Package ‘mapycusmaximus’
February 6, 2026

Title Focus-Glue-Context Fisheye Transformations for Spatial
Visualization

Version 1.0.7

Description Focus-glue-context (FGC) fisheye transformations to two-dimensional coordi-
nates and spatial vector geometries. Implements a smooth radial distortion that enlarges a fo-
cal region, transitions through a glue ring, and preserves outside context. Methods build on gen-
eralized fisheye views and focus+context mapping. For more details see Fur-
nas (1986) <doi:10.1145/22339.22342>, Furnas (2006) <doi:10.1145/1124772.1124921> and Ya-
mamoto et al. (2009) <doi:10.1145/1653771.1653788>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

Imports ggplot2, sf

Suggests testthat (>= 3.0.0), dplyr, knitr, rmarkdown, shiny, tidyr,
purrr, ggthemes

VignetteBuilder knitr
Config/testthat/edition 3
Depends R (>=3.6)
LazyData true

LazyDataCompression xz
URL https://alex-nguyen-vn.github.io/mapycusmaximus/

BugReports https://github.com/Alex-Nguyen-VN/mapycusmaximus/issues
NeedsCompilation no

Author Alex Nguyen [aut, cre, cph],
Dianne Cook [aut] (ORCID: <https://orcid.org/0000-0002-3813-7155>),
Michael Lydeamore [aut] (ORCID:
<https://orcid.org/0000-0001-6515-827X>)

Maintainer Alex Nguyen <thanhcuong10091992@gmail.com>
Repository CRAN
Date/Publication 2026-02-06 09:20:02 UTC

https://doi.org/10.1145/22339.22342
https://doi.org/10.1145/1124772.1124921
https://doi.org/10.1145/1653771.1653788
https://alex-nguyen-vn.github.io/mapycusmaximus/
https://github.com/Alex-Nguyen-VN/mapycusmaximus/issues
https://orcid.org/0000-0002-3813-7155
https://orcid.org/0000-0001-6515-827X

2 classity_zones

Contents
classify_zones L e 2
conn_fish 3
create_test_grid L 4
fisheye_fgc 5
plot_fisheye_fgc e 6
sf_fisheye L 7
shiny fisheye 10
st_transform_CuStom e e, 12
VIC o o e 14
vic_fish . . . e 15

Index 16

classify_zones Classify Coordinates into Focus, Glue, or Context Zones
Description

Assigns each point to one of three zones based on its radial distance from a specified center:

* focus: inside the inner radius r_in
* glue: between r_in and r_out

e context: outside r_out

This is a helper for visualizing and analyzing fisheye transformations using the Focus—Glue—Context
(FGC) model.

Usage

classify_zones(coords, cx = @, cy = @, r_in = 0.34, r_out = 0.5)

Arguments
coords A numeric matrix or data frame with at least two columns representing (x, y)
coordinates.
cX, cy Numeric. The x and y coordinates of the fisheye center (default = 0, 0).
r_in Numeric. Inner radius of the focus zone (default = 0.34).
r_out Numeric. Outer radius of the glue zone (default = 0.5).
Value

n on

A character vector of the same length as nrow(coords), with values "focus”, "glue”, or "context”.

See Also
fisheye_fgc(), plot_fisheye_fgc()

conn_fish 3

Examples

Simple example
pts <- matrix(c(@, 0, 0.2, 0.2, 0.6, 0.6), ncol = 2, byrow = TRUE)
classify_zones(pts, r_in = 0.3, r_out = 0.5)

#> "focus” "glue” "context”
conn_fish Fisheye-Distorted Hospital-RACF Connections (sf)
Description

An example LINESTRING layer showing hospital-RACEF transfer routes after applying a Focus—Glue-Context
(FGC) fisheye warp. It demonstrates how line geometries can be spatially distorted in sync with
polygon layers to visualize flow patterns within the magnified focus zone.

Usage

conn_fish

Format
An sf object with:

weight Numeric, representing transfer magnitude or connection strength.

geometry LINESTRING geometries in projected CRS (EPSG:3111).

Details
Built from hospital-RACF coordinate pairs in data-raw/transfers_coded. csv using:
1. connection creation via make_connections() to form LINESTRINGs,

2. projection to VicGrid94 (EPSG:3111),

3. distance-based filtering to keep only sources within r_in =0.34 of the focus point (cx =
145.0, cy = -37.8),

4. fisheye transformation using sf_fisheye() withr_in = 0.428, r_out = 0.429, and zoom_factor
=1.

The resulting object aligns spatially with vic_fish, allowing co-visualization of regional flow in-
tensity within the distorted focus region.
Source

Prepared in data-raw/gen-data.R from transfers_coded.csv and the make_connections()
function.

4 create_test_grid

See Also

sf_fisheye(), vic_fish

Examples

library(sf)
plot(st_geometry(vic_fish), col = "grey95"”, border = "grey70")
plot(st_geometry(conn_fish), add = TRUE, col = "black”, lwd = 1)

create_test_grid Create a Regular Test Grid of Coordinates

Description

Generates a 2D grid of equally spaced points, useful for testing fisheye transformations and other
spatial warping functions.

Usage

create_test_grid(range = c(-1, 1), spacing = 0.1)

Arguments
range Numeric vector of length 2 giving the x and y limits of the grid (default=c (-1,
).
spacing Numeric. Distance between adjacent grid points along each axis (default=9.1).
Value

A numeric matrix with two columns (x, y) containing the coordinates of the grid points.

See Also

plot_fisheye_fgc(), fisheye_fgc()

Examples

Create a grid from -1 to 1 with spacing 0.25
grid <- create_test_grid(range = c(-1, 1), spacing = 0.25)
head(grid)

fisheye_fgc

fisheye_fgc

Apply Focus—Glue—Context Fisheye Transformation

Description

Transforms 2D coordinates using a Focus—Glue-Context (FGC) fisheye transformation. The
function expands points inside a focus region, compresses points in a glue region, and leaves the
surrounding context unchanged. Optionally, a rotational "revolution" can be added to the glue
region to produce a swirling effect.

Usage

fisheye_fgc(
coords,
cx =0,
cy =0,
r_in = 0.34,
r_out = 0.5,
zoom_factor

1.5,

squeeze_factor = 0.3,
method = "expand”,
revolution = @
)
Arguments
coords A matrix or data frame with at least two columns representing x and y coordi-
nates.
CX, Cy Numeric. The x and y coordinates of the fisheye center (default = 0, 0).
r_in Numeric. Radius of the focus zone (default = 0.34).
r_out Numeric. Radius of the glue zone boundary (default = 0.5).

zoom_factor

squeeze_factor

method

revolution

Details

Numeric. Expansion factor applied within the focus zone (default = 1.5).

Numeric in (0,1]. Compression factor applied within the glue zone (smaller
values = stronger compression, default = 0.3).

Character. "expand" or "outward" (default = "expand").

Numeric. Optional rotation factor applied in the glue zone. Positive values
rotate counter-clockwise, negative values clockwise (default = 0.0).

This function operates in three radial zones around a chosen center:

* Focus zone (r <= r_in): expands distances from the center using zoom_factor, but does not
exceed the r_in boundary.

6 plot_fisheye_fgc

* Glue zone (r_in < r <=r_out): compresses distances using a power-law defined by squeeze_factor,
then remaps them to smoothly connect focus and context zones.

* Context zone (r > r_out): coordinates remain unchanged.

Optionally, points in the glue zone can be rotated (revolution) to emphasize continuity.

Value

A numeric matrix with two columns (x_new, y_new) of transformed coordinates. Additional at-
tributes:

* "zones": character vector classifying each point as "focus”, "glue”, or "context”.

* "original_radius": numeric vector of original radial distances.

e "new_radius"”: numeric vector of transformed radial distances.

Examples

Create a set of example coordinates
grid <- create_test_grid(range = c(-1, 1), spacing = 0.1)

Apply FGC fisheye with expansion and compression
transformed <- fisheye_fgc(grid, r_in =0.34, r_out = 0.5, zoom_factor = 1.3, squeeze_factor = 0.5)

Plot original vs transformed
plot_fisheye_fgc(grid, transformed, r_in = 0.34, r_out = 0.5)

plot_fisheye_fgc Visualize Focus—Glue—Context (FGC) Fisheye Transformation

Description

Creates a side-by-side scatterplot comparing the original and transformed coordinates of a dataset
under the Focus—Glue—Context fisheye mapping. Points are colored according to whether they fall
in the focus, glue, or context zones, and boundary circles are drawn for clarity.

Usage

plot_fisheye_fgc(
original_coords,
transformed_coords,

cx = 0,
cy =0,
r_in = 0.34,
r_out = 0.5

sf_fisheye 7

Arguments

original_coords
A matrix or data frame with at least two columns representing the original
(x, y) coordinates.

transformed_coords
A matrix or data frame with the transformed (x, y) coordinates (same number
of rows as original_coords).

cx, cy Numeric. The x and y coordinates of the fisheye center (default = 0, 0).
r_in Numeric. Radius of the inner focus boundary (default = 0.34).
r_out Numeric. Radius of the outer glue boundary (default = 0.5).

Value

A ggplot2 object showing original vs transformed coordinates, colored by zone, with boundary
circles overlaid.

See Also

create_test_grid(), fisheye_fgc()

Examples

library(ggplot2)

Generate test grid and apply fisheye
grid <- create_test_grid(range = c(-1, 1), spacing = 0.1)
warped <- fisheye_fgc(grid, r_in = 0.4, r_out = 0.7)

Visualize transformation
plot_fisheye_fgc(grid, warped, r_in = 0.4, r_out = 0.7)

sf_fisheye Radial fisheye warp for sf/sfc objects (auto-CRS + flexible centers)

Description

sf_fisheye() applies a focus—glue—context fisheye to vector data: it (1) ensures a sensible pro-
jected working CRS, (2) normalizes coordinates around a chosen center, (3) calls fisheye_fgc()
to warp radii, (4) denormalizes back to map units, and (5) restores the original CRS. Inside the
focus ring (r_in) features enlarge; across the glue ring (r_out) they transition smoothly; outside,
they stay nearly unchanged.

8 sf_fisheye

Usage

sf_fisheye(
sf_obj,
center = NULL,
center_crs = NULL,
normalized_center = FALSE,
cx = NULL,
cy = NULL,
r_in = 0.34,
r_out = 0.5,
zoom_factor = 1.5,
squeeze_factor = .35,
method = "expand”,
revolution = 0,
target_crs = NULL,
preserve_aspect = TRUE

)
Arguments
sf_obj An sf or sfc object. Supports POINT, LINESTRING, POLYGON, and MULTIPOLYGON.
Empty geometries are removed before processing.
center Flexible center specification (see Center selection):
* numeric length-2 pair interpreted via center_crs or by lon/lat heuristic, or
as map units if not lon/lat;
* any sf/sfc geometry, from which a centroid is derived;
* normalized [—1, 1] pair when normalized_center = TRUE.
center_crs Optional CRS for a numeric center (e.g., "EPSG:4326"). Ignored if center is

an sf/sfc object (its own CRS is used).
normalized_center
Logical. If TRUE, center is treated as a normalized [—1, 1] coordinate around

the bbox midpoint.
cx, cy Optional center in working CRS map units (legacy path, ignored when center
is provided).
r_in, r_out Numeric radii (in normalized units) defining focus and glue boundaries; must
satisfy r_out > r_in.
zoom_factor Numeric (> 1 to enlarge). Focus magnification passed to fisheye_fgc().
squeeze_factor Numeric in [0, 1]. Glue-zone compression strength passed to fisheye_fgc().
method Character; name understood by fisheye_fgc() (default "expand”).
revolution Numeric (radians); optional angular twist for glue zone, passed to fisheye_fgc().
target_crs Optional working CRS (anything accepted by sf: :st_crs() /sf::st_transform()).

If NULL, a projected CRS is auto-selected when the input is lon/lat; otherwise the
input CRS is used.

preserve_aspect
Logical. If TRUE (default), use uniform scaling; if FALSE, scale axes indepen-
dently (may stretch shapes).

sf_fisheye 9

Details

CRS handling. If target_crs is NULL and the input is geographic (lon/lat), a projected working
CRS is chosen from the layer’s centroid:
* Victoria, AU region (approximate 140-150°E, 40-30°S): EPSG:7855 (GDA2020 / MGASS).
¢ Otherwise UTM: EPSG:326## (north) or EPSG:327## (south).

You may override with target_crs. The original CRS is restored on return.
Center selection. The fisheye center can be supplied in multiple ways:
* center =c(lon, lat), with center_crs = "EPSG:4326" (recommended for WGS84) or an-
other CRS string/object.
* center = c(x, y) already in working CRS map units (meters).

e center as any sf/sfc geometry (POINT/LINE/POLYGON/etc.): its centroid of the com-
bined geometry is used, then transformed to the working CRS.

* center = c(cx, cy) as normalized coordinates in [—1, 1] when normalized_center = TRUE
(relative to the bbox midpoint and scale used for normalization).

* Legacy cx, cy (map units) are still accepted and used only when center is not supplied.
Normalization. Let bbox half-width/height be sx, sy. With preserve_aspect = TRUE (default),
a uniform scale s = max(sx, sy) maps (z,y) — ((x — cx)/s, (y — cy)/s), so r_in/r_out (e.g.,

0.34/0.5) are interpreted in a unit-like space. If preserve_aspect = FALSE, X and Y are indepen-
dently scaled by sx and sy.

Implementation notes. Geometry coordinates are transformed by st_transform_custom() which
safely re-closes polygon rings and drops Z/M. The radial warp itself is delegated to fisheye_fgc()
(which is not modified).

The transformation may introduce self-intersections or other topology issues due to geometric warp-
ing.
Value

An object of the same top-level class as sf_obj (sf or sfc), with geometry coordinates warped by
the fisheye and the original CRS restored.

See Also

sf::st_transform(), sf::st_is_longlat(),sf::st_crs(), sf::st_coordinates(), st_transform_custom(),
fisheye_fgc()

Examples

library(sf)

Toy polygon in a projected CRS

poly <- st_sfc(st_polygon(list(rbind(
c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)

))), crs = 3857)

10 shiny_fisheye

Default center (bbox midpoint), gentle magnification
outl <- sf_fisheye(poly, r_in = 0.3, r_out = 0.6,
zoom_factor = 1.5, squeeze_factor = 0.35)

Explicit map-unit center, stronger focus
out2 <- sf_fisheye(poly, cx = 0.5, cy = 0.5,
r_in = 0.25, r_out = 0.55,
zoom_factor = 2.0, squeeze_factor = 0.25)

Lon/lat point (auto-project to UTM/MGA), then fisheye around CBD (WGS84)
pt_11 <- st_sfc(st_point(c(144.9631, -37.8136)), crs = 4326) # Melbourne CBD
out3d <- sf_fisheye(pt_11, r_in = 0.2, r_out = 0.5)

Center supplied as an sf polygon: centroid is used as the warp center
out4 <- sf_fisheye(poly, center = poly)

shiny_fisheye Launch Interactive Fisheye Lens Explorer

Description

Launches an interactive Shiny application for exploring Focus—Glue—Context (FGC) fisheye lens
transformations on geographic data. The app provides real-time lens positioning, adjustable distor-
tion parameters, and side-by-side comparison of transformed and original views.

The application demonstrates fisheye effects on Victoria, Australia Local Government Areas (LGAs)

with a network of healthcare facilities and aged care connections. Users can drag the lens to any

position and adjust parameters without server-side re-rendering for smooth, responsive interaction.
Usage

shiny_fisheye(...)

Arguments
Additional arguments passed to shiny: : runApp(). Common options include:
* launch.browser: Logical or function to handle app launch (default = TRUE)
* port: Integer port number (default = random available port)
¢ host: Character host IP address (default = "127.0.0.1")
* display.mode: Character display mode, "auto”, "normal”, or "showcase”
Details
Features:

* Interactive lens dragging: Click and drag anywhere on the map to reposition the fisheye
lens in real-time

shiny_fisheye 11

e Parameter controls: Adjust inner radius (focus), outer radius (glue), zoom factor, and
squeeze factor

¢ Facility sampling: Randomly sample healthcare facilities and residential aged care facilities
(RACFs) with adjustable sample size

 Transfer visualization: Toggle display of patient transfer connections between facilities

* Side-by-side comparison: Compare fisheye-transformed and original static views

Requirements:
The Shiny app requires the following suggested packages:
e shiny
e tidyr
e dplyr
e purrr
* ggthemes

If any are missing, install with:
install.packages(c("shiny”, "tidyr"”, "dplyr"”, "purrr”, "ggthemes"))

Implementation Notes:

The app uses client-side JavaScript for smooth lens dragging without server round-trips. Fisheye
transformations match the mathematical implementation in fisheye_fgc() and sf_fisheye(),
applied to polygons, lines, and points in real-time using SVG rendering.

Value

Invisible NULL. The function is called for its side effect of launching the Shiny application. The R
session will be blocked until the app is stopped (press Escape or close the browser window).

See Also

fisheye_fgc() for the core transformation function

sf_fisheye() for transforming spatial geometries

plot_fisheye_fgc() for static visualizations
* shiny: :runApp() for additional launch options

Examples

Not run:
Launch the app with default settings
shiny_fisheye()

Launch in browser on specific port
shiny_fisheye(launch.browser = TRUE, port = 8080)

Launch in RStudio Viewer pane
shiny_fisheye(launch.browser = rstudioapi::viewer)

End(Not run)

12 st_transform_custom

st_transform_custom Apply a custom coordinate transform to an sf/sfc object
(POINT/LINESTRING/POLYGON/MULTIPOLYGON)

Description

st_transform_custom() walks through each geometry in an sf/sfc object, extracts its XY co-
ordinates, applies a user-supplied transformation function to those coordinates, and rebuilds the
geometry. It preserves the input CRS on the resulting sfc column. Polygon rings are re-closed after
transformation so the first and last vertex match.

Usage

st_transform_custom(sf_obj, transform_fun, args)

Arguments

sf_obj An object of class sf or sfc. Supported geometry types: POINT, LINESTRING,
POLYGON, and MULTIPOLYGON.

transform_fun A function that accepts a numeric matrix of coordinates with two columns (X, Y)
and returns a transformed numeric matrix with the same number of rows and

two columns. For example: function(coords, ...) cbind(f(coords[,1],
...), g(coords[, 27, ...)).
args A named list of additional arguments to pass to transform_fun. These are ap-

pended after the coords matrix via do.call(), i.e. do.call(transform_fun,
c(list(coords), args)).

Details

For POLYGON/MULTIPOLYGON, the function uses the ring indices returned by sf: : st_coordinates()
(L1 for rings and L2 for parts) to transform each ring independently, and then ensures each ring is
explicitly closed (last vertex equals first vertex).

Error handling is per-geometry: if a geometry fails to transform, a warning is emitted and an empty
geometry of the same "polygonal family" is returned to keep list lengths consistent.

The function does not modify or interpret the CRS numerically; it simply preserves the CRS at-
tribute on the output sfc. If your transformation assumes metres (e.g., radial warps), ensure the
input is in an appropriate projected CRS before calling this function.

Value

An object of the same top-level class as sf_obj (sf or sfc), with the same column structure (if sf)
and the same CRS as the input. Geometry coordinates are replaced by the coordinates returned by
transform_fun.

st_transform_custom

Expected signature of transform_fun

transform_fun <- function(coords, ...) { ## coords: n x 2 matrix (X, Y)
return an n x 2 matrix with transformed (X, Y)3}

See Also

sf::st_coordinates(), sf::st_geometry_type(), sf::st_sfc(), sf::st_crs()

Examples

library(sf)

A simple coordinate transformer: scale and shift

scale_shift <- function(coords, sx = 1, sy =1, dx = 0, dy = 0) {
X <= coords[, 1] * sx + dx

Y <- coords[, 2] * sy + dy
cbind(X, Y)

3

POINT example
pt <- st_sfc(st_point(c(@, 0)), crs = 3857)
st_transform_custom(pt, transform_fun = scale_shift,
args = list(sx = 2, sy = 2, dx = 1000, dy = -500))

LINESTRING example
1n <- st_sfc(st_linestring(rbind(c(@, @), c(1, @), c(1, 1))), crs = 3857)
st_transform_custom(ln, transform_fun = scale_shift,

args = list(sx = 10, sy = 10))

POLYGON example (unit square)
poly <- st_sfc(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1),
c(0,1), c(0,0)))), crs = 3857)
st_transform_custom(poly, transform_fun = scale_shift,
args = list(sx = 2, sy = 0.5, dx = 5))

MULTIPOLYGON example (two disjoint squares)
mp <- st_sfc(st_multipolygon(list(
list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))),
list(rbind(c(2,2), c(3,2), c(3,3), c(2,3), c(2,2)))
)), crs = 3857)
st_transform_custom(mp, transform_fun = scale_shift,
args = list(dx = 100, dy = 100))

In an sf data frame

sf_df <- st_sf(id = 1:2, geometry = st_sfc(
st_point(c(10, 10)),
st_linestring(rbind(c(@,0), c(2,0), c(2,2)))

), crs = 3857)

st_transform_custom(sf_df, transform_fun = scale_shift,
args = list(sx = 3, sy = 3))

13

14 vic

vic Victoria Local Government Areas (sf)

Description

An example polygon layer of Victoria’s LGAs for demos and tests. Built from data-raw/map/LGA_POLYGON. shp,
Z/M dropped, transformed to a projected CRS, simplified, validated, and reduced to LGA_NAME +
geometry.

Usage

vic

Format
An sf object with:

LGA_NAME Character, LGA name (upper case).
geometry MULTIPOLYGON /POLYGON in a projected CRS.

Details

The CRS stored in the object is whatever st_crs(vic) reports at build time. In data-raw/gen-data.R
we:

1. drop Z/M (st_zm()),
transform to a projected CRS (st_transform()),
simplify (st_simplify(dTolerance = 100)),

repair geometries (st_make_valid()),

A

upper-case names and select columns.

Source

Prepared in data-raw/gen-data.R. Update this if you include an external data source.

Examples

library(sf)
plot(sf::st_geometry(vic), col = "grey90", border = "grey50")

vic_fish 15

vic_fish Fisheye-Distorted Victoria LGAs (sf)

Description
An example polygon layer of Victoria’s Local Government Areas (LGAs) after applying a Fo-
cus—Glue-Context (FGC) fisheye transformation. This dataset illustrates how local detail can be
magnified around a chosen focus point while maintaining geographic context across the state.
Usage

vic_fish

Format
An sf object with:

LGA_NAME Character, name of the LGA (upper case).
geometry MULTIPOLYGON /POLYGON geometries in projected CRS (EPSG:3111).

Details
Built from the base layer vic using:

1. projection to VicGrid94 (st_transform(vic, 3111)),
2. defining a focus center near Melbourne (cx = 145.0, cy = -37.8),
3. applying sf_fisheye() with r_in =0.34, r_out = 0.5, and zoom_factor =1,

4. preserving topology with st_make_valid() where needed.

The result is a smoothly warped map emphasizing the metropolitan focus zone.

Source

Prepared in data-raw/gen-data.R using the original vic polygon layer.

See Also

sf_fisheye(), conn_fish

Examples

library(sf)
plot(st_geometry(vic_fish), col = "grey90"”, border = "grey50")

Index

+ datasets
conn_fish, 3
vic, 14
vic_fish, 15

classify_zones, 2
conn_fish, 3,15
create_test_grid, 4
create_test_grid(), 7

fisheye_fgc, 5
fisheye_fgc(),2,4,7,11

plot_fisheye_fgc, 6
plot_fisheye_fgc(), 2,4, 11

sf,3,8,14, 15
sf::st_coordinates(), 9, 12, 13
sf::st_crs(), 8, 9,13
sf::st_geometry_type(), I3
sf::st_is_longlat(), 9
sf::st_sfc(), I3
sf::st_transform(), §, 9
sf_fisheye, 7
sf_fisheye(), 3,4, 11,15
sfc, 8

shiny: :runApp(), 10, 11
shiny_fisheye, 10
st_transform_custom, 12

vic, 14
vic_fish, 4, 15

16

	classify_zones
	conn_fish
	create_test_grid
	fisheye_fgc
	plot_fisheye_fgc
	sf_fisheye
	shiny_fisheye
	st_transform_custom
	vic
	vic_fish
	Index

