE)))

pop$y <- 1 + 2xpop$x + seq(-1, to=1, length.out=10)[pop$areal] + 0@.5*xrnorm(N)

pop$sample <- FALSE

pop$sample[sample(seq_len(N), 100)] <- TRUE

# a simple linear regression model:

sampler <- create_sampler(
y ~ reg(~ x, name="beta"),
linpred=1list(beta=rowsum(model.matrix(~ x, pop), pop$area)), compute.weights=TRUE,
data=pop[pop$sample, 1]

)

sim <- MCMCsim(sampler)

(summary(sim))

str(weights(sim))

crossprod_mv(weights(sim), pop$y[pop$sample])

summary (sim$linpred_)

# a multilevel model:

sampler <- create_sampler(
y ~ reg(~ x, name="beta") + gen(factor = ~ area, name="v"),
linpred=list(beta=rowsum(model.matrix(~ x, pop), pop$area), v=diag(10)), compute.weights=TRUE,
data=pop[pop$sample, 1]

)

sim <- MCMCsim(sampler)

(summary(sim))

str(weights(sim))

crossprod_mv(weights(sim), pop$yl[pop$sample])

summary(sim$linpred_)
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correlation, 11, 28

create_cMVN_sampler, 14, 81
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37,41-43,45, 46, 69-71, 73,77,
87-89

create_TMVN_sampler, 18, 85

crossprod_mv (matrix-vector), 36

custom(correlation), 11

dbarts, 6
density, 54
draws_array, 40

f_binomial, 716, 21
f_gamma, 16, 22, 24
f_gaussian, 16, 17,23
f_gaussian_gamma, 16, 24
f_multinomial, 16, 25
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f_negbinomial, 76, 25

f_poisson, 16, 27

fitted.mcdraws
(residuals-fitted-values), 71

gen, 11,15,17,23, 24,27, 33, 34

gen_control, 30, 32

generate_data, 6, 17, 21-25, 27, 28, 31, 34,
45, 46, 69, 70, 73, 87-89

get_draw, 33

get_means (posterior-moments), 57

get_sds (posterior-moments), 57

glreg, 30, 33

GMRF_structure, 29, 34

iid(correlation), 11

labels, 35
labels<- (labels), 35
loo, 49

loo.mcdraws
(model-information-criteria),
48

m_direct (TMVN-methods), 85

m_Gibbs (TMVN-methods), 85

m_HMC (TMVN-methods), 85

m_HMCZigZag (TMVN-methods), 85

m_sof tTMVN (TMVN-methods), 85

matrix-vector, 36

maximize_log_lh_p, 37

mc_offset, 45

MCMC-diagnostics, 38

MCMC-object-conversion, 39

mcme. list, 39, 40

mcmcsae (mcmcsae-package), 4

mcmcsae-package, 4

mcmcsae_example, 41

MCMCsim, 4, 6, 15, 17, 30, 34,42, 45, 47, 48,
58,61,68,70,71,73,77, 84,88, 89
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mec, 15, 17,46
model-information-criteria, 48
model_matrix, 50

n_chains (n_chains-n_draws-n_vars), 52
n_chains-n_draws-n_vars, 52

n_draws (n_chains-n_draws-n_vars), 52
n_eff, 83, 84

n_eff (MCMC-diagnostics), 38

n_vars (n_chains-n_draws-n_vars), 52
negbin_control, 26, 51

offset, 17
optim, 37

par_names, 53

plot.dc, 53

plot.mcdraws, 54

plot_coef, 55
poisson_control, 27, 56
poly2nb, 11, 12
posterior-moments, 57
pr_beta, 62
pr_exp, 16, 22, 23, 29, 62, 88
pr_fixed, 16, 22, 23, 26, 35, 63, 70, 88, 89
pr_gamma, 22, 63
pr_gig, 16, 23, 26, 64
pr_invchisq, 16, 23, 26, 29, 64, 88
pr_invwishart, 29, 65
pr_MLiG, 23, 24, 29, 30, 66, 70
pr_normal, 29, 34, 46, 47, 67, 69, 70, 89
pr_truncnormal, 67
pr_unif, 35, 68
predict.mcdraws, 58
print.dc_summary, 60
print.mcdraws_summary, 61

R_hat (MCMC-diagnostics), 38

read_draws, 68

reg, 15,17,23, 24, 69

residuals-fitted-values, 71

residuals.mcdraws
(residuals-fitted-values), 71

RW1 (correlation), 11

RW2 (correlation), 11

s, 73,73
sampler_control, 17, 74, 86
SBC_test, 76
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season (correlation), 11
set_constraints, 19, 29,47, 70, 78
set_MH, 12, 22, 35,79
setup_cluster, 78, 81
sim_marg_var, 80

spatial (correlation), 11
splineDesign, 11-13
splines (correlation), 11
st_read, /1
stop_cluster, 81
subset.dc, 82
summary.dc, 83

summary .mcdraws, 61, 84

TMVN-methods, 85

to_draws_array
(MCMC-object-conversion), 39

to_mcmc (MCMC-object-conversion), 39

transform_dc, 86

vfac, 16, 17,23, 24, 87
vreg, 16, 17,23, 24, 88

waic, 49

waic.mcdraws
(model-information-criteria),
48

weights.mcdraws, 89
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