Package ‘ivaBSS’

October 13, 2022

Type Package

Title Tools for Independent Vector Analysis

Version 1.0.0

Date 2022-05-03

Imports stats, graphics, BSSprep

Suggests LaplacesDemon

Encoding UTF-8

Maintainer Mika Sipild <mika.e.sipila@student. jyu.fi>

Description Independent vector analysis (IVA) is a blind source separation (BSS) model where sev-
eral datasets are jointly unmixed. This package provides several methods for the unmixing to-

gether with some performance measures. For details, see Ander-
sonetal. (2011) <doi:10.1109/TSP.2011.2181836> and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.

License GPL (>= 3)
RoxygenNote 7.1.2
NeedsCompilation no

Author Mika Sipili [aut, cre],
Klaus Nordhausen [aut] (<https://orcid.org/0000-0002-3758-8501>),
Sara Taskinen [aut] (<https://orcid.org/0000-0001-9470-7258>)

Repository CRAN
Date/Publication 2022-05-19 17:00:02 UTC

R topics documented:

ivaBSS-package 2
avg IST . . e 3
coefiiva L e e e e 4
COMPONENLS.IVA « . . v v v vttt ettt it e e e e e e e e e e 6
fastiVA e 7
jbss_achieved 10
joint_IST . . . o oo 11
NewtonIVA e e 13

https://doi.org/10.1109/TSP.2011.2181836
https://doi.org/10.1016/j.sigpro.2007.01.010
https://orcid.org/0000-0002-3758-8501
https://orcid.org/0000-0001-9470-7258

2 ivaBSS-package

Plotiva e e e e e 16
predictiva e e e e e e 18
Printiva e 20
SUMMATY.IVA « . o o v v v vt e b e e e e e e e e e e e e e e e e e e e 21
Index 23
ivaBSS-package Tools for Independent Vector Analysis
Description

Independent vector analysis (IVA) is a blind source separation (BSS) model where several datasets
are jointly unmixed. This package provides several methods for the unmixing together with some
performance measures. For details, see Anderson et al. (2011) <doi:10.1109/TSP.2011.2181836>
and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.

Details

The package contains tools for independent vector analysis. The main functions to perform IVA are
"IVANewton” and "fastIVA". "NewtonIVA" performs Newton update based IVA and "fastIVA”"
performs fixed-point iteration based IVA. Both of the algorithms have multiple options for source
density models.

Author(s)

Authors: Mika Sipild, Klaus Nordhausen, Sara Taskinen

Maintainer: Mika Sipild

References

Anderson, M., Adali, T., & Li, X.-L. (2011). Joint blind source separation with multivariate Gaus-
sian model: Algorithms and performance analysis. IEEE Transactions on Signal Processing, 60,
1672-1683. <doi:10.1109/TSP.2011.2181836>

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

avg_ISI 3

avg_ISI Average Intersymbol Inference

Description

Calculates the average intersymbol inference for two sets of matrices.

Usage

avg_ISI(W, A)

Arguments
W Array of unmixing matrices with dimension [P, P, DJ.
A Array of true mixing matrices with dimension [P, P, D].
Details

The function returns the average intersymbol inference for the set of estimated unmixing matrices
and the set of true mixing matrices. The average ISI gets the value between O and 1, where 0 is
the optimal result. The average ISI is calculated as the mean ISI over each dataset separately. The
average ISI does not take the permutation of the estimated sources into account.

Value
Numeric value between 0 and 1, where 0 is the optimal result indicating that the sources are sepa-
rated perfectly in each dataset.

Author(s)

Mika Sipila

References
Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

joint_ISI, jbss_achieved

4 coef.iva

Examples

Mixing matrices and unmixing matrices generated
from standard normal distribution

P <-4; D <- 4;

W <- array(rnorm(P *x P x D), c(P, P, D))

A <- array(rnorm(P x P x D), c(P, P, D))

avg_ISI(W, A)

if (require(”LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvI(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
XL, , dI <= AL, , d] %*% S[, , d]

}
Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
avg_ISI(coef(res_G), A)
3
coef.iva Coefficient of the Object of Class iva
Description

coef method for class "iva".

Usage
S3 method for class 'iva'
coef(object, which.dataset = NA, ...)
Arguments

object an object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

coef.iva 5

which.dataset positive integer. Provides the index in case the unmixing matrix only for a spe-
cific data set is desired. Default is to return all unmixing matrices.

further arguments are not used.

Details

Returns the unmixing matrices for all datasets or only for the requested dataset.

Value

Unmixing matrix or all unmixing matrices of the object of class "iva". If a single unmixing matrix
is requested, it is an array with dimension [P, P] and if all unmixing matrices are requested, it is
an array with dimension [P, P, DJ.

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <= rmvl(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
X[, , dl <= A[, , d] %x% S[, , dJ
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

All D unmixing matrices
coef(res_G)

The unmixing matrix for the second dataset

6 components.iva

coef(res_G, 2)
3

components.iva Components of the Object of Class iva

Description

Returns the estimated source components of object of class "iva”.

Usage
components.iva(object, which.dataset = NA, ...)
Arguments
object an object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

which.dataset positive integer. Provides the index in case the unmixing matrix only for a spe-
cific data set is desired. Default is to return all unmixing matrices.

further arguments are not used.

Details

Returns the estimated source components for all datasets or only for the requested dataset.

Value

Estimated source components for requested dataset or for all datasets of the object of class "iva".
If a single dataset is requested, it is an array with dimension [P, N] and if all datasets are requested,
it is an array with dimension [P, N, D].

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))

fastIVA 7

Sigma <- crossprod(U)
S[i, , 1 <= rmvl(N, rep(@, D), Sigma)

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
X[, , dl <= A[, , d] %x% S[, , dJ
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
Source estimates for all D datasets

components.iva(res_G)

Source estimates for the second dataset
components.iva(res_G, 2)

fastIVA Fast Fixed-point IVA Algorithm

Description

The algorithm estimates the sources from multiple dependent datasets jointly using their observed
mixtures. The estimation is done by maximizing the independence between the sources, when
the estimated unmixing matrices are restricted to be orthogonal. The options for different source
densities are provided.

Usage

fastIVA(X, source_density="laplace_diag"”, student_df=1,
max_iter = 1024, eps = le-6, W_init = NA, verbose = FALSE)

Arguments

X numeric data array containing the observed mixtures with dimension [P, N,
D], where P is the dimension of the observed dataset, N is the number of the
observations and D is the number of the datasets. The number of datasets D
should be at least 2. Missing values are not allowed.

source_density string to determine which source density model should be used. The options
are "laplace_diag", "student"” or "entropic"”. For more information see the
details section.

8 fastIVA

student_df integer. The degree of freedom for multivariate Student’s distribution. Used
only if source_denisty = "student”.

max_iter positive integer, used to define the maximum number of iterations for algorithm
to run. If max_iter is reached, the unmixing matrices of the last iteration are
used.

eps convergence tolerance, when the convergence measure is smaller than eps, the
algorithm stops.

W_init numeric array of dimension [P, P, D] containing initial unmixing matrices. If
not set, initialized with identity matrices.

verbose logical. If TRUE the convergence measure is printed during the learning process.

Details

The algorithm uses fixed-point iteration to estimate to estimate the multivariate source signals from
their observed mixtures. The elements of the source signals, or the datasets, should be dependent
of each other to achieve the estimates where the sources are aligned in same order for each dataset.
If the datasets are not dependent, the sources can still be separated but not necessarily aligned.
This algorithm restricts the estimates unmixing matrices to be orthogonal. For more of the fast
fixed-point IVA algorithm, see Lee, 1. et al (2007).

The source density model should be selected to match the density of the true source signals. When
source_density = "laplace_diag"”, the multivariate Laplace source density model with diagonal
covariance structure is used. When source_density = "entropic”, the approximated entropy
based source density model is used. For more about multivariate Laplace and entropic source
density models, see Lee, I. et al (2007). When source_density = "student” the multivariate
Student’s source density model is used, for more see Liang, Y. et al (2013).

The algorithm assumes that observed signals are multivariate, i.e. the number of datasets D >= 2.
The estimated signals are zero mean and scaled to unit variance.

Value

An object of class "iva".

S The estimated source signals with dimension [P, N, D]. The estimated source
signals are zero mean with unit variance.

W The estimated unmixing matrices with dimension [P, P, D].

W_whitened The estimated unmixing matrices with dimension [P, P, D] for whitened data.

v The whitening matrices with dimension [P, P, D].

X_means The means for each observed mixture with dimension [P, DJ.

niter The number of iterations that the algorithm did run.

converged Logical value which tells if the algorithm converged.

source_density The source density model used.
N The number of observations.
D The number of datasets.

P The number of sources.

fastIVA 9

student_df The degree of freedom for Student’s source density model.
call The function call.
DNAME The name of the variable containing the observed mixtures.
Author(s)
Mika Sipilad
References

Lee, I, Kim, T., & Lee, T.-W. (2007). Fast fixed-point independent vector analysis algorithms for
convolutive blind source separation. Signal Processing, 87, 1859-1871. <doi:10.1016/j.sigpro.2007.01.010>

Liang, Y., Chen, G., Naqvi, S., & Chambers, J. A. (2013). Independent vector analysis with
multivariate Student’s t-distribution source prior for speech separation. Electronics Letters, 49,
1035-1036. <doi:10.1049/e1.2013.1999>

See Also

NewtonIVA

Examples

if (require(”LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <-2; N<-1000; D <- 5;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
S[i, , 1 <= rmvl(N, rep(@, D), diag(D))
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
XL, , dI <= AL, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res <- fastIVA(X)

10 jbss_achieved

jbss_achieved JBSS Achieved

Description

The function calculates if the joint blind source separation (JBSS) is achieved.

Usage

jbss_achieved(W, A)

Arguments
W Array of unmixing matrices with dimension [P, P, DJ.
A Array of true mixing matrices with dimension [P, P, DJ.
Details

The function calculates if the joint blind source separation is achieved. JBSS is considered achieved
when the the location of maximum absolute values of each row of gain matrix G[, ,d] = W[, ,d] %*%
AL, ,d] is unique within the dataset, but shared between the datasets 1, ...,D. The first indicates
that the sources are separated within dataset and the second indicates that the estimated sources are
aligned in same order for each dataset.

Value

Logical. If TRUE the JBSS is considered achieved.

Author(s)

Mika Sipild

References

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

joint_ISI, avg_ISI

joint_ISI 11

Examples
Mixing matrices and unmixing matrices generated
from standard normal distribution
P <-4; D <-4
W <- array(rnorm(P x P * D), c(P, P, D))
A <- array(rnorm(P x P x D), c(P, P, D))

jbss_achieved(W, A)

if (require("”LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvl(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
X[, , dl <= A[, , d] %x% S[, , dJ

3
Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
jbss_achieved(coef(res_G), A)
3
joint_ISI Joint Intersymbol Inference
Description

Calculates the joint intersymbol inference for two sets of matrices.

Usage
joint_ISI(W, A)

Arguments

W Array of unmixing matrices with dimension [P, P, D].

A Array of true mixing matrices with dimension [P, P, DJ.

12 joint_ISI

Details

The function returns the joint intersymbol inference for the set of estimated unmixing matrices
and the set of true mixing matrices. The joint ISI gets the value between 0 and 1, where O is the
optimal result. The joint ISI calculates the average intersymbol inference over each dataset as well
as penalizes if the sources are not aligned in same order for each dataset.

Value

Numeric value between 0 and 1, where O is the optimal result indicating that the sources are sepa-
rated perfectly and aligned in same order in each dataset.

Author(s)
Mika Sipilad

References

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

avg_ISI, jbss_achieved

Examples

Mixing matrices and unmixing matrices generated
from standard normal distribution

P <-4; D <- 4;

W <- array(rnorm(P *x P x D), c(P, P, D))

A <- array(rnorm(P x P x D), c(P, P, D))

joint_ISI(W, A)

if (require(”LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvI(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

Newtonl VA

13

X[, , dI <= AL, , dI %% sS[, , d]

3

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
joint_ISI(coef(res_G), A)

NewtonIVA

Newton Update Based IVA Algorithm

Description

The algorithm estimates the sources from multiple dependent datasets jointly using their observed
mixtures. The estimation is done by maximizing the independence between the sources. The op-
tions for different source densities are provided.

Usage

NewtonIVA(X, source_density="laplace”, student_df=1,
init = "default”, max_iter = 1024, eps = 1e-6, W_init = NA,
step_size=1, step_size_min = 0.1, alpha = 0.9, verbose = FALSE)

Arguments

X

source_density

student_df

init

max_iter

eps

W_init

step_size

numeric data array containing the observed mixtures with dimension [P, N,
D], where P is the dimension of the observed dataset, N is the number of the
observations and D is the number of the datasets. The number of datasets D
should be at least 2. Missing values are not allowed.

string to determine which source density model should be used. The options are
"laplace”, "laplace_diag", "gaussian” or "student”. For more informa-
tion see the details section.

integer. The degree of freedom for multivariate Student’s distribution. Used
only if source_denisty = "student".

string, to determine how to initialize the algorithm. The options are "default”,
"IVA-G+fastIVA", "IVA-G", "fastIVA" or "none"”. For more information see
the details section.

positive integer, used to define the maximum number of iterations for algorithm
to run. If max_iter is reached, the unmixing matrices of the last iteration are
used.

convergence tolerance, when the convergence measure is smaller than eps, the
algorithm stops.

numeric array of dimension [P, P, D] containing initial unmixing matrices. If
not set, initialized with identity matrices.

initial step size for Newton step, should be between 0 and 1, default is 1.

14 Newtonl VA

step_size_min the minimum step size.

alpha multiplier for how much to decrease step size when convergence is not getting
smaller.
verbose logical. If TRUE the convergence measure is printed during the learning process.
Details

The algorithm uses Newton update together with decoupling trick to estimate the multivariate source
signals from their observed mixtures. The elements of the source signals, or the datasets, should be
dependent of each other to achieve the estimates where the sources are aligned in same order for
each dataset. If the datasets are not dependent, the sources can still be separated but not necessarily
aligned. The algorithm does not assume the unmixing matrices to be orthogonal. For more of the
nonorthogonal Newton update based IVA algorithm, see Anderson, M. et al (2011) and Anderson,
M. (2013).

The source density model should be selected to match the density of the true source signals. When
source_density = "laplace”, the multivariate Laplace source density model is used. This is the
most flexible choice as it takes both second-order and higher-order dependence into account.

When source_density = "laplace_diag"”, the multivariate Laplace source density model with
diagonal covariance structure is used. Multivariate diagonal Laplace source density model should
be considered only when the sources are mainly higher-order dependent. It works best when the
number of sources is significantly less than the number of datasets.

When source_density = "gaussian” the multivariate Gaussian source density model is used.
This is the superior choice in terms of computation power and should be used when the sources
are mostly second-order dependent.

When source_density = "student” the multivariate Student’s source density model is used. Mul-
tivariate Student’s source density model should be considered only when the sources are mainly
higher-order dependent. It works best when the number of sources is significantly less than the
number of datasets.

The init parameter defines how the algorithm is initialized. When init = "default”, the default
initialization is used. As default the algorithm is initialized using init = "IVA-G+fastIVA" when
source_density is "laplace”, "laplace_diag" or "student”, and using init = "none"” when
source_density = "gaussian”.

When init = "IVA-G+fastIVA", the algorithm is initialized using first the estimated unmixing
matrices of IVA-G, which is NewtonIVA with source_density = "gaussian”, to initialize fastIVA
algorithm. Then the estimated unmixing matrices W of fastIVA are used as initial unmixing matrices
for NewtonIVA. IVA-G is used to solve the permutation problem of aligning the source estimates
when ever the true sources are second-order dependent. If the true sources are not second-order
dependent, fastIVA is used as backup as it solves the permutation problem more regularly than
NewtonIVA when the sources are purely higher-order dependent. When the sources possess any
second-order dependence, IVA-G also speeds the computation time up a lot. This option should
be used whenever there is no prior information about the sources and source_density is either
"laplace”, "laplace_diag"” or "student”.

When init = "IVA-G", the estimated unmixing matrices of IVA-G are used to initialize this al-
gorithm. This option should be used if the true sources are expected to possess any second-order
dependence and source_density is not "gaussian”.

Newtonl VA 15

When init = "fastIVA", the estimated unmixing matrices of fastIVA algorithm is used to ini-
tialize this algorithm. This option should be used if the true sources are expected to possess only
higher-order dependence. For more details, see fastIVA.

When init = "none”, the unmixing matrices are initialized randomly from standard normal distri-
bution.

The algorithm assumes that observed signals are multivariate, i.e. the number of datasets D >= 2.
The estimated signals are zero mean and scaled to unit variance.

Value
An object of class "iva".

S The estimated source signals with dimension [P, N, D]. The estimated source
signals are zero mean with unit variance.

W The estimated unmixing matrices with dimension [P, P, D].

W_whitened The estimated unmixing matrices with dimension [P, P, D] for whitened data.
v The whitening matrices with dimension [P, P, D].

X_means The means for each observed mixture with dimension [P, D].

niter The number of iterations that the algorithm did run.

converged Logical value which tells if the algorithm converged.

source_density The source density model used.

N The number of observations.

D The number of datasets.

P The number of sources.

student_df The degree of freedom for Student’s source density model.

call The function call.

DNAME The name of the variable containing the observed mixtures.
Author(s)

Mika Sipila
References

Anderson, M., Adali, T., & Li, X.-L. (2011). Joint blind source separation with multivariate Gaus-
sian model: Algorithms and performance analysis. IEEE Transactions on Signal Processing, 60,
1672-1683. <doi:10.1109/TSP.2011.2181836>

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

Liang, Y., Chen, G., Naqvi, S., & Chambers, J. A. (2013). Independent vector analysis with
multivariate Student’s t-distribution source prior for speech separation. Electronics Letters, 49,
1035-1036. <doi:10.1049/el.2013.1999>

16 plot.iva

See Also

fastIVA

Examples

if (require("LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvl(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P x P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
XL, , dI <= A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

plot.iva Plotting an Object of Class iva

Description

plot method for the class "iva".

Usage

S3 method for class 'iva'
plot(x, which.dataset = NA, which.source = NA,
type = "1", xlabs = c(), ylabs = c(), colors = c(),

oma = c(1, 1, @, @), mar = c(2, 2, 1, 1), ...)
Arguments
X An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

which.dataset Positive integer to determine which dataset is returned. If not set, returns all
datasets.

plot.iva

which.source

type
xlabs
ylabs
colors

oma

mar

Details

17

Positive integer to determine which dataset is returned. If not set, returns all
datasets.

1-character string giving the type of plot desired. For details, see plot.
Vector containing the labels for x-axis.

Vector containing the labels for y-axis.

Vector containing the colors for each plot.

A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in lines of text. For more details, see par.

A numerical vector of the form c(bottom, left, top, right) which gives the num-
ber of lines of margin to be specified on the four sides of the plot. For more
details, see par.

Further arguments passed to plot function.

Plots either all estimated sources of the object of class "iva” or the estimates for specific dataset

and/or source.

Value

No return value, called for plotting the estimated sources of the object of class "iva".

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

Examples

if (require(”LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvI(N, rep(@, D), Sigma)

3

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

18 predict.iva

X[, , dJ <= AL, , d] %% SC, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

Plot all estimated sources
plot(res_G)

Plot the source estimates for the first dataset only
plot(res_G, which.dataset = 1)

Plot the source estimates for the second source only
plot(res_G, which.source = 2)

Plot the source estimate of the second dataset and third source
plot(res_G, which.dataset = 2, which.source = 3, type = "p")

Plot all source estimates with custom colors and labels
plot(res_G, col=c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4)),
xlabs = c(”Subject 1", "Subject 2", "Subject 3", "Subject 4"),

ylabs = c("Channel 1", "Channel 2", "Channel 3", "Channel 4"))
3
predict.iva Predict Method for Object of Class iva
Description

Predict the new source estimates best on fitted object of "iva" class.

Usage
S3 method for class 'iva'
predict(object, newdata, which.dataset = NA, ...)
Arguments
object An object of class "iva”, usually the result of a call to NewtonIVA or fastIVA.
newdata A numeric data array containing new observed mixtures. Either with dimension

[P, N, D] (ifwhich.dataset = NA) or [P, N], where P is the number of sources,
N is the number of observations and D is the number of datasets.

which.dataset Positive integer to determine which dataset is returned. If not set, returns all
datasets.

further arguments are not used.

Details

The function calculates the source estimates for new observed mixtures based on the model fitted
originally. The estimates are zero mean and scaled to unit variance.

predict.iva 19

Value

Numeric array containing the estimated sources with dimension [P, N] if which.dataset is pro-
vided and with dimension [P, N, D] if which.dataset is not provided.

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

Examples

if (require(”"LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))
sigmas <- list()

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
sigmas[[i]] <- crossprod(U)
S[i, ,] <= rmvI(N, rep(@, D), sigmas[[i]])

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P x P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
X[, , dl <= A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

Generate new observarions
N_new <- 10
S_new <- array(NA, c(P, N_new, D))
for (i in 1:P) {
S_new[i, ,] <- rmvl(N_new, rep(@, D), sigmas[[i]])
}
X_new <- array(NaN, c(P, N_new, D))
for (d in 1:D) {
X_new[, , d] <- A[, , d] %*% S_new[, , dJ
}

Get source estimates for the new observations
pred <- predict(res_G, X_new)

20 print.iva

Get source estimates for only the second dataset
pred2 <- predict(res_G, X_new[, , 2], which.dataset = 2)
3

print.iva Print an Object of Class iva

Description

print method for the class "iva".

Usage
S3 method for class 'iva'
print(x, ...)
Arguments
X An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.
Further arguments are not used.
Details

The function prints all information of "iva" object, except the estimated source signals.

Value

No return value, called for printing information of the object of class "iva".

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvl(N, rep(@, D), Sigma)
}

summary.iva 21

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
X[, , dI <= A[, , d] %*% S[, , d]

}
Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
print(res_G)
3
summary.iva Summarize an Object of Class iva
Description

summary method for the class "iva".

Usage
S3 method for class 'iva'
summary (object, ...)
Arguments
object An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

Further arguments are not used.

Details

The function print all the information of the "iva" object except the estimated sources and the
estimated unmixing matrices.

Value

No return value, called for summarizing the object of class "iva".

Author(s)
Mika Sipila

See Also

NewtonIVA, fastIVA

22 summary.iva

Examples

if (require("LaplacesDemon”)) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, , 1 <= rmvl(N, rep(@, D), Sigma)
}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P x D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {
XL, , dI <= A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
summary (res_G)

Index

+ methods
coef.iva, 4
components.iva, 6
plot.iva, 16
predict.iva, 18
print.iva, 20
summary.iva, 21

+x multivariate
avg_ISI, 3
fastIVA, 7
jbss_achieved, 10
joint_ISI, 11
NewtonIVA, 13

+ package
ivaBSS-package, 2

* print
print.iva, 20

avg_ISI, 3, 10, 12

coef.iva, 4
components.iva, 6

fastIVA, 4-6,7, 15-21

ivaBSS (ivaBSS-package), 2
ivaBSS-package, 2

jbss_achieved, 3, 10, 12
joint_ISI, 3,10, 11

NewtonIVA, 4-6, 9, 13, 16-21

par, 17

plot, 17
plot.iva, 16
predict.iva, 18
print.iva, 20

summary.iva, 21

	ivaBSS-package
	avg_ISI
	coef.iva
	components.iva
	fastIVA
	jbss_achieved
	joint_ISI
	NewtonIVA
	plot.iva
	predict.iva
	print.iva
	summary.iva
	Index

