Package ‘invivoPKfit’

August 26, 2025
Type Package
Title Fits Toxicokinetic Models to In Vivo PK Data Sets
Version 2.0.2
Date 2025-8-26

Author John Wambaugh [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4024-534X>),
Caroline Ring [aut] (ORCID: <https://orcid.org/0000-0002-0463-1251>),
Gilberto Padilla Mercado [aut] (ORCID:
<https://orcid.org/0000-0001-5423-1646>),
Chris Cook [aut]

Maintainer John Wambaugh <wambaugh. john@epa. gov>

Description Takes in vivo toxicokinetic concentration-time data and fits
parameters of 1-compartment and 2-compartment models for each
chemical. These methods are described in detail in " Informatics for Toxicokinetics" (2025).

License GPL-3
Depends R (>=4.1.0)

Imports cli, dplyr, ggplot2, httk, MASS, Matrix, mirai, numDeriv,
optimx, PK, pracma, purrr, rlang, stats, scales, tibble, tidyr

Suggests cowplot, knitr, RColorBrewer, rmarkdown, stringr, testthat
(>=3.0.0), glue, tidyverse

VignetteBuilder knitr
Config/testthat/edition 3

Encoding UTF-8

LazyData TRUE

NeedsCompilation no

RoxygenNote 7.3.2

Repository CRAN

Date/Publication 2025-08-26 14:10:02 UTC

https://orcid.org/0000-0002-4024-534X
https://orcid.org/0000-0002-0463-1251
https://orcid.org/0000-0001-5423-1646

2 Contents

Contents
K e 7
DK e e 7
AAFE . . e e e 8
AAFE.default e 8
AAFE.pk . . . e e 9
add_pK e e 11
adjust_model_name L e e 11
AFE . . e 12
AFE.default 12
AFE.pk . . e 13
AIC.pKk . . e 15
auc_lcomp e e e e 16
AUC_2COMDP . v v v v e 18
auc_flat L e e e e e 19
auc_httk_gas_pbtk L 20
AULO_UNILS o e e e e e e e e s 22
BIC.pk . . . e 23
calc_hessian e 24
calc_NCa e 25
calc_IrmSe e e 27
CalC_TSQ .« v v e e e 29
calc_sds_alerts e e 32
check_group_hierarchyo 33
check_method e 34
check_model e 34
check_ newdata e 35
check_params_lcomp. L e 36
check_params_2comp. L 36
check_params _flat 37
check_required_status L 38
check_required_status.default L 38
check_required_status.pk 39
coeflpk . . e 40
coef Sd . . . L e 41
coef_sd.default e e 42
coef_sd.pk 42
combined_Sd L s e 44
compare_models 45
compare_models.default L oo 46
compare_models.pk 46
CONC_SCAlE_USE o o e e e e 47
convert_summary_to_logl0 48
CONVEIt_tIME v v v e i e 49
cp_lecompo e 50
CP_2COMD « . v v v vt i e e et e e e e e e e e e e e 51

cp_2comp_dt 52

Contents

3
cp_flat . . . L e e e 54
cp_httk_gas_pbtk L 55
CVE o e e e e e 57
cvtdb_original e 59
evt_2.0.0 . e e e e 60
cvt date e s 60
data_summary oL e e 61
data_summary.default L 61
data_summary.pk 62
dlnorm_summary e 63
dnorm_summaryo e e e e e e 64
do_data_info e e e 65
do_data_info.default 65
do_data_info.pk 66
do_fit e e e e 66
do_fitdefault e 67
do_fitpk 67
do_prefit. e e 68
do_prefitdefault 69
do_prefit.pk 69
dO_PIeprocess v v v v v it e e e e 70
do_preprocess.default L 71
do_preprocess.pko e 71
eval_tkstats e 73
eval_tkstats.default e 74
eval_tkstats.pk. L. 74
facet_data s 76
fill_params_lcomp 77
fill_params_2COmMpP o e e e e e e e 78
fill_params_flat e 78
fit_group 79
fit_sigma.pk e e e 80
fold_error e e e e e 81
fold_errordefault L 81
fold_error.pk 82
get_data e e 83
get_datadefault 84
get_data.pko 84
get_data_group e e e e e 85
get_data_group.default Lo oL 85
get_data_group.pk L 86
get_data_info L 86
get_data_info.default 87
get_data_info.pk L 87
get_data_original 88
get_data_original.default L 88
get_data_original.pk Lo 89

get_data_sigma_groupo 89

Contents

get_data_sigma_group.default L L 90
get_data_sigma_group.pk L. 90
get_data_summary e e e 91
get_data_summary.default oL 92
get_elbow e e e 92
GELEITOT_ZIOUD v v v vt it et e et e e e e e e e e 93
get_error_group.default oL 94
get_error_group.pk L e e 94
get_fit . . e 95
get_fit.default L 95
get_fitpk . . . 96
get_hessian L. e e e e e e 97
get_hessian.default 97
get_hessian.pk 98
CEL_MAPPING .« . vt o e e e e e e e e e e e e e e 99
get_mapping.default Lo 99
get_mapping.pk 100
GEELLNCA . . v v i e e e e e e e e e e e e e e e e e e 100
get_nca.default L 101
get nca.pk e e 101
GEELNCA_ZIOUP « « . v v v e e e e e e e e e e e e e e e e 102
get_nca_group.default L 102
get_nca_group.pk 103
get_params_lcomp e e 104
get_params_2COMP . . . v v v e 106
get_params_flat L. 109
get_params_httk_gas pbtk oL L 112
get_peako e 113
get_prefit L e 114
get_prefit.default 115
get_prefit.pk 115
get_scale_CONC i i e e e e e e 116
get_scale_conc.default 116
get_scale_conc.pk L 117
get_scale_time e 117
get_scale_time.default L 118
get_scale_time.pk 119
et_SEettings_OptimX e e 119
get_settings_optimx.default L L 120
get_settings_optimx.pk 120
Et_SELtiNGS_PIePrOCESS . . « « o v v v v v e e e e e e e e e e e 121
get_settings_preprocess.default oL oo 121
get_settings_preprocess.pk 122
get_starts_lcomp e e 122
Et_StartsS_2COMP« o oo et e e e e e e e e 125
get_starts_flat 128
get_starts_httk_gas_pbtk Lo 130

GEL STALUS e e e e e e e 132

Contents

5
get_status.default 132
get_status.pk e e 133
get_stat_model oL 134
get_stat_model.default L o 134
get_stat_model.pk L e 135
get_tkstats L e 135
get_tkstats.default 136
get_tkstats.pk e e 136
get_winning_model L L 138
get_winning_model.defaulto L 139
get_winning_model.pk oL 139
hess_sdl e e e e e e 140
hess sd2 L e 141
ignore_unused_importso e e 142
IS.PK . o e 142
IS.pKprotoo L 143
is.pk_faceted 143
isspk_model e e 144
is.pkoscales e 144
loglikpk o L e 145
log_likelihood 147
MAPPING .« . v o o e e e e e e e e e e e e e e e e e 150
midpt_loglO 151
model_lcomp 151
model_2comp e e e e e e 152
model_flat e e e 152
model_httk_gas_pbtk Lo 153
NCA . . v v v e e e e e e e e e e e e e e e e e 154
ncadefault. e 154
ncapk . ..o 155
DK . 156
pkdataset_nheerlcleaned 161
pkladd.o e 161
pk_add.default 162
pk_add.pk facet_data L 163
pk_add.pk_log_group L. e 163
pk_add.pk_nca_group. 164
pk_add.pk_scales 164
pk_add.pk_sd_group e e 165
pk_add.pk_settings_optimx 166
pk_add.pk_settings_preprocesso 166
pk_add.pk_stat_error_model 167
pk_add.pk_stat_model 168
pk_addunevalo 168
pkomodel . ..o 169
pkosubtracto L e e e e e 172
pk_subtract.default 173

pk_subtract.pk_stat_ model 173

Index

Contents

PIOLDK . . o o e e e e e 174
post_name_value L 176
predict.pk e 176
print.pk . .o e e e 178
PSeudo_CVE e 179
recalculate_httk_pbtk_params 180
reName2_CVE v i e e e e e e e e e e e e e e e 182
residuals.pko L e e e e 182
TINSE & o v v vt e e e e e e e e e e 184
rmsedefault L 185
TMSE.PK . . . e e e 185
rowwise_calC_percentageso e e e 188
5] 189
rsqdefaulto 189
ISQ.PK . o o e 190
scale_CONC o e 193
scale time e e e 194
SEtiNGS_OPUMX o v v v it e e e e e e e e e e e e e e e 194
SELtNGS_PIEPIOCESS . . o v v v o e v i e e e e e e e e e e e e e e 195
set_params_OpHtiMmiZe o it e e 196
set_params_StartS L. e e e e e e e e e e e e e 197
status_data_info L L e 198
status_fit e e 198
SAtUS_INIE e e e e e e e e 198
status_prefit L e e e 199
StAtUS_PIEPIOCESS « & v v v v v o e 199
stat_error_model L L L e 199
stat_log_group e 200
stat_model L L e e 201
StAt_NCA_GIOUP . « . v v v v e e e e e e e e e e e e e 202
Stat_sd_group e e e e 202
subtract_pK e e e e 203
summary.pk e e e e e e 203
tME_CONVETSIONS v v e e e e e e e e e e e e e s e 204
HME_UNIES o o o o o e e e e e e e e e e e e e e 204
tkstats_Icomp e e e e 205
tKStats_2COMP o o e e e e 206
tkstats_flat s 208
tkstats_httk_gas_pbtk o 209
toggle_clearance_mode L e 210
transformed_params_2compo 210
twofold_test L e e 211
twofold_test.default 212
twofold_test.pk L 212
214

+.pk

+.pk Add a ‘pkproto‘ object to a ‘pk‘ object

Description

Add a ‘pkproto‘ object to a ‘pk‘ object

Usage

S3 method for class 'pk'

el + e2
Arguments

el A ‘pk‘ pbject

e2 A ‘pkproto‘ object
Details

Note that ‘el + e2° is equivalent to
X3 G+K(e1, e2) 13

Value

The ‘pk* object, modified by adding the ‘pkproto‘ object

Author(s)

Caroline Ring

-.pk Subtract a pkproto object from a pk object

Description

Subtract a pkproto object from a pk object

Usage
S3 method for class 'pk'
el - e2

Arguments
el A pk pbject

e2 A pkproto object

Value

The pk object, modified by adding the pkproto object

Author(s)

Caroline Ring

AAFE.default

AAFE AAFE()

Description

This is the S3 method generic for AAFE()

Usage
AAFE(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The final column contains
the AAFE of the model fitted by the corresponding method, using the data in ‘newdata‘.

See Also
[AAFE.pk()] for the method for class [pk()]

AAFE.default Default method for AAFE()

Description

Default method for AAFE()

Usage

Default S3 method:
AAFE(obj, ...)

AAFE.pk

Arguments

obj

Value

An object

Additional arguments currently not in use.

An error, when a non-pk object is used for the first argument.

AAFE . pk

Calculate absolute average fold error (AAFE)

Description

Calculate aboslute average fold error (AAFE)

Usage

S3 method for class 'pk'

AAFE(
obj,

newdata = NULL,

model = NULL,

method = NULL,

exclude = TRUE,
use_scale_conc = FALSE,
AAFE_group = NULL,
sub_pLOQ = TRUE,

Arguments

obj

newdata

model

method

A ‘pk‘ object

Optional: A ‘data.frame‘ with new data for which to make predictions and
compute AAFE. If NULL (the default), then AAFE will be computed for the
data in ‘obj$data‘. ‘newdata‘ is required to contain at least the following vari-
ables: ‘Time‘, ‘Time.Units‘, ‘Dose‘, ‘Route‘, ‘Media‘, ‘Conc‘, ‘Conc_SD°,
‘N_Subjects, ‘Detect’, ‘pLOQ".

Optional: Specify one or more of the fitted models for which to make predictions
and calculate AAFE. If NULL (the default), AAFE will be returned for all of the
models in ‘obj$stat_model‘.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate AAFE. If NULL (the default), RMSEs will be
returned for all of the models in ‘obj$optimx_settings$method‘.

10

exclude

use_scale_conc

AAFE_group
sub_pL0Q
Details

AAFE.pk

Logical: ‘TRUE‘ to compute the AAFE excluding any observations in the data
marked for exclusion (if there is a variable ‘exclude in the data, an observation
is marked for exclusion when ‘exclude ‘FALSE‘ to include all observations,
regardless of exclusion status. Default “TRUE".

Possible values: ‘“TRUE‘, ‘FALSE®, or a named list with elements ‘dose_norm°
and ‘logl0_trans® which themselves should be either ‘TRUE® or ‘FALSE‘. If
‘use_scale_conc = TRUE®, then the concentration scaling/transformations in
‘object* will be applied to both predicted and observed concentrations before
the log-likelihood is computed. If ‘use_scale_conc = FALSE* (the default for
this function), then no concentration scaling or transformation will be applied
before the log-likelihood is computed. If ‘use_scale_conc = list(dose_norm
= ..., logl0_trans = ...)°, then the specified dose normalization and/or log10-
transformation will be applied.

Default: Chemical, Species. Determines what the data grouping that is used to
calculate absolute average fold error (AAFE). Should be set to lowest number
of variables that still would return unique experimental conditions. Input in the
form of ‘rlang::exprs(Chemical, Species, Route, Media, Dose)*.

TRUE (default): Substitute all predictions below the LOQ with the LOQ before
computing AAFE. FALSE: do not.

Additional arguments. Not currently in use.

Absolute average fold error (AAFE) is calculated as

Value

10% 3 abs{logno (5]

A dataframe with one row for each ‘data_group®, ‘model‘ and ‘method°. The final column contains
the AAFE of the model fitted by the corresponding method, using the data in ‘newdata“.

Left-censored data

If the observed value is censored, and the predicted value is less than the reported LOQ, then the
observed value is (temporarily) set equal to the predicted value, for an effective error of zero.

If the predicted value is less than the reported LOQ, then the user may choose whether to (temporar-
ily) set the predicted value equal to LOQ, using argument ‘sub_pLOQ®).

Author(s)

Caroline Ring

See Also

Other fit evaluation metrics: AFE.pk (), AIC.pk(),BIC.pk(), logLik.pk(), rmse.pk(), rsq.pk()

add_pk 11

Other methods for fitted pk objects: AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(), coef_sd.pk(),

eval_tkstats.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

add_pk Add various ‘pkproto* objects to a ‘pk‘ object

Description

Add various ‘pkproto‘ objects to a ‘pk‘ object

Usage

add_pk(pk_obj, pkproto_obj, objectname)

Arguments
pk_obj The ‘pk‘ object
pkproto_obj The ‘pkproto‘ object to be added
objectname The name of the ‘pkproto‘ object to be added
Value

The ‘pk* object modified by the addition.

adjust_model_name Sets the ‘name* element for models to the ‘pk_model* object name in
the environment

Description

When creating new ‘pk_model‘ objects, the name of the ’base’ model is kept. Please use this
function to ‘reset’ the name of the new ‘pk_model* object.

Usage

adjust_model_name(model)

Arguments

model A ‘pk_model‘ object.

Value

an object of class ‘pk_model‘ with ‘name‘ matching it’s name in the environment.

12 AFE.default

Author(s)
Gilberto Padilla Mercado

See Also

Other pk_model modifiers: set_params_optimize(), set_params_starts(), toggle_clearance_mode()

AFE AFE()

Description

This is the S3 method generic for AFE()

Usage
AFE(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The final column contains
the AFE of the model fitted by the corresponding method, using the data in ‘newdata‘.

See Also
[AFE.pk()] for the method for class [pk()]

AFE.default Default method for AFE()

Description

Default method for AFE()

Usage

Default S3 method:
AFE(obj, ...)

AFE.pk 13

Arguments
obj An object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

AFE.pk Calculate average fold error

Description

Calculate average fold error

Usage

S3 method for class 'pk'
AFE(
obj,
newdata = NULL,
model = NULL,
method = NULL,
exclude = TRUE,
use_scale_conc = FALSE,
AFE_group = NULL,
sub_pLOQ = TRUE,

Arguments
obj A ‘pk‘ object
newdata Optional: A ‘data.frame* with new data for which to make predictions and com-

pute AFE. If NULL (the default), then AFE will be computed for the data in
‘obj$data‘. ‘newdata‘ is required to contain at least the following variables:
‘Time*, ‘Time.Units‘, ‘Dose, ‘Route’, ‘Media‘, ‘Conc*, ‘Conc_SD*, ‘N_Subjects®,
‘Detect’, ‘pLOQ".

model Optional: Specify one or more of the fitted models for which to make predictions
and calculate AFE. If NULL (the default), AFE will be returned for all of the
models in ‘obj$stat_model‘.

method Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate AFE. If NULL (the default), RMSEs will be
returned for all of the models in ‘obj$optimx_settings$method‘.

14

exclude

use_scale_conc

AFE_group

sub_pL0Q

Details

AFE.pk

Logical: ‘TRUE* to compute the AFE excluding any observations in the data
marked for exclusion (if there is a variable ‘exclude in the data, an observation
is marked for exclusion when ‘exclude ‘FALSE‘ to include all observations,
regardless of exclusion status. Default “TRUE".

Possible values: ‘“TRUE‘, ‘FALSE®, or a named list with elements ‘dose_norm°
and ‘logl0_trans® which themselves should be either ‘TRUE® or ‘FALSE‘. If
‘use_scale_conc = TRUE®, then the concentration scaling/transformations in
‘object* will be applied to both predicted and observed concentrations before
the log-likelihood is computed. If ‘use_scale_conc = FALSE* (the default for
this function), then no concentration scaling or transformation will be applied
before the log-likelihood is computed. If ‘use_scale_conc = list(dose_norm
= ..., logl0_trans = ...)°, then the specified dose normalization and/or log10-
transformation will be applied.

Default: Chemical, Species. Determines what the data grouping that is used to
calculate average fold error (AFE). Should be set to lowest number of variables
that still would return unique experimental conditions. Input in the form of
‘rlang::exprs(Chemical, Species, Route, Media, Dose)‘.

TRUE (default): Substitute all predictions below the LOQ with the LOQ before
computing AFE. FALSE: do not.

Additional arguments. Not currently in use.

Average fold error is calculated as

Value

predicted)

1
]_OW Z lOglO(observed

A dataframe with one row for each ‘data_group®, ‘model and ‘method°. The final column contains
the AFE of the model fitted by the corresponding method, using the data in ‘newdata“.

Left-censored data

If the observed value is censored, and the predicted value is less than the reported LOQ, then the
observed value is (temporarily) set equal to the predicted value, for an effective error of zero.

If the predicted value is less than the reported LOQ, then the user may choose whether to (temporar-
ily) set the predicted value equal to LOQ, using argument ‘sub_pLOQ®).

Author(s)

Caroline Ring

See Also

Other fit evaluation metrics: AAFE. pk(), AIC.pk(),BIC.pk(), logLik.pk(), rmse.pk(), rsq.pk()

AIC.pk 15

Other methods for fitted pk objects: AAFE. pk (), AIC.pk(), BIC.pk(), coef.pk(), coef_sd.pk(),
eval_tkstats.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

AIC.pk Akaike information criterion

Description

Get the Akaike information criterion (AIC) for a fitted ‘pk‘ object

Usage

S3 method for class 'pk'
AIC(

object,

newdata = NULL,

model = NULL,

method = NULL,

exclude = TRUE,

drop_obs = TRUE,

k =2

)
Arguments

object A ‘pk‘ object

newdata Optional: A ‘data.frame‘ with new data for which to compute log-likelihood.
If NULL (the default), then log-likelihoods will be computed for the data in
‘object$data‘. ‘newdata‘ is required to contain at least the following variables:
‘Time*, ‘Time.Units‘, ‘Dose‘, ‘Route,‘Media‘, ‘Conc‘, ‘Detect, ‘N_Subjects‘.
Before log-likelihood is calculated, “Time* will be transformed according to the
transformation in ‘object$scales$time* and ‘Conc® will be transformed accord-
ing to the transformation in ‘object$scales$conc’.

model Optional: Specify one or more of the fitted models for which to calculate log-
likelihood. If NULL (the default), log-likelihoods will be returned for all of the
models in ‘object$stat_model*.

method Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate AICs. If NULL (the default), log-likelihoods
will be returned for all of the models in ‘object$pk_settings$optimx$method*.

exclude Logical: ‘TRUE® to compute the AIC after removing any observations in the

data marked for exclusion (if there is a variable ‘exclude‘ in the data, an obser-
vation is marked for exclusion when ‘exclude status. Default ‘TRUE®.

drop_obs Logical: ‘TRUE" to drop the observations column in the output of [logLik()].

16 auc_Ilcomp

Additional argument. Not in use.

k Default 2. The ‘k* parameter in the log-likelihood formula (see Details). Must
be named if used.
Details

The AIC is calculated from the log-likelihood (LL) as follows:

AIC = —2LL + knyq,
where 1,4, is the number of parameters in the fitted model, and k = 2 for the standard AIC.

Value

A data.frame with log-likelihood values and calculated AIC using ‘newdata‘. There is one row
for each model in ‘obj‘’s [stat_model()] element and each [optimx::optimx()] method (specified in
[settings_optimx()]).

Author(s)

Caroline Ring, Gilberto Padilla Mercado

See Also

Other fit evaluation metrics: AAFE. pk(), AFE.pk(),BIC.pk(), logLik.pk(), rmse.pk(), rsq.pk()
Other log likelihood functions: BIC.pk(), logLik.pk()

Other methods for fitted pk objects: AAFE. pk (), AFE.pk(), BIC.pk(), coef.pk(), coef_sd.pk(),

eval_tkstats.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

auc_1comp Analytic AUC for 1-compartment model

Description
Calculate area under the plasma concentration vs. time curve for the 1-compartment model, using
an analytical equation (the integral of the 1-compartment model equation with respect to time).
Usage

auc_lcomp(params, time, dose, route, medium)

auc_Icomp

Arguments

params

time

dose

route

medium

Value

17

A named numeric vector of model parameter values. See Details for require-
ments.

A numeric vector of times, reflecting the time point when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as ‘dose’
and ‘iv.dose’, or length 1.

A numeric vector of doses, reflecting single bolus doses administered at time 0.
Must be same length as ‘time* and ‘iv.dose’, or length 1.

A character vector, reflecting the route of administration of each single bolus
dose: “oral’* or “’iv’‘. Must be same length as ‘time‘ and ‘dose’, or length 1.

A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time‘ and ‘dose°, or length 1.

A vector of plasma AUC values (concentration*time) corresponding to ‘time°.

Required parameters

‘params‘ must include the following named items:

kelim Elimination rate, 1/time.

Vdist Apparent volume of central compartment, volume/unit BW. Or see below for ‘Fgutabs_Vdist*

For oral administration (if any ‘route include:

Fgutabs Oral bioavailability, unitless fraction. Or see below for ‘Fgutabs_Vdist*

kgutabs Rate of absorption from gut, 1/time.

For oral administration, in lieu of ‘Vdist* and ‘Fgutabs‘, you may instead provide ‘Fgutabs_Vdist°,
the ratio of Fgutabs to Vdist (1/volume). This is an alternate parameterization for situations where
‘Fgutabs‘ and ‘Vdist‘ are not identifiable separately (i.e., when oral TK data are available, but IV
data are not). If ‘Fgutabs® and ‘Vdist® are provided, they will override any value provided for

‘Fgutabs_Vdist*.

If both oral and IV administration are specified (i.e., some ‘route and some ‘route ‘Fgutabs‘ or
‘Fgutabs_Vdist‘. (If “Vdist* and ‘Fgutabs_Vdist* are provided, but ‘Fgutabs® is not provided, then
‘Fgutabs‘ will be calculated from ‘Vdist‘ and ‘Fgutabs_Vdist*.)

If ‘any(medium ‘Rblood2plasma‘, the ratio of chemical concentration in whole blood to the chem-
ical concentration in blood plasma.

Author(s)

Caroline Ring, John Wambaugh

18 auc_2comp

See Also

Other built-in model functions: auc_2comp(), auc_flat(), auc_httk_gas_pbtk(), cp_1comp(),

cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_lcomp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()
Other 1-compartment model functions: cp_1comp(), get_params_1comp(), get_starts_1comp()

Other model AUC functions: auc_2comp(), auc_flat()

auc_2comp Analytical AUC for the 2-compartment model

Description

Calculate area under the plasma concentration vs. time curve for the 2-compartment model, using
an analytical equation (the integral of the 2-compartment model equation with respect to time).

Usage
auc_2comp(params, time, dose, route, medium = "plasma")
Arguments
params A named list of parameter values.
time A numeric vector of time values, in hours
dose A numeric vector of doses in mg/kg
route A logical vector: TRUE for single IV bolus dose, FALSE for single oral dose
medium A character string that determines the measured media. Default: "plasma".
Value

A vector of plasma AUC values, evaluated at each time point in ‘time‘.

Required params
‘params‘ must include the following named items:

k12 Rate at which the compound moves from the central to peripheral compartment, 1/h.
k21 Rate at which the compound moves from peripheral to central compartment, 1/h.
kelim Elimination rate, 1/h.

V1 Apparent volume of central compartment, L/kg BW.
For oral administration (route FALSE), params must also include:

Fgutabs Oral bioavailability, unitless fraction.

kgutabs rate of absorption from gut, 1/h.

auc_flat 19

For oral administration, in lieu of "V1" and "Fgutabs", you may instead provide "Fgutabs_V1", the
ratio of Fgutabs to V1 (1/L). This is an alternate parameterization for situations where "Fgutabs"
and "V1" are not identifiable separately (i.e. when oral data are available, but IV data are not). If
"Fgutabs" and "V1" are provided, then "Fgutabs_V1" will not be used.

Author(s)

Caroline Ring, John Wambaugh

See Also

Other built-in model functions: auc_1comp(), auc_flat(), auc_httk_gas_pbtk(), cp_1comp(),

cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other 2-compartment model functions: cp_2comp(), cp_2comp_dt (), get_params_2comp(), get_starts_2comp(),
tkstats_2comp(), transformed_params_2comp()

Other model AUC functions: auc_1comp(), auc_flat()

auc_flat AUC for flat model

Description

Evaluates the area under the concentration-time curve for a "flat" model

Usage

auc_flat(time, params, dose, route, medium)

Arguments
time A numeric vector of times in hours.
params A named list of model parameter values. See Details for requirements.
dose A numeric vector of doses in mg/kg
route A logical vector: TRUE for single IV bolus dose; FALSE for single oral dose.
Not used, but must be present for compatibility with other model functions.
medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as other arguments, or length 1.
Value

A vector of plasma concentration values (mg/L) corresponding to time.

20 auc_httk_gas_pbtk

Required parameters
‘params‘ must include the following named items:
Vdist Apparent volume of central compartment, L/kg BW. Or see below for ‘Fgutabs_Vdist*
For oral administration (if any ‘route include:
Fgutabs Oral bioavailability, unitless fraction. Or see below for ‘Fgutabs_Vdist*

For oral administration, in lieu of ‘Vdist* and ‘Fgutabs‘, you may instead provide ‘Fgutabs_Vdist*,
the ratio of Fgutabs to Vdist (1/L). This is an alternate parameterization for situations where ‘Fgutabs*
and ‘Vdist‘ are not identifiable separately (i.e., when oral TK data are available, but IV data are not).
If ‘Fgutabs® and ‘Vdist* are provided, they will override any value provided for ‘Fgutabs_Vdist.

If both oral and IV administration are specified (i.e., some ‘route and some ‘route ‘Fgutabs‘ or
‘Fgutabs_Vdist‘. (If “Vdist* and ‘Fgutabs_Vdist* are provided, but ‘Fgutabs® is not provided, then
‘Fgutabs‘ will be calculated from “Vdist® and ‘Fgutabs_Vdist*.)

If ‘any(medium ‘Rblood2plasma‘, the ratio of chemical concentration in whole blood to the chem-
ical concentration in blood plasma.

Author(s)
Caroline Ring, John Wambaugh, Chris Cook

See Also

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_httk_gas_pbtk(), cp_Tcomp(),

cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other flat model functions: cp_flat(), get_params_flat(), get_starts_flat()
Other model AUC functions: auc_1comp(), auc_2comp()

auc_httk_gas_pbtk Calculates AUC for ‘httk’s ‘gas_pbtk‘ PBPK model

Description

Calculated plasma concentration AUC vs time according to the ‘gas_pbtk*

Usage

auc_httk_gas_pbtk(
params,
time,
dose,
route,
medium = "plasma”,

auc_httk_gas_pbtk 21

this_chem = NULL,
this_species = NULL,
restrictive = TRUE

)
Arguments

params A named numeric vector of model parameter values.

time A numeric vector of times, reflecting the time point when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as ‘dose*
and ‘iv.dose’, or length 1.

dose A numeric vector of doses, reflecting single bolus doses administered at time
0. Must be same length as ‘time‘ and ‘iv.dose’, or length 1. In this model, it is
expected that this value represents a measurement of radioactive particles from
a radiolabeling experiment.

route A character vector, reflecting the route of administration of each single bolus
dose: “oral’‘ or “’iv’‘. Must be same length as ‘time‘ and ‘dose’, or length 1.

medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time‘ and ‘dose‘, or length 1.

this_chem A character vector naming the chemical for calculations in ‘httk*.

this_species A character vector naming the species for calculations in ‘httk".
restrictive A logical value (TRUE or FALSE. Default: FALSE) that says whether the as-

sumption is that the clearance is restrictive or non-restrictive
Value

A vector of blood or plasma AUC values corresponding to ‘time*.

Required parameters

These are given by [httk::parameterize_gas_pbtk()]. Furthermore, they are transformed to a vec-
tor during the prefitting process. The optimized parameters are ‘Clint‘ and ‘Funbound.plasma‘.
Because these optimized parameters impact ‘Clmetabolismc’, ‘Krbc2pu‘, ‘Rblood2plasma‘ and
‘Fabsgut’, these are recalculated at the beginning of this function.

Author(s)
Gilberto Padilla Mercado

See Also

Other built-in model functions: auc_T1comp(), auc_2comp(), auc_flat(), cp_Tcomp(), cp_2comp(),
cp_2comp_dt(),cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_Tcomp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other httk model functions: cp_httk_gas_pbtk(), get_params_httk_gas_pbtk(), get_starts_httk_gas_pbtk()

22 auto_units

auto_units Automatically select new time units

Description

Given a vector of time values in original units, this function selects new time units such that, when
time is rescaled to the new units, the midpoint of the time vector is as close to a target (default: 10)
as possible.

Usage

auto_units(y, from, target = 10, period_units = time_units)

Arguments
y A numeric vector of time values.
from The original units of ‘y*.
target The target value (order of magnitude) for the midpoint of rescaled time values.

Default 10.

period_units A list of acceptable/understood time units. See Details. Default ‘time_units*.

Details

Acceptable/understood time units in ‘period_units*

c("picoseconds”,
"nanoseconds”,
"microseconds”,
"milliseconds”,
"seconds”,
"minutes”,
"hours",
"days",
"weeks",
"months”,
"years")

Value

Character: Automatically-selected new time units, which will be one of ‘period_units*.

Author(s)

Caroline Ring

BIC.pk 23

BIC.pk Bayesian information criterion

Description

Get the Bayesian information criterion (BIC) for a fitted ‘pk* object

Usage

S3 method for class 'pk'

BIC(object, newdata = NULL, model = NULL, method = NULL, exclude = TRUE, ...)
Arguments

object A ‘pk‘ object

newdata Optional: A ‘data.frame‘ with new data for which to compute log-likelihood.

If NULL (the default), then BICs will be computed for the data in ‘obj$data‘.
‘newdata‘ is required to contain at least the following variables: ‘Time°, “Time.Units",
‘Dose’, ‘Route’,’‘Media‘, ‘Conc’, ‘Detect’, ‘N_Subjects‘. Before log-likelihood

is calculated, ‘Time*‘ will be transformed according to the transformation in
‘obj$scales$time’ and ‘Conc’ will be transformed according to the transforma-

tion in ‘obj$scales$conc’.

model Optional: Specify one or more of the fitted models for which to calculate BIC.
If NULL (the default), log-likelihoods will be returned for all of the models in
‘obj$stat_model‘.

method Optional: Specify one or more of the [optimx::optimx()] methods for which to
calculate BICs. If NULL (the default), log-likelihoods will be returned for all of
the methods in ‘obj$pk_settings$optimx$method ‘.

exclude Logical: ‘TRUE* to compute the AIC after removing any observations in the
data marked for exclusion (if there is a variable ‘exclude‘ in the data, an obser-
vation is marked for exclusion when ‘exclude status. Default ‘TRUE®.

Additional arguments. Not in use.

Details
The BIC is calculated from the log-likelihood (LL) as follows:
BIC = —2LL + log(nobs) Npar

where 1,4, is the number of parameters in the fitted model.
Note that the BIC is just the AIC with k = log(neps).

Value

A data.frame with log-likelihood values and calculated BIC using ‘newdata‘. There is one row
for each model in ‘obj‘’s [stat_model()] element and each [optimx::optimx()] method (specified in
[settings_optimx()]).

24 calc_hessian

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other fit evaluation metrics: AAFE. pk(), AFE.pk (), AIC.pk(), logLik.pk(), rmse.pk(), rsq.pk()
Other log likelihood functions: AIC.pk(), logLik.pk()

Other methods for fitted pk objects: AAFE. pk(), AFE.pk(), AIC.pk(), coef.pk(), coef_sd.pk(),
eval_tkstats.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

calc_hessian Calculate Hessian

Description

Calculate Hessian matrix given parameter values and data

Usage

calc_hessian(
pars_opt,
pars_const,
observations,
modelfun,
dose_norm,
log10_trans

Arguments

pars_opt Named numeric: A vector of parameter values for the parameters that were
optimized. For example, you can get this using [coef.pk()] with ‘include_type =

ne

"optim" ‘.

pars_const Named numeric: A vector of parameter values for parameters that were held
constant, not optimized (but are necessary to evaluate the model). For example,

ne

you can get this using [coef.pk()] with ‘include_type = "const"*.

observations The data used to fit the model. For example, you can get this using [get_data.pk()].

modelfun The name of the function that evaluates the model (passed to [log_likelihood()]).

dose_norm Logical: Whether to dose-normalize concentrations before evaluating log-likelihood.
Passed to [log_likelihood()].

log10@_trans Logical: Whether to log10-transform concentrations before evaluating log-likelihood.

Passed to [log_likelihood()].

calc_nca 25

Details

Calculate the Hessian matrix: the matrix of second derivatives of the objective function with respect
to parameters, evaluated for a single set of parameter values for a single model and a single data
set. Here, the objective function is the negative log-likelihood implemented in [log_likelihood()],
evaluated jointly across the data that was used to fit the model. This is a workhorse function called
by [get_hessian.pk()] and, indirectly, by [coef_sd.pk()]. When the number of optimized parameters
is n, the respective Hessian matrix will be n x n.

Value

A square numeric matrix, both dimensions the same as the length of ‘pars_opt‘. It will have row-
names and column names that are the same as the names of ‘pars_opt°.

Author(s)

Caroline Ring

calc_nca Non-compartmental analysis

Description

Do non-compartmental analysis on a single-dose set of concentration vs. time data

Usage
calc_nca(time, conc, detect, dose, route, series_id = NULL, method = "z", ...)
Arguments
time A numeric vector of time points.
conc A numeric vector of concentrations. If detected (above limit of detection/quantification),
contains the measured value; if not detected (below LOD/LOQ), contains the
LOD/LOQ.
detect A logical vector: Whether each concentration was detected (above LOD/LOQ)
or not.
dose A numeric scalar: The dose for this data set.
route A character scalar: The route of administration for this data set. Currently, only
"oral" and "iv" are supported.
series_id Optional: A variable that can be coerced to a factor, identifying individual time

series (e.g., individual replicates — individual subjects, or replicate dose groups).
Default NULL, in which case each observation will be assumed to have a differ-
ent series ID. In other words, a serial sampling design will be assumed, in which
each observation is from a different subject.

26 calc_nca
method As for [PK::nca()]: the method to use for calculation of confidence intervals.
Default “’z’ (this differs from the [PK::nca()] default).
Other arguments that will be passed to [PK::nca()] (other than ‘data‘, ‘design®,
and ‘method*‘: *i.e.*, ‘n.tail‘, ‘nsample®)
Details
This function is a wrapper around [PK::nca()] to do non-compartmental analysis, after automatically
detecting the study design. It additionally calls [get_peak()] to calculate the peak concentration and
time of peak concentration.
Value

A ‘data.frame* with 9 rows and ‘length(method) + 3° variables. See Output details.

Automatic detection of study design

[PK::nca()] understands three different study designs, and requires the user to specify which one is
being used.

 ‘ssd‘: Serial sampling design. Each observation is from a different subject.
* ‘complete‘: Every subject was observed at every time point.

* ‘batch‘: Each subject was observed at multiple time points, but not at every time point.

To automatically detect which study design is applicable, this function first sorts the data by in-
creasing time. Then, a table of time vs. series ID is created, with 1 indicating that a measurement
exists for the corresponding time point/series ID combination, and 0 indicating that a measurement
does not exist. If the column sums of this table are all 1, then it is a serial sampling design, except if
there is only one observation per time point, it is a complete sampling design, and if there are mul-
tiple observations for some time points and only one observation for other time points, it is a batch
design. If the column sums are all equal to the number of rows of the table, then it is a complete
sampling design. Otherwise, it is a batch sampling design.

Parameters estimated by NCA

* ‘AUC_infinity‘: The area under the concentration-time curve, extrapolated out to infinite time.
Estimated using the trapezoidal rule, with a tail area correction calculated using the slope of
the last 3 data points (by default).

e ‘AUC _tlast‘: The area under the concentration-time curve, calculated at the last observed time
point. Estimated using the trapezoidal rule.

* ‘AUMC _infinity‘: The area under the concentration-time first moment curve (the area under
the AUC vs. time), extrapolated out to infinite time. Estimated using the trapezoidal rule, with
a tail area correction calculated using the slope of the last 3 data points (by default).

* ‘CLtot‘: The total clearance rate. Only calculated for ‘route == iv’‘. If ‘route == "oral’‘, this
is ‘NA_real_°, and only ‘CLtot/Fgutabs‘ is calculated.

* ‘CLtot/Fgutabs‘: The total clearance rate, normalized by the oral bioavailability. Only calcu-
lated for ‘route =="oral’“. If ‘route =="iv’, this is ‘NA_real_°, and only ‘CLtot/* is calculated.

calc_rmse 27

* ‘Cmax‘: The peak concentration. For ‘route == ’iv’‘, this is expected to be the concentration
at the earliest time; for ‘route == ’oral’‘, it is not. This and ‘tmax‘ are calculated using
[get_peak()], not by [PK::nca()].

* ‘halflife‘: The half-life of elimination. Only calculated for ‘route =="iv’‘. If ‘route == "oral’",
this is ‘NA_real_°, because half-life estimates are not valid for oral data.

* ‘MRT‘: The mean residence time. Only calculated for ‘route =="iv’‘. If ‘route == "oral’‘, this
is ‘NA_real_°, and only ‘MTT" is calculated.

e ‘MTT*: The mean transit time (the sum of MRT and mean absorption time). Only calculated
for ‘route =="oral’‘. If ‘route =="iv’*, this is ‘NA_real_°, and only ‘MRT" is calculated.

» ‘tmax‘: The time of peak concentration. For ‘route ==iv’*, this is expected to be the earliest
time; for ‘route == oral’‘, it is not. This and ‘Cmax* are calculated using [get_peak()], not by
[PK::nca()].

* ‘Vss‘: The volume of distribution at steady state (‘AUMC_infinity/AUC_infinity”2°). If ‘route
=="oral’‘, this is ‘NA_real_°, because ‘Vss‘ estimates are not valid for oral data.

Output details

The output is a data.frame with 9 rows (one for each NCA parameter) and a number of variables
equal to ‘length(method) + 3°.

The variables are
 ‘design‘: The automatically-detected design. One of ‘ssd‘, ‘complete’, or ‘batch* (or ‘NA_character_*
if no analysis could be done).
* ‘param_name*: The name of each NCA parameter.
* ‘param_value‘: The value of each NCA parameter.

e ‘param_sd_[method]‘: The parameter standard error estimated by the corresponding method.

Author(s)

Caroline Ring

calc_rmse Calculate RMSE (root mean squared error)

Description

Calculate RMSE when observed data may be left-censored (non-detect) or may be reported in sum-
mary form (as sample mean, sample standard deviation, and sample number of subjects). Addition-
ally, handle the situation when observed data and predictions need to be log10-transformed before
RMSE is calculated.

Usage

calc_rmse(pred, obs, obs_sd, n_subj, detect, logl@_trans = FALSE)

28

Arguments

pred

obs

obs_sd

n_subj

detect

logl0_trans

Details

calc_rmse

Numeric vector: Model-predicted value corresponding to each observed value.
Even if ‘logl0_trans log-transformed. (If ‘log10_trans internally to this function
before calculation.)

Numeric vector: Observed sample means for each observation if summary data,
or observed values for each observation if non-summary data. Censored obser-
vations should *not* be NA; they should be substituted with the LOQ. Even if
‘log10_trans log-transformed. (If ‘log10_trans log-scale means internally to this
function before calculation.)

Numeric vector: Observed sample SDs for each observation, if summary data.
For non-summary data (individual-subject observations), the corresponding el-
ement of ‘group_sd‘ should be set to 0. Even if ‘logl0_trans ‘log10_trans devi-
ations internally to this function before calculation.)

Numeric vector: Observed sample number of subjects for each observation. For
non-summary data (individual-subject observations), ‘n_subj‘ should be set to
1.

Logical vector: ‘“TRUE‘ for each observation that was detected (above LOQ);
‘FALSE" for each observation that was non-detect (below LOQ).

Logical. FALSE (default) means that RMSE is computed for natural-scale ob-
servations and predictions — effectively, ‘sqrt(mean((observed - pred)*2))‘.
TRUE means that observations and predictions will be logl0-transformed be-
fore RMSE is calculated (see Details) — effectively ‘sqrt(mean((log(observed)
- log(pred))*2))".

RMSE is calculated using the following formula, to properly handle summary data:

G

1 — _

& 2 (00 = 1)+ magf = 2 + 1)
i=1

In this formula, there are G groups. (For CvTdb data, a "group" is a specific combination of chemi-
cal, species, route, medium, dose, and timepoint.) n; is the number of subjects for group 7. y; is the
sample mean for group i. s, is the sample standard deviation for group i.p; is the model-predicted

value for group .

N is the grand total of subjects:

G
N = Zni
i=1

For the non-summary case (/N single-subject observations, with all n; = 1, s; = 0, and §; = v;),
this formula reduces to the familiar RMSE formula

1 N
= > (i — pa)?
N =1

calc_rsq 29

Value

A numeric scalar: the root mean squared error (RMSE) for this set of observations and predictions.

Left-censored data

If the observed value is censored, and the predicted value is less than the reported LOQ, then the
observed value is (temporarily) set equal to the predicted value, for an effective error of zero.

If the observed value is censored, and the predicted value is greater than the reported LOQ, the the
observed value is set equal to the reported LOQ.

Log10 transformation

If ‘log10_trans log10-transformed before calculating the RMSE. In the case where observed values
are reported in summary format, each sample mean and sample SD (reported on the natural scale,
i.e. the mean and SD of natural-scale individual observations) are used to produce an estimate of the
log10-scale sample mean and sample SD (i.e., the mean and SD of log10-transformed individual
observations), using [convert_summary_to_log10()].

The formulas are as follows. Again, ¥; is the sample mean for group . s; is the sample standard
deviation for group .

y; + 7

=2
log10-scale sample mean,; = log; <>

772
7

2
log10-scale sample SD,; = 4/log;, <1 + s‘>

Author(s)

Caroline Ring

calc_rsq Calculate r-squared for observed vs. predicted values

Description

Calculate the square of the Pearson correlation coefficient (r) between observed and model-predicted
values

Usage

calc_rsq(pred, obs, obs_sd, n_subj, detect, logl@_trans = FALSE)

30 calc_rsq

Arguments

pred Numeric vector: Model-predicted value corresponding to each observed value.
Even if ‘logl10_trans log-transformed. (If ‘log10_trans log10-transformed inter-
nally to this function before calculation.)

obs Numeric vector: Observed sample means for summary data, or observed values
for non-summary data. Censored observations should *not* be NA; they should
be substituted with the LOQ. Even if ‘logl0_trans TRUE®, these should *not*
be log10-transformed. (If ‘log10_trans they will be transformed to log10-scale
means internally to this function before calculation.)

obs_sd Numeric vector: Observed sample SDs for summary data. For non-summary
data (individual-subject observations), the corresponding element of ‘obs_sd*
should be set to 0. Even if ‘log10_trans these should *not* be log10-transformed.
(If “log10_trans will be transformed to log10-scale standard deviations internally
to this function before calculation.)

n_subj Numeric vector: Observed sample number of subjects for summary data. For
non-summary data (individual-subject observations), ‘group_n‘ should be set to
1.

detect Logical: Whether each

log10_trans Logical. FALSE (default) means that R-squared is computed for observations
vs. predictions. TRUE means that R-squared is computed for log10(observations)
vs. logl10(predictions) (see Details).

Details

Calculate the square of the Pearson correlation coefficient (r) between observed and model-predicted
values, when observed data may be left-censored (non-detect) or may be reported in summary form
(as sample mean, sample standard deviation, and sample number of subjects). Additionally, han-
dle the situation when observed data and predictions need to be log-transformed before RMSE is
calculated.

r? is calculated according to the following formula, to properly handle observations reported in
summary format:

G €. e
2 _ D iy HiniGi — (B4 Y) D ity ipi + (AY) D0y 1
G G = -G = - G -G _
\/Zi:l(ni —1)s?+ 200 it} — 29 300 i + N+ 57 \/Zi:l i} =24 370 i + N+ §°

r

In this formula, there are G groups (reported observations). (For CvTdb data, a "group" is a specific
combination of chemical, species, route, medium, dose, and timepoint.) n; is the number of subjects
for group <. g; is the sample mean for group <. s; is the sample standard deviation for group @.u; is
the model-predicted value for group :. ¢ is the grand mean of observations:

[is the grand mean of predictions:

calc_rsq 31

G
Ei:1 zy e
G
Do M

i=

N is the grand total of subjects:

G
N = Zni
i=1

For the non-summary case (/V single-subject observations, with all n; = 1, s; = 0, and §; = y;),
this formula reduces to the familiar formula

2 _ Sy (i — 9) (i — i)
VEX - 2SN -)2

r

Value

A numeric scalar: the R-squared value for observations vs. predictions.

Left-censored data
If the observed value is censored, and the predicted value is less than the reported LOQ, then the
observed value is (temporarily) set equal to the predicted value, for an effective error of zero.

If the observed value is censored, and the predicted value is greater than the reported LOQ, the
the observed value is (temporarily) set equal to the reported LOQ, for an effective error of (LOQ -
predicted).

Log-10 transformation

If ‘log10 log10-transformed before calculating the RMSE. In the case where observed values are
reported in summary format, each sample mean and sample SD (reported on the natural scale, i.e.
the mean and SD of natural-scale individual observations) are used to produce an estimate of the
log10-scale sample mean and sample SD (i.e., the mean and SD of log10-transformed individual
observations), using [convert_summary_to_log10()].

The formulas are as follows. Again, y; is the sample mean for group i. s; is the sample standard
deviation for group .

—2
log10-scale sample mean, = log; <%>

Vi + s
s2

log10-scale sample SD; = 4 /logy, (1 + _;)
Yi

Author(s)

Caroline Ring

32

calc_sds_alerts

calc_sds_alerts

Calculate parameter SDs

Description

Calculate parameter SDs using inverse Hessian

Usage

calc_sds_alerts(

pars_opt,

pars_const,
observations,

modelfun,
dose_norm,

log1@_trans

Arguments

pars_opt

pars_const

observations
modelfun

dose_norm

log1@_trans

Details

Named numeric: A vector of parameter values for the parameters that were
optimized. For example, you can get this using [coef.pk()] with ‘include_type =

ne

"optim"*.

Named numeric: A vector of parameter values for parameters that were held
constant, not optimized (but are necessary to evaluate the model). For example,

"ne

you can get this using [coef.pk()] with ‘include_type = "const"*.
The data used to fit the model. For example, you can get this using [get_data.pk()].
The name of the function that evaluates the model (passed to [log_likelihood()]).

Logical: Whether to dose-normalize concentrations before evaluating log-likelihood.
Passed to [log_likelihood()].

Logical: Whether to log10-transform concentrations before evaluating log-likelihood.
Passed to [log_likelihood()].

Calculate parameter SDs using inverse Hessian approach for a single set of parameter values for a
single model and a single data set.

This is a workhorse function called by [coef_sd.pk()]. If the length of this vector is n, the Hessian
matrix will be n x n.

The coefficient standard deviations are estimated by computing a numerical approximation to the
model Hessian (the matrix of second derivatives of the model objective function with respect to
each model parameter) and then attempting to invert it. This procedure yields a variance/covariance
matrix for the model parameters. The square root of the diagonal elements of this matrix represent
the parameter standard deviations.

check_group_hierarchy 33

A first attempt is made to invert the Hessian using [solve()] (see [hess_sd1()]). If the Hessian is sin-
gular, an attempt is made to calculate a pseudovariance matrix, following the procedure outlined in
Gill & King (2004) (see [hess_sd2()]). First, the generalized inverse of the Hessian is calculated us-
ing [MASS::ginv()]. Then, a generalized Cholesky decomposition (to ensure positive-definiteness)
is calculated using [Matrix::Cholesky] with argument ‘perm = TRUE. The generalized inverse is
reconstructed from the generalized Cholesky factorization. The square root of the diagonal elements
of this matrix represent the parameter standard deviations.

If neither of these procedures is successful, then ‘NA_real_°¢ is returned for all coefficient standard
deviations. Record any error messages encountered during the process, and note which method was
used to produce the final results. This is a workhorse function called by [coef_sd.pk()].

Value

A data.frame with variables ‘param_name°, ‘param_sd‘, and ‘sd_alert‘, and as many rows as the
length of ‘pars_opt‘. ‘param_name*‘ contains the names of ‘pars_opt‘. ‘param_sd‘ contains the pa-
rameter standard deviations calculated using the inverse Hessian. ‘sd_alerts‘ is a character variable
noting any errors encountered while attempting to calculate the parameter SDs.

Author(s)

Caroline Ring

References

Gill J, King G. (2004) What to Do When Your Hessian is Not Invertible: Alternatives to Model
Respecification in Nonlinear Estimation. Sociological Methods & Research 33(1):54-87. DOI:
10.1177/0049124103262681

check_group_hierarchy Checking data, error, and summary group hierarchical structure

Description

Checking data, error, and summary group hierarchical structure

Usage
check_group_hierarchy(obj)

Arguments

obj An object created by [pk()].

Value

Prints a tree of the summary hierarchies and an error when the hierarchical structure expectation is
not met.

34

check model

check_method Check methods

Description

Check methods for validity

Usage

check_method(obj, method)

Arguments

obj A [pk()] object

method A user-supplied ‘character* vector of method names

Details

Helper function to ensure that a list of methods specified by the user matches the methods available

in the fitted [pk()] object.

Value

‘TRUE" if all ‘method

Author(s)

Caroline Ring

check_model Check models

Description

Check models for validity

Usage
check_model(obj, model)

Arguments

obj A [pk()] object

model A user-supplied ‘character‘ vector of model names

check newdata 35

Details

Helper function to ensure that a list of models specified by the user matches the models available in
the fitted [pk()] object.

Value

‘TRUE" if all ‘model

Author(s)

Caroline Ring

check_newdata Check new data

Description

Check new data to ensure it has the required variables and classes

Usage

check_newdata(newdata, olddata, reqg_vars, exclude = FALSE)

Arguments
newdata A ‘data.frame‘ containing new data
olddata A ‘data.frame‘ containing existing data. ‘newdata‘ variable classes will be re-
quired to match ‘olddata‘
reg_vars A ‘character® vector of required variable names that must appear in ‘newdata‘
exclude Logical: Whether a variable ‘"exclude"* also must be present in ‘newdata‘
Details

This is a helper function to check new data to ensure it has the required variables and that those
variables are of the correct classes. This is useful, for example, when making predictions from a
fitted [pk()] model object on new data.

Value
‘TRUE', if required variables are present in ‘newdata‘, and required variables are of the same class
in ‘newdata‘ and ‘olddata‘. Otherwise, this function will stop with an error.

Author(s)

Caroline Ring

36 check_params_2comp

check_params_1comp Check I-compartment model parameters

Description

Check to make sure required parameters are present to evaluate 1-compartment model for a given
route and medium

Usage
check_params_1comp(params, route, medium, ...)
Arguments
params A named numeric list of parameters for the 1-compartment model.
route A character vector of routes: "iv" and/or "oral".
medium A character vector of tissue media: "plasma" and/or "blood".
Additional arguments (not currently used)
Value

Character: A message. If all required parameters are present for the given media & routes, the
message is "Parameters OK". If required parameters for the oral route are missing, the message
is "Error: For 1-compartment oral model, missing parameters (comma-separated list of param-
eter names)". If required parameters for the IV route are missing, the message is "Error: For
I-compartment oral model, missing parameters (comma-separated list of parameter names)".

Author(s)

Caroline Ring

check_params_2comp Check 2-compartment model parameters

Description
Check to make sure required parameters are present to evaluate 2-compartment model for a given
route and medium

Usage

check_params_2comp(params, route, medium, ...)

check_params_flat

Arguments

params
route

medium

Value

37

A named numeric vector of parameters for the 2-compartment model.
A character vector of routes: "iv" and/or "oral".
A character vector of tissue media: "plasma" and/or "blood".

Additional arguments (not currently used)

Character: A message. If all required parameters are present for the given media & routes, the
message is "Parameters OK". If required parameters for the oral route are missing, the message
is "Error: For 2-compartment oral model, missing parameters (comma-separated list of param-
eter names)". If required parameters for the IV route are missing, the message is "Error: For
2-compartment oral model, missing parameters (comma-separated list of parameter names)".

Author(s)

Caroline Ring

check_params_flat

Check flat model parameters

Description

Check to make sure required parameters are present to evaluate flat model for a given route and

medium
Usage
check_params_flat(params, route, medium, ...)
Arguments
params A named numeric vector of parameters for the flat model.
route A character vector of routes: "iv" and/or "oral".
medium A character vector of tissue media: "plasma" and/or "blood".
Additional arguments (not currently used)
Value

Character: A message. If all required parameters are present for the given media & routes, the
message is "Parameters OK". If required parameters for the oral route are missing, the message
is "Error: For flat oral model, missing parameters (comma-separated list of parameter names)". If
required parameters for the IV route are missing, the message is "Error: For flat oral model, missing
parameters (comma-separated list of parameter names)".

38 check_required_status.default

Author(s)

Caroline Ring

check_required_status Check required status

Description

This is the S3 method generic.

Usage
check_required_status(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

If the [pk()] object has the required status or greater, returns TRUE. If the [pk()] object has less than
the required status, returns FALSE. Returned value has an attribute ‘msg‘, containing an informative
message as a string.

See Also

[check_required_status.pk()] for the method for class [pk()]

check_required_status.default
Default method for checking required status

Description

Default method for checking required status

Usage
Default S3 method:
check_required_status(obj, ...)
Arguments
obj An object.

Additional arguments currently not in use.

check_required_status.pk

Value

An error, when a non-pk object is used for the first argument.

39

check_required_status.pk
Check required status

Description

Check whether a [pk()] object has a particular required status level

Usage

S3 method for class 'pk'
check_required_status(obj, required_status, ...)

Arguments

obj A [pk()] object

required_status

Integer: The required status. 1 = initialized; 2 = pre-processed; 3 = pre-fitted; 4

= fitted.

Additional arguments. Not in use.

Details

This is a helper function to check whether a [pk()] object has the status required for certain oper-
ations. For example, status 4 (fitting complete) is required for any fit evaluation functions: [pre-

dict.pk()], [residuals.pk()], [coef.pk()], [coef_sd.pk()], [rmse.pk()], [fold_error.pk()]

Value

If the [pk()] object has the required status or greater, returns TRUE. If the [pk()] object has less than
the required status, returns FALSE. Returned value has an attribute ‘msg°‘, containing an informative

message as a string.

Author(s)

Caroline Ring

40 coef.pk

coef.pk Get coefficients

Description

Extract coefficients from a fitted [pk()] object

Usage
S3 method for class 'pk'
coef(
object,
model = NULL,

method = NULL,
drop_sigma = FALSE,
include_NAs = FALSE,

include_type = "use",
suppress.messages = NULL,

Arguments

object A [pk] object.

model Optional: Specify one or more of the fitted models whose coefficients to re-
turn. If NULL (the default), coefficients will be returned for all of the models in
‘obj$stat_model°.

method Optional: Specify one or more of the [optimx::optimx()] methods whose coef-
ficients to return. If NULL (the default), coefficients will be returned for all of
the models in ‘obj$pk_settings$optimx$method*.

drop_sigma Logical: ‘FALSE‘ by default. Determines whether to include sigma in the out-

put.

include_NAs Logical: ‘FALSE‘ by default. Determines whether to include aborted fits which
have NAs as coefficients.

o ne

include_type Character: ‘"use"* (default) will return all parameters used in evaluating the
model, including those that were held constant. ‘"optimize"‘ will return only
parameters that were optimized, dropping all that were held constant. ‘"con-
stant"‘ will return *only* parameters that were held constant (used, but not opti-
mized). (‘"optimize"* and ‘"constant"* are useful, for example, when evaluating
the Hessian of the log-likelihood function, which requires differentiating be-
tween parameters that were optimized and those that were held constant.) Any
value other than ‘"use"*, “"optim"*, or ‘"const"‘ will return an error.

suppress.messages
Logical: ‘NULL* by default to use the setting in ‘object$pk_settings$preprocess$suppress.messages®.

Determines whether to display messages.

ne
ne

ne

ne

Additional arguments currently not in use.

coef_sd 41

Details

This function extracts fitted model parameter values from a fitted [pk()] object.

Value

A data.frame with a row for each ‘data_group‘ x ‘method‘ x ‘model‘ combination in a fitted [pk()]
object. When ‘drop_sigma = TRUE® there is also a row for each unique standard deviation hyper-
parameter defined by ‘error_group® in the fitted [pk()] object. There is a column for all parameter
estimates given each model in ‘model‘. A list-column ‘coefs_vector‘ summarizes all estimated
parameters into a named vector. This named vector is used in functions that call upon the model
functions, such as [predict()].

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef_sd.pk(),

eval_tkstats.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

coef_sd Coefficient standard deviations

Description

This is the S3 method generic for ‘coef_sd‘.

Usage

coef_sd(obj, model, method, suppress.messages, ...)
Arguments

obj A pk object.

model The TK model used.

method Optimizer method used.

suppress.messages
Boolean. Whether messages will be printed.

Additional arguments currently not in use.

Value

A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The remaining columns
include the parameters & hyperparameters as returned by [coef.pk()], as well as their calculated
standard deviations.

42 coef_sd.pk
See Also
[coef_sd.pk()] for the ‘coef_sd‘ method for class [pk()]
coef_sd.default Coefficient standard deviation default
Description
Coefficient standard deviation default
Usage
Default S3 method:
coef_sd(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value
An error, when a non-pk object is used for the first argument.
coef_sd.pk Get coefficient standard deviations
Description
Extract coefficient/parameter standard deviations from a fitted ‘pk*‘ object
Usage

S3 method for class 'pk'

coef_sd(obj, model = NULL, method = NULL, suppress.messages = TRUE,

)

coef_sd.pk 43

Arguments
obj A [pk] object.
model Optional: Specify one or more of the fitted models whose coefficients to re-
turn. If NULL (the default), coefficients will be returned for all of the models in
‘obj$stat_model‘.
method Optional: Specify one or more of the [optimx::optimx()] methods whose coef-

ficients to return. If NULL (the default), coefficients will be returned for all of
the models in ‘obj$pk_settings$optimx$method*.

suppress.messages
Logical. ‘TRUE‘ (the default) to suppress informative messages. ‘FALSE® to
see them.

Additional arguments. Not in use right now.

Details

The coefficient standard deviations are estimated by computing a numerical approximation to the
model Hessian (the matrix of second derivatives of the model objective function with respect to
each model parameter) and then attempting to invert it. This procedure yields a variance/covariance
matrix for the model parameters. The square root of the diagonal elements of this matrix represent
the parameter standard deviations.

A first attempt is made to invert the Hessian using [solve()] (see [hess_sd1()]). If the Hessian is sin-
gular, an attempt is made to calculate a pseudovariance matrix, following the procedure outlined in
Gill & King (2004) (see [hess_sd2()]). First, the generalized inverse of the Hessian is calculated us-
ing [MASS::ginv()]. Then, a generalized Cholesky decomposition (to ensure positive-definiteness)
is calculated using [Matrix::Cholesky] with argument ‘perm = TRUE®. The generalized inverse is
reconstructed from the generalized Cholesky factorization. The square root of the diagonal elements
of this matrix represent the parameter standard deviations.

If neither of these procedures is successful, then ‘NA_real_°¢ is returned for all coefficient standard
deviations.

Value

A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The remaining columns
include the parameters & hyperparameters as returned by [coef.pk()], as well as their calculated
standard deviations. Note that this will only return parameters that where optimized.

Author(s)

Caroline Ring and Gilberto Padilla Mercado

References

Gill J, King G. (2004) What to Do When Your Hessian is Not Invertible: Alternatives to Model
Respecification in Nonlinear Estimation. Sociological Methods & Research 33(1):54-87. DOI:
10.1177/0049124103262681

44 combined_sd

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

combined_sd Combined standard deviation

Description

Given mean, standard deviation, and N for some set of groups, calculate the combined standard
deviation. Note that the groups may not overlap.

Usage

combined_sd(
group_mean,
group_sd,
group_n,
unbiased = TRUE,
na.rm = TRUE,
log10 = FALSE

Arguments

group_mean Numeric vector: Observed sample means for summary data, or observed values
for non-summary data. Censored observations should *not* be NA; they should
be substituted with some value at or below the corresponding LOQ (e.g. LOQ
or LOQ/2). Even if ‘log10 should *not* be log10-transformed.

group_sd Numeric vector: Observed sample SDs for summary data. For non-summary
data (individual-subject observations), the corresponding element of ‘group_sd*
should be set to 0. Even if ‘log10 should *not* be log10-transformed.

group_n Numeric vector: Observed sample number of subjects for summary data. For
non-summary data (individual-subject observations), ‘group_n‘ should be set to
1.

unbiased Logical. If TRUE (the default), then ‘group_sd‘ is assumed to be the unbiased

estimator of population standard deviation (i.e. calculated using ‘n-1° in the de-
nominator — the way that ‘stats::sd()‘ calculates it), and the returned combined
SD is also the unbiased estimator of the combined population SD. If FALSE,
then ‘group_sd‘ is assumed to be the biased estimator (using ‘n‘ in the denomi-
nator), and the returned value is also the biased estimator of the combined pop-
ulation SD.

na.rm Logical. If TRUE (default), then any groups where mean, SD, *or* N were NA
will be dropped. If FALSE, they will be retained (and the result will be NA).

logi@ Logical. If TRUE, the standard deviations are from log10-transformed values.

compare_models

Value

45

Numeric: the standard deviation of the combined population (i.e. if all the groups were concatenated

into one large group).

Author(s)

Caroline Ring

compare_models Model comparison

Description

This is the S3 method generic for compare_models()

Usage
compare_models(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘ with variables - ‘model‘: The name of each model - ‘method‘: The name of each
method - A variable named for ‘criterion‘ (e.g. if ‘criterion = "AIC"* then the result will have a

variable named ‘AIC*): The criterion value for each model/method

See Also

[compare_models.pk()] for the method for class [pk()]

46

compare_models.pk

compare_models.default
Default method for compare_models()

Description

Default method for compare_models()

Usage

Default S3 method:
compare_models(obj, ...)

Arguments

obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

compare_models. pk Model comparison for [pk()] objects

Description

Perform model comparison for a fitted [pk()] object.

Usage

S3 method for class 'pk'
compare_models(

obj,

newdata = NULL,

model = NULL,

method = NULL,

criterion = "AIC",

conc_scale_use 47

Arguments

obj A [pk()] model object. Must be fitted, or the function will exit with an error.

newdata Optional: A ‘data.frame’ containing new data for which to compute the TK stats.
Must contain at least variables ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Media‘, ‘Dose*,
and any other variables named in ‘tk_grouping‘. Default ‘NULL’, to use the
data in ‘obj$data‘.

model Character: One or more of the models fitted. Default ‘NULL to return TK stats
for all models.

method Character: One or more of the [optimx::optimx()] methods used. Default ‘NULL*
to return TK stats for all methods.

criterion The name of a criterion function to use for model comparison. Default "AIC".
Must be the name of a function that (as for ‘AIC®) accepts arguments ‘obj°,
‘newdata‘, ‘method‘ and ‘model‘ (may accept other arguments, specified in “...°)
and returns output as for ‘AIC*: a named list of numeric vectors (named for each
of the model names in ‘model ‘), where each vector has elements named for each
of the method names in ‘method‘, containing the criterion value calculated for
that model fitted using that method.

Optional: Other arguments to ‘criterion‘ function.

Details
Models are compared according to the goodness-of-fit criterion named in "criterion", and the name
of the winning model is returned.

Value

A ‘data.frame‘ with variables - ‘model‘: The name of each model - ‘method‘: The name of each
method - A variable named for ‘criterion® (e.g. if ‘criterion = "AIC"* then the result will have a
variable named ‘AIC*): The criterion value for each model/method

Author(s)

Caroline Ring

conc_scale_use Get concentration scalings

Description

A helper function to get concentration scalings

Usage

conc_scale_use(use_scale_conc, obj)

48 convert_summary_to_log10

Arguments

use_scale_conc The ‘use_scale_conc‘ argument (see Details)
obj A [pk()] object

Details

In methods applied to fitted [pk()] objects that also accept ‘newdata‘ arguments, the user may spec-
ify whether to use the concentration scaling of the fitted [pk()] object, or use a different concentra-
tion scaling. This is done by specifying an argument ‘use_scale_conc‘, which may be ‘TRUE (to
use the scaling from the fitted object), ‘FALSE® (to use no scaling), or may be a named list with
elements ‘dose_norm‘ and ‘logl0_trans‘ to specify scaling/transformation directly. This helper
function parses the ‘use_scale_conc* argument.

Value

A named list with elements ‘dose_norm*‘ and ‘log10_trans‘, both logical.

convert_summary_to_log1@
Convert sample mean and SD to logl0-scale

Description
Estimate logl0-scale sample mean and standard deviation from natural-scale sample mean and
standard deviation.

Usage

convert_summary_to_logl1@(sample_mean, sample_SD)

Arguments
sample_mean Numeric: one or more sample means
sample_SD Numeric: one or more sample SDs
Details

; 1s the natural-scale sample mean for group ¢. s; is the natural-scale sample standard deviation for
group .

—2
log10-scale sample mean,; = log; <yZ>

2
log10-scale sample SD, = 4 /log;, <1 + s;)
Yi

convert_time 49

Value

A list with two named elements: "loglOmean" and "log10SD", the log10-scale sample means and
log10-scale sample SDs, respectively.

Author(s)

Caroline Ring

convert_time Helper function to convert time units

Description

Convert a vector of times between units

Usage
convert_time(x, from = "hours”, to = "identity”, inverse = FALSE)
Arguments
X Numeric: one or more time values to be converted.
from Character vector: ‘x‘ is currently in these units. Must be units understood by ‘lu-
bridate::duration()*, i.e. ‘"seconds"‘, “"hours"*, *"days"‘, “"weeks"*, ‘"months"",
“"years"‘, “"milliseconds"‘, ‘"microseconds"*, ‘"nanoseconds"*, and/or ‘"picosec-
onds"‘. Default value is ‘"hours"*.
to Character vector: ‘x‘ will be converted to these units. Must be either ‘"auto"‘,
“"identity"*, or units understood by ‘lubridate::duration()*, i.e. ‘"seconds"‘, ‘"hours"",
“"days"‘, “"weeks"*, ‘"months"‘, ‘"years"‘, ‘"milliseconds"‘, ‘"microseconds"",
“"nanoseconds"‘, and/or ‘"picoseconds"‘. Default value is ‘"identity"‘. If *"iden-
tity"*, then ‘x‘ will be returned unchanged. If ‘"auto"‘, then units will be au-
tomatically chosen that make the midpoint of ‘x‘ (or its inverse, if ‘inverse =
TRUE®) as close to an order of magnitude of 10 as possible (see [auto_units()]).
inverse Logical: TRUE if ‘x‘ is in units of *inverse* time (e.g. 1/hour, 1/day); FALSE
if ‘x* is in units of time (e.g. hours, days). Default value is FALSE.
Value

A numeric vector the same length as ‘x‘, converted from the units in ‘from‘ to the units in ‘to*.

Author(s)

Caroline Ring, Gilberto Padilla Mercado

50

cp_Ilcomp

cp_lcomp

Analytical 1-compartment model

Description

Calculates plasma concentrations vs. time according to the analytical solution for the 1-compartment
model, for single bolus doses (IV and/or oral).

Usage
cp_lcomp(params, time, dose, route, medium = "plasma”)
Arguments
params A named numeric vector of model parameter values. See Details for require-
ments.
time A numeric vector of times, reflecting the time point when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as ‘dose’
and ‘route’, or length 1.
dose A numeric vector of doses, reflecting single bolus doses administered at time 0.
Must be same length as ‘time*‘ and ‘route’, or length 1.
route A character vector, reflecting the route of administration of each single bolus
dose: “oral’‘ or “’iv’‘. Must be same length as ‘time‘ and ‘dose’, or length 1.
medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time* and ‘dose’, or length 1.
Value

A vector of blood or plasma concentration values corresponding to ‘time°.

Required parameters

‘params‘ must include the following named items:

kelim Elimination rate, 1/time.

Vdist Apparent volume of central compartment, volume/unit BW. Or see below for ‘Fgutabs_Vdist*

For oral administration (if any ‘route include:

Fgutabs Oral bioavailability, unitless fraction. Or see below for ‘Fgutabs_Vdist*

kgutabs Rate of absorption from gut, 1/time.

For oral administration, in lieu of ‘Vdist* and ‘Fgutabs‘, you may instead provide ‘Fgutabs_Vdist*,
the ratio of Fgutabs to Vdist (1/volume). This is an alternate parameterization for situations where
‘Fgutabs® and ‘Vdist‘ are not identifiable separately (i.e., when oral TK data are available, but IV

cp_2comp 51

data are not). If ‘Fgutabs‘ and ‘Vdist‘ are provided, they will override any value provided for
‘Fgutabs_Vdist‘.

If both oral and IV administration are specified (i.e., some ‘route and some ‘route ‘Fgutabs‘ or
‘Fgutabs_Vdist‘. (If “Vdist® and ‘Fgutabs_Vdist® are provided, but ‘Fgutabs* is not provided, then
‘Fgutabs® will be calculated from “Vdist® and ‘Fgutabs_Vdist*.)

If ‘any(medium ‘Rblood2plasma‘, the ratio of chemical concentration in whole blood to the chem-
ical concentration in blood plasma.

Author(s)

Caroline Ring, John Wambaugh

See Also

Other built-in model functions: auc_T1comp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),

cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other 1-compartment model functions: auc_1comp(), get_params_Tcomp(), get_starts_1comp()

Other model concentration functions: cp_2comp (), cp_flat(), cp_httk_gas_pbtk(), get_params_httk_gas_pbtk()

cp_2comp Analytical 2-compartment model

Description

Calculates plasma concentration according to the analytical solution for the 2-compartment model.

Usage
cp_2comp(params, time, dose, route, medium = "plasma")
Arguments
params A named numeric vector of parameter values. See Details for requirements.
time A numeric vector of times, reflecting the time points when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as other
arguments, or length 1.
dose A numeric vector of doses, reflecting single bolus doses administered at time 0.
Must be same length as other arguments, or length 1.
route A character vector, reflecting the route of administration of each single bolus
dose: 'oral' or 'iv'. Must be same length as time and dose, or length 1.
medium A character vector reflecting the medium in which each resulting concentration

is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as other arguments, or length 1.

52 cp_2comp_dt

Value

A vector of blood or plasma concentration values (mass chemical/volume media) corresponding to
each value in time

Author(s)

Caroline Ring, John Wambaugh

See Also

Other built-in model functions: auc_T1comp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),

cp_lcomp(), cp_2comp_dt(), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other 2-compartment model functions: auc_2comp(), cp_2comp_dt(), get_params_2comp(),
get_starts_2comp(), tkstats_2comp(), transformed_params_2comp()

Other model concentration functions: cp_Tcomp(), cp_flat(), cp_httk_gas_pbtk(), get_params_httk_gas_pbtk()

cp_2comp_dt Time derivative of analytical 2-compartment model

Description

Calculates the time derivative (instantaneous rate of change) of plasma concentration according to
the analytical solution for the 2-compartment model.

Usage

cp_2comp_dt(params, time, dose, route, medium)

Arguments

params A named list of parameter values including the following:

k12 Rate at which compound moves from central to peripheral compartment,
1/h.

k21 Rate at which compound moves from peripheral to central compartment,
1/h.

kelim Elimination rate, 1/h.
V1 Apparent volume of central compartment, L/kg BW. Or see below for "Fgutabs_V1"

For oral administration (‘route include:

Fgutabs Oral bioavailability, unitless fraction. Or see below for "Fgutabs_V1"
kgutabs Rate of absorption from gut, 1/h.

cp_2comp_dt 53

For oral administration, in lieu of "V1" and "Fgutabs", you may instead provide
"Fgutabs_V1", the ratio of Fgutabs to V1 (1/L). This is an alternate parameter-
ization for situations where "Fgutabs" and "V1" are not identifiable separately
(i.e. when oral data are available, but IV data are not). If "Fgutabs" and "V1"
are provided, then "Fgutabs_V1" will not be used.

time A numeric vector of times in hours, reflecting the time points when concentra-
tion is measured after the corresponding single bolus dose. Must be same length
as ‘dose‘ and ‘route’, or length 1.

dose A numeric vector of doses in mg/kg, reflecting single bolus doses administered
at time 0. Must be same length as ‘time* and ‘route’, or length 1.

route A character vector, reflecting the route of administration of each single bolus
dose. Currently, only "iv" and "oral" are supported. Must be same length as
‘time‘ and ‘dose’, or length 1.

medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time‘ and ‘dose’, or length 1.

Details

This function is used by [postprocess_data()] to determine the time of peak concentration for the
2-compartment model, by locating the point where the time derivative of concentration crosses zero.

Value

A vector of instantaneous rates of change of plasma concentration values (mg/L/time) correspond-
ing to each value in time

Author(s)

Caroline Ring, John Wambaugh

See Also

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_Tcomp(), cp_2comp(), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other 2-compartment model functions: auc_2comp(), cp_2comp(), get_params_2comp(), get_starts_2comp(),
tkstats_2comp(), transformed_params_2comp()

54 cp_flat

cp_flat Flat model

Description

Evaluates a "flat" model for concentration vs. time

Usage
cp_flat(params, time, dose, route, medium = "plasma”)
Arguments
params A named list of parameter values. See Details for requirements.
time A numeric vector of times, reflecting the time points when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as other
arguments, or length 1.
dose A numeric vector of doses, reflecting single bolus doses administered at time 0.
Must be same length as other arguments, or length 1.
route A character vector, reflecting the route of administration of each single bolus
dose: “oral’‘ or “’iv’‘. Must be same length as ‘time‘ and ‘dose’, or length 1.
medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as other arguments, or length 1.
Details

This function is used for model comparison: does a 1- or 2-compartment TK model fit the data any
better than this naive "flat" model?

Value

A vector of plasma concentration values (mass chemical/volume) corresponding to time.

Required parameters

‘params‘ must include the following named items:
Vdist Apparent volume of central compartment, volume/unit BW. Or see below for ‘Fgutabs_Vdist*

For oral administration (if any ‘route include:

Fgutabs Oral bioavailability, unitless fraction. Or see below for ‘Fgutabs_Vdist*

cp_httk_gas_pbtk 55

For oral administration, in lieu of ‘Vdist* and ‘Fgutabs‘, you may instead provide ‘Fgutabs_Vdist°,
the ratio of Fgutabs to Vdist (1/volume). This is an alternate parameterization for situations where
‘Fgutabs‘ and ‘Vdist‘ are not identifiable separately (i.e., when oral TK data are available, but IV
data are not). If ‘Fgutabs® and ‘Vdist® are provided, they will override any value provided for
‘Fgutabs_Vdist*.

If both oral and IV administration are specified (i.e., some ‘route and some ‘route ‘Fgutabs‘ or
‘Fgutabs_Vdist‘. (If “Vdist* and ‘Fgutabs_Vdist* are provided, but ‘Fgutabs® is not provided, then
‘Fgutabs® will be calculated from “Vdist® and ‘Fgutabs_Vdist*.)

If ‘any(medium ‘Rblood2plasma‘, the ratio of chemical concentration in whole blood to the chem-
ical concentration in blood plasma.

Flat model equations

IV administration

Dose
Conc =
V;list
Oral administration
Conc — FourapsDose
‘/dist

Author(s)

Caroline Ring, John Wambaugh, Chris Cook

See Also

Other built-in model functions: auc_Tcomp (), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),

cp_1comp(), cp_2comp(), cp_2comp_dt (), cp_httk_gas_pbtk(), get_params_1comp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1lcomp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other flat model functions: auc_flat(), get_params_flat(), get_starts_flat()

Other model concentration functions: cp_1comp(), cp_2comp(), cp_httk_gas_pbtk(), get_params_httk_gas_pbtk()

cp_httk_gas_pbtk Calculates plasma concentration for ‘hitk*’s ‘gas_pbtk* model

Description

Calculated plasma concentrations vs time according to the ‘gas_pbtk* httk model

56

cp_httk_gas_pbtk

Usage
cp_httk_gas_pbtk(
params,
time,
dose,
route,
medium = "plasma”,
this_chem = NULL,
this_species = NULL,
restrictive = TRUE,
)
Arguments
params A named numeric vector of model parameter values.
time A numeric vector of times, reflecting the time point when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as ‘dose’
and ‘iv.dose’, or length 1.
dose A numeric vector of doses, reflecting single bolus doses administered at time
0. Must be same length as ‘time* and ‘iv.dose‘, or length 1. In this model, it is
expected that this value represents a measurement of radioactive particles from
a radiolabeling experiment.
route A character vector, reflecting the route of administration of each single bolus
dose: “’oral’‘ or “’iv’ ‘. Must be same length as ‘time‘ and ‘dose*, or length 1.
medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time‘ and ‘dose°, or length 1.
this_chem A character vector naming the chemical for calculations in ‘httk*.

this_species

restrictive

Value

A character vector naming the species for calculations in ‘httk*.

A logical value (TRUE or FALSE. Default: FALSE) that says whether the as-
sumption is that the clearance is restrictive or non-restrictive

Additional parameters. Currently only used for determining if Funbound.plasma
or Krbc2pu should be held constant.

A vector of blood or plasma concentration values corresponding to ‘time°.

Required parameters

These are given by [httk::parameterize_gas_pbtk()]. Furthermore, they are transformed to a vec-
tor during the prefitting process. The optimized parameters are ‘Clint‘ and ‘Funbound.plasma‘.
Because these optimized parameters impact ‘Clmetabolismc’, ‘Krbc2pu‘, ‘Rblood2plasma‘ and
‘Fabsgut®, these are recalculated at the beginning of this function.

cvt 57

Author(s)
Gilberto Padilla Mercado

See Also

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_lcomp(), cp_2comp(), cp_2comp_dt (), cp_flat(), get_params_Tcomp(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other httk model functions: auc_httk_gas_pbtk(), get_params_httk_gas_pbtk(), get_starts_httk_gas_pbtk()
Other model concentration functions: cp_Tcomp(), cp_2comp(), cp_flat(), get_params_httk_gas_pbtk()

cvt CvTdb data

Description

Concentration vs. time data from CvTdb

Usage

cvt

Format
A ‘data.frame* with 13937 rows and 61 variables:

conc_time_id Unique database identifier for each CvT observation.
fk_series_id Unique database identifier for experimental series.
time_original Timepoint in original units.

time_hr Timepoint in hours.

conc_original Concentration in original units.

conc_sd_original Standard deviation of concentration in original units.
conc Concentration in normalized units.

conc_sd Standard deviation of concentration in normalized units.
fk_analyzed_chemical_id Unique database identifier for analyte.
analyzed_chem_dtxsid DTXSID of chemical analyte.
analyzed_chem_name_original Original analyte name.
analyzed_chem_casrn CASRN of chemical analyte.
analyzed_chem_name Preferred name for analyte.
time_units_original Original time units.

conc_units_original Original concentration units.

58

cvt

conc_units_normalized Normalized concentration units.
conc_unit_norm_factor Ratio of conc/conc_original
loq Level of quantification.

loq_units Units for loq.

n_subjects_in_series Number of subjects in each series.

radiolabeled Answers whether this observation comes from a radiolabelling or isotope tracing
experiment.

fk_study_id Unique database identifier for each study.
administration_route_normalized Route of exposure/administration, either oral or iv.
fk_dosed_chemical_id Unique database identifier for dosed chemical.
dosed_chem_dtxsid DTXSID of dosed chemical.
dosed_chem_name_original Original dosed chemical name.
dosed_chem_casrn CASRN of dosed chemical.

dosed_chem_name Preferred name for dosed chemical.

dose_volume Volume of dose.

dose_volume_units Units for dose_volume.

dose_vehicle If available, specifies what vehicle was used CvT experiment.
dose_duration Duration of the dose, if available.

dose_duration_units Units for dose_duration.

dose_frequency Frequency of dosing, these should all be 1 for a single bolus.
fasting_period If available, describes the fasting period for subjects.
dose_level normalized Dose levels in normalized units.

dose_level_original Dose levels in original units.

dose_level _units_original Units for dose_level_original.
conc_medium_normalized Standardized media names, blood or plasma.
conc_medium_original Original media names.

fk_subject_id Unique database identifier for each subject.

weight_kg Subject weight, in kilograms.

species Subject species.

sex Subject sex, if available.

age Subject age, if available.

age_units Units for age.

age_category Categories for age.

fk_extraction_document_id Unique database identifier for documents that were curated.
pmid Document PubMed ID.

year Year of publication.

other_study_identifier Alternative identifier for documents, used for NTP studies.

cvtdb_original 59

url Document URL address.

doi Document DOI.

extracted Curation level of document.

curation_set_tag A grouping tag for specific document extraction and curation efforts.
n_subjects_normalized Normalized subject number.
invivPK_dose_level_units dose_level_units used in this package, mg/kg.
invivPK_conc_units conc_units used in this package, ug/mL
invivPK_conc Concentrations normalized to ug/mL
invivPK_dose_level Dose normalized to mg/kg

invivPK_loq Level of quantification in ug/mL

invivPK_loq_units LOQ units used in this package, ug/mL.

invivPK_conc_sd Standard deviation of concentrations, in ug/mL.

Details

This is concentration vs. time data from CvTdb, most recently downloaded as of the date in
[‘cvt_date‘].

These data have been filtered to retain only oral and intravenous administration, and only measure-
ments in blood and plasma. They have also been filtered to retain only observations where the same
chemical was both administered and measured in blood/plasma (i.e., excluding observations where
a metabolite was measured).

cvtdb_original SQL query result (current)

Description

This is the raw SQL query result.

Usage

cvtdb_original

Format

An object of class data. frame with 35669 rows and 59 columns.

Details

A data.frame similar to [‘cvt‘] and [‘cvt_2.0.0°], but to create those objects some values are changed
to normalized values for use with invivoPKfit specifically and to include experiments that may not
pass filtering due to data coding details, but are reasonable to include for analysis.

60 cvt_date

cvt_2.0.0 CvTdb data for invivoPKfit 2.0.0 release (old)

Description

The CvTdb data released for the manuscript Informatics for toxicokinetics (2025).

Usage

cvt_2.0.0

Format

An object of class tb1_df (inherits from tbl, data. frame) with 7918 rows and 62 columns.

Details

A data.frame with similar data to [‘cvt‘]

cvt_date CvTdb download date

Description

The most recent download date of [‘cvt‘] data

Usage

cvt_date

Format

An object of class Date of length 1.

Details

A character scalar giving the date in "YYYY-MM-DD" format of the download date of the data in
[‘cvt‘] from the CvTdb database.

data_summary 61

data_summary data_summary()

Description

This is the S3 method generic for data_summary()

Usage
data_summary(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘ with variables including all the grouping variables in ‘summary_group®, ‘group_id*;
‘param_name* (the name of the summary statistic; see Details); ‘param_value‘ (the summary statis-
tic value); ‘param_units* (the units of the summary statistic, derived from the units of the data).

See Also
[data_summary.pk()] for the method for class [pk()]

data_summary.default Default method for data_summary()

Description

Default method for data_summary()

Usage
Default S3 method:
data_summary(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

62

data_summary.pk

data_summary.pk

Data summary for a ‘pk* object

Description

Calculate data summary statistics for a ‘pk* object

Usage
S3 method for class 'pk'
data_summary(obj, newdata = NULL, summary_group = NULL, ...)
Arguments
obj A [pk()] model object. Must be fitted, or the function will exit with an error.

newdata

summary_group

Details

Optional: A ‘data.frame‘ containing new data for which to compute the TK
stats. Must contain at least variables ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Dose*,
‘Conc’, ‘Dose.Units‘, ‘Conc.Units*, either ‘Time_trans.Units® or ‘Time.Units,
and any other variables named in ‘tk_grouping‘. Default ‘NULL’, to use the
data in ‘get_data(obj)".

A list of variables provided using a ‘dplyr::vars()‘ call. The data (either ‘new-
data‘ or ‘obj$data‘) will be grouped according to the unique combinations of
these variables. For each unique combination of these variables in the data, a set
of summary statistics will be computed. The default is ‘NULL", to use the same
data grouping that was set in [stat_nca_group()] for the ‘pk‘ object. However,
you may specify a different data grouping if you wish.

Additional arguments. Not in use.

Get summary statistics for data in a ‘pk‘ object (or optionally, new data), using data groupings
defined by ‘get_nca_group()‘ for the ‘pk‘ object (or optionally, new groupings). If you provide both
‘newdata‘ and ‘summary_group‘, then everything in the ‘pk‘ object will be ignored and you will
simply be doing data summary *de novo* (which may be what you want).

Summary statistics include, for each group:

e ‘n_obs‘: the number of observations

¢ ‘n_exclude‘: The number of excluded observations

¢ ‘n_detect‘: The number of non-excluded detected observations

e ‘n_series_id‘: The number of unique series IDs

e ‘n_timepts‘: The number of unique time points

e ‘n_ref‘: The number of unique reference IDs

e ‘tlast‘: The time of the latest non-excluded observation

¢ ‘tlast_detect‘: The time of the latest non-excluded detected observation

e ‘tfirst‘: The time of the earliest non-excluded observation

o ‘tfirst_detect‘: The time of the earliest non-excluded detected observation

dinorm_summary 63

Value
A ‘data.frame‘ with variables including all the grouping variables in ‘summary_group°, ‘group_id*;
‘param_name* (the name of the summary statistic; see Details); ‘param_value‘ (the summary statis-
tic value); ‘param_units* (the units of the summary statistic, derived from the units of the data).

Author(s)
Caroline Ring, Gilberto Padilla Mercado

dlnorm_summary Log-normal distribution density function for summary data

Description

Evaluates the normal distribution density function for summary data reported as sample mean, sam-
ple SD, and sample N. Sample mean and sample SD should be on the *natural* scale. If you have
log-scale sample mean and SD (i.e., the mean and SD of log-transformed observations),then use
[dnorm_summary()] instead.

Usage

dlnorm_summary(mu, sigma, x_mean, x_sd, x_N, log = FALSE)

Arguments
mu *Log-scale* mean of the log-normal distribution to be evaluated (*not* the sam-
ple mean). May be a numeric scalar or vector.
sigma *Log-scale* standard deviation of the log-normal distribution to be evaluated
(*not* the sample SD). May be a numeric scalar or vector.
X_mean Sample mean (on the *natural* scale). May be a numeric scalar or vector.
x_sd Sample standard deviation (on the *natural* scale). May be a numeric scalar or
vector.
x_N Sample number of observations. May be a numeric scalar or vector.
log TRUE/FALSE: Whether to return the log of the density function (i.e., the log-
likelihood). Default FALSE.
Details

‘x_mean‘, ‘x_sd‘, ‘X_N*, ‘mu‘, and ‘sigma‘ should either be all the same size, or length 1. If they
are different lengths, they will be repeated until their lengths match, with a warning.

Value

A numeric scalar or vector matching the length of the longest of ‘mu°, ‘sigma‘, ‘x_mean°, ‘x_sd*,
and ‘x_N°*.

64

Author(s)

Caroline Ring

dnorm_summary

dnorm_summary

Normal distribution density function for summary data

Description

Evaluates the normal distribution density function for summary data reported as sample mean, sam-
ple SD, and sample N.

Usage

dnorm_summary(mu, sigma, x_mean, x_sd, x_N, log = FALSE)

Arguments

mu

sigma

X_mean
x_sd
x_N

log

Details

Mean of the normal distribution to be evaluated (*not* the sample mean). May
be a numeric scalar or vector.

Standard deviation of the normal distribution to be evaluated (*not* the sample
SD). May be a numeric scalar or vector.

Sample mean. May be a numeric scalar or vector.
Sample standard deviation. May be a numeric scalar or vector.
Sample number of observations. May be a numeric scalar or vector.

TRUE/FALSE: Whether to return the log of the density function. Default FALSE
(to return the density function value on the natural scale).

‘x_mean‘, ‘x_sd‘, ‘X_N*, ‘mu‘, and ‘sigma‘ should either be all the same size, or length 1. If they
are different lengths, they will be repeated until their lengths match, with a warning.

Value

A numeric scalar or vector matching the length of the longest of ‘mu‘, ‘sigma‘, ‘x_mean®, ‘x_sd°,

and ‘x_N°*.

Author(s)

Caroline Ring

do_data_info 65

do_data_info do_data_info generic

Description

do_data_info generic

Usage
do_data_info(obj, ...)
Arguments
obj the pk object
Additional arguments currently not in use.
Value

Object of class [pk()] with an added ‘$data_info* list containing non-compartmental analysis results.

See Also
[do_data_info.pk()] for the ‘do_data_info‘ method for class [pk()]

do_data_info.default do_data_info default method

Description

do_data_info default method

Usage
Default S3 method:
do_data_info(obj, ...)
Arguments

obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

66 do_fit

do_data_info.pk calculate summary data info

Description

Calculate summary data information, including non-compartmental analysis.

Usage
S3 method for class 'pk'
do_data_info(obj, ...)
Arguments
obj A ‘pk‘ object

Additional arguments. Not in use currently.

Value

Object of class [pk()] with an added ‘$data_info* list containing non-compartmental analysis results.

Author(s)

Caroline Ring

do_fit Fitting

Description

This is the S3 generic method for ‘do_fit".

Usage
do_fit(obj, ...)
Arguments
obj the pk object
Additional arguments currently not in use.
Value

The same [pk] object, with element ‘fit‘ containing the fitted results for each model in ‘stat_model‘.

See Also
[do_fit.pk()] for the ‘do_fit* method for class [pk()]

do_fit.default

67

do_fit.default do_fit default method

Description

do_fit default method

Usage

Default S3 method:
do_fit(obj, ...)

Arguments
obj an object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

do_fit.pk Do fitting

Description

Fit PK model(s) for a ‘pk‘ object

Usage
S3 method for class 'pk'
do_fit(obj, rate_names = NULL, ...)
Arguments
obj A ‘pk‘ object
rate_names The names of the rate units. Leave NULL to utilize default 1/hour.

Additional arguments. Not in use currently.

68 do_prefit

Details

This function estimates the parameters for each model in ‘stat_model‘ from the data, using numer-
ical optimization implemented in [optimx::opm()]. The optimization is done by maximizing the
log-likelihood function implemented in [log_likelihood()] (technically, by minimizing the negative
log-likelihood). Only the non-excluded observations are used.

Due to limitations of [optimx::opm()], the log-likelihood function is forced to return finite val-
ues during this optimization. Impossible combinations of parameters (e.g., parameter values that
produce negative predicted concentrations) should have a log-likelihood of ‘-Inf‘, but due to this
limitation, they instead have a log-likelihood of ‘-Machine.doublexmax‘. This limitation means
that the log-likelihood function is flat in regions of impossible parameter values. It is unlikely, but
possible, that the optimizer might get "stuck" in such a flat region — report convergence, but return
a "bad" set of parameter values that produces non-physical predictions.

Before trusting the results of any fit, it is recommended to check the log-likelihood using [logLik()]
and the Akaike Information Criterion using [AIC()], which check the log-likelihood *without*
forcing it to return finite values.

Value

The same [pk] object, with element ‘fit‘ containing the fitted results for each model in ‘stat_model‘.

Parallel Processing

Please set [mirai::daemons()] if you intend to take advantage of parallel processing. If [mirai::daemons()]
are set, this function will use [mirai::mirai_map()] if none are set, then sequential iteration will oc-

cur. Distinct progress bars are displayed depending on whether parallel processing is used. Please
remember to run ‘mirai::daemons(OL)° afterwards. See ‘mirai‘ package documentation for more
details.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

do_prefit Prefitting

Description

Prefitting

Usage
do_prefit(obj, ...)

Arguments

obj the pk object

Additional arguments currently not in use.

do_prefit.default 69

Value
The same ‘pk‘ object, but with a new element ‘prefit‘, containing the results of pre-fit calculations
and checks for each model and for the error model.

See Also
[do_prefit.pk()] for the ‘do_prefit* method for class [pk()]

do_prefit.default do_prefit default method

Description

do_prefit default method

Usage
Default S3 method:
do_prefit(obj, ...)
Arguments
obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

do_prefit.pk Do pre-fitting

Description

Do pre-fit calculations and checks

Usage
S3 method for class 'pk'
do_prefit(obj, ...)
Arguments
obj A ‘pk‘ object

Additional arguments. Not in use currently.

70 do_preprocess

Details
This function does the following:
* Based on the error group in ‘pk_groups‘ and the pre-processed data, determines the number
of residual standard deviations ("sigmas") hyperparameters to be estimated.
* Determines which "sigma" hyperparameter corresponds to each observation in the data.
* Calculates lower/upper bounds and starting guesses for each "sigma" hyperparameter

* For each model in ‘stat_model°, calls its ‘params_fun‘, the function that, based on the data,
determines whether to optimize each model parameter, and calculates lower/upper bounds and
starting guesses for each model parameter to be optimized. Only non-excluded observations
are passed to each model’s ‘params_fun°.

Lower bounds for each "sigma" hyperparameter are set to ‘sqrt(.Machine$double_eps)‘.

Upper bounds for each "sigma" hyperparameter are calculated as the standard deviation of observa-
tions in the corresponding error SD group (see [combined_sd()]), with any specified transformations
applied (dose-normalization and/or log10-transformation). If the combined SD is non-finite or less
than the sigma lower bound, then the maximum concentration is used as an upper bound; if this
still returns a non-finite value or a value less than the lower bound, then a constant value of 1000 is
substituted.

The starting guess for each "sigma" hyperparameter is one-tenth of the upper bound.

If there are less detected observations than timepoints, or if there are parameters necessary for model
fitting that have missing values, these models will not be fit.
Value

The same ‘pk‘ object, but with a new element ‘prefit‘, containing the results of pre-fit calculations
and checks for each model and for the error model.

Author(s)

Caroline Ring

do_preprocess Preprocess data generic

Description

Preprocess data generic

Usage

do_preprocess(obj, ...)
Arguments

obj the pk object.

Additional arguments currently not in use.

do_preprocess.default 71

Value

The same ‘pk‘ object, with added elements ‘data‘ (containing the cleaned, gap-filled data) and
‘data_info‘ (containing summary information about the data, e.g. number of observations by route,
media, detect/nondetect; empirical tmax, time of peak concentration for oral data; number of obser-
vations before and after empirical tmax)

See Also

[do_preprocess.pk()] for the ‘do_preprocess method for class [pk()]

do_preprocess.default do_preprocess default method

Description

do_preprocess default method

Usage
Default S3 method:
do_preprocess(obj, ...)
Arguments
obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

do_preprocess.pk Do pre-processing

Description

Pre-process data for a ‘pk* object

Usage

S3 method for class 'pk'
do_preprocess(obj, ...)

72 do_preprocess.pk
Arguments
obj A ‘pk‘ object
Additional arguments. Not in use currently.
Details

Data pre-processing for an object ‘obj‘ includes the following steps, in order:

Coerce data to class ‘data.frame’ (if it is not already)

nes:

Rename variables to harmonized "‘invivopkfit‘ aesthetic" variable names, using ‘obj$mapping

3

Check that the data includes only routes in ‘obj$pk_settings$preprocess$routes_keep* and
media in ‘obj$pk_settings$preprocess$media_keep*

Check that the data includes only one unit for concentration, one unit for time, and one unit
for dose.

Coerce “Value®, “Value_SD‘, ‘LOQ°, ‘Dose, and ‘Time* to numeric, if they are not already.
Coerce ‘Species‘, ‘Route’, and ‘Media‘ to lowercase.

Replace any negative ‘Value®, ‘Value_SD°, ‘Dose‘, or ‘Time* with ‘NA°

If any non-NA “Value is currently less than its non-NA LOQ, then replace it with NA
Impute any NA ‘LOQ‘: as ‘calc_log_factor® * minimum non-NA ‘Value® in each ‘loq_group*
For any cases where ‘N_Subject‘s is NA, impute ‘N_Subjects‘ = 1

For anything with ‘N_Subjects‘ == 1, set ‘Value_SD* to 0

Impute missing ‘Value_SD* as follows: For observations with ‘N_Subjects® > 1, take the
minimum non-issing ‘Value_SD* for each ‘sd_group®. If all SDs are missing in an ‘sd_group®,
then ‘Value_SD* for each observation in that group will be imputed as 0.

Mark data for exclusion according to the following criteria:

— Exclude any remaining observations where both Value and LOQ are NA
— For any cases where ‘N_Subjects* is NA, impute ‘N_Subjects‘ =1

— Exclude any remaining observations with ‘N_Subjects* > 1 and ‘Value_SD° still NA.
(This should never occur, if SD imputation is performed, but just in case.)

— Exclude any observations with ‘N_Subjects‘ > 1 where reported ‘Value‘ is NA, because
log-likelihood for non-detect multi-subject observations has not been implemented.

— Exclude any observations with NA ‘Time* values

— Exclude any observations with ‘Dose‘ = 0
Apply any time transformations specified by user
Scale concentration by ‘ratio_conc_dose*
Apply any concentration transformations specified by the user.
If ‘Series_ID* is not included, then assign it as NA
Create variable ‘pLOQ* and set it equal to ‘LOQ*

eval _tkstats 73

Value

The same ‘pk‘ object, with added elements ‘data‘ (containing the cleaned, gap-filled data) and
‘data_info‘ (containing summary information about the data, e.g. number of observations by route,
media, detect/nondetect; empirical tmax, time of peak concentration for oral data; number of obser-
vations before and after empirical tmax)

Author(s)

John Wambaugh, Caroline Ring, Christopher Cook, Gilberto Padilla Mercado

eval_tkstats eval_tkstats()

Description

This is the S3 method generic for eval_tkstats()

Usage
eval_tkstats(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘ with one row for each "winning" model in ‘model‘ from [get_winning_model()].
The ‘data.frame‘ will have the variables returned by the ‘tkstats_fun* for its corresponding model.
(For the built-in models ‘model_flat‘, ‘model_lcomp®, and ‘model_2comp°, these variables are
‘param_name‘ and ‘param_value‘.) Additionally, there will be a variable ‘method‘ denoting the
[optimx::optimx()] method used to optimize the set of model parameters used to derive each set of
TK statistics.

See Also

[eval_tkstats.pk()] for the method for class [pk()]

74

eval_tkstats.pk

eval_tkstats.default Default method for eval_tkstats()

Description

Default method for eval_ tkstats()

Usage
Default S3 method:
eval_tkstats(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

eval_tkstats.pk Evaluate TK statistics

Description

Evaluate TK statistics from a fitted model by comparing to NCA results

Usage

S3 method for class 'pk'
eval_tkstats(

obj,
newdata = NULL,
model = "winning",

method = NULL,

tk_group = NULL,

exclude = TRUE,
dose_norm = FALSE,
finite_only = FALSE,
suppress.messages = NULL,

eval_tkstats.pk 75

Arguments
obj A [pk()] model object. Must be fitted, or the function will exit with an error.
newdata Optional: A ‘data.frame‘ containing new data for which to compute the TK

stats. Must contain at least variables ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Media°,
‘Dose’, ‘Dose.Units‘, ‘Conc.Units*, either ‘Time_trans.Units‘ or ‘Time.Units*,
and any other variables named in ‘tk_grouping‘. Default ‘NULL’, to use the
data in ‘obj$data‘.

model Character: One or more of the models fitted. Default ‘NULL* to return TK stats
for all models.

method Character: One or more of the [optimx::optimx()] methods used. Default ‘NULL*
to return TK stats for all methods.

tk_group A list of variables provided using a ‘alist® call. The data (either ‘newdata‘ or
‘obj$data‘) will be grouped according to the unique combinations of these vari-
ables. For each unique combination of these variables in the data, a set of TK
statistics will be computed. The default is ‘objpk_groupsnca_group®, to de-
rive TK statistics for the same groups of data as non-compartmental analysis
statistics. With the default, you can directly compare e.g. a model-predicted
AUC_inf to the corresponding NCA-estimated AUC_inf. However, you may
specify a different data grouping if you wish. Each group should have a unique
combination of ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Media‘, and ‘Dose°, because
the TK stats depend on these values, and it is required to have one unique set of
TK stats per group.

exclude Logical: ‘TRUE® to get the TK groupings after removing any observations in
the data marked for exclusion (if there is a variable ‘exclude‘ in the data, an ob-
servation is marked for exclusion when ‘TRUE®). ‘FALSE‘ to include all obser-
vations when getting the TK groupings, regardless of exclusion status. Default
‘TRUE".

dose_norm Logical: “TRUE (default) specifies whether the concentrations are dose-normalized.

finite_only Logical (Default: TRUE). If FALSE, will include non-finite values for ‘AUC_infinity*
from both compartmental and noncompartmental analysis.

suppress.messages
Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages*

Additional arguments not currently in use.

Value

A ‘data.frame* with one row for each "winning" model in ‘model® from [get_winning_model()].
The ‘data.frame* will have the variables returned by the ‘tkstats_fun‘ for its corresponding model.
(For the built-in models ‘model_flat*, ‘model_lcomp‘, and ‘model_2comp‘, these variables are
‘param_name‘ and ‘param_value‘.) Additionally, there will be a variable ‘method‘ denoting the
[optimx::optimx()] method used to optimize the set of model parameters used to derive each set of
TK statistics.

Author(s)
Caroline Ring, Gilberto Padilla Mercado, John Wambaugh

76 facet_data

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(),get_fit.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

facet_data Facet a PK fit

Description

Create a "faceted" [pk()] object.

Usage

facet_data(...)

Arguments
A set of variables or expressions quoted by [dplyr::vars()], defining groups of
data that will each be fitted separately. These variables should appear in the
‘data‘ argument to [pk()] after mapping variables.

Details

This function automates the process of doing PK fitting in "batch mode", when you have multiple
concentration-dose-time datasets to fit, and you want to fit them all using the same set of instruc-
tions.

When you do something like

pk_cvt <- pk(cvt) +
facet_data(
facets = vars(chemicals_analyzed.dsstox_substance_id,
subjects.species_harmonized)

Now ‘pk_cvt* is an object of class ‘pk_faceted*: under the hood, a [tibble::tibble()] with one row for
each group defined by a unique combination of the faceting variables, and a ‘list* column containing
a [pk()] object corresponding to each group.

All of the [pk()] objects in the ‘list* column contain the same set of instructions, and they will all
have the same status (*i.e.*, they are all in the same stage of the workflow at the same time). The
only thing different among them is the data.

If you call a ‘pk* method on a ‘pk_faceted® object, the method will be applied in turn to the [pk()]
object for each group.

If the method returns a [pk()] object (e.g. [preprocess_data.pk()], [data_info.pk()], [prefit.pk()], and
[fit.pk()]), then the result for a ‘pk_faceted* object will be another ‘pk_faceted* object.

fill_params_1comp 77

If the method returns something other than a [pk()] object (e.g. [coef.pk()], [coef_sd.pk()], [residu-
als.pk()], [predict.pk()], ...) then the result for a ‘pk_faceted‘ object will simply be a [tibble::tibble()]
with a ‘list’ column containing the result for each group — it won’t have class ‘pk_faceted®.

This function is named by analogy to [ggplot2::facet_wrap()] and [ggplot2::facet_grid()]. Those
functions split up a dataset into groups by one or more ‘factor* variables, and produce a "faceted"
grid of plots for each group of data. This function does an analogous thing for a [pk()] analysis.
The dataset is split into groups by the unique combinations of variables in ‘facets‘. For each group,
a separate [pk()] object is created, using the instructions provided by the user. When methods like
[preprocess_data()], [data_info()], [prefit()], and [fit()] are called on the resulting "faceted"

Value

non

An object of class ‘c("pkproto”, "pk_facet_data")‘. Under the hood, a named ‘list‘ containing the
arguments provided to this function. Almost always added to a [pk()] object using [‘+.pk‘].

Author(s)

Caroline Ring, Gilberto Padilla Mercado, Paul Kruse

fill_params_1comp Fill parameters for 1-compartment model

Description

Fill parameters for 1-compartment model

Usage

fill_params_1comp(params)

Arguments

params Named list of parameters for the 1-compartment model.

Value

A named numeric vector of parameters, with any 1-compartment model parameters not present in
‘params” filled with ‘NA_real_°. If any two of ‘Fgutabs®, ‘Vdist‘, and ‘Fgutabs_Vdist‘ were present
in ‘params°, the third will be imputed to agree with the other two.

Author(s)

Caroline Ring

78 fill_params_flat

fill_params_2comp Fill parameters for 2-compartment model

Description

Fill parameters for 2-compartment model

Usage

fill_params_2comp(params)

Arguments

params Named list of parameters for the 2-compartment model.

Value

A named numeric list of parameters, with any 2-compartment model parameters not present in
‘params” filled with ‘NA_real_°. If any two of ‘Fgutabs®, ‘V1°, and ‘Fgutabs_V1°‘ were present in
‘params‘, the third will be imputed to agree with the other two.

Author(s)

Caroline Ring

fill_params_flat Fill parameters for flat model

Description

Fill parameters for flat model

Usage

fill_params_flat(params)

Arguments

params Named list of parameters for the flat model.

Value

A named numeric vector of parameters, with any flat model parameters not present in ‘params* filled
with ‘NA_real_‘. If any two of ‘Fgutabs‘, ‘Vdist‘, and ‘Fgutabs_Vdist* were present in ‘params®,
the third will be imputed to agree with the other two.

fit_group 79

Author(s)

Caroline Ring

fit_group Fit a single group of data

Description

Fit a single group of data

Usage

fit_group(
data,
par_DF,
sigma_DF,
fit_decision,
this_model,
settings_optimx,
modelfun,
dose_norm,
log10_trans,
suppress.messages

)
Arguments
data A single group of data
par_DF par_DF for a single group of data
sigma_DF sigma_DF for a single group of data

fit_decision Whether the fit is able to be calculated or excluded.

this_model Name of the ‘pk_model* object to fit

settings_optimx
The settings for optimization.

modelfun Name of the model concentration function

dose_norm TRUE or FALSE — whether to dose-normalize concentrations before evaluating
log-likelihood

log10_trans TRUE or FALSE — whether to 1ogl10-transform concentrations before evaluat-
ing log-likelihood

suppress.messages
TRUE or FALSE — whether to suppress messages or emit them

Value

An object of class ‘optimx°‘ (i.e. a data.frame with fit results)

80 fit_sigma.pk

fit_sigma.pk Hyperparameter fitting

Description

Fit hyperparameter sigma for a ‘pk* object with pre-calculated model predictions

Usage
fit_sigma.pk(obj, preds, pred_col, k = 2, ...)
Arguments
obj A [pk] object.
preds A data.frame similar to the results from [predict.pk()] which contains pre-calculated
predictions in addition to the concentration over time values which can be ob-
tained from [get_data.pk()].
pred_col A character vector with the name of the column with predictions.
k Default 2. The ‘k* parameter in the log-likelihood formula (see Details). Must
be named if used.
Additional arguments. Not currently in use.
Details

This function estimates the hyperparameter o from a data.frame of pre-calculated model predic-
tions, using numerical optimization implemented in [optimx::optimx()]. The optimization is done
by maximizing the log-likelihood function implemented in [log_likelihood()]. Only the non-excluded
observations are used.

Value

The same [pk] object, with new element beginning with ‘ext_fit‘ containing a list of the prediction
data used as input and two data.frames with optimized sigma values and AICs for those predictions
per ‘data_group®.

Author(s)

Gilberto Padilla Mercado

fold_error 81

fold_error Fold error

Description

This is the S3 method generic for ‘fold_error*.

Usage
fold_error(obj, ...)
Arguments
obj an object
Additional arguments currently not in use.
Value

A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method‘. A column contains the
fold errors (observed/predicted) of the model fitted by the corresponding method. These residuals
are concentrations in the same units as ‘obj$data$Conc.Units‘; any concentration transformations
(in ‘obj$scale$conc®) are *not* applied.

See Also
[fold_error.pk()] for the ‘fold_error‘ method for class [pk()]

fold_error.default fold_error default method

Description

fold_error default method

Usage
Default S3 method:
fold_error(obj, ...)
Arguments
obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

82

fold_error.pk

fold_error.pk

Fold errors

Description

Calculate fold errors for a fitted ‘pk* object.

Usage

S3 method for class 'pk'

fold_error(

obj,

newdata
model = NULL,

NULL,

method = NULL,

exclude = TRUE,

sub_pLOQ = TRUE,
suppress.messages = NULL,

Arguments

obj

newdata

model

method

exclude

sub_pL0Q

A ‘pk‘ object
Optional: A ‘data.frame‘ with new data for which to compute fold errors. If
NULL (the default), then fold errors will be computed for the data in ‘obj$data‘.

‘newdata‘ is required to contain at least the following variables: ‘Time*‘, ‘Dose‘,
‘Route’, and ‘Media“.

Optional: Specify one or more of the fitted models for which to make predictions
and calculate fold errors. If NULL (the default), fold errors will be returned for
all of the models in ‘obj$stat_model‘.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate RMSEs. If NULL (the default), fold errors will
be returned for all of the models in ‘obj$pk_settings$optimx$method‘.

Logical: ‘TRUE‘ to return ‘NA_real_° for any observations in the data marked
for exclusion (if there is a variable ‘exclude‘ in the data, an observation is
marked for exclusion when ‘exclude ‘FALSE‘ to return the prediction for each
observation, regardless of exclusion. Default “TRUE".

Logical: whether or not to include predictions below pLOQ. when TRUE, values
below pLOQ will be replaced by pLOQ.

suppress.messages

Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘object$pk_settings$preprocess$suppress.messages"

Additional arguments. Currently not in use.

get_data

Details

Here, fold error is defined as ‘observed/predicted”.

Scaling and transformation of concentration variables in ‘newdata‘

83

This function differs from some of the other methods for a fitted [pk()] object that accept ‘newdata’,
in that there is no ‘use_scale_conc* argument for [fold_error.pk()]. Fold errors are always computed
on the natural, un-transformed concentration scale (but note that fold error on a dose-normalized

scale will be the same as fold error on a non-dose-normalized scale).

Value

A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method‘. A column contains the
fold errors (observed/predicted) of the model fitted by the corresponding method. These residuals
are concentrations in the same units as ‘obj$data$Conc.Units‘; any concentration transformations

(in ‘obj$scale$conc®) are *not* applied.

Author(s)

Caroline Ring

get_data get_data()

Description

This is the S3 method generic for get_data()

Usage
get_data(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘: the ‘data‘ element of ‘obj*

See Also
[get_data.pk()] for the method for class [pk()]

84

get_data.pk

get_data.default Default method for get_data()

Description

Default method for get_data()

Usage
Default S3 method:
get_data(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_data.pk Get data

Description

Extract pre-processed data from a [pk()] object

Usage
S3 method for class 'pk'
get_data(obj, ...)
Arguments
obj A [pk()] object that has been pre-processed

Additional arguments. Currently not in use.

Value

A ‘data.frame‘: the ‘data‘ element of ‘obj°

Author(s)

Caroline Ring

get_data_group

85

get_data_group get_data_group()

Description

This is the S3 method generic for get_data_group()

Usage
get_data_group(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

An object of class ‘call* giving the data grouping as a ‘dplyr::vars()‘ specification

See Also

[get_data_group.pk()] for the method for class [pk()]

get_data_group.default
Default method for get_data_group()

Description

Default method for get_data_group()

Usage
Default S3 method:
get_data_group(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

86 get_data_info

get_data_group.pk Get data grouping

Description

Get data grouping
Usage

S3 method for class 'pk'

get_data_group(obj, as_character = FALSE, ...)
Arguments

obj An initialized ‘pk‘ object.

as_character Logical (Default: ‘FALSE®). Determines whether to return a character vector.
If set to ‘FALSE", a list of expressions containing the ‘data_group* variables is
returned.

Additional arguments not currently in use.

Value

An object of class ‘call* giving the data grouping as a ‘dplyr::vars()‘ specification

get_data_info get_data_info()

Description

This is the S3 method generic for get_data_info()

Usage
get_data_info(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A “list* of ‘tibble‘s: the ‘data_info‘ element of ‘obj*

See Also
[get_data_info.pk()] for the method for class [pk()]

get_data_info.default 87

get_data_info.default Default method for get_data_info()

Description

Default method for get_data_info()

Usage
Default S3 method:
get_data_info(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_data_info.pk Get data_info

Description

Extract summary data information results from a [pk()] object

Usage
S3 method for class 'pk'
get_data_info(obj, ...)
Arguments

obj A [pk()] object that has had ‘data_info()‘ run on it

Additional arguments. Currently not in use.

Value

A “list* of ‘tibble‘s: the ‘data_info‘ element of ‘obj*

Author(s)

Caroline Ring

88

get_data_original.default

get_data_original get_data_original()

Description

This is the S3 method generic for get_data_original()

Usage
get_data_original(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘ — the ‘data_original‘ element of ‘obj*

See Also
[get_data_original.pk()] for the method for class [pk()]

get_data_original.default
Default method for get_data_original()

Description

Default method for get_data_original()

Usage
Default S3 method:
get_data_original(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_data_original pk 89

get_data_original.pk Get data_original

Description

Get data_original

Usage
S3 method for class 'pk'
get_data_original(obj, ...)
Arguments
obj A [pk()] object

Additional arguments. Not currently in use.

Value

A ‘data.frame’ — the ‘data_original‘ element of ‘obj*

Author(s)

Caroline Ring

get_data_sigma_group get data_sigma_group()

Description

This is the S3 method generic for get_data_sigma_group()

Usage
get_data_sigma_group(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘factor® vector giving the error SD group ID for each observation, as the interaction of the factors
specified in ‘objpk_groupserror_group*.

90 get_data_sigma_group.pk

See Also

[get_data_sigma_group.pk()] for the method for class [pk()]

get_data_sigma_group.default
Default method for get_data_sigma_group()

Description

Default method for get_data_sigma_group()

Usage
Default S3 method:
get_data_sigma_group(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_data_sigma_group.pk
Get data_sigma_group

Description

Get data_sigma_group

Usage
S3 method for class 'pk'
get_data_sigma_group(obj, newdata = NULL, ...)
Arguments
obj A [pk()] object
newdata Optional: A ‘data.frame‘ with new data for which to get the ‘data_sigma_group°s.

If NULL (the default), then the groups will be evaluated for the ‘obj$data‘.

Additional arguments. Not currently in use.

get_data_summary

Value

91

A ‘factor® vector giving the error SD group ID for each observation, as the interaction of the factors

specified in ‘objpk_groupserror_group‘.

Author(s)

Caroline Ring

get_data_summary get_data_summary()

Description

This is the S3 method generic for get_data_summary()

Usage
get_data_summary(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Details

‘get_data_summary()‘ is an alias for ‘data_summary()*

Value

A ‘data.frame* with variables including all the grouping variables in ‘summary_group®, ‘group_id*;
‘param_name* (the name of the summary statistic; see Details); ‘param_value* (the summary statis-

tic value); ‘param_units‘ (the units of the summary statistic, derived from the units of the data).

See Also

[data_summary.pk()] for the method for class [pk()]

92

get_elbow

get_data_summary.

default
Default method for get_data_summary()

Description

Default method for get_data_summary()

Usage

Default S3 method:
get_data_summary(obj, ...)

Arguments

obj

Value

An object

Additional arguments currently not in use.

An error, when a non-pk object is used for the first argument.

get_elbow

Get an elbow point

Description

Given a set of data specified as two vectors of ‘x* and ‘y* values, find an elbow point.

Usage

get_elbow(x, vy,

Arguments
X

y

The ‘x‘ values from the data where an elbow point is to be found.

The ‘y* values from the data where an elbow point is to be found.

Optional: additional arguments that will be passed to [stats::approx()] if it is

used.

get_error_group 93

Details

This is a helper function for [get_starts()] to find elbow points.

Given a set of (x,y) data points, an "elbow point" can be defined by drawing a line connecting the
points for minimum and maximum X, and then finding the x value of the observation where the
distance to that line is greatest.

[get_starts()] uses elbow points as a way to automate separation of concentration-time data into
different kinetic phases in order to calculate starting points for fitting TK model parameters. For
example, if concentration-time data are described by a two-compartment TK model, then early and
late elimination phases will be separated by an elbow point. This helper function finds the elbow
points. (When this function is called from [get_starts()], ‘x* will be a vector of time values, and ‘y*
will be a vector of log-transformed dose-normalized concentration values.)

Value

A list with two named numeric scalar elements, ‘x‘ and ‘y*. ‘x‘ contains the ‘x‘ value at the elbow
point. ‘y* contains the ‘y* value at the elbow point. The elbow point is *not* necessarily one of the
input data points; it may be interpolated.

Author(s)

Caroline Ring

get_error_group get_error_group()

Description

This is the S3 method generic for get_error_group()

Usage
get_error_group(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

The stat_error_model error grouping

See Also

[get_error_group.pk()] for the method for class [pk()]

94

get_error_group.pk

get_error_group.default
Default method for get_error_group()

Description

Default method for get_error_group()

Usage
Default S3 method:
get_error_group(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_error_group.pk Get error group

Description

Get error group

Usage

S3 method for class 'pk'
get_error_group(obj, as_character = FALSE, ...)

Arguments

obj A [pk()] object.

as_character Logical (Default: ‘FALSE‘). Determines whether to return a character vector.
If set to ‘FALSE®, a list of expressions containing the ‘data_group® variables is

returned.

Additional arguments. Not in use currently.

Value

The stat_error_model error grouping

get_fit 95

Author(s)

Caroline Ring

get_fit get_fit()

Description

This is the S3 method generic for get_fit()

Usage
get_fit(obj, ...)

Arguments
obj An object.
Additional arguments currently not in use.
Value

A named list of objects of class ‘optimx‘, named for the models in ‘model‘. As described in [op-
timx::optimx()] If only one model is specified, the return value will still be a list, but with only one
element.

See Also
[get_fit.pk()] for the method for class [pk()]

get_fit.default Default method for get_fit()

Description

Default method for get_fit()

Usage
Default S3 method:
get_fit(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

96 get_fit.pk

Value

An error, when a non-pk object is used for the first argument.

get_fit.pk Get fits from a ‘pk* object

Description

Get the [optimx::optimx()] output from a fitted ‘pk* object

Usage
S3 method for class 'pk'
get_fit(obj, model = NULL, ...)
Arguments
obj A [pk] object.
model Optional: Specify one or more of the fitted models for which to make predic-

tions. If NULL (the default), predictions will be returned for all of the models
in ‘obj$stat_model‘.

Additional arguments. Not in use.

Details

This function returns the object(s) returned by [optimx::optimx()] for the specified model(s) and
method(s), for a fitted ‘pk‘ object. See [optimx::optimx()] for details. Briefly, an ‘optimx‘ object is
a ‘data.frame* with one row for each method used, and variables that give the optimized values for
each parameter, along with several diagnostic variables (e.g. the objective function value at the op-
timized parameter values; the number of function evaluations/iterations; an integer code describing
convergence status). The object will have attributes ‘details® (providing any messages returned by
the methods) and ‘npar® (the number of parameters optimized).

Value

A named list of objects of class ‘optimx‘, named for the models in ‘model‘. As described in [op-
timx::optimx()] If only one model is specified, the return value will still be a list, but with only one
element.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_hessian.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

get_hessian 97

get_hessian get_hessian()

Description

This is the S3 method generic for get_hessian()

Usage
get_hessian(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A dataframe with one row for each ‘data_group‘, ‘model and ‘method‘. The remaining column is
a ‘list* column containing the Hessian for each row.

See Also

[hessian.pk()] for the method for class [pk()]

get_hessian.default Default method for get_hessian()

Description

Default method for get_hessian()

Usage
Default S3 method:
get_hessian(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

98 get_hessian.pk

get_hessian.pk Get Hessian matrixes

Description

Extract Hessian matrixes from a fitted ‘pk‘ object

Usage

S3 method for class 'pk'

get_hessian(obj, model = NULL, method = NULL, suppress.messages = TRUE, ...)
Arguments

obj A [pk] object

model Optional: Specify one or more of the fitted models whose coefficients to re-

turn. If NULL (the default), coefficients will be returned for all of the models in
‘obj$stat_model‘.

method Optional: Specify one or more of the [optimx::optimx()] methods whose coef-
ficients to return. If NULL (the default), coefficients will be returned for all of
the models in ‘obj$pk_settings$optimx$method*.

suppress.messages
Logical. ‘TRUE® (the default) to suppress informative messages. ‘FALSE‘ to
see them.

Additional arguments. Not in use right now.

Details

This function computes a numerical approximation to the model Hessian for each data group and
each model in a fitted ‘pk‘ object. The Hessian is the matrix of second derivatives of the model
objective function with respect to each model parameter. Here, the objective function is the negative
log-likelihood implemented in [log_likelihood()], evaluated jointly across the data that was used to
fit the model.

Value
A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The remaining column is
a ‘list* column containing the Hessian for each row.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

References

Gill J, King G. (2004) What to Do When Your Hessian is Not Invertible: Alternatives to Model
Respecification in Nonlinear Estimation. Sociological Methods & Research 33(1):54-87. DOI:
10.1177/0049124103262681

get_mapping 99

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),

coef_sd.pk(), eval_tkstats.pk(),get_fit.pk(), get_tkstats.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

get_mapping get_mapping()

Description

This is the S3 method generic for get_mapping()

Usage
get_mapping(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A list of ‘quosure‘s — the ‘mapping* element of ‘obj*

See Also

[get_mapping.pk()] for the method for class [pk()]

get_mapping.default Default method for get_mapping()

Description

Default method for get_mapping()

Usage
Default S3 method:
get_mapping(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

100

Value

An error, when a non-pk object is used for the first argument.

get_nca

get_mapping.pk Get mapping

Description

Get mapping

Usage
S3 method for class 'pk'
get_mapping(obj, ...)
Arguments

obj A [pk()] object

Additional arguments. Currently not in use.

Value

A list of ‘quosure‘s — the ‘mapping* element of ‘obj*

Author(s)

Caroline Ring

get_nca get_nca()

Description

This is the S3 method generic for get_nca()

Usage

get_nca(obj, ...)
Arguments

obj An object.

Additional arguments currently not in use.

get_nca.default 101

Value

A ‘data.frame‘: the ‘data‘ element of ‘obj

See Also
[get_nca.pk()] for the method for class [pk()]

get_nca.default Default method for get_nca()

Description

Default method for get_nca()

Usage
Default S3 method:
get_nca(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_nca.pk Get NCA

Description

Extract non-compartmental analysis results from a [pk()] object

Usage
S3 method for class 'pk'
get_nca(obj, ...)
Arguments
obj A [pk()] object that has had ‘data_info()‘ run on it

Additional arguments. Currently not used.

102

Value

A ‘data.frame‘: the ‘data‘ element of ‘obj°

Author(s)

Caroline Ring, Gilberto Padilla Mercado

get_nca_group.default

get_nca_group get_nca_group()

Description

This is the S3 method generic for get_nca_group()

Usage
get_nca_group(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A named list of the data_info settings

See Also

[get_nca_group.pk()] for the method for class [pk()]

get_nca_group.default Default method for get _nca_group()

Description

Default method for get_nca_group()

Usage

Default S3 method:
get_nca_group(obj, ...)

get_nca_group.pk 103

Arguments
obj An object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

get_nca_group.pk Get nca_group

Description

Get nca_group

Usage

S3 method for class 'pk'
get_nca_group(obj, as_character = FALSE, ...)

Arguments

obj A [pk()] object.

as_character Logical (Default: ‘FALSE‘). Determines whether to return a character vector.
If set to ‘FALSE", a list of expressions containing the ‘data_group* variables is
returned.

Additional arguments. Currently not implemented.

Value

A named list of the data_info settings

Author(s)

Caroline Ring, Gilberto Padilla Mercado

104 get_params_Icomp

get_params_1comp Get parameters for 1-compartment model

Description

Get parameters for 1-compartment model and determine whether each is to be estimated from the
data

Usage

get_params_1comp(
data,
lower_bound = NULL,
upper_bound = NULL,
param_units = alist(kelim = paste@("1/", unique(Time_trans.Units)), Vdist = paste@(" (",
unique(Dose.Units), ")/(", unique(Conc.Units), ")"), Fgutabs = "unitless fraction”,
kgutabs = paste@("1/", unique(Time_trans.Units)), Fgutabs_Vdist = pasteo("(",
unique(Conc.Units), ")/(", unique(Dose.Units), ")"), Rblood2plasma =
"unitless ratio"),

)
Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
lower_bound A mapping specified using a call to [alist()], giving the lower bounds for each

variable, as expressions which may include variables in ‘data‘.

upper_bound A mapping specified using a call to [alist()], giving the upper bounds for each
variable, as expressions which may include variables in ‘data‘.

param_units A mapping specified using a call to [alist()], giving the units for each variable,
as expressions which may include variables in ‘data‘.

Other parameters that can be specified in ‘pk_model‘.

Details

The full set of model parameters for the 1-compartment model includes ‘Vdist®, ‘kelim*, ‘kgutabs®,
‘Fgutabs‘, and ‘Rblood2plasma‘. Whether each one can be estimated from the data depends on
what routes of administration are included in the data.

Value

A ‘data.frame‘with the following variables:

* ‘param_name‘: Character: Names of the model parameters
* ‘param_units‘: Character: Units of the model parameters

 ‘optimize_param‘: TRUE if each parameter is to be estimated from the data; FALSE otherwise

get_params_1comp 105

* ‘use_param‘: TRUE if each parameter is to be used in evaluating the model; FALSE otherwise
* ‘lower_bounds‘: Numeric: The lower bounds for each parameter
* ‘upper_bounds‘: Numeric: The upper bounds for each parameter

* ‘start‘: Numeric: The starting guesses for each parameter

IV data, no oral data

If IV dosing data are available, but no oral dosing data are available, then only the parameters
‘Vdist‘ and ‘kelim‘ will be estimated from the data. The parameters ‘kgutabs‘ and ‘Fgutabs‘ cannot
be estimated from IV data alone, and will not be used in evaluating the model.

Oral data, no IV data

If oral dosing data are available, but no IV dosing data are available, then the parameters ‘kelim‘ and
‘kgutabs‘ can be estimated from the data. However, the parameters ‘Fgutabs® and “Vdist® cannot
be identified separately. From oral data alone, only the ratio ‘Fgutabs/Vdist‘ can be identified. This
ratio is represented by a single parameter named ‘Fgutabs_Vdist‘. ‘Fgutabs‘ and ‘Vdist‘ will not be
used to evaluate the model nor be estimated from data, but ‘Fgutabs_Vdist® will be estimated from
data, along with ‘kelim* and ‘kgutabs".

Oral data and IV data

If both oral and IV dosing data are available, then ‘Vdist*, ‘kelim‘, ‘kgutabs‘, and ‘Fgutabs‘ will all
be estimated from the data.

Default lower and upper bounds for each parameter

Default lower and upper bounds for ‘kelim‘ and ‘kgutabs‘: Default bounds for time constants
‘kelim‘ and ‘kgutabs‘ are set based on the time scale of the available data.

The lower bounds are based on the assumption that elimination and absorption are very slow
compared to the time scale of the study. Specifically, the lower bounds assume that elimina-
tion and absorption half-lives are twice as long as the duration of the available study data, or
“2*max(Time_trans)‘. Under this assumption, the corresponding elimination and absorption time
constants would be ‘log(2)/(2*max(Time_trans))‘. Therefore, the default lower bounds for ‘ke-
lim‘ and ‘kgutabs‘ are ‘log(2)/(2*max(Time_trans))°.

Upper bounds are based on the opposite assumption: that elimination and absorption are very fast
compared to the time scale of the study. Specifically, the upper bounds assume that the elimina-
tion and absorption half-lives are half as long as the time of the first observation after time 0, or
‘0.5*min(Time_trans[Time_trans>0])‘. Under this asumption, the corresponding elimination and
absorption time constants would be ‘1og(2)/(0.5*min(Time_trans[Time_trans>0]))‘. Therefore,
the default lower bounds for ‘kelim‘ and ‘kgutabs‘ are ‘log(2)/(0.5*min(Time_trans[Time_trans>0]))‘.

Default lower and upper bounds for ‘Vdist‘: By default, the lower bound for ‘Vdist* is 0.01,
and the upper bound for ‘Vdist* is 100. These values were chosen based on professional judgment.

Default lower and upper bounds for ‘Fgutabs‘: By default, the lower bound for ‘Fgutabs®
is 0.0, and the upper bound for ‘Fgutabs‘ is 1. These are simply the bounds of the physically-
meaningful range for a fraction.

106 get_params_2comp

Default lower and upper bounds for ‘Fgutabs_Vdist‘: By default, the lower bound for the
ratio ‘Fgutabs_Vdist® is 0.01, and the upper bound is 100. These values were chosen based on
professional judgment.

Default lower and upper bounds for ‘Rblood2plasma‘: By default, the lower bound for the
blood:plasma partition coefficient ‘Rblood2plasma‘ is 0.01, and the upper bound is 100. These
values were chosen based on professional judgment.

Starting values for each parameter

Starting values for each parameter (starting guesses for the numerical optimizer) are derived from
the data using [get_starts_lcomp()].

If the starting values returned by [get_starts_1comp()] fall outside the bounds for any parameter(s),
then the starting value will be reset to a value halfway between the lower and upper bounds for that
parameter.

Blood and plasma data

If both blood and plasma data are available, then ‘Rblood2plasma‘ will be estimated from the data.

Only one of blood or plasma data

If only one of blood or plasma data are available, then ‘Rblood2plasma‘ will be held constant at 1,
not estimated from the data.

Author(s)

Caroline Ring

See Also

Other 1-compartment model functions: auc_1comp(), cp_Tcomp(), get_starts_Tcomp()
Other get_params functions: get_params_2comp(), get_params_flat()

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_lcomp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_2comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

get_params_2comp Get parameters for 2-compartment model

Description

Get parameters for 2-compartment model and determine whether each is to be estimated from the
data

get_params_2comp 107

Usage

get_params_2comp(
data,
lower_bound = NULL,
upper_bound = NULL,
param_units = alist(kelim = paste@("1/", unique(Time_trans.Units)), V1 = paste@("(",
unique(Dose.Units), ")/(", unique(Conc.Units), ")"), k21 = paste0@("1/",
unique(Time_trans.Units)), k12 = paste@("”1/", unique(Time_trans.Units)), Fgutabs =
"unitless fraction”, kgutabs = paste@(”1/", unique(Time_trans.Units)), Fgutabs_V1 =
paste@(" (", unique(Conc.Units), ")/(", unique(Dose.Units), ")"), Rblood2plasma =
"unitless ratio"”),

Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
lower_bound A mapping specified using a call to [alist()], giving the lower bounds for each

variable, as expressions which may include variables in ‘data‘.

upper_bound A mapping specified using a call to [alist()], giving the upper bounds for each
variable, as expressions which may include variables in ‘data‘.

param_units A mapping specified using a call to [alist()], giving the units for each variable,
as expressions which may include variables in ‘data‘.

Other parameters that can be specified in ‘pk_model‘.

Details

The full set of model parameters for the 2-compartment model includes ‘V1°, ‘kelim‘, ‘k12°, ‘k21°,
‘kgutabs‘,‘Fgutabs‘, and ‘Rblood2plasma‘. Whether each one can be estimated from the data de-
pends on what routes of administration are included in the data.

Value
A ‘data.frame‘with the following variables:

* ‘param_name‘: Character: Names of the model parameters

 ‘param_units‘: Character: Units of the model parameters

* ‘optimize_param‘: TRUE if each parameter is to be estimated from the data; FALSE otherwise
* ‘use_param‘: TRUE if each parameter is to be used in evaluating the model; FALSE otherwise
* ‘lower_bounds‘: Numeric: The lower bounds for each parameter

* ‘upper_bounds‘: Numeric: The upper bounds for each parameter

* ‘start‘: Numeric: The starting guesses for each parameter

IV data, no oral data

If IV dosing data are available, but no oral dosing data are available, then only the parameters ‘V1°,
‘kelim*, ‘k12°, and ‘k21° will be estimated from the data. The parameters ‘kgutabs‘ and ‘Fgutabs*
cannot be estimated from I'V data alone.

108 get_params_2comp

Oral data, no IV data

If oral dosing data are available, but no IV dosing data are available, then the parameters ‘kelim*,
k12°¢, ‘k21°, and ‘kgutabs‘ will be estimated from the data. However, the parameters ‘Fgutabs’
and ‘V1° cannot be identified separately. From oral data alone, only the ratio ‘Fgutabs/V1°‘ can be
identified. This ratio is represented by a single parameter named ‘Fgutabs_V1°. ‘Fgutabs‘ and ‘V1*
will not be optimized, but ‘Fgutabs_V1° will be optimized, along with ‘kelim°‘, ‘k12¢, ‘k21°, and
‘kgutabs*.

Oral data and IV data

If both oral and IV dosing data are available, then ‘VI1°, ‘kelim‘, ‘k12¢, ‘k21°, ‘kgutabs‘, and
‘Fgutabs‘ will all be estimated from the data.

Default lower and upper bounds for each parameter

Default lower and upper bounds for time constants ‘kelim‘, ‘kgutabs‘, ‘k12¢, and ‘k21°.:
Default bounds for time constants ‘kelim‘ and ‘kgutabs® are set based on the time scale of the
available data.

The lower bounds are based on the assumption that elimination, absorption, and distribution are
very slow compared to the time scale of the study. Specifically, the lower bounds assume thate-
limination, absorption, and distribution half-lives are twice as long as the duration of the available
study data, or ‘2*max(Time_trans)‘. Under this assumption, the corresponding elimination, ab-
sorption, and distribution time constants would be ‘log(2)/(2*max(Time_trans))‘. Therefore, the
default lower bounds for ‘kelim‘, ‘kgutabs‘, ‘k12¢, and ‘k21° are ‘log(2)/(2*max(Time_trans))‘.

Upper bounds are based on the opposite assumption: that elimination, absorption, and distri-
bution are very fast compared to the time scale of the study. Specifically, the upper bounds
assume that the elimination, absorption, and distribution half-lives are half as long as the time
of the first observation after time 0, or ‘0.5*min(Time_trans[Time_trans>0])‘. Under this as-
sumption, the correspondingelimination, absorption, and distribution time constants would be
‘1og(2)/(0.5*min(Time_trans[Time_trans>0]))‘. Therefore, the default lower bounds for ‘kelim®,
‘kgutabs®, ‘k12°, and ‘k21° are ‘1og(2)/(0.5*min(Time_trans[Time_trans>0]))‘.

Default lower and upper bounds for ‘V1¢: By default, the lower bound for ‘V1° is 0.01, and
the upper bound for ‘V1° is 100. These values were chosen based on professional judgment.

Default lower and upper bounds for ‘Fgutabs‘: By default, the lower bound for ‘Fgutabs®
is 0.0, and the upper bound for ‘Fgutabs‘ is 1. These are simply the bounds of the physically-
meaningful range for a fraction.

Default lower and upper bounds for ‘Fgutabs_V1‘: By default, the lower bound for the
ratio ‘Fgutabs_V1° is 0.01, and the upper bound is 100. These values were chosen based on
professional judgment.

Default lower and upper bounds for ‘Rblood2plasma‘: By default, the lower bound for the
blood:plasma partition coefficient ‘Rblood2plasma‘ is 0.01, and the upper bound is 100. These
values were chosen based on professional judgment.

get_params_flat 109

Starting values for each parameter

Starting values for each parameter (starting guesses for the numerical optimizer) are derived from
the data using [get_starts_2comp()].

If the starting values returned by [get_starts_2comp()] fall outside the bounds for any parameter(s),
then the starting value will be reset to a value halfway between the lower and upper bounds for that
parameter.

Blood and plasma data

If both blood and plasma data are available, then ‘Rblood2plasma‘ will be estimated from the data.

Only one of blood or plasma data

If only one of blood or plasma data are available, then ‘Rblood2plasma‘ will be held constant at 1,
not estimated from the data.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other 2-compartment model functions: auc_2comp(), cp_2comp(), cp_2comp_dt(), get_starts_2comp(),
tkstats_2comp(), transformed_params_2comp()

Other get_params functions: get_params_1comp(), get_params_flat()

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_l1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

get_params_flat Get parameters to be optimized for flat model

Description

The full set of model parameters for the flat model includes “Vdist®, ‘Fgutabs‘, and ‘Rblood2plasma’.
Whether each one can be estimated from the data depends on what routes of administration are in-
cluded in the data.

Usage

get_params_flat(
data,
lower_bound = NULL,
upper_bound = NULL,
param_units = alist(Vdist = paste@(" (", unique(Dose.Units), ")/(", unique(Conc.Units),

110 get_params_flat

")"), Fgutabs = "unitless fraction”, Fgutabs_Vdist = paste@(" (", unique(Conc.Units),
"Y/(", unique(Dose.Units), ")"), Rblood2plasma = "unitless ratio”),

Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
lower_bound A mapping specified using a call to [alist()], giving the lower bounds for each

variable, as expressions which may include variables in ‘data‘.

upper_bound A mapping specified using a call to [alist()], giving the upper bounds for each
variable, as expressions which may include variables in ‘data‘.

param_units A mapping specified using a call to [alist()], giving the units for each variable,
as expressions which may include variables in ‘data‘.

Other parameters that can be specified in ‘pk_model‘.

Value

A ‘data.frame ‘with the following variables:

* ‘param_name‘: Character: Names of the model parameters

* ‘param_units‘: Character: Units of the model parameters

* ‘optimize_param‘: TRUE if each parameter is to be estimated from the data; FALSE otherwise
 ‘use_param‘: TRUE if each parameter is to be used in evaluating the model; FALSE otherwise
* ‘lower_bounds‘: Numeric: The lower bounds for each parameter

* ‘upper_bounds‘: Numeric: The upper bounds for each parameter

* ‘start’: Numeric: The starting guesses for each parameter

IV data, no oral data

If IV dosing data are available, but no oral dosing data are available, then only the parameter ‘Vdist*
will be estimated from the data. The parameter ‘Fgutabs® cannot be estimated from IV data alone
and will not be used to evaluate the model.

Oral data, no IV data

If oral dosing data are available, but no IV dosing data are available, then the parameters ‘Fgutabs*
and ‘Vdist* cannot be identified separately. From oral data alone, only the ratio ‘Fgutabs/Vdist‘ can
be identified. This ratio is represented by a single parameter named ‘Fgutabs_Vdist*. ‘Fgutabs‘ and
‘Vdist* will not be estimated nor used in model evaluation, but ‘Fgutabs_Vdist® will be estimated.

Oral data and IV data

If both oral and IV dosing data are available, then ‘Vdist‘ and ‘Fgutabs‘ will both be estimated from
the data.

get_params_flat 111

Blood and plasma data

If both blood and plasma data are available, then ‘Rblood2plasma‘ will be estimated from the data.

Only one of blood or plasma data

If only one of blood or plasma data are available, then ‘Rblood2plasma‘ will be held constant at 1,
not estimated from the data.

Default lower and upper bounds for each parameter

Default lower and upper bounds for ‘Vdist‘: By default, the lower bound for ‘Vdist‘ is 0.01,
and the upper bound for ‘Vdist* is 100. These values were chosen based on professional judgment.

Default lower and upper bounds for ‘Fgutabs‘: By default, the lower bound for ‘Fgutabs*
is 0.0, and the upper bound for ‘Fgutabs‘ is 1. These are simply the bounds of the physically-
meaningful range for a fraction.

Default lower and upper bounds for ‘Fgutabs_Vdist‘: By default, the lower bound for the
ratio ‘Fgutabs_Vdist* is 0.01, and the upper bound is 100. These values were chosen based on
professional judgment.

Default lower and upper bounds for ‘Rblood2plasma‘: By default, the lower bound for the
blood:plasma partition coefficient ‘Rblood2plasma‘ is 0.01, and the upper bound is 100. These
values were chosen based on professional judgment.

Starting values for each parameter

Starting values for each parameter (starting guesses for the numerical optimizer) are derived from
the data using [get_starts_flat()].

If the starting values returned by [get_starts_flat()] fall outside the bounds for any parameter(s),
then the starting value will be reset to a value halfway between the lower and upper bounds for that
parameter.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other flat model functions: auc_flat(), cp_flat(), get_starts_flat()
Other get_params functions: get_params_1comp(), get_params_2comp()

Other built-in model functions: auc_T1comp (), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_l1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_httk_gas_pbtk(), get_starts_1lcomp(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

112 get_params_httk_gas_pbtk

get_params_httk_gas_pbtk
Get parameters to fit ‘hitk*’s ‘gas_pbtk‘ PBPK model

Description

Get parameters to fit the ‘gas_pbtk* model from the ‘httk‘ package (Wambaugh, Schacht, and Ring.
2025).

Usage

get_params_httk_gas_pbtk(
data,
lower_bound = NULL,
upper_bound = NULL,
param_units = alist(BW = "kg", Caco2.Pab = "1E-6 cm/s", Caco2.Pab.dist = "1E-6 cm/s",
Clint = "uL/min/10"6 hepatocytes”, Clint.dist = "uL/min/10%6 hepatocytes”,
Clmetabolismc = "L/h/kg BW", Funbound.plasma = "unitless fraction”,
Funbound.plasma.dist = "unitless fraction”, Funbound.plasma.adjustment =
"unitless coefficient”, Fabsgut = "fraction”, Fhep.assay.correction = "fraction”,
hematocrit = "percent volume RBCs in blood”, Kgut2pu = "unitless ratio”, Krbc2pu =

"unitless ratio”, kgutabs = "rate (1/hr)", Kkidney2pu = "unitless ratio”,
Klung2pu = "unitless ratio”, km =

"Michaelis-Menten concentration of half-maximal activity”, Kmuc2air =
"unitless ratio”, Kliver2pu = "unitless ratio”, Krest2pu = "unitless ratio”,

Kblood2air = "unitless ratio”, kUrtc = "L/h/kg BW*(3/4)", liver.density = "g/cm*3",
logHenry = "logl1@(atmosphers*m*3/mole)”, million.cells.per.gliver = "cells/g liver”,
MW = "g/mol"”, Pow = "octanol:water partition coefficinet”, pKa_Donor = "logarithmic”,
pKa_Accept = "logarithmic”, MA = "phospholipid:water distribution coefficient”,

Qcardiacc = "L/h/kg BW~(3/4)", Qgfrc = "fraction”, Qgutf = "fraction”, Qliverf =
"fraction”, Qalvc = "L/h/kg BW*(3/4)", Qkidneyf = "fraction”, Qlungf = "fraction”,
Rblood2plasma = "unitless ratio”, Vgutc = "L/kg BW"”, Vliverc = "L/kg BW", Vartc =
"L/kg BW", Vkidneyc = "L/kg BW", Vlungc = "L/kg BW", vmax =
"max reaction velocity 1/min”, Vmucc = "L/kg BW", Vvenc = "L/kg BW", Vrestc =
"L/kg BW", KFsummary = "unitless”, Fprotein.plasma = "fraction”, fabs.oral =
"fraction”, Qgut_ = "fraction”, Qintesttransport = "fraction"),
restrictive = TRUE,

)
Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
lower_bound A mapping specified using a call to [alist()], giving the lower bounds for each

variable, as expressions which may include variables in ‘data‘.

get_peak 113

upper_bound A mapping specified using a call to [alist()], giving the upper bounds for each
variable, as expressions which may include variables in ‘data‘.

param_units A mapping specified using a call to [alist()], giving the units for each variable,
as expressions which may include variables in ‘data‘.

restrictive A logical value (TRUE or FALSE. Default: FALSE) that says whether the as-
sumption is that the clearance is restrictive or non-restrictive

Other parameters that can be specified in ‘pk_model‘.

Value

A vector of blood or plasma concentration values corresponding to ‘time*.

Required parameters

These are given by the parameterize_3comp2 function in ‘httk‘. Furthermore, they are transformed
to a vector during hte prefitting process.

Author(s)

Gilberto Padilla Mercado

See Also

Other built-in model functions: auc_Tcomp (), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),

cp_T1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_starts_Tcomp(), get_starts_2comp(), get_starts_flat(),
get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

Other httk model functions: auc_httk_gas_pbtk(), cp_httk_gas_pbtk(), get_starts_httk_gas_pbtk()

Other model concentration functions: cp_T1comp (), cp_2comp(), cp_flat(), cp_httk_gas_pbtk()

get_peak Find the peak of a data series

Description

Finds x- and y-value at peak y value.

Usage

get_peak(x, y, ties = "median”, na.rm = TRUE, ...)

114

Arguments
X

Yy
ties

na.rm

Details

get_prefit

A numeric vector of ‘x‘ data
A numeric vector of ‘y* data

As for [stats::approxfun()]: The function to apply to y-values that have the same

26 <o

x-value. Default “median’‘. ““mean’‘ may also be useful.

As for [stats::approxfun()]: How to handle missing values. Default ‘TRUE® to
exclude missing values from analysis.
Optional: Additional arguments which will be passed to [stats::approx()] (other

[

than ‘x‘, ‘y*, and ‘xout").

If there is more than one unique ‘x‘ value where both ‘x‘ and corresponding ‘y*‘ are finite, this
function calls [stats::approx()] with ‘method = ’linear’, then uses [base::which.max()] to locate the
maximum interpolated ‘y‘-value.

If there is only one unique ‘x‘ value where both ‘x‘ and corresponding ‘y* are finite, this func-
tion calls [stats::approx()] with ‘method = ’constant’‘, then uses [base::which.max()] to locate the
maximum interpolated ‘y‘-value.

If there are no unique ‘x‘ values where both ‘x*‘ and corresponding ‘y* are finite, this function returns
‘NA_real_° for the peak ‘x‘ and ‘y* values.

Value

A list with two named numeric scalar components, ‘X and ‘y‘, containing the x- and y-values at the

peak.

Author(s)

Caroline Ring

get_prefit

get_prefit()

Description

This is the S3 method generic for get_prefit()

Usage

get_prefit(obj,

Arguments

obj

)

An object.

Additional arguments currently not in use.

get_prefit.default

Value

A list of ‘data.frame‘s in the object’s ‘prefit‘ element.

See Also
[get_prefit.pk()] for the method for class [pk()]

115

get_prefit.default Default method for get_prefit()

Description

Default method for get_prefit()

Usage
Default S3 method:
get_prefit(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_prefit.pk Get prefit

Description

Extract pre-fitting results from a [pk()] object

Usage
S3 method for class 'pk'
get_prefit(obj, ...)
Arguments
obj A [pk()] object that has had ‘do_prefit() run on it

Additional arguments. Currently not in use.

116

Value

A list of ‘data.frame*s in the object’s ‘prefit‘ element.

Author(s)

Caroline Ring

get_scale_conc.default

get_scale_conc get_scale_conc()

Description

This is the S3 method generic for get_scale_conc()

Usage
get_scale_conc(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘list’: ‘obj$scales$conc*

See Also

[get_scale_conc.pk()] for the method for class [pk()]

get_scale_conc.default
Default method for get_scale_conc()

Description

Default method for get_scale_conc()

Usage

Default S3 method:
get_scale_conc(obj, ...)

get_scale_conc.pk 117

Arguments
obj An object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

get_scale_conc.pk Get scale_conc

Description

Extract concentration scale/transformation instructions from a [pk()] object

Usage
S3 method for class 'pk'
get_scale_conc(obj, ...)
Arguments

obj A [pk()] object

Additional arguments not currently in use.

Value

A ‘list‘: ‘obj$scales$conc*

Author(s)

Caroline Ring

get_scale_time get_scale_time()

Description

This is the S3 method generic for get_scale_time()

Usage

get_scale_time(obj, ...)

118
Arguments
obj An object.
Additional arguments currently not in use.
Value

A “list‘: ‘obj$scales$time*

See Also

[get_scale_time.pk()] for the method for class [pk()]

get_scale_time.default

get_scale_time.default
Default method for get_scale_time()

Description

Default method for get_scale_time()

Usage
Default S3 method:
get_scale_time(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_scale_time.pk 119

get_scale_time.pk Get scale_time

Description

Extract time scale/transformation instructions from a [pk()] object

Usage
S3 method for class 'pk'
get_scale_time(obj, ...)
Arguments
obj A [pk()] object
Additional arguments not in use.
Value

A ‘list‘: ‘obj$scales$time’

Author(s)

Caroline Ring

get_settings_optimx get_settings_optimx()

Description

This is the S3 method generic for get_settings_optimx()

Usage
get_settings_optimx(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A named list of the optimx settings

See Also
[get_settings_optimx.pk()] for the method for class [pk()]

120

get_settings_optimx.pk

get_settings_optimx.default
Default method for get_settings_optimx()

Description

Default method for get_settings_optimx()

Usage
Default S3 method:
get_settings_optimx(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_settings_optimx.pk
Get settings_optimx

Description

Get settings_optimx

Usage
S3 method for class 'pk'
get_settings_optimx(obj, ...)
Arguments

obj A [pk()] object
Additional arguents not currently in use.

Value

A named list of the optimx settings

Author(s)

Caroline Ring

get_settings_preprocess 121

get_settings_preprocess
get_settings_preprocess()

Description

This is the S3 method generic for get_settings_preprocess()

Usage
get_settings_preprocess(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A named list of the preprocessing settings

See Also

[get_settings_preprocess.pk()] for the method for class [pk()]

get_settings_preprocess.default
Default method for get_settings_preprocess()

Description

Default method for get_settings_preprocess()

Usage
Default S3 method:
get_settings_preprocess(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

122 get_starts_1comp

get_settings_preprocess.pk
Get settings_preprocess

Description

Get settings_preprocess

Usage
S3 method for class 'pk'
get_settings_preprocess(obj, ...)
Arguments

obj A [pk()] object

Additional arguments. Currently not in use.

Value

A named list of the preprocessing settings

Author(s)

Caroline Ring

get_starts_Tcomp Get starting values for 1-compartment model

Description

Derive starting values for 1-compartment model parameters from available data

Usage
get_starts_1lcomp(data, par_DF, ...)

Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
par_DF A ‘data.frame’ with the following variables

* ‘param_name‘: Character: Names of the model parameters
* ‘param_units‘: Character: Units of the model parameters

* ‘optimize_param‘: TRUE if each parameter is to be estimated from the
data; FALSE otherwise

get_starts_1lcomp 123

e ‘use_param‘: TRUE if each parameter is to be used in evaluating the model,;
FALSE otherwise

* ‘lower_bounds‘: Numeric: The lower bounds for each parameter

* ‘upper_bounds‘: Numeric: The upper bounds for each parameter

Additional parameters, currently only list of character vectors describing param-
eters to optimize or parameter start values.

Details

This function is called internally by [get_params_lcomp()] and should generally not be called di-
rectly by the user.

The full set of model parameters for the 1-compartment model includes ‘Vdist®, ‘kelim°, ‘kgutabs®,
‘Fgutabs‘, and ‘Rblood2plasma‘. Whether each one can be estimated from the data depends on
what routes of administration are included in the data.

The numerical optimizer requires starting guesses for the value of each parameter to be estimated
from the data. Default starting guesses are derived from the available data.

These are intended to be *very* rough starting guesses, so the algorithm here is extremely naive.
This function is not itself intended to produce valid estimates for any of the model parameters, and
it is highly unlikely to do so.

The derivation process is as follows.
First, data are filtered to exclude any non-detects.

Then, data are split by route of administration, into an IV data set and an oral data set. (It is possible
that either I'V or oral data may not be available for a chemical.)

Value

The same ‘data.frame* as ‘par_DF°, with an additional variable ‘starts‘ containing the derived start-
ing value for each parameter. If a parameter cannot be estimated from the available data, then its
starting value will be ‘NA_real_*

Starting value for ‘kelim*

If IV data exist, then only IV data are used to derive starting estimates for ‘kelim‘, even if oral data
also exist.

If only oral data exist, then the oral data are used to derive a starting estimate for ‘kelim*.

Whichever data set is used (IV or oral), the starting value for ‘kelim® is derived by assuming that
the range of observed time values in the data set spans two elimination half-lives. This implies that
the elimination half-life is equal to the midpoint of observed time values, and that the starting value
for the elimination time constant ‘kelim* is therefore ‘log(2)‘ divided by the midpoint of observed
time values.

Of course, this assumption is unlikely to be correct. However, we hope that it will yield a starting
guess for ‘kelim‘ that is at least on the right order of magnitude.

124 get_starts_1comp

Starting value for ‘Vdist*

If IV data exist, then only IV data are used to derive a starting estimate for ‘Vdist*.

This starting estimate is derived by assuming that the IV data obey a one-compartment model, which
means that when concentrations are dose-normalized and logl0-transformed and plotted against
time, they will follow a straight line with slope ‘-kelim°.

First, concentrations are dose-normalized by dividing them by their corresponding doses. Then the
normalized concentrations are log10-transformed.

From all observations at the earliest observed time point in the data set (call it ‘tmin°), the median of
the dose-normalized, log10-transformed concentrations is calculated; call it ‘C_tmin°‘. (The median
is used, rather than the mean, in an attempt to be more robust to outliers.)

If the earliest observed time point is not at time = 0, then the dose-normalized, log10-transformed
concentration at time = 0 is extrapolated by drawing a straight line with slope ‘-kelim‘ back from
‘C_tmin°‘, where the value of ‘kelim* is the starting value derived as in the previous section.

This extrapolated concentration at time t = 0 is called ‘A_log10°. ‘A_log10° represents the expected
body concentration immediately after IV injection of a unit dose (under the assumption that TK
obeys a one-compartment model).

Then, the volume of distribution ‘Vdist® is derived as ‘1/(10*A_log10)‘. In other words, ‘Vdist‘ is
the volume that would be required to produce a concentration equal to ‘A_logl10° after injecting a
unit dose.

(No starting value for ‘Vdist‘ can be derived with only oral data, but none is needed, because with
only oral data, ‘Vdist® will not be estimated from the data).

Starting value for ‘kgutabs*

If oral data exist (whether or not IV data also exist), then the oral data are used to derive a starting
value for ‘kgutabs".

First, concentrations are dose-normalized by dividing them by their corresponding doses. Then the
normalized concentrations are log10-transformed.

The time of peak concentration (‘tmax‘), and the median (normalized, log-transformed) peak con-
centration (‘Cmax_log10°), are identified using [get_peak()].

As avery rough guess, ‘tmax " is assumed to occur at one absorption half-life. Under this assumption,
‘kgutabs‘ is equal to ‘log(2)/tmax*, and this is taken as the starting value.

Starting value for ‘Fgutabs_Vdist¢

If any oral data exist (whether or not IV data also exist), then the oral data are used to derive a
starting value for ‘Fgutabs_Vdist*.

If the kinetics obey a one-compartment model, then if concentrations are dose-normalized, log-
transformed, and plotted vs. time, then at late time points (after concentration has peaked), the
concentration vs. time relationship will approach a straight line with slope ‘-kelim*.

If this straight line is extrapolated back to time 0, then the resulting intercept (call it ‘A¢), expressed
on the natural scale, is equal to ‘Fgutabs_Vdist * kgutabs/(kgutabs-kelim)‘. See https://www.boomer.org/c/p4/c09/c0902.php

get_starts_2comp 125

Roughly, we approximate ‘A on the logl0 scale by extrapolating back from the peak along a
straight line with slope ‘-kelim‘, using the previously-derived starting value for ‘kelim‘. So ‘log10(A)
= Cmax_logl0 + kelim*tmax°.

Using the previously-derived starting values for ‘kgutabs and ‘kelim‘, then, the starting value for
‘Fgutabs_Vdist‘ can be derived as ‘A * (kgutabs-kelim)/kgutabs".
Starting value for ‘Fgutabs‘
If both oral and IV data exist, then the derived starting values for ‘Vdist* (from the IV data) and
‘Fgutabs_Vdist‘ (from the oral data) are multiplied to yield a derived starting value for ‘Fgutabs®.
Starting value for ‘Rblood2plasma‘

The starting value for ‘Rblood2plasma‘ is always set at a constant 1.

Author(s)

Caroline Ring, Gilberto Padilla Mercado

See Also

Other 1-compartment model functions: auc_1comp(), cp_Tcomp(), get_params_1Tcomp()
Other get_starts functions: get_starts_2comp(), get_starts_flat(), get_starts_httk_gas_pbtk()

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_l1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_2comp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

get_starts_2comp Get starting values for 2-compartment model

Description

Derive starting values for 2-compartment model parameters from available data

Usage
get_starts_2comp(data, par_DF, ...)

Arguments
data The data set to be fitted (e.g. the result of [preprocess_data()])
par_DF A ‘data.frame* with the following variables

* ‘param_name‘: Character: Names of the model parameters
* ‘param_units‘: Character: Units of the model parameters

126 get_starts_2comp

* ‘optimize_param‘: TRUE if each parameter is to be estimated from the
data; FALSE otherwise

 ‘use_param*‘: TRUE if each parameter is to be used in evaluating the model;
FALSE otherwise

* ‘lower_bounds‘: Numeric: The lower bounds for each parameter
* ‘upper_bounds‘: Numeric: The upper bounds for each parameter

Additional parameters, currently only list of character vectors describing param-
eters to optimize or parameter start values.

Details

This function is called internally by [get_params_2comp()] and should generally not be called di-
rectly by the user.

The full set of model parameters for the 2-compartment model includes ‘V1°, ‘kelim‘, ‘k12°, ‘*k21°,
‘kgutabs‘, and ‘Fgutabs‘. Whether each one can be estimated from the data depends on what routes
of administration are included in the data.

The numerical optimizer requires starting guesses for the value of each parameter to be estimated
from the data. Default starting guesses are derived from the available data.

These are intended to be *very* rough starting guesses, so the algorithm here is extremely naive.
This function is not itself intended to produce valid estimates for any of the model parameters, and
it is highly unlikely to do so.

At present, the starting guesses for the 2-compartment model are derived in the same way as for the
1-compartment model, for the parameters that are common to both. That is, the data are assumed to
obey a 1-compartment model to derive starting guesses for ‘kelim‘, ‘V1°, ‘kgutabs‘, ‘Fgutabs_V1°,
and ‘Fgutabs®.

Then, starting values for ‘k12° and ‘k21° are arbitrarily set to 0.1 and 0.5, respectively.

The following description of the derivation process is therefore identical to that for [get_starts_1comp()].
The derivation process

First, data are filtered to exclude any non-detects.

Then, data are split by route of administration, into an IV data set and an oral data set. (It is possible
that either IV or oral data may not be available for a chemical.)

Value

The same ‘data.frame* as ‘par_DF°, with an additional variable ‘starts‘ containing the derived start-
ing value for each parameter. If a parameter cannot be estimated from the available data, then its
starting value will be ‘NA_real_*

Starting value for ‘V1¢

If IV data exist, then only IV data are used to derive a starting estimate for ‘V1°.

This starting estimate is derived by assuming that the IV data obey a one-compartment model, which
means that when concentrations are dose-normalized and logl0-transformed and plotted against
time, they will follow a straight line with slope ‘-kelim°.

get_starts_2comp 127

First, concentrations are dose-normalized by dividing them by their corresponding doses. Then the
normalized concentrations are log10-transformed.

From all observations at the earliest observed time point in the data set (call it ‘tmin ‘), the median of
the dose-normalized, log10-transformed concentrations is calculated; call it ‘C_tmin°‘. (The median
is used, rather than the mean, in an attempt to be more robust to outliers.)

If the earliest observed time point is not at time = 0, then the dose-normalized, log10-transformed
concentration at time = 0 is extrapolated by drawing a straight line with slope ‘-kelim‘ back from
‘C_tmin°‘, where the value of ‘kelim* is the starting value derived as in the previous section.

This extrapolated concentration at time t = 0 is called ‘A_log10°. ‘A_log10°‘ represents the expected
body concentration immediately after IV injection of a unit dose (under the assumption that TK
obeys a one-compartment model).

Then, the volume of distribution ‘V1° is derived as ‘1/(10"A_log10)‘. In other words, ‘V1° is the
volume that would be required to produce a concentration equal to ‘A_log10° after injecting a unit
dose.

(No starting value for “V1° can be derived with only oral data, but none is needed, because with
only oral data, “V1° will not be estimated from the data).

Starting value for ‘Fgutabs_V1¢
If any oral data exist (whether or not IV data also exist), then the oral data are used to derive a
starting value for ‘Fgutabs_V1°.

If the kinetics obey a one-compartment model, then if concentrations are dose-normalized, log-
transformed, and plotted vs. time, then at late time points (after concentration has peaked), the
concentration vs. time relationship will approach a straight line with slope ‘-kelim*.

If this straight line is extrapolated back to time 0, then the resulting intercept (call it ‘A°), expressed
on the natural scale, is equal to ‘Fgutabs_V1 * kgutabs/(kgutabs-kelim)‘. See https://www.boomer.org/c/p4/c09/c0902.php

Roughly, we approximate ‘A on the logl0 scale by extrapolating back from the peak along a
straight line with slope ‘-kelim*, using the previously-derived starting value for ‘kelim°‘. So ‘log10(A)
= Cmax_log10 + kelim*tmax°.

Using the previously-derived starting values for ‘kgutabs‘ and ‘kelim‘, then, the starting value for
‘Fgutabs_V1°‘ can be derived as ‘A * (kgutabs-kelim)/kgutabs®.

Starting value for ‘Fgutabs‘

If both oral and IV data exist, then the derived starting values for ‘V1° (from the IV data) and
‘Fgutabs_V1° (from the oral data) are multiplied to yield a derived starting value for ‘Fgutabs".

Starting value for ‘kelim‘
If IV data exist, then only IV data are used to derive starting estimates for ‘kelim‘, even if oral data
also exist.
If only oral data exist, then the oral data are used to derive a starting estimate for ‘kelim°.

Whichever data set is used (IV or oral), the starting value for ‘kelim* is derived by assuming that
the range of observed time values in the data set spans two elimination half-lives. This implies that
the elimination half-life is equal to the midpoint of observed time values, and that the starting value

128 get_starts_flat

for the elimination time constant ‘kelim* is therefore ‘log(2)‘ divided by the midpoint of observed
time values.

Of course, this assumption is unlikely to be correct. However, we hope that it will yield a starting
guess for ‘kelim* that is at least on the right order of magnitude.

Starting value for ‘kgutabs*

If oral data exist (whether or not IV data also exist), then the oral data are used to derive a starting
value for ‘kgutabs‘.

First, concentrations are dose-normalized by dividing them by their corresponding doses. Then the
normalized concentrations are log10-transformed.

The time of peak concentration (‘tmax‘), and the median (normalized, log-transformed) peak con-
centration (‘Cmax_log10°), are identified using [get_peak()].

As a very rough guess, ‘tmax‘ is assumed to occur at one absorption half-life. Under this assumption,
‘kgutabs‘ is equal to ‘log(2)/tmax*, and this is taken as the starting value.

Starting value for ‘Rblood2plasma‘

The starting value for ‘Rblood2plasma‘ is always set at a constant 1.

Author(s)

Caroline Ring, Gilberto Padilla Mercado

See Also

Other 2-compartment model functions: auc_2comp(), cp_2comp(), cp_2comp_dt(), get_params_2comp(),
tkstats_2comp(), transformed_params_2comp()

Other get_starts functions: get_starts_1comp(), get_starts_flat(), get_starts_httk_gas_pbtk()

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_Tcomp(),
get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

get_starts_flat Get starting values for flat model

Description

Derive starting values for flat model parameters from available data

Usage

get_starts_flat(data, par_DF, ...)

get_starts_flat 129

Arguments

data The data set to be fitted (e.g. the result of [preprocess_data()])
par_DF A ‘data.frame* with the following variables

e ‘param_name*: Character: Names of the model parameters
* ‘param_units‘: Character: Units of the model parameters
* ‘optimize_param‘: TRUE if each parameter is to be estimated from the
data; FALSE otherwise
* ‘use_param‘: TRUE if each parameter is to be used in evaluating the model,;
FALSE otherwise
* ‘lower_bounds‘: Numeric: The lower bounds for each parameter
e ‘upper_bounds‘: Numeric: The upper bounds for each parameter
Additional parameters, currently only list of character vectors describing param-
eters to optimize or parameter start values.

Details

This function is called internally by [get_params_lcomp()] and should generally not be called di-
rectly by the user.

The full set of model parameters for the flat model includes ‘Vdist‘, ‘Fgutabs®, and ‘Rblood2plasma‘.
Whether each one can be estimated from the data depends on what routes of administration are in-
cluded in the data.

The numerical optimizer requires starting guesses for the value of each parameter to be estimated
from the data. Default starting guesses are derived from the available data.

These are intended to be *very* rough starting guesses, so the algorithm here is extremely naive.
This function is not itself intended to produce valid estimates for any of the model parameters, and
it is highly unlikely to do so.

The derivation process is as follows.
First, data are filtered to exclude any non-detects.

Then, data are split by route of administration, into an IV data set and an oral data set. (It is possible
that either IV or oral data may not be available for a chemical.)

If IV data exist, then only IV data are used to derive a starting estimate for ‘Vdist‘. Concentrations
are dose-normalized (divided by their corresponding dose) and log10-transformed. The mean dose-
normalized, log10-transformed concentration is calculated (call it ‘Cmean_logl10°). ‘Vdist* starting
value is then derived as ‘1/(10"Cmean_log10)* .

If any oral data exist (whether or not IV data also exist), then the oral data are used to derive a
starting value for ‘Fgutabs_Vdist‘. Concentrations are dose-normalized (divided by their corre-
sponding dose) and logl0-transformed. The mean dose-normalized, log10-transformed concen-
tration is calculated (call it ‘Cmean_logl10‘). ‘Fgutabs_Vdist* starting value is then set equal to
‘10~MCmean_log10° .

Value

The same ‘data.frame* as ‘par_DF°, with an additional variable ‘starts‘ containing the derived start-
ing value for each parameter. If a parameter cannot be estimated from the available data, then its
starting value will be ‘NA_real_°

130 get_starts_httk_gas_pbtk

Starting value for ‘Rblood2plasma‘

If both blood and plasma data are available, then the starting value for ‘Rblood2plasma‘ is derived
as follows.

If IV data are available for both blood and plasma, then the starting value for ‘Rblood2plasma* is
derived as the ratio of “Vdist‘ for blood data and ‘Vdist‘ for plasma data.

If oral data, but not IV data, are available for both blood and plasma, then the starting value for
‘Rblood2plasma‘ is derived as the ratio of ‘Fgutabs_Vdist‘ for plasma data and ‘Fgutabs_Vdist* for
blood data.

If only blood data or only plasma data are available, then the starting value for ‘Rblood2plasma‘ is
set at a constant 1.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other flat model functions: auc_flat(), cp_flat(), get_params_flat()
Other get_starts functions: get_starts_lcomp(), get_starts_2comp(), get_starts_httk_gas_pbtk()

Other built-in model functions: auc_Tcomp (), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_l1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(),
get_starts_2comp(), get_starts_httk_gas_pbtk(), tkstats_2comp(), transformed_params_2comp()

get_starts_httk_gas_pbtk
Get starting values for httk ‘gas_pbtk*‘ model with specific clearance

Description

Derive starting values for PBTK model parameters from available data

Usage

get_starts_httk_gas_pbtk(
data,
par_DF,
this_chemical,
this_species,
restrictive,

get_starts_httk_gas_pbtk 131

Arguments

data

par_DF

this_chemical
this_species

restrictive

Details

The data set to be fitted (e.g. the result of [preprocess_data()])
A ‘data.frame* with the following variables
* ‘param_name*: Character: Names of the model parameters

* ‘param_units‘: Character: Units of the model parameters

* ‘optimize_param‘: TRUE if each parameter is to be estimated from the
data; FALSE otherwise

* ‘use_param‘: TRUE if each parameter is to be used in evaluating the model;
FALSE otherwise

* ‘lower_bounds‘: Numeric: The lower bounds for each parameter

 ‘upper_bounds‘: Numeric: The upper bounds for each parameter
A character vector naming the chemical for calculations in ‘httk*.
A character vector naming the species for calculations in ‘httk*.

A boolean value determinining whether to assume restrictive or non-restrictive
clearance when getting starting values.

Additional parameters, currently only list of character vectors describing param-
eters to optimize or parameter start values.

This function is called internally by [get_params_httk gas_pbtk()] and should generally not be
called directly by the user.

The full set of model parameters is given by the parameterize_3comp?2 function in ‘httk*.

Not all of the parameters are intended to be optimized. Currently, only ‘Clint‘, ‘Funbound.plasma®,
or any of the model’s partitioning coefficients can be optimized.

Value

The same ‘data.frame* as ‘par_DF°, with an additional variable ‘starts‘ containing the derived start-
ing value for each parameter. If a parameter cannot be estimated from the available data, then its
starting value will be ‘NA_real_°

Additional parameters

There are also additional parameters calculated to allow recalculation of parameters during fitting.
These include ‘fabs.oral’, ‘Fprotein.plasma‘, and ‘Qintestinetrasport*.

Author(s)

Gilberto Padilla Mercado

132 get_status.default

See Also

Other httk model functions: auc_httk_gas_pbtk(), cp_httk_gas_pbtk(), get_params_httk_gas_pbtk()
Other get_starts functions: get_starts_Tcomp(), get_starts_2comp(), get_starts_flat()

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_Tcomp(), cp_2comp(), cp_2comp_dt(), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_Tcomp(),
get_starts_2comp(), get_starts_flat(), tkstats_2comp(), transformed_params_2comp()

get_status Get status

Description

This is the S3 method generic.

Usage
get_status(obj, ...)
Arguments
obj an object
Additional arguments currently not in use.
Value

The status of the ‘pk* object as an integer.

See Also

[get_status.pk()] for the ‘get_status‘ method for class [pk()]

get_status.default Default method for getting status

Description

Default method for getting status

Usage

Default S3 method:
get_status(obj, ...)

get_status.pk 133

Arguments
obj an object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

get_status.pk Check status of a ‘pk‘ object

Description

Check status of a ‘pk* object

Usage

S3 method for class 'pk'
get_status(obj, suppress.messages = NULL, ...)

Arguments

obj A ‘pk‘ object
suppress.messages
Logical. Whether to display messages.

Additional arguments.

Details

‘pk* objects have integer statuses reflecting what stage of the analysis process they are at.

1. Object has been initialized 2. Data pre-processing complete 3. Model pre-fitting complete 4 .
Model fitting complete

If a ‘pk* object of status 2 or greater has its instructions modified with ‘+°, then its status will be
reset to 1, indicating that any analysis results contained in the object are now outdated and all steps
of the analysis need to be re-run.

This function allows the user to check the status of a ‘pk* object.

A message will be printed listing the analysis steps that have been completed for this ‘pk* object,
and the integer status will be returned.

Value

The status of the ‘pk* object as an integer.

Author(s)

Caroline Ring

134

get_stat_model.default

get_stat_model get_stat_model()

Description

This is the S3 method generic for get_stat_model()

Usage
get_stat_model(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘list® — the ‘stat_model‘ element of ‘obj*

See Also
[get_stat_model.pk()] for the method for class [pk()]

get_stat_model.default
Default method for get_stat_model()

Description

Default method for get_stat_model()

Usage
Default S3 method:
get_stat_model(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_stat_model.pk 135

get_stat_model.pk Get stat_model

Description

Get stat_model

Usage
S3 method for class 'pk'
get_stat_model(obj, ...)
Arguments

obj A [pk()] object

Additional arguments. Currently not in use.

Value

A ‘list® — the ‘stat_model‘ element of ‘obj*

Author(s)

Caroline Ring

get_tkstats Get TK stats

Description

This is the S3 method generic for get_tkstats(0)

Usage
get_tkstats(obj, ...)
Arguments
obj an object
Additional arguments currently not in use.
Value

A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method* with the variables in the
‘data.frame* returned by the ‘tkstats_fun‘ for its corresponding model. (For the built-in models
‘model_flat*, ‘model_lcomp*, and ‘model_2comp®, these variables are ‘param_name* and ‘param_value*.)

136

See Also
[get_tkstats.pk()] for the method for class [pk()]

get_tkstats.pk

get_tkstats.default Default method for get_tkstats()

Description

Default method for get_tkstats()

Usage
Default S3 method:
get_tkstats(obj, ...)
Arguments

obj an object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_tkstats.pk Get TK stats

Description

Extract derived TK statistics from a fitted [pk()] model object.

Usage

S3 method for class 'pk'
get_tkstats(

obj,

newdata = NULL,

tk_group = NULL,

model = NULL,

method = NULL,

exclude = TRUE,

vol_unit = "L",

dose_norm = TRUE,

suppress.messages = NULL,

get_tkstats.pk 137

Arguments

obj A [pk()] model object. Must be fitted, or the function will exit with an error.

newdata Optional: A ‘data.frame‘ containing new data for which to compute the TK
stats. Must contain at least variables ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Media‘,
‘Dose‘, ‘Dose.Units‘, ‘Conc.Units‘, either ‘Time_trans.Units® or ‘Time.Units°,
and any other variables named in ‘tk_grouping‘. Default ‘NULL’, to use the
data in ‘obj$data‘.

tk_group A list of variables provided using a ‘alist® call. The data (either ‘newdata‘ or
‘obj$data‘) will be grouped according to the unique combinations of these vari-
ables. For each unique combination of these variables in the data, a set of TK
statistics will be computed. The default is ‘objpk_groupsnca_group*, to de-
rive TK statistics for the same groups of data as non-compartmental analysis
statistics. With the default, you can directly compare e.g. a model-predicted
AUC_inf to the corresponding NCA-estimated AUC_inf. However, you may
specify a different data grouping if you wish. Each group should have a unique
combination of ‘Chemical‘, ‘Species‘, ‘Route‘, ‘Media‘, and ‘Dose°, because
the TK stats depend on these values, and it is required to have one unique set of
TK stats per group.

model Character: One or more of the models fitted. Default ‘NULL* to return TK stats
for all models.

method Character: One or more of the [optimx::optimx()] methods used. Default ‘NULL*
to return TK stats for all methods.

exclude Logical: “TRUE‘ to get the TK groupings after removing any observations in
the data marked for exclusion (if there is a variable ‘exclude‘ in the data, an ob-
servation is marked for exclusion when ‘TRUE‘). ‘FALSE‘ to include all obser-
vations when getting the TK groupings, regardless of exclusion status. Default
‘TRUE".

vol_unit Character: Specifies the unit of volume. Defaults to "L" for liters.

dose_norm Logical: ‘“TRUE* (default) specifies whether the concentrations are dose-normalized.
suppress.messages
Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages*

Additional arguments not currently in use.

Details

After fitting model parameters (e.g. elimination rate, volume of distribution, absorption rate, bioavail-
ability), it can be useful to derive summary toxicokinetic statistics such as total clearance rate, half-
life, peak concentration, AUC_inf (the area under the concentration-time curve when time goes to
infinity), etc.

Many of these TK statistics depend not only on chemical and species, but also on route, media
(tissue), and dose. Therefore, TK stats need to be computed for a specific set of Chemical, Species,
Route, Media, and Dose.

TK statistics for a defined [pk_model()] object are computed using the function named in the
model’s ‘tkstats_fun‘. For the built-in models, the ‘tkstats_fun‘ functions are the following. See

138 get_winning_model

the documentation for the individual functions for details on what TK stats are calculated for each
model, and how they are calculated. -‘model_lcomp*: [tkstats_lcomp()] -‘model_2comp*: [tk-
stats_2comp()] - ‘model_flat‘: [tkstats_flat()]

Value

A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method* with the variables in the
‘data.frame* returned by the ‘tkstats_fun‘ for its corresponding model. (For the built-in models
‘model_flat*, ‘model_lcomp*, and ‘model_2comp*, these variables are ‘param_name* and ‘param_value*.)

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), logLik.pk(), predict.pk(),
residuals.pk(), rmse.pk(), rsq.pk()

get_winning_model get_winning_model()

Description

This is the S3 method generic for get_winning_model()

Usage
get_winning_model(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method‘ and The return value has
attribute ‘criterion‘ giving the name of the criterion function used to compare models.

See Also

[get_winning_model.pk()] for the method for class [pk()]

get_winning_model.default 139

get_winning_model.default
Default method for get_winning_model()

Description

Default method for get_winning_model()

Usage
Default S3 method:
get_winning_model(obj, ...)
Arguments
obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

get_winning_model.pk Get winning model

Description

Get winning model for a fitted ‘pk‘ object

Usage

S3 method for class 'pk'

get_winning_model(obj, newdata = NULL, method = NULL, criterion = "AIC", ...)
Arguments

obj A [pk()] object

newdata Optional: A ‘data.frame‘ containing new data to plot. Must contain at least vari-

ables ‘Chemical’, ‘Species‘, ‘Route’, ‘Media‘, ‘Dose‘, ‘Time‘, ‘Time.Units",
‘Conc’, ‘Detect’, ‘Conc_SD*. Default ‘NULL'’, to use the data in ‘obj$data‘.
method Character: One or more of the [optimx::optimx()] methods used in fitting. The

winning model will be determined for each of these methods. Default ‘NULL*
to get the winning model for each method in ‘obj$pk_settings$optimx$method*.

140 hess_sdl1

criterion The name of a criterion function to use for model comparison. Default "AIC".
Must be the name of a function that (as for ‘AIC*) accepts arguments ‘obj‘,
‘newdata‘, ‘method‘ and ‘model‘ (may accept other arguments, specified in “...°)
and returns output as for ‘AIC*: a data.frame with a column with the same name
as ‘criterion that has calculated values for model comparison. The "winning"
value will be the smallest value.

Optional: Other arguments to ‘criterion‘ function.

Details

Get the winning model (i.e. the model with the lowest value of the criterion specified in ‘criterion*)
for a fitted ‘pk‘ object, for a specified method, and optionally for a specified new dataset. When
there are ties it will return the first encounter, where the priority is: model_1comp > model_2comp
> model_flat.

Value
A data.frame with one row for each ‘data_group‘, ‘model‘ and ‘method‘ and The return value has
attribute ‘criterion‘ giving the name of the criterion function used to compare models.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

hess_sd1 Inverse diagonal, method 1

Description

Get square root of diagonal of inverse matrix, first method

Usage
hess_sd1(m)

Arguments

m A square numeric matrix.

Details
Invert a square numeric matrix ‘m*‘ of size n X n using [solve()], then take the square root of the
diagonal.

Value

A numeric vector of length ‘n°.

hess_sd2 141

Author(s)

Caroline Ring

hess_sd2 Inverse diagonal, method 2

Description

Get square root of diagonal of inverse matrix, second method

Usage

hess_sd2(m)

Arguments

m A square numeric matrix, n X n.

Details

Following the procedure outlined in Gill & King (2004): Calculate generalized inverse of a matrix
‘m* using [MASS::ginv()]. Then perform a generalized Cholesky factorization of the generalized
inverse using [Matrix::Cholesky()] with ‘perm = TRUE‘. Reconstruct the generalized inverse as

(m™'+E)=PLL'P,

This should ensure positive semi-definiteness of the reconstruction.

Then, take the diagonal of (mfl + E) , and take the square root.

Value

A numeric vector of length n.

Author(s)

Caroline Ring

References

Gill J, King G. (2004) What to Do When Your Hessian is Not Invertible: Alternatives to Model
Respecification in Nonlinear Estimation. Sociological Methods & Research 33(1):54-87. DOI:
10.1177/0049124103262681

142 is.pk

ignore_unused_imports Ignore unused imports

Description

Placeholder function to appease R CMD CHECK

Usage

ignore_unused_imports()

Details

This function does nothing and should be ignored by the user.

Why it exists: Whenever possible, ‘invivopkfit‘ code calls functions from other packages using the
syntax ‘package::function()‘, which means that the whole package does not have to be loaded, nor
does the function itself have to be loaded until it is used. The relevant packages are listed in the
‘invivofit* package ‘DESCRIPTION® file under ‘Imports‘, because they must be installed to use
‘invivopkfit‘. But because the packages are not actually loaded, this creates a (spurious) NOTE
from ‘R CMD CHECK" about a declared Import not being used. This function is a workaround to
suppress that NOTE. It does nothing except contain namespace-qualified references (not calls) to
objects in the relevant packages.

Author(s)

Caroline Ring

References

https://r-pkgs.org/dependencies-in-practice.html#how-to-not-use-a-package-in-imports

is.pk Check whether an object is of class ‘pk*

Description

Check whether an object is of class ‘pk*

Usage
is.pk(obj)

Arguments

obj The object whose class is to be tested

is.pkproto 143

Value

TRUE if the object inherits from class ‘pk‘, FALSE if it does not

Author(s)

Caroline Ring

is.pkproto Is an object pkproto?

Description

Is an object pkproto?

Usage
is.pkproto(obj)

Arguments

obj An object

Value

TRUE if ‘obj‘ inherits from class ‘pkproto‘; FALSE if not

Author(s)

Caroline Ring

is.pk_faceted Check whether an object is of class ‘pk_faceted’

Description

Check whether an object is of class ‘pk_faceted*

Usage

is.pk_faceted(obj)

Arguments

obj The object whose class is to be tested

144 is.pk_scales

Value

TRUE if the object inherits from class ‘pk‘, FALSE if it does not

Author(s)

Caroline Ring

is.pk_model Checks whether object is of class ‘pk_model’

Description

Checks whether object is of class ‘pk_model*

Usage
is.pk_model(obj)

Arguments

obj An object.

Value

Logical. Whether ‘obj‘ is a ‘pk_model°.

is.pk_scales Is an object class ‘pk_scales‘?

Description

Is an object class ‘pk_scales?

Usage

is.pk_scales(obj)

Arguments

obj An object

Value

TRUE if ‘obj‘ inherits from class ‘pk_scales*; FALSE if not

Author(s)

Caroline Ring

logLik.pk 145

loglLik.pk Log-likelihood

Description

Extract log-likelihood(s) from a fitted ‘pk* object

Usage

S3 method for class 'pk'
logLik(
object,
newdata = NULL,
model = NULL,
method = NULL,
negative = FALSE,
force_finite = FALSE,
exclude = TRUE,
drop_obs = TRUE,

Arguments

object A ‘pk‘ object

newdata Optional: A ‘data.frame‘ with new data for which to compute log-likelihood.
If NULL (the default), then log-likelihoods will be computed for the data in
‘obj$data‘. ‘newdata‘ is required to contain at least the following variables:
‘Time*, ‘“Time.Units‘, ‘Dose‘, ‘Route‘,"Media‘, ‘Conc‘, ‘Detect‘, ‘Conc_SD°,
‘N_Subjects‘. ‘Time* will be transformed according to the transformation in
‘obj$scales$time‘ before making predictions. ‘Conc‘ will be transformed ac-
cording to the transformation in ‘obj$scales$conc*.

model Optional: Specify one or more of the fitted models for which to calculate log-
likelihood. If NULL (the default), log-likelihoods will be returned for all of the
models in ‘obj$stat_model‘.

method Optional: Specify one or more of the [optimx::optimx()] methods for which to
calculate log-likelihoods. If NULL (the default), log-likelihoods will be returned
for all of the models in ‘obj$optimx_settings$method".

negative Logical: Whether to return the *negative* log-likelihood (i.e., the log-likelihood

multiplied by negative 1). Default ‘FALSE‘.

force_finite Logical: Whether to force return of a finite value (e.g. as required by method
‘L-BFGS-B* in [optimx::optimx()]). Default FALSE. If TRUE, then if the log-
likelihood works out to be non-finite, then it will be replaced with . Machine$double.xmax ‘.

146 logLik.pk

exclude Logical: ‘TRUE* to compute the log-likelihood excluding any observations in
the data marked for exclusion (if there is a variable ‘exclude‘ in the data, an
observation is marked for exclusion when ‘exclude log-likelihood, regardless of
exclusion status. Default ‘TRUE".

drop_obs Logical: “TRUE’ to drop the observations column after calculating log-likelihood.

Additional arguments. Not in use currently.

Details

For details on how the log-likelihood is calculated, see [log_likelihood()].
New levels in ‘newdata‘

The log-likelihood requires an error variance for each observation. Depending on the error model
used for the model fit, each observation may have a different corresponding error variance, based
on its unique combinations of levels of factor variables as specified in [stat_error_model()] when
setting up the [pk()] object. (The error model specified in the ‘pk‘ object can be viewed using
[get_error_group()]).

If you are supplying new data in ‘newdata‘, then the unique combinations of the factor levels for the
new observations will be used to find the matching error hyperparameter. If the new data contains
new combinations of factor levels not found in the data used to fit the model, then the following
procedure will be used to calculate the log-likelihood for the observations with new levels:

If there are ¢ = 1,2, ...G groups with unique combinations of the factor levels in the original data,
then there are corresponding error standard deviations o; = 01,09, ..., 0G.

Each observation with a new combination of factor levels will have G differerent log-likelihoods
computed, as though it were part of each of the G existing groups. Then, the average of these G
log-likelihoods will be taken and assigned to the observation. In effect, each observation with a new
level is treated as though it is equally likely to belong to any of the existing groups.

Scaling and transformation of concentration variables in ‘newdata‘

This function differs from some of the other methods for a fitted [pk()] object that accept ‘newdata’,
in that there is no ‘use_scale_conc* argument for [logLik.pk()]. You cannot specify a different scal-
ing/transformation for concentration variables — you have to use the same scaling/transformation
that was used to fit the model. This is because the log-likelihood depends on the fitted values of the
error variance hyperparameters, and those are valid only for the transformation of the concentration
data that was used to fit the model.

Value

A data.frame with coefficients and log-likelihood values calculated using ‘newdata‘. There is one
row for each model in ‘obj*’s [stat_model()] element and each [optimx::optimx()] method (specified
in [settings_optimx()]).

Author(s)

Caroline Ring, Gilberto Padilla Mercado

log_likelihood 147

See Also

Other fit evaluation metrics: AAFE. pk (), AFE.pk(), AIC.pk(), BIC.pk(), rmse.pk(), rsq.pk()
Other log likelihood functions: AIC.pk(), BIC.pk()

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(),
predict.pk(), residuals.pk(), rmse.pk(), rsq.pk()

log_likelihood Log-likelihood

Description

The log-likelihood function (probability of data given model parameters).

Usage

log_likelihood(
par,
const_params = NULL,
data = NULL,
data_sigma_group = NULL,
modelfun = NULL,
dose_norm = FALSE,
log10_trans = FALSE,
negative = TRUE,
force_finite = FALSE,
includes_preds = FALSE,
suppress.messages = TRUE

Arguments

par A named list of parameters and their values that are being optimized.

const_params Optional: A named list of parameters and their values that are being held con-
stant.

data A ‘data.frame* of data with harmonized variable names. Required: “Time_trans®,
‘Dose’, ‘Conc’, ‘Detect’, ‘N_Subjects®, ‘Conc_SD‘. ‘Conc‘ and ‘Conc_SD*
will be transformed according to ‘dose_norm‘ and ‘log10_trans".

data_sigma_group
A ‘factor® vector which could be a new variable in ‘data‘, giving the error group
for each row in ‘data‘.

modelfun Character or function: The name of the function that produces concentration
predictions for the model being evaluated.

dose_norm Logical: Whether to dose-normalize predicted and observed concentrations be-
fore calculating likelihood.

148 log_likelihood

log10_trans Logical: Whether to apply a [log10()] transformation to predicted and observed
concentrations before calculating likelihood.

negative Logical: Whether to return the *negative* log-likelihood (i.e., the log-likelihood
multiplied by negative 1). Default TRUE, to multiply the log-likelihood by neg-
ative 1 before returning it. This option is useful when treating the log-likelihood
as an objective function to be *minimized* by an optimization algorithm.

force_finite Logical: Whether to force return of a finite value (e.g. as required by method
‘L-BFGS-B* in [optimx::optimx()]). Default FALSE. If TRUE, then if the log-
likelihood works out to be non-finite, then it will be replaced with ‘.Machine$double.xmax ‘.

includes_preds Logical: whether ‘data‘ includes predictions.
suppress.messages
Logical.

Details

The log-likelihood is formulated by assuming that residuals (transformed model-predicted concen-
trations minus transformed observed concentrations) are independent, and that groups of residuals
obey zero-mean normal distributions where each group may have a separate error variance. Error
groups are defined as unique combinations of variables in the harmonized data, by a command such
as ‘pk(data = ...) + stat_error_model(error_group = vars(...)".

Value

A log-likelihood value for the data given the parameter values in params

Log-likelihood equations

For chemical-species combination ¢ and study j, define the following quantities.

Yijk 18 the k'™ observation of concentration (which may be transformed, e.g. dose-normalized
and/or log10-transformed), corresponding to dose d;;; and time ¢;;. Each observation has a corre-
sponding LOQ, LOQ), .-

For multiple-subject observations, y;; is the kth *sample mean* observed concentration for chemical-
species combination ¢ and study j, corresponding to dose d;;;, and time ¢;;. It represents the mean
of n;; individual measurements. It has a corresponding sample standard deviation, s;;,. In the
harmonized data, s;;;, is contained in variable ‘Conc_SD*.

0; represents the vector of model parameters supplied in argument ‘params* for chemical-species
combination .

ij% 1s the model-predicted concentration for dose d;;; and time tije. If f(d,t; é) is the model
function evaluated at dose d and time ¢, with parameter vector €, then

Wijk = f (dijk7tijk;éi)

ij is the study- and chemical-specific residual variance. (It is a hyperparameter.)

log_likelihood 149

Single-subject observations above limit of quantification (detects)

This is the normal probability density function evaluated at the observed concentration, as imple-
mented in [stats::dnorm()].

1 -1 yi'k—m'k)2
LL;j, =log | ——=c¢ — ==
ik g (/0527 Xp [B (o5

Single-subject observations below limit of quantification (non-detects)

This is the normal cumulative density function evaluated at the LOQ, as implemented in [stats::pnorm()].
It is the total probability of observing a concentration anywhere between 0 and the LOQ.

LOQ. ., — s
|t erf | 2Ok — Mk
0ij V2

Multiple-subject observations above limit of quantification

1
LLijk' = IOg (2

This is the joint log-likelihood across the multiple subjects included in one observation, re-expressed
in terms of the sample mean, sample SD, and number of subjects for that observation. It is imple-
mented in [dnorm_summary()].

1 -1 2
jk = Mijk * 108 [Uijm + 20% (n ik)ka + Nijk (y ik u]k)

Multiple-subject observations below limit of quantification

This case is not implemented. If sample mean concentration is reported below LOQ, then it is
unclear what individual observed concentrations are represented, and how they were combined to
produce the summary data in terms of sample mean and sample SD. Were all individual observations
below LOQ? Or were below-LOQ observations replaced with 0, LOQ/2, etc. before sample mean
and sample SD were computed? If the sample mean is reported below LOQ, what LOQ is reported?
Did individual observations all have the same LOQ, or is an average or median LOQ being used?
It is impossible to formulate the log-likelihood without knowing the answers to these questions.
Therefore, multiple-subject observations below LOQ are excluded from analysis (they are marked
as excluded in [preprocess_data()]).

Joint log-likelihood for a chemical and species

The joint log-likelihood for a chemical and species is simply the sum of log-likelihoods across
observations.

Ji Kij

LL; = Z Z LLijp,

j=1k=1

This is the overall probability of the observed data, given the model and parameters.

150 mapping

Author(s)
Caroline Ring, Gilberto Padilla Mercado

mapping New mapping

Description

New mapping

Usage

mapping(
mapping = ggplot2::aes(Chemical = analyzed_chem_dtxsid, Chemical_Name

analyzed_chem_name_original, DTXSID = analyzed_chem_dtxsid, CASRN =
analyzed_chem_casrn, Species = species, Reference = fk_extraction_document_id, Media
administration_route_normalized, Dose =

= conc_medium_normalized, Route
dose_level_normalized, Dose.Units = "mg/kg", Subject_ID = fk_subject_id, Series_ID =
fk_series_id, Study_ID = fk_study_id, ConcTime_ID = conc_time_id, N_Subjects =
= weight_kg, Weight.Units = "kg",

n_subjects_normalized, Weight

Time = time_hr,
Time.Units = "hours"”, Value = conc, Value.Units = "mg/L", Value_SD = conc_sd, LOQ =

loq),
)
Arguments
mapping A [ggplot2::aes()] call that maps variable names in the original data to the har-
monized ‘invivoPKfit® variable names.
Additional arguments. Currently unused.
Value

An object of class ‘uneval‘ containing the mapping — see [ggplot2::aes()] for details.

Author(s)

Caroline Ring

midpt_logl0 151

midpt_logl@ Log10-scaled midpoint

Description

Log10-scaled midpoint

Usage
midpt_log10(x)

Arguments

X A numeric vector

Value

The log10-scaled midpoint, calculated as ‘log10(mean(range(x, na.rm = TRUE))*

model_1comp 1-compartment model

Description

The ‘pk_model‘ object defining the 1-compartment model.

Usage

model_1comp

Format

An object of class 1ist (inherits from pk_model) of length 11.

Details
A ‘pk_model‘ object: under the hood, a ‘list’ object with named elements corresponding to the
arguments of [pk_model()]. See that function documentation for the definition of each element.

See [cp_lcomp()] for the function that predicts blood/plasma concentration for a bolus dose (oral
orIV).

See [auc_1comp()] for the function that predicts area under the concentration-time curve.

See [tkstats_lcomp()] for the function that calculates summary toxicokinetic statistics from 1-
compartment model parameters.

See [params_Ilcomp()] for the function that determines bounds and starting guesses for model pa-
rameters, based on the data.

152 model_flat

model_2comp 2-compartment model

Description

The ‘pk_model‘ object defining the 2-compartment model.

Usage

model_2comp

Format

An object of class 1ist (inherits from pk_model) of length 11.

Details

A ‘pk_model‘ object: under the hood, a ‘list* object with elements corresponding to the arguments
of [pk_model()]. See that function documentation for the definition of each element.

See [cp_2comp()] for the function that predicts blood/plasma concentration for a bolus dose (oral
orIV).

See [auc_2comp()] for the function that predicts area under the concentration-time curve.

See [tkstats_2comp()] for the function that calculates summary toxicokinetic statistics from 1-
compartment model parameters.

See [params_2comp()] for the function that determines bounds and starting guesses for model pa-
rameters, based on the data.

model_flat Flat model

Description

The ‘pk_model* object defining the flat model.

Usage
model_flat

Format

An object of class 1ist (inherits from pk_model) of length 11.

model_httk_gas_pbtk 153

Details

A ‘pk_model‘ object: under the hood, a ‘list* object with elements corresponding to the arguments
of [pk_model()]. See that function documentation for the definition of each element.

See [cp_flat()] for the function that predicts blood/plasma concentration for a bolus dose (oral or
V).

See [auc_flat()] for the function that predicts area under the concentration-time curve.

See [tkstats_flat()] for the function that calculates summary toxicokinetic statistics from 1-compartment
model parameters.

See [params_flat()] for the function that determines bounds and starting guesses for model parame-
ters, based on the data.

model_httk_gas_pbtk Gas pbtk ‘httk* model

Description

The ‘pk_model® object defining the "gas_pbtk" model from ‘httk‘, with recalculations of other
"constant" parameters that depend on optimized parameters.

Usage

model_httk_gas_pbtk

Format

An object of class 1ist (inherits from pk_model) of length 12.

Details

A ‘pk_model‘ object: under the hood, a ‘list‘ object with named elements corresponding to the argu-
ments of [pk_model()]. The default set of parameters to optimize are ‘Clint‘ and ‘Funbound.plasma‘,
but users can also fit partition coefficients. Note that fitting may present instability during ODE
solving step. See that function documentation for the definition of each element.

See [cp_httk_gas_pbtk()] for the function that predicts blood/plasma concentration for a bolus dose
(oral or IV).

See [get_params_httk_gas_pbtk()] for the function that determines bounds and starting guesses for
model parameters, based on the data.

154 nca.default

nca nca()

Description

This is the S3 method generic for nca()

Usage
nca(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A ‘data.frame‘ with variables including all the grouping variables in ‘nca_group°, ‘nca_group_id*;
‘design‘ (the auto-detected study design for this group); ‘param_name‘ (the name of the NCA
parameter); ‘param_value‘ (the NCA parameter value); ‘param_sd_z° (standard deviation of the
estimated NCA parameter value, if available); ‘param_units‘ (the units of the NCA parameter,
derived from the units of the data).

See Also
[nca.pk()] for the method for class [pk()]

nca.default Default method for nca()

Description

Default method for nca()

Usage
Default S3 method:
nca(obj, ...)
Arguments
obj An object
Additional arguments currently not in use.
Value

An error, when a non-pk object is used for the first argument.

nca.pk

155

nca.pk

NCA for a ‘pk* object

Description

Non-compartmental analysis for a ‘pk* object

Usage

S3 method for class 'pk'

nca(
obj,
newdata

NULL,

nca_group = NULL,
exclude = TRUE,

dose_norm

FALSE,

suppress.messages = NULL,

Arguments

obj

newdata

nca_group

exclude

dose_norm

A [pk()] model object. Must be fitted, or the function will exit with an error.

Optional: A ‘data.frame’ containing new data for which to compute the TK stats.
Must contain at least variables ‘Chemical’, ‘Species‘, ‘Route‘, ‘Dose‘, ‘Conc*,
‘Dose.Units*, ‘Conc.Units‘, and ‘Time.Units*, and any other variables named in
‘tk_grouping ‘. Default ‘NULL, to use the data in ‘get_data(obj)‘.

A list of variables provided using a ‘dplyr::vars()* call. The data (either ‘new-
data‘ or ‘obj$data‘) will be grouped according to the unique combinations of
these variables. For each unique combination of these variables in the data, a set
of TK statistics will be computed. The default is ‘NULL, to use the same data
grouping that was set in [stat_nca_group()] for the ‘pk‘ object. However, you
may specify a different data grouping if you wish.

Logical: ‘TRUE" to group the data for NCA after removing any observations in
the data marked for exclusion (if there is a variable ‘exclude‘ in the data, an ob-
servation is marked for exclusion when ‘exclude NCA, regardless of exclusion
status. Default ‘TRUE".

Logical: ‘“TRUE* to perform NCA after dose-normalizing concentrations. ‘FALSE*
(default) to perform NCA on un-transformed concentrations.

suppress.messages

Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages*

Additional arguments. Currently not in use.

156 pk

Details

Perform non-compartmental analysis of data in a ‘pk‘ object (or optionally, new data), using data
groupings defined by ‘get_nca_group()‘ for the ‘pk‘ object (or optionally, new groupings). If you
provide both ‘newdata‘ and ‘nca_group®, then everything in the ‘pk‘ object will be ignored and you
will simply be doing NCA *de novo* (which may be what you want).

Value

A ‘data.frame‘ with variables including all the grouping variables in ‘nca_group*, ‘nca_group_id*;
‘design® (the auto-detected study design for this group); ‘param_name* (the name of the NCA
parameter); ‘param_value‘ (the NCA parameter value); ‘param_sd_z° (standard deviation of the
estimated NCA parameter value, if available); ‘param_units* (the units of the NCA parameter,
derived from the units of the data).

Author(s)

Caroline Ring

pk Create a new ‘pk° object

Description

[pk()] initializes a new ‘pk‘ object.

Usage

pk(

data = NULL,

mapping = ggplot2::aes(Chemical = analyzed_chem_dtxsid, Chemical_Name =
analyzed_chem_name_original, DTXSID = analyzed_chem_dtxsid, CASRN =
analyzed_chem_casrn, Species = species, Reference = fk_extraction_document_id, Media
= conc_medium_normalized, Route = administration_route_normalized, Dose =
dose_level_normalized, Dose.Units = "mg/kg", Subject_ID = fk_subject_id, Series_ID =
fk_series_id, Study_ID = fk_study_id, ConcTime_ID = conc_time_id, N_Subjects =
n_subjects_normalized, Weight = weight_kg, Weight.Units = "kg",

Time = time_hr,

Time.Units = "hours"”, Value = conc, Value.Units = "mg/L", Value_SD = conc_sd, LOQ =
loq),

settings_preprocess_args = alist(),

stat_sd_group_args = alist(),

stat_log_group_args = alist(),

stat_nca_group_args = alist(),

settings_optimx_args = alist(),

scale_conc_args = alist(),

scale_time_args = alist(),

stat_model_args = alist(),

pk 157
stat_error_model_args = alist(),
facet_data_args = alist()
)
Arguments
data A ‘data.frame‘. The default is an empty data frame.
mapping A mapping set up using [ggplot2::aes()]. Must take the form ‘new_variable =
"old_variable"‘ where ‘new_variable‘ represents the harmonized variable name
that will be used within ‘invivopkfit‘; “"old_variable"‘ represents the variable
name in the input ‘data“.
settings_preprocess_args
A list of preprocessing settings.
stat_sd_group_args
A list of variables defining group to impute sd in [do_preprocess.pk()]. Specified
using [alist()].
stat_log_group_args
A list of variables defining group to impute LOQ in [do_preprocess.pk()]. Spec-
ified using [alist()].
stat_nca_group_args
A list of variables defining group to perform NCA in [do_data_info.pk()]. Spec-
ified using [alist()].
settings_optimx_args
A list of optimx settings.
scale_conc_args
A list of concentration value scaling arguments.
scale_time_args
A list of time scaling arguments
stat_model_args
A list of TK model arguments.
stat_error_model_args
A list of error modeling arguments
facet_data_args
A list of data grouping settings.
Details

[pk()] is used to construct the initial ‘pk*‘ object for analysis. It is almost always followed by ‘+°
to add steps to the workflow. For example, you could use ‘pk(my_data) + stat_model(model =
’1comp’)‘ to set up for fitting a 1-compartment model.

The ‘pk* object
A ‘pk‘ object consists of a set of concentration-dose-time data to be fitted, and sets of instructions
for steps in the analysis workflow:

- settings for how to pre-process the data (harmonizing variable names, imputing missing data,
calculating derived variables) - scalings/transformations to be applied to the data - settings for the
numerical optimization algorithm to be used to fit any model - optionally: which PK model(s)

158 pk

should be fitted to this dataset. (You do not have to fit any PK model if you don’t want to; you can
instead just set up the ‘pk‘ object with data, and do non-compartmental analysis on it.)

No data processing, model fitting, or any other analysis is done until you explicitly request it. Until
then, the ‘pk‘ object remains just a set of data and instructions. This allows you to specify the
instructions for each analysis step without regard for the actual order of the analysis steps, and
to overwrite previous instructions, without having to re-do the model fitting each time you add or
change a set of instructions. This is particularly useful if you are working in interactive mode at the
R console.

Mappings

Your input data can have any variable names you like. However, internally, ‘invivopkfit* needs
to use a set of "standard", harmonized variable names (e.g., it refers to the variable containing
measured tissue concentrations as ‘Conc*; the variable containing observed time points as “Time*;
and the variable containing administered doses as ‘Dose‘). In effect, ‘invivopkfit‘ needs to rename
the input data, and produce a new ‘data.frame* that uses these internal harmonized variable names.

In order to know which variable names in the input data correspond to each of the internal harmo-
nized variable names, we need to set up a mapping between the internal harmonized variable names
and the original variable names.

The simplest, most flexible way to set up this mapping is by (ab)using a call to [ggplot2::aes()].
In the context of [ggplot2::ggplot2-package()], you would use [ggplot2::aes()] to set up mappings
to ‘ggplot2’s "aesthetics", internal harmonized variable names which it uses for plotting: *e.g.*,
x¢, ‘y¢, ‘color’, ‘size‘, ‘shape‘, and so on. In the context of [invivopkfit-package()], we are setting
up mappings to ‘invivopkfit*’s internal harmonized variable names which it uses in model fitting.

These "‘invivopkfit® aesthetic" variables are as follows:

e ‘Chemical‘: A ‘character variable containing the chemical identifier. All rows of ‘data‘
should have the same value for ‘Chemical‘.

* ‘Species‘: A ‘character® variable containing the name of the species for which the data was
measured. All rows of ‘data‘ should have the same value for ‘Species‘.

» ‘Reference‘: A ‘character® variable containing a unique identifier for the data reference (e.g.,
a single publication).

* ‘Subject’: A ‘character® variable containing a unique identifier for the subject associated with
each observation (an individual animal or group of animals).

* ‘N_Subjects‘: A ‘numeric‘ variable; an integer giving the number of individual animals repre-
sented by this observation. (Some data sets report tissue concentrations for individual animals,
in which case ‘N_Subjects* will be 1; others report average tissue concentrations for groups
of multiple animals, in which case ‘N_Subjects‘ will be greater than 1.)

* ‘Weight‘: A ‘numeric‘ variable giving the subject’s body weight.
* ‘Weight.Units‘: A ‘character® variable giving the units of body weight.

* ‘Route‘: A ‘character® variable denoting the route of administration. Either ‘po‘ (oral) or ‘iv*
(intravenous). Other routes are not currently supported.

* ‘Dose‘: A ‘numeric’ variable giving the dose administered.
* ‘Dose.Units‘: A ‘character® variable giving the units of the administered doses.
* ‘Time‘: A ‘numeric‘ variable giving the time of tissue collection.

e ‘Time.Units‘: A ‘numeric‘ variable giving the units of ‘Time".

pk

159

e ‘Media‘: A ‘character® variable giving the tissue that was analyzed. Either ‘blood‘, ‘plasma‘,
or ‘excreta‘. Other tissues are not currently supported.

e “Value‘: A ‘numeric variable giving the tissue concentration in units of mg/L. If ‘N_Subjects
> 1°, “Value® is assumed to represent the mean tissue concentration for this group of subjects.
If the tissue concentration was below the limit of quantification (LOQ), this value may be
‘NA_real ‘.

* ‘Value_SD*: A ‘numeric‘ variable giving the standard deviation of the tissue concentration in
units of mg/L, if available and relevant. If ‘N_Subjects > 1°, ‘Value_SD* is assumed to repre-
sent the standard deviation of tissue concentrations for this group of subjects. If ‘N_Subjects
== 1°, then ‘Value_SD°* may be ‘NA_real_*.

* ‘LOQ‘: A ‘numeric’ variable giving the limit of quantification applicable to this tissue con-
centration in units of mg/L, if available.

* ‘Value.Units‘: A ‘character® variable giving the units of ‘Value®, “Value_SD‘, and ‘LOQ".

You may additionally include mappings to other variable names of your choice, which will appear
in the ‘pk‘ object in ‘pk$data‘ after the analysis is done.

As with usual calls to [ggplot2::aes()], you should provide the variable names without quoting them.
For example, use ‘ggplot2::aes(Chemical = my_chem)‘. Do * not* use ‘ggplot2::aes("Chemical" =
"my_chem")".

Also, as with usual calls to [ggplot2::aes()], you may also specify that any of the "‘invivopkfit*
aesthetic" variables should be mapped to a constant value, rather than to a variable in ‘data‘. For
example, imagine that you don’t have a column in ‘data‘ that encodes the units of body weight,
but you know that all body weights are provided in units of kilograms. You could specify ‘map-
ping = ggplot2::aes(Chemical = my_dtxsid, Weight = my_weight, Weight.Units = "kg")* to map
‘Weight.Units to a fixed value of "kg".

Finally, as with usual calls to [ggplot2::aes()], you may specify mappings as expressions that use

variable names in ‘data‘. For example, if the species-name variable in ‘data‘ sometimes says "rat",
sometimes "Rat", sometimes "RAT", you might want to harmonize the capitalization. You can do

that easily by specifying ‘mapping = ggplot2::aes(Chemical = my_dtxsid, Species = tolower(my_species)‘.

The following "aesthetics" variable names are reserved for internal use (i.e., they are automatically
assigned by [preprocess_data.pk()], and should *not* be included in ‘mapping":

* ‘Conc‘: This is assigned as the greater of ‘Value‘ and ‘LOQ°‘, with NAs removed.
* ‘Conc_SD*: This is set equal to “Value_SD°.
» ‘Detect‘: This is a logical variable, ‘TRUE® if ‘Conc > LOQ* and ‘FALSE* otherwise.

* ‘Conc_trans‘: This is ‘Conc* with all scalings and transformations applied as specified in ‘+
scale_conc()°.

* ‘Conc_SD_trans‘: This is ‘Conc_SD* with all scalings and transformations applied as speci-
fied in ‘+ scale_conc()‘.

* ‘Conc_trans.Units‘: Automatically-derived from ‘Conc.Units‘ with any scalings and transfor-
mations applied. If dose normalization is requested, then ‘Dose.Units* is also used to automat-
ically derive the resulting ‘Conc_trans.Units‘. For example, if both dose-normalization and
[log10()] transformation are requested, and ‘Conc.Units = “'mg/L’ ‘ and ‘Dose.Units = "mg/kg",
then ‘Conc_trans.Units = log10((mg/L)/(mg/kg))‘.

* ‘Time_trans‘: This is ‘Time‘ with any rescaling specified in ‘+ scale_time()‘.

160 pk

* ‘Time_trans.Units‘: The new units of time after any rescaling (e.g. ‘hours®, ‘days‘, ‘weeks®,...)

If you do assign any of these reserved variable names in ‘mapping°‘, your mapping will be ignored
for those reserved variable names. WARNING: If you have any variables with these reserved names
in your original data, those original variables will be dropped by [preprocess_data.pk()].

The default value of ‘mapping‘ is the following (which refers to original variable names in the
built-in dataset [cvt]):

ggplot2: :aes(
Chemical = "analyzed_chem_dtxsid",
Chemical_Name = "analyzed_chem_name_original”,
DTXSID = "analyzed_chem_dtxsid",
CASRN = "analyzed_chem_casrn”,
Species = "species”,
Reference = "fk_extraction_document_id",
Media = "conc_medium_normalized”,
Route = "administration_route_normalized”,
Dose = "invivPK_dose_level”,
Subject_ID = "fk_subject_id",
Series_ID = "fk_series_id",
Study_ID = "fk_study_id",
ConcTime_ID = "conc_time_id",
N_Subjects = "n_subjects_normalized”,
Weight = "weight_kg",
Time = "time_hr",
Value = "invivPK_conc”,
Value_SD = "invivPK_conc_sd",
LOQ = "invivPK_lo"q

Data

‘Route* values should be either ‘"oral"‘ (oral bolus administration) or ‘"iv"‘ (IV bolus administra-

ne

tion), and ‘Media‘ values should be either ‘"blood"‘, “"plasma"‘, or ‘"excreta".

If ‘data‘ contains data for more than one ‘Chemical‘ and ‘Species‘, then you should use [facet_data()]
to run a "faceted" analysis. A faceted analysis will group the data according to unique combinations
of the faceting variables, and produce a ‘pk*‘ object for each group. The result is a [tibble::tibble()]
grouped by the faceting variables, with a list column named ‘pk‘ containing the ‘pk* object for each
group. This [tibble::tibble()] is an object of class ‘pk_faceted".

All methods for ‘pk‘ objects have a corresponding version for a ‘pk_faceted‘ object, which ap-
plies the method to each ‘pk‘ object in turn and either returns the same ‘pk_faceted* object with
a modified ‘pk‘ column (for methods that operate on a ‘pk* object and return a modified version
of the same ‘pk‘ object like [preprocess_data()], [data_info()], [prefit()], [fit()]), or produces a [tib-
ble::tibble()] grouped by the faceting variables, with a list column named after the ‘pk‘ method con-
taining the results of that method (for methods that operate on a ‘pk‘ object but return something
other than a modified ‘pk‘ object, e.g. [summary.pk()], [coef.pk()], [coef_sd.pk()], [predict.pk()],
[residuals.pk()], [nca.pk()]).

pkdataset_nheerlcleaned 161

Value

An object of class ‘pk‘. The initial ‘pk‘ object is a list with elements ‘data_orig‘, ‘data_settings®,
‘scales‘ and ‘optimx_settings‘. ‘data_orig‘ is the original data set to be fitted, as supplied in the
argument ‘data‘. ‘data_settings‘ is a named list containing all the other input arguments: these
provide settings that will be used when the data is pre-processed before fitting.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

pkdataset_nheerlcleaned
Toxicokinetic data from the "Concentration vs. Time Database"

Description

A dataset containing experimental time-course data of chemical compound concentrations in body
fluids and tissues

Usage

pkdataset_nheerlcleaned

Format

A data table with 2454 rows and 19 variables:

Source

https://github.com/USEPA/CompTox-PK-CvTdb

pk_add Add a ‘pkproto‘ object to a ‘pk‘ object

Description

This is the S3 generic method.

Usage
pk_add(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘pkproto‘ object to be added
pk_obj The ‘pk* object to which the ‘pkproto* object is to be added
objectname The object name

https://github.com/USEPA/CompTox-PK-CvTdb

162 pk_add.default

Value

The ‘pk‘ object modified by the addition.

See Also

[pk_add.pk_scales()] for the method for adding ‘pk_scales‘ objects (from [scale_conc()] and [scale_time()]);
[pk_add.pk_settings_preprocess()] for the method for adding ‘pk_settings_preprocess‘ objects (from
[settings_preprocess()]); [pk_add.pk_nca_group()] for the method for adding ‘pk_nca_group‘ ob-

jects (from [stat_nca_group()]); [pk_add.pk_settings_optimx()] for the method for adding ‘pk_settings_optimx*
objects (from [settings_optimx()]); [pk_add.pk_stat_model()] for the method for adding ‘pk_stat_model*
objects (from ‘stat_model()*)

pk_add.default Add pkproto object default method

Description

Add pkproto object default method

Usage

Default S3 method:
pk_add(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘pkproto‘ object to be added

pk_obj The ‘pk* object to which the ‘pkproto* object is to be added
objectname The object name
Value

The ‘pk‘ object modified by the addition.

pk_add.pk_facet_data

163

pk_add.pk_facet_data Add facet_data()

Description

Add facet_data()

Usage
S3 method for class 'pk_facet_data'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_facet_data‘ object to be added.

pk_obj The [pk()] object to which the ‘pk_facet_data‘ object will be added.
objectname The name of the ‘pk_facet_data‘ object.
Value

The [pk()] object, with the added ‘pk_facet_data‘ in the ‘groups‘ sub-list.

Author(s)

Caroline Ring

pk_add.pk_log_group Add log_group

Description

Add log_group

Usage
S3 method for class 'pk_log_group'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_log_group* object to be added.

pk_obj The [pk()] object to which the ‘pk_loq_group* object will be added.

objectname The name of the ‘pk_loq_group* object.

164 pk_add.pk_scales

Value

The [pk()] object, with the added ‘pk_loq_data“ in the ‘groups* sub-list.

Author(s)
Gilberto Padilla Mercado

pk_add.pk_nca_group Add a ‘pk_nca_group‘ object.

Description

Add a ‘pk_nca_group* object.

Usage
S3 method for class 'pk_nca_group'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_nca_group* object to be added.

pk_obj The ‘pk‘ object to which the ‘pk_nca_group*‘ object will be added.
objectname The name of the ‘pk_nca_group‘ object.
Value

The ‘pk‘ object, modified by the ‘pk_nca_group* object.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

pk_add.pk_scales Add a ‘pk_scales object to a ‘pk‘ object.

Description

Add a ‘pk_scales* object to a ‘pk* object.

Usage

S3 method for class 'pk_scales'
pk_add(pkproto_obj, pk_obj, objectname)

pk_add.pk_sd_group 165

Arguments

pkproto_obj The ‘pk_scales‘ object to be added.

pk_obj The ‘pk* object to which the ‘pk_scales‘ object will be added.
objectname The name of the ‘pk_scales‘ object.
Value

The ‘pk‘ object, modified by the ‘pk_scales‘ object.

Author(s)

Caroline Ring

pk_add. pk_sd_group Add sd_group

Description

Add sd_group

Usage
S3 method for class 'pk_sd_group'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_sd_group* object to be added.

pk_obj The [pk()] object to which the ‘pk_sd_group* object will be added.
objectname The name of the ‘pk_sd_group* object.
Value

The [pk()] object, with the added ‘pk_sd_group® in the ‘groups‘ sub-list.

Author(s)

Gilberto Padilla Mercado

166 pk_add.pk_settings_preprocess

pk_add.pk_settings_optimx
Add a ‘pk_settings_optimx* object.

Description

Add a ‘pk_settings_optimx‘ object.

Usage
S3 method for class 'pk_settings_optimx'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_settings_optimx* object to be added.

pk_obj The ‘pk‘ object to which the ‘pk_settings_optimx‘ object will be added.
objectname The name of the ‘pk_settings_optimx‘ object.
Value

The ‘pk‘ object, modified by adding the settings.

Author(s)

Caroline Ring

pk_add.pk_settings_preprocess
Add a ‘pk_settings_preprocess ‘ object.

Description

Add a ‘pk_settings_preprocess* object.

Usage
S3 method for class 'pk_settings_preprocess'
pk_add(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_settings_preprocess‘ object to be added.
pk_obj The ‘pk‘ object to which the ‘pk_settings_preprocess‘ object will be added.

objectname The name of the ‘pk_settings_preprocess® object.

pk_add.pk_stat_error_model 167
Value

The ‘pk‘ object, modified by the ‘pk_settings_preprocess* object.

Author(s)

Caroline Ring

pk_add.pk_stat_error_model
Add a ‘pk_stat_error_model‘ object.

Description

Add a ‘pk_stat_error_model‘ object.

Usage

S3 method for class 'pk_stat_error_model'
pk_add(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘pk_stat_error_model* object to be added.

pk_obj The ‘pk* object to which the ‘pk_stat_error_model‘ object will be added.
objectname The name of the ‘pk_stat_error_model‘ object.
Value

The ‘pk‘ object, modified by adding the ‘stat_error_model‘.

Author(s)

Caroline Ring

168 pk_add.uneval

pk_add.pk_stat_model Add a ‘pk_stat_model* object.

Description

Add a ‘pk_stat_model‘ object.

Usage

S3 method for class 'pk_stat_model'
pk_add(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘pk_stat_model‘ object to be added.

pk_obj The ‘pk‘ object to which the ‘pk_stat_model‘ object will be added.
objectname The name of the ‘pk_stat_model‘ object.
Value

The ‘pk‘ object, modified by adding the ‘stat_model‘.

Author(s)

Caroline Ring

pk_add.uneval Add an ‘uneval object

Description

Add an object created by [ggplot2::aes()]

Usage

S3 method for class 'uneval'
pk_add(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘uneval‘ (mapping) object to be added.
pk_obj The [pk()] object to which the ‘uneval‘ object will be added.

objectname The name of the ‘uneval‘ object.

pk_model 169

Details

This function adds a new variable mapping (created by [ggplot2::aes()]), which has class ‘uneval®,
to an existing [pk()] object.

The new mapping will completely replace any existing mapping.

Value

The [pk()] object, modified by adding the new mapping.

Author(s)

Caroline Ring

pk_model Create a new ‘pk_model‘ object

Description

Create a new ‘pk_model‘ object

Usage

pk_model(
name,
params,
conc_fun,
auc_fun,
params_fun,
tkstats_fun,
conc_fun_args = NULL,
auc_fun_args = NULL,
params_fun_args = NULL,
tkstats_fun_args = NULL,
param_groups = NULL,

Arguments
name Character: The name of the model.
params Character vector: Parameter names of the model.
conc_fun Character: Name of the function to predict tissue concentrations using this
model. See Details for requirements.
auc_fun Character: Name of the function to predict AUC (area under the concentration-

time curve) using this model. See Details for requirements.

170

pk_model

params_fun Character: Name of the function that produces the ‘data.frame‘ of parameter
info for this model (see Details)

tkstats_fun Character: Name of the function that produces a‘data.frame‘ of derived TK

statistics for this model (see Details)

conc_fun_args A named list: any additional arguments to ‘conc_fun‘ other than those listed in
Details. Default ‘NULL".

auc_fun_args A named list: any additional arguments to ‘auc_fun‘ other those those listed in
Details. Default ‘NULL".

params_fun_args
A named list: any additional arguments to ‘params_fun‘ other than ‘data‘ (see
Details). Default ‘NULL".

tkstats_fun_args
A named list: any additional arguments to ‘tkstats_fun* other than ‘data‘, ‘medium°,
‘route’ (see Details). Default NULL.

param_groups A named list: each named element is paired with a character vector that contains
one or more parameters in ‘params.

Additional arguments (not currently implemented).

Value

An object of class ‘pk_model‘. Effectively, a named list containing all of the arguments provided
to this function.

‘conc_fun‘ requirements

‘conc_fun* should be a function that takes the following arguments, and returns a numeric vector of
predicted tissue concentrations:

- ‘params‘: A named list of parameter values - ‘time‘: A numeric vector of time values - ‘dose‘: A
numeric vector of dose values. Currently, only a single bolus dose at time 0 is supported. - ‘route:
A character vector of the route of administration. Currently, only “oral’‘ and “’iv’‘ are supported.
- ‘medium‘: The tissue in which concentration is to be predicted. Currently, only “’blood’‘ and
“plasma’* are supported.

See [cp_lcomp()], [cp_2comp()], [cp_flat()] for examples.

‘auc_fun‘ requirements

‘auc_fun‘ should be a function that takes the same arguments as ‘conc_fun‘, and returns a numeric
vector of predicted tissue AUCs (area under the concentration-time curve).

See [auc_1comp()], [auc_2comp()], [auc_flat()] for examples.

‘params_fun‘ requirements

‘params_fun‘ should be a function whose first argument is a ‘data.frame‘, which will be the pre-
processed data using ‘invivopkfit‘ harmonized variable names. It may take additional arguments,
which can be provided in ‘params_fun_args‘. The function should return a ‘data.frame* with the
following variables:

pk_model 171

- ‘param_name‘: Character vector, listing parameter names for the model - ‘param_units‘: Char-
acter vector, listing units of each model parameter - ‘optimize_param*: Logical (TRUE/FALSE),
whether each parameter is to be estimated given the available data - ‘use_param*: Logical (TRUE/FALSE),
whether each parameter is to be used in the model even if it is not estimated (i.e., if a parameter
value is to be held constant while the others are estimated, then ‘optimize_param* should be FALSE
but ‘use_param* should be TRUE) -‘lower_bound‘: Numerical. Lower bounds for each parameter.
May be ‘-Inf* if no lower bound. If ‘optimize_param* or ‘use_param*® is FALSE, then the corre-
sponding ‘lower_bound* will be ignored (because the parameter is not being estimated from the
data). - ‘upper_bound‘: Numerical. Upper bounds for each parameter. May be ‘Inf* if no upper
bound. If ‘optimize_param® or ‘use_param‘ is FALSE, then the corresponding ‘upper_bound* will
be ignored (because the parameter is not being estimated from the data). - ‘start‘: Numerical. Start-
ing values for estimating each parameter. If ‘optimize_param* is FALSE and ‘use_param* is TRUE,
then the parameter will be held constant at the corresponding value in ‘start‘. If ‘use_param® is
FALSE, then the corresponding ‘start® will be ignored.

See [get_params_{flat()], [get_params_Ilcomp()], [get_params_2comp()] for examples.

‘tkstats_fun‘ requirements

‘tkstats_fun‘ should be a function which accepts a vector of model parameter values and calculates
derived summary toxicokinetic statistics (e.g. total clearance, halflife, AUC, volume of distribution
at steadystate).

The function must take the following named arguments:

- ‘pars‘: A named numeric vector of model parameter values. - ‘route‘: A character scalar naming
a route (e.g. "oral" or "iv") - ‘medium‘: A character scalar naming a tissue medium of analysis
(e.g. "blood" or "plasma") - ‘dose‘: A numeric scalar giving a dose level for which to calculate TK
statistics - ‘time_unit‘: A character scalar giving the units of time - ‘conc_unit‘: A character scalar
giving the units of concentration - ‘vol_unit‘: A character scalar giving the units of volume

and return a ‘data.frame* of derived toxicokinetic statistics, which should have the following vari-
ables:

- ‘param_name*: A character vector giving the names of each derived TK statistic - ‘param_value‘:
A character vector giving the values of each derived TK statistic - ‘param_units‘: A character vector
giving the units of each derived TK statistic

It is recommended (although not required) that the function return the following statistics, using
these names in the ‘param_name* variable:

- ‘CLtot‘: Total clearance rate (units of volume/time) - ‘CLtot/Fgutabs‘: Total clearance rate scaled
by bioavailability (if oral bioavailability is available) (units of volume/time) - ‘Css‘: The steady-
state concentration after a long-term daily dose of ‘dose‘ (units of concentration) - ‘halflife‘: The
terminal half-life (units of time) - ‘tmax‘: The time of peak concentration (units of time) - ‘Cmax‘:
The peak concentration (units of time) - ‘AUC_infinity‘: The area under the concentration-time
curve, calculated at infinite time (units of concentration * time) - ‘Vdist_ss‘: The volume of distri-
bution at steady-state (units of volume) - “Vdist_ss/Fgutabs‘: The volume of distribution at steady-
state scaled by bioavailability (if oral bioavailability is available) (units of volume)

The recommendation to return these statistics, using these names, is intended to make it eas-
ier to compare TK statistics across models, and to compare TK statistics to the results of non-
compartmental analysis. If these names are not used, then some outputs of [summary.pk()] will not
be very useful. The automated comparison of TK stats from the winning model to the results of

172 pk_subtract

non-compartmental analysis relies on these names being present in the output of ‘tkstats_fun‘ to
match the names of the statistics output from NCA; it shouldn’t crash without them, but the results
won’t be very useful. And TK stats compiled across models will not be easy to compare if the
models use different names for the statistics.

Author(s)

Caroline Ring

pk_subtract Subtract a ‘pkproto‘ object from a ‘pk‘ object

Description

This is the S3 generic method.

Usage

pk_subtract(pkproto_obj, pk_obj, objectname)

Arguments

pkproto_obj The ‘pkproto‘ object to be subtracted

pk_obj The ‘pk‘ object to which the ‘pkproto‘ object is to be subtracted
objectname The object name
Value

The ‘pk‘ object modified by the subtraction.

See Also

[pk_subtract.pk_stat_model()] for the method for subtracting ‘pk_stat_model‘ objects (from ‘stat_model()*)

pk_subtract.default 173

pk_subtract.default Subtract pkproto object default method

Description

Subtract pkproto object default method

Usage
Default S3 method:
pk_subtract(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pkproto‘ object to be subtracted

pk_obj The ‘pk* object to which the ‘pkproto* object is to be subtracted
objectname The object name
Value

The ‘pk‘ object modified by the addition.

pk_subtract.pk_stat_model
Subtract a ‘pk_stat_model* object.

Description

Subtract a ‘pk_stat_model‘ object.

Usage
S3 method for class 'pk_stat_model'
pk_subtract(pkproto_obj, pk_obj, objectname)
Arguments

pkproto_obj The ‘pk_stat_model‘ object to be subtracted.

pk_obj The ‘pk‘ object from which the ‘pk_stat_model‘ object will be subtracted.
objectname The name of the ‘pk_stat_model‘ object.
Value

The ‘pk* object, modified by subtracting the ‘stat_model".

174 plot.pk

Author(s)

Caroline Ring

plot.pk Plot a [pk()] object.

Description

Plot data and model fits from a [pk()] object.

Usage

S3 method for class 'pk'
plot(
X,
newdata = NULL,
model = NULL,
method = NULL,
use_scale_conc = FALSE,
time_trans = FALSE,
log10_C = NULL,
plot_data_aes = NULL,
plot_point_aes = NULL,
facet_fun = NULL,
facet_fun_args = NULL,
drop_nonDetect = FALSE,
plot_fit_aes = NULL,
n_interp = 10,
fit_limits = NULL,
print_out = FALSE,
best_fit = FALSE,

Arguments

X A [pk()] object. In this case ‘x* is used to align with generic method.

newdata Optional: A ‘data.frame‘ containing new data to plot. Must contain at least vari-
ables ‘Chemical’, ‘Species‘, ‘Route, ‘Media‘, ‘Dose‘, ‘Time‘, ‘Time.Units",
‘Conc’, ‘Detect’, ‘Conc_SD*. Default ‘NULL’, to use the data in ‘obj$data‘.

model Character: One or more of the models fitted. Curve fits will be plotted for these
models. Default ‘NULL* to plot fits for all models in ‘x$stat_model‘.

method Character: One or more of the [optimx::optimx()] methods used. Default ‘NULL*

to plot fits for all methods in ‘x$pk_settings$optimx$method*.

plot.pk 175

use_scale_conc Possible values: ‘TRUE‘, ‘FALSE®, or a named list with elements ‘dose_norm°
and ‘logl0_trans‘ which themselves should be either ‘TRUE® or ‘FALSE*. If
‘use_scale_conc = FALSE‘ (the default for this function), then the data and
fits will be plotted without any dose-normalization or log-transformation. If
‘use_scale_conc = TRUE® , then the concentration scaling/transformations in
‘x* will be applied to the y-axis (concentration axis). If ‘use_scale_conc =

list(dose_norm = ..., log10_trans = ...)‘, then the specified dose normalization
and/or log10-transformation will be applied to the y-axis (concentration axis) of
the plots.
time_trans Default ‘FALSE*. Determines whether time values will be transformed.
log10_C Default ‘NULL*‘. Determines whether y-axis (concentration) should be log10

transformed. Takes ‘“TRUE‘ or ‘FALSE® values. Otherwise it defaults to the
value determined from ‘use_scale conc°.

plot_data_aes Optional: Aesthetic mapping for the plot layer that visualizes the data. Default
‘NULL', in which case a default mapping will be used based on the value of
‘use_scale_conc®.

plot_point_aes Optional: Aesthetic mappings for geom_point layer that determines the fill of
the points. Defaults to ‘NULL".

facet_fun Default “"facet_grid"‘. Optional: The name of the ‘ggplot2* faceting func-
tion to use: [ggplot2::facet_grid()], [ggplot2::facet_wrap()], or “none’‘ to do
no faceting. Default ‘NULL®, in which case a default faceting will be applied
based on the value of ‘use_scale conc®.

facet_fun_args A named list of arguments to the faceting function in ‘facet_fun‘ (if any). De-
fault: “* list(rows = ggplot2::vars(Route), cols= ggplot2::vars(Media), scales =
"free_y", labeller = "label_both") *“*

drop_nonDetect Default ‘FALSE®. Whether to eliminate observations below the level of quan-
tification (LOQ).

plot_fit_aes Optional: Aesthetic mapping for the plot layer that visualizes the fitted curves.
Default ‘NULL, in which case a default mapping will be used based on the
value of ‘use_scale_conc".

n_interp For plotting: the number of time points to interpolate between each observed
time point. Default 10.

fit_limits Default ‘NULL‘. c(Upper Bound, Lower Bound). Supply a numeric vector.
These values filter the predicted values for fits to not exceed 2.25x of the max-
imum observed concentration values for each ‘data_group® in the ‘pk‘ object.
When there is a log10 transformation of concentration values, it limits predicted
values to 1/20th of the minimum observed concentration values and 5 times the
maximum value.

print_out For plotting: whether the output of the function should be the list of plots. De-
fault ‘FALSE".
best_fit Default FALSE. Determines whether fit plot outputs only the best fit from ‘get_winning_model()*

Additional arguments not in use.

Details

If the [pk()] object has not been fitted, then only the data will be plotted (because no curve fits exist).

176 predict.pk

Value

A [ggplot2::ggplot()]-class plot object.

Author(s)

Caroline Ring, Gilberto Padilla Mercado

post_name_value Creates a [cli::cli_fmt()] output for the pattern "name(x), length ="

Description

Creates a [cli::cli_fmt()] output for the pattern "name(x), length ="

Usage

post_name_value(x, extra = "")
Arguments

X A named vector with a single value for each element.

extra A character vector that should be printed between each name and value.
Value

A cli::cli_fmt output list.

Author(s)

Gilberto Padilla Mercado

predict.pk Get predictions

Description

Extract predictions from a fitted ‘pk‘ object.

predict.pk

Usage

177

S3 method for class 'pk'

predict(
object,

newdata = NULL,

model = NULL,

method = NULL,

type = "conc”

’

exclude = TRUE,
use_scale_conc = FALSE,
suppress.messages = NULL,
include_NAs = FALSE,

Arguments

object

newdata

model

method

type

exclude

use_scale_conc

A [pk] object.

Optional: A ‘data.frame‘ with new data for which to make predictions. If NULL
(the default), then predictions will be made for the data in ‘object$data‘. ‘new-
data‘ is required to contain at least the following variables: ‘Time‘, ‘Time.Units",
‘Dose‘, ‘Route‘, and ‘Media“.

Optional: Specify one or more of the fitted models for which to make predic-
tions. If NULL (the default), predictions will be returned for all of the models
in ‘object$stat_model‘.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions. If NULL (the default), predictions will be returned for all of
the models in ‘object$pk_settings$optimx$method".

ne ¢

Either “"conc"* (the default) or “"auc"‘. ‘type = "conc"* predicts concentrations;
‘type = "auc"‘ predicts area under the concentration-time curve (AUC).

Logical: ‘TRUE® to return ‘NA_real_° for any observations in the data marked
for exclusion (if there is a variable ‘exclude‘ in the data, an observation is
marked for exclusion when ‘exclude ‘FALSE® to return the prediction for each
observation, regardless of exclusion. Default ‘TRUE®.

Possible values: ‘TRUE‘, ‘FALSE‘, or a named list with elements ‘dose_norm°
and ‘logl0_trans‘ which themselves should be either ‘TRUE® or ‘FALSE*. If
‘use_scale_conc = TRUE‘, then the concentration scaling/transformations in
‘object® will be applied to both predicted and observed concentrations before
the log-likelihood is computed. If ‘use_scale_conc = FALSE® (the default for
this function), then no concentration scaling or transformation will be applied
before the log-likelihood is computed. If ‘use_scale_conc = list(dose_norm
= ..., logl0_trans = ...)‘, then the specified dose normalization and/or log10-
transformation will be applied.

suppress.messages

Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘object$pk_settings$preprocess$suppress.messages"

178 print.pk

include_NAs Logical: ‘FALSE‘ by default. Determines whether to include aborted fits which
have NAs as coefficients.

Additional arguments.

Value

A data.frame with one row for each ‘data_group®, ‘model‘ and ‘method°. Includes variable ‘Conc_est*
that contains the predicted concentration or AUC at that timepoint given the TK parameters for that
‘model‘ and ‘method‘ specified in [coefs()]. If ‘use_scale_conc un-transformed concentrations in
the same units as ‘object$data$Conc.Units‘. If ‘use_scale_conc concentrations in the same units as
‘object$data$Conc_trans.Units*.

Author(s)
Caroline Ring, Gilberto Padilla Mercado

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(),
logLik.pk(), residuals.pk(), rmse.pk(), rsq.pk()

print.pk Print a user-friendly version of a ‘pk* object

Description

Prints a clear summary of ‘pk‘ object and returns it invisibly.

Usage
S3 method for class 'pk'
print(x, ...)
Arguments
X A pk object.
Additional arguments. Currently not in use.
Value

Summary output

Author(s)
Gilberto Padilla Mercado

pseudo_cvt 179

pseudo_cvt Creating a simple test CvT dataset

Description

Creating a simple test CvT dataset

Usage

pseudo_cvt(
params = c(Clint =10, Q_gfr =0.31, Q_totli =0.743, Fup=0.2, Vdist = 1.2, Fgutabs =
0.75, kgutabs = 0.3, Rblood2plasma = 0.8, Frec = 0.95),
time = seq(@, 30, by = 0.5),

dose = 100,
route = c("oral”, "iv"),
medium = c("blood”, "plasma"”, "excreta"),
N = 4,
var = 0.5
)
Arguments
params A named numeric vector of model parameter values.
time A numeric vector of times, reflecting the time point when concentration is mea-
sured after the corresponding single bolus dose. Must be same length as ‘dose’
and ‘iv.dose’, or length 1.
dose A numeric vector of doses, reflecting single bolus doses administered at time
0. Must be same length as ‘time‘ and ‘iv.dose’, or length 1. In this model, it is
expected that this value represents a measurement of radioactive particles from
a radiolabeling experiment.
route A character vector, reflecting the route of administration of each single bolus
dose: “’oral’‘ or “’iv’ ‘. Must be same length as ‘time‘ and ‘dose*, or length 1.
medium A character vector reflecting the medium in which each resulting concentration
is to be calculated: "blood" or "plasma". Default is "plasma". Must be same
length as ‘time‘ and ‘dose°, or length 1.
N Numeric, positive and non-zero integer. Number of individual subjects.
var Numeric between 0 and 1. Describes variation in the measurements.
Value

A data frame with concentration over time data.

180 recalculate_httk_pbtk_params

recalculate_httk_pbtk_params
Recalculating parameters for ‘httk‘’s pbtk or gas_pbtk model

Description

This set of functions recalculates the parameters that change with each new set of Funbound.plasma
and Clint values. In summary these are: metabolic clearance (Clmetabolismc), red blood cell parti-
tioning coefficient (krbc2pu), blood-to-plasma ratio (Rblood2plasma), and fraction absorbed by the
gut (Fabsgut).

Usage

recalculate_httk_pbtk_params(params, dtxsid, species, held_param = NULL)

Arguments
params A list of parameter = value pairs that will be used in calculations.
dtxsid The DTXSID of a chemical, by default taken from the ’Chemical’ column in the
data.
species The species of a subject, by default taken from the ’Species’ column in the data.
held_param A character vector or length 1. Either "Krbc2pu" or "Funbound.plasma", used
to determine the conditional calculation of the parameter Kint. When NULL
(default) it will skip the recalculation entirely (as it should when outside fitting
process).
Value

An updated list of parameters

Clmetabolismc

The formula to recalculate this parameters is as follows:

60min

hr

103
Clmetabolismc = Clint xmillion.cells.per.gliver x Viivercx Tg xliwver.density x Funbound.plasma x
g

Note that because Clmetabolismc is in , Vliverc is in and liver.density is in k—Lg,

__wuL _L

min-10%cells kg BW

there are some unit conversions included to give final units in —2——
hr-kg BW

Krbe2pu

The formula to recalculate this parameter is as follows:

Krbe2pu = Fint x Kint x KAPP Acell2pu x Fcell x Kcell

10

recalculate_httk_pbtk_params 181

where Fint, Fcell, and Kcell are taken or calculated from values in [httk::tissue.data], and KAP-
PAcell2pu is estimated once during [httk::calc_ionization()] and [httk::parameterize_schmitt()].

Kint = (1 — Fprotein.plasma + 0.57
B b P Funbound.plasma — (1 — Fprotein.plasma)

Because only Kint needs to be recalculated, the rest is saved as a summary constant called KFsum-
mary and the other additional parameter included is Fprotein.plasma.

Rblood2plasma
The formula to calculate this parameter is:
Rblood2plasma = 1 — hematocrit + (hematocrit x krbe2pu x Funbound.plasma)
Fabsgut
The formula to calculate this parameter is:
Fabsgut = fabs.oral x fgut.oral
where

MRT x Rsi 60) *7)

fabs.oral = min(1,1 — (1 +2xpeff x Z X 104

Qgut Qgut

fgut.oral = min(1

100

and
_ Quilli x C'Lperm

~ Quilli + CLperm
Quilli = Quillif x Qsif x Qgutf x Qcardiacc X BW3/4

Qgut

1000
CLperm = peys X Asi X (x 100 x 3600)

104
Degy = 1004926 x10g10(Caco2. Pab)—0.1454 gy q pef.fl"(;?)19-815 when Species == "rat"
Asi = 0.66 x BW/70 or 71/100% when Species == "rat"
Qintesttransport = 0.1 x (B;(/)V>3/4

Optimizing ‘Funbound.plasma‘ or ‘Krbc2pu‘

If partitioning coefficients are optimized, Funbound.plasma will be estimated from given Krbc2pu.
This conditional calculation is done by testing whether Funbound.plasma (given by the previous
‘Kint* and ‘KFsummary‘ parameters) has changed (reassigned a new value by the optimizer). If so,
then the ‘Krbc2pu‘ will be re-calculated.

, X
" Qgut + (Funbound.plasma x ClmetabolismexBW) ™ Qintesttransport + Qgut

)

182 residuals.pk

rename2_cvt Convert invivoPKfit output table names to the CvTdb names

Description

Convert invivoPKfit output table names to the CvTdb names

Usage
rename2_cvt(
data,
cvt_LUT = c(analyzed_chem_dtxsid = "Chemical”, analyzed_chem_dtxsid = "DTXSID",
analyzed_chem_name_original = "Chemical_Name"”, species = "Species”,
fk_extraction_document_id = "Reference”, conc_medium_normalized = "Media”,

administration_route_normalized = "Route”, invivPK_dose_level = "Dose"”, fk_subject_id
= "Subject_ID", fk_series_id = "Series_ID", fk_study_id = "Study_ID", conc_time_id =
"ConcTime_ID", invivPK_subjects_corrected = "N_Subjects”, weight_kg = "Weight",

time_hr = "Time", invivPK_conc = "Value”,
invivPK_conc_sd = "Value_SD",
invivPK_log = "LOQ")
)
Arguments
data A data frame from on the invivoPKfit outputs.
cvt_LUT A look-up table for the name conversions, can be constomized. must be a vector.
residuals.pk Get residuals
Description

Extract residuals from a fitted ‘pk* object.

Usage

S3 method for class 'pk'
residuals(
object,
newdata = NULL,
model = NULL,
method = NULL,
exclude = TRUE,
use_scale_conc = FALSE,
suppress.messages = NULL,

residuals.pk

Arguments

object
newdata

model

method

exclude

use_scale_conc

183

A [pk] object

Optional: A ‘data.frame* with new data for which to make predictions and com-
pute residuals. If NULL (the default), then residuals will be computed for the
data in ‘object$data‘. ‘newdata‘ is required to contain at least the following
variables: ‘Time‘, ‘Time.Units‘, ‘Dose‘, ‘Route‘, ‘Media‘, ‘Conc‘, ‘Detect’.
Optional: Specify one or more of the fitted models for which to make predictions
and calculate residuals. If NULL (the default), residuals will be returned for all
of the models in ‘object$stat_model*.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate residuals. If NULL (the default), residuals will
be returned for all of the models in ‘object$optimx_settings$method*.

Logical: “TRUE" to return ‘NA_real_* for any observations in the data marked
for exclusion (if there is a variable ‘exclude‘ in the data, an observation is
marked for exclusion when ‘exclude ‘FALSE° to return the residual for each
observation, regardless of exclusion. Default “TRUE".

Possible values: ‘“TRUE‘, ‘FALSE®, or a named list with elements ‘dose_norm°
and ‘logl0_trans‘ which themselves should be either ‘TRUE® or ‘FALSE*. If
‘use_scale_conc = TRUE®, then the concentration scaling/transformations in
‘object* will be applied to both predicted and observed concentrations before the
residuals are computed (i.e., the residuals will be computed on the same scale as
the model was originally fitted). If ‘use_scale_conc = FALSE* (the default for
this function), then no concentration scaling or transformation will be applied
before the residuals are computed (i.e., the residuals will be computed on natural
scale concentration data). If ‘use_scale_conc = list(dose_norm = ..., log10_trans
=...)", then the specified dose normalization and/or log10-transformation will be
applied.

suppress.messages

Details

Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘object$pk_settings$preprocess$suppress.messages*

Additional arguments not currently used.

Residuals are ‘obs - pred‘ in general, where ‘obs‘ is the observed concentration value and ‘pred‘ is
the predicted concentration value.

For non-detect observations, residual is zero if ‘pred* is also below the LOQ. Otherwise, the residual
is the difference between the LOQ and ‘pred‘.

Value

A data.frame with the final column being calculated residuals. There is one row per each [op-
timx::optimx()] methods (specified in [settings_optimx()]), and ‘data_group‘. The final column
contains the residuals (observed - predicted) of the model fitted by the corresponding method. If
‘use_scale_conc in the same units as ‘object$data$Conc.Units‘. If ‘use_scale_conc the residuals
are in the same units as ‘object$data$Conc_trans.Units*. If ‘use_scale_conc‘ was a named list, then
the residuals are in units of ‘object$data$Conc.Units‘ transformed as specified in ‘use_scale_conc*.

184 rmse

Author(s)

Caroline Ring, Gilberto Padilla Mercado

See Also

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(),
loglLik.pk(), predict.pk(), rmse.pk(), rsq.pk()

rmse Root mean squared error (RMSE)

Description

This is the S3 method generic for ‘rmse*.

Usage
rmse(obj, ...)
Arguments
obj the pk object
Additional arguments currently not in use.
Value

A ‘data.frame* with calculated RMSE as the final column. There is one row per each model in
‘obj‘’s [stat_model()] element, i.e. each PK model that was fitted to the data, each [optimx::optimx()]
methods (specified in [settings_optimx()]), ‘rmse_group* specified.

See Also

[rmse.pk()] for the ‘rmse* method for class [pk()]

rmse.default 185

rmse.default Root mean squared error (RMSE) default method

Description

Root mean squared error (RMSE) default method

Usage
Default S3 method:
rmse(obj, ...)
Arguments
obj an object
Additional arguments.
Value

An error, when a non-pk object is used for the first argument.

rmse. pk Root mean squared error

Description

Extract root mean squared error of a fitted ‘pk‘ object

Usage

S3 method for class 'pk'
rmse (
obj,
newdata = NULL,
model = NULL,
method = NULL,
exclude = TRUE,
use_scale_conc = FALSE,
rmse_group = NULL,
sub_pL0OQ = TRUE,
suppress.messages = NULL,

186 rmse.pk

Arguments

obj A ‘pk‘ object

newdata Optional: A ‘data.frame‘ with new data for which to make predictions and
compute RMSEs. If NULL (the default), then RMSEs will be computed for
the data in ‘obj$data‘. ‘newdata‘ is required to contain at least the following
variables: ‘Time‘, ‘Time.Units‘, ‘Dose‘, ‘Route’, ‘Media‘, ‘Conc*, ‘Conc_SD*,
‘N_Subjects, ‘Detect’.

model Optional: Specify one or more of the fitted models for which to make predictions
and calculate RMSEs. If NULL (the default), RMSEs will be returned for all of
the models in ‘obj$stat_model‘.

method Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate RMSEs. If NULL (the default), RMSEs will be
returned for all of the models in ‘obj$optimx_settings$method".

exclude Logical: ‘TRUE to compute the RMSE excluding any observations in the data

marked for exclusion (if there is a variable ‘exclude‘ in the data, an observation
is marked for exclusion when ‘exclude ‘FALSE‘ to include all observations,
regardless of exclusion status. Default “TRUE".

use_scale_conc Possible values: ‘FALSE‘ (default, ‘TRUE‘, or a named list with elements
‘dose_norm*‘ and ‘logl0_trans‘ which themselves should be either “TRUE® or
‘FALSE"‘. If ‘use_scale_conc = FALSE (the default for this function), then no
concentration scaling or transformation will be applied when the RMSE is com-
puted. If ‘use_scale_conc = TRUE, then the concentration scaling/transformations
in ‘obj‘ will be applied to both predicted and observed concentrations when the
RMSE is computed (see [calc_rmse()] for details).If ‘use_scale_conc = list(dose_norm
= ..., logl0_trans = ...)°, then the specified dose normalization and/or log10-
transformation will be applied when the RMSE is computed.

rmse_group A list of quosures provided in the format ‘vars(...)‘ that determines the data
groupings for which RMSE is calculated. Default NULL, in which case RMSE
is calculated for each data group defined in the object’s ‘data_group‘ element
(use [get_data_group.pk()] to access the object’s ‘data_group®).

sub_pL0Q TRUE (default): Substitute all predictions below the LOQ with the LOQ before
computing R-squared. FALSE: do not.

suppress.messages
Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages*

Additional arguments. Not currently used.

Details
Formula for RMSE

RMSE is calculated using the following formula, to properly handle summary data:

G

1 — _

& 2 ((m = D)s? + 02 — 2nigips +)
i=1

rmse.pk 187

In this formula, there are G observations, each of which may be for one subject or for multiple
subjects.

- n; is the number of subjects for observation ¢. - g; is the sample mean concentration for obser-
vation ¢, with no transformations applied. - s; is the sample standard deviation of concentrations
for observation ¢, with no transformations applied. - u; is the model-predicted concentration for
observation ¢, with no transformations applied.

N is the grand total of subjects across observations:

For the non-summary case (/V single-subject observations, with all n; = 1, s; = 0, and §; = y;),
this formula reduces to the familiar RMSE formula

1 N
N Z(yi - Hi)2
=1

Left-censored data

If the observed value is censored, and the predicted value is less than the reported LOQ, then the
predicted value is (temporarily) set equal to the LOQ, for an effective error of zero.

If the observed value is censored, and the predicted value is greater than the reported LOQ, the the
observed value is treated as the reported LOQ (so that the effective error is the difference between
the LOQ and the predicted value).

Logl0 transformation

If ‘log10_trans log10-transformed before calculating the RMSE. In the case where observed values
are reported in summary format, each sample mean and sample SD (reported on the natural scale,
i.e. the mean and SD of natural-scale individual observations) are used to produce an estimate of the
log10-scale sample mean and sample SD (i.e., the mean and SD of log10-transformed individual
observations), using [convert_summary_to_log10()].

The formulas are as follows. Again, ¥; is the sample mean for group i. s; is the sample standard
deviation for group 1.

-2
log10-scale sample mean,; = log; <yz>

u; + st

2
log10-scale sample SD,; = 4/log;, <1 + 212>

Value

A ‘data.frame‘ with calculated RMSE as the final column. There is one row per each model in
‘obj‘’s [stat_model()] element, i.e. each PK model that was fitted to the data, each [optimx::optimx()]
methods (specified in [settings_optimx()]), ‘rmse_group* specified.

188 rowwise_calc_percentages

Author(s)

Caroline Ring, Gilberto Padilla Mercado

See Also

[calc_rmse()]
Other fit evaluation metrics: AAFE. pk(), AFE.pk (), AIC.pk(),BIC.pk(), logLik.pk(), rsq.pk()

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(),
logLik.pk(), predict.pk(), residuals.pk(), rsq.pk()

rowwise_calc_percentages
Helper function for calculating percentages of count data, by row

Description

This function takes totals and calculates rowise percentages across columns Expects columns for
each percentage, can specify a vector of "grouping” column names

Usage

rowwise_calc_percentages(data, group_cols = NULL)

Arguments
data A data.frame that contains columns of count data and possibly columns of group
names.
group_cols String or numeric indices for the columns which contain grouping variables.
Value

data.frame with rowwise totals and percentages

rsq

189

rsq rsq()

Description

This is the S3 method generic for rsq()

Usage

rsq(obj, ...)

Arguments

obj An object.

Additional arguments currently not in use.

Value

A dataframe with one row for each ‘data_group‘, ‘model‘ and ‘method‘. The final column contains

the R-squared of the model fitted by the corresponding method, using the data in ‘newdata‘.

See Also

[rsq.pk()] for the method for class [pk()]

rsq.default Default method for rsq()

Description

Default method for rsq()

Usage
Default S3 method:
rsq(obj, ...)
Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

190

rsq.pk

rsq.pk

Calculate R-squared for observed vs. predicted values

Description

Calculate the square of the Pearson correlation coefficient (r) between observed and model-predicted

values

Usage

S3 method for class 'pk'

rsq(
obj,

newdata = NULL,

model = NULL,

method = NULL,

exclude = TRUE,
use_scale_conc = FALSE,
rsq_group = NULL,
sub_pLOQ = TRUE,
suppress.messages = NULL,

Arguments

obj

newdata

model

method

exclude

use_scale_conc

A ‘pk‘ object

Optional: A ‘data.frame* with new data for which to make predictions and com-
pute R-squared. If NULL (the default), then R-squared will be computed for
the data in ‘obj$data‘. ‘newdata‘ is required to contain at least the following
variables: ‘Time*, ‘Time.Units‘, ‘Dose‘, ‘Route‘, ‘Media‘, ‘Conc‘, ‘Conc_SD°,
‘N_Subjects, ‘Detect’.

Optional: Specify one or more of the fitted models for which to make predictions
and calculate R-squared. If NULL (the default), R-squared will be returned for
all of the models in ‘obj$stat_model‘.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions and calculate R-squared. If NULL (the default), RMSEs will
be returned for all of the models in ‘obj$optimx_settings$method*.

Logical: “TRUE‘ to compute the R-squared excluding any observations in the
data marked for exclusion (if there is a variable ‘exclude* in the data, an observa-
tion is marked for exclusion when ‘exclude ‘FALSE to include all observations,
regardless of exclusion status. Default “TRUE".

Possible values: ‘TRUE® (default), ‘FALSE‘, or a named list with elements
‘dose_norm*‘ and ‘logl0_trans‘ which themselves should be either “TRUE® or
‘FALSE‘. If ‘use_scale_conc = TRUE® (the default for this function), then the

rsq.pk 191

concentration scaling/transformations in ‘obj* will be applied to both predicted
and observed concentrations when the R-squared is computed (see [calc_rsq()]
for details). If ‘use_scale_conc = FALSE®, then no concentration scaling or
transformation will be applied when the R-squared is computed. If ‘use_scale_conc
= list(dose_norm = ..., logl0_trans = ...)‘, then the specified dose normalization
and/or log10-transformation will be applied.

rsq_group Default: Chemical, Species. Determines what the data grouping that is used
to calculate R-squared value. Should be set to lowest number of variables that
still would return unique experimental conditions. Input in the form of ‘gg-
plot2::vars(Chemical, Species, Route, Media, Dose)‘.

sub_pL0Q TRUE (default): Substitute all predictions below the LOQ with the LOQ before
computing R-squared. FALSE: do not.

suppress.messages
Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages*

Additional arguments. Not currently in use.

Details

Calculate the square of the Pearson correlation coefficient (r) between observed and model-predicted
values, when observed data may be left-censored (non-detect) or may be reported in summary form
(as sample mean, sample standard deviation, and sample number of subjects). Additionally, han-
dle the situation when observed data and predictions need to be log-transformed before RMSE is
calculated.

r? is calculated according to the following formula, to properly handle multi-subject observations

reported in summary format:

G _ G _ G

2 _ Doimg Hinai — (B +§) D 0,Cy mapts + (mMuy) 30,2 n
G G G _ G p—e -
\/Zizl(ni —1)s?+ 300 iyl =29 301 i + N+ 52 \/Zizl nipd — 25 320 nipi + N + 52

r

In this formula, there are G groups (reported observations). (For CvTdb data, a "group" is a specific
combination of chemical, species, route, medium, dose, and timepoint.) n; is the number of subjects
for group <. g; is the sample mean for group <. s; is the sample standard deviation for group @.u; is
the model-predicted value for group ¢. ¢ is the grand mean of observations:

G _
g = D1 il
- G
Zi=1 g
[is the grand mean of predictions:
G
i = 2121 T s

N is the grand total of subjects:

192 rsq.pk

G
N = Z?’Li
i=1

For the non-summary case (/V single-subject observations, with all n; = 1, s; = 0, and §; = y;),
this formula reduces to the familiar formula

2 _ S i = §) (s — 1)
VEX - 92 (s —)2

r

Left-censored data

If the observed value is censored, and the predicted value is less than the reported LOQ, then the
observed value is (temporarily) set equal to the predicted value, for an effective error of zero.

If the observed value is censored, and the predicted value is greater than the reported LOQ, the
the observed value is (temporarily) set equal to the reported LOQ, for an effective error of (LOQ -
predicted).

Log10 transformation
If ‘log10_trans log10(observations) vs. log10(predictions).

In the case where observed values are reported in summary format, each sample mean and sample
SD (reported on the natural scale, i.e. the mean and SD of natural-scale individual observations) are
used to produce an estimate of the log10-scale sample mean and sample SD (i.e., the mean and SD
of log10-transformed individual observations), using [convert_summary_to_log10()].

The formulas are as follows. Again, ¥; is the sample mean for group 7. s; is the sample standard
deviation for group 1.

—2
log10-scale sample mean,; = log (%)

VU + 8

2
log10-scale sample SD, = 4 /log;, (1 + f;)
y.

K3

Value
A dataframe with one row for each ‘data_group®, ‘model‘ and ‘method‘. The final column contains
the R-squared of the model fitted by the corresponding method, using the data in ‘newdata‘.
Author(s)

Caroline Ring

scale_conc 193

See Also

[calc_rsq()]
Other fit evaluation metrics: AAFE . pk(), AFE.pk (), AIC.pk(),BIC.pk(), logLik.pk(), rmse.pk()

Other methods for fitted pk objects: AAFE.pk(), AFE.pk(), AIC.pk(), BIC.pk(), coef.pk(),
coef_sd.pk(), eval_tkstats.pk(), get_fit.pk(), get_hessian.pk(), get_tkstats.pk(),
loglik.pk(), predict.pk(), residuals.pk(), rmse.pk()

scale_conc Scale concentrations

Description

Scale concentrations

Usage
scale_conc(dose_norm = FALSE, logl@_trans = FALSE, ...)
Arguments
dose_norm Logical: Whether to normalize observed concentrations (and observed concen-
tration standard deviations and limits of quantification) by dividing them by the
corresponding dose. Default ‘FALSE"‘.
log10_trans Logical: Whether to apply a ‘log10()‘ transformation to observed concentrations
(and limits of quantification), after any dose normalization is applied. Default
‘FALSE".
Other arguments (not currently used)
Value

An object of class ‘pk_scales‘: A named list with elements supplied to [scale_conc()]). This object
is usually added to an existing [pk()] object using ‘+°. See [pk_add.pk_scales()].

Author(s)

Caroline Ring

194

settings_optimx

scale_time

Scale times

Description

Transform time data

Usage
scale_time(new_units = "identity"”, ...)
Arguments
new_units New units to use for time. Default is “"identity"‘ (leave time in the origi-
nal units). Another useful option is ‘"auto"‘, to automatically select new time
units based on the time of the last detected observation. You may also specify
any time units understood by ‘lubridate::duration()‘, i.e., ‘"seconds"‘, ‘"hours"‘,
“"days"‘, “"weeks"‘, “"months"‘, “"years"‘, ‘"milliseconds"‘, ‘"microseconds"‘,
“"nanoseconds"‘, and/or ‘"picoseconds"‘. You may only specify one new unit
(e.g., ‘new_units = c("days", "weeks")‘ is not valid).
Other arguments (not currently used)
Value

An object of class ‘pk_scales‘: A named list with two elements ‘name = "time"‘ (denoting the vari-
able to be scaled) and ‘value = list("new_units" = new_units, ...)* (denoting the arguments supplied
to [scale_time()]). See [pk_add.pk_scales()].

settings_optimx

‘optimx‘ optimizer settings

Description

‘optimx ¢ optimizer settings

Usage

settings_optimx(

method = c("bobyga”, "L-BFGS-B"),
hessian = FALSE,
control = list(kkt = FALSE, maxit = 1e+@7),

settings_preprocess

Arguments

method

hessian

control

Value

195

The name(s) of optimization methods to be used. See [optimx::opm()] for op-
tions. Default is ‘"bobyqa"‘ and ‘"L-BFGS-B"".

Whether to compute the Hessian at the final set of parameters; as in [optimx::opm()].

A list of control parameters for the optimizer; see [optimx::opm()] for options
and details.

Additional arguments not currently implemented.

An object of class ‘pk_settings®.

Author(s)

Caroline Ring

settings_preprocess Data preprocessing settings

Description

Data preprocessing settings

Usage
settings_preprocess(
routes_keep = c("oral”, "iv"),
media_keep = c("blood”, "plasma”, "excreta"),

ratio_conc_dose = 1,
impute_loq = TRUE,
calc_log_factor = 0.9,
impute_sd = TRUE,
keep_data_original = TRUE,
suppress.messages = FALSE,

Arguments

routes_keep

media_keep

Character: A list of routes to keep. Data will be filtered so that the harmonized
variable ‘Route‘ includes only values in ‘routes_keep‘. Default is ‘c("oral",
"iv")<.

Character: A list of media to keep. Data will be filtered so that the harmo-
nized variable name ‘Media‘ includes only values in ‘media_keep‘. Default is
‘c("blood", "plasma")*.

196 set_params_optimize

ratio_conc_dose
Numeric: The ratio of mass units of observed concentrations to mass units of
applied doses. Default 1, to indicate the same mass units are used for both.
impute_loq TRUE or FALSE: Whether to impute missing LOQ values.
calc_log_factor
A numeric factor used for imputing missing LOQ. Within each group defined in
‘log_group*, any missing LOQ values will be imputed as the minimum detected
Value in the group, multiplied by ‘calc_loq_factor‘. Default 0.9.
impute_sd TRUE or FALSE: Whether to impute missing SD values.
keep_data_original
TRUE or FALSE: Whether to keep original data after pre-processing.
suppress.messages
TRUE or FALSE: Whether to suppress verbose messages. Default FALSE.

Any additional arguments. Currently ignored.

Value
An object of class ‘pk_settings_preprocess‘. This is a named list of the arguments provided to this
function and their values.

Author(s)

Caroline Ring

set_params_optimize Set model parameters to optimize

Description

Set model parameters to optimize

Usage
set_params_optimize(model, params = "default”)
Arguments
model An object of class ‘pk_model".
params A character vector with any of the parameters in ‘model$params*, or the name
of any of the parameter groups in ‘model$param_groups‘.
Value

An object of class ‘pk_model‘ with set/updated ‘param_fun_args‘ to include ‘pars_to_optimize*
argument specifying the parameters to be optimized.

set_params_starts 197
Author(s)

Gilberto Padilla Mercado

See Also

Other pk_model modifiers: adjust_model_name(), set_params_starts(), toggle_clearance_mode()

set_params_starts Set model parameter starts

Description

Set model parameter starts

Usage

set_params_starts(model, starts)

Arguments
model An object of class ‘pk_model‘.
starts A character vector with any of the parameters in ‘model$params*, or the name
of any of the parameter groups in ‘model$param_groups®.
Value

An object of class ‘pk_model‘ with set/updated ‘param_fun_args* to include ‘pars_to_optimize*
argument specifying the parameters to be optimized.

Author(s)

Gilberto Padilla Mercado

See Also

Other pk_model modifiers: adjust_model_name(), set_params_optimize(), toggle_clearance_mode()

198

status_init

status_data_info Status ID for data summary info

Description

An integer status that denotes [data_info()] has been completed.

Usage

status_data_info

Format

An object of class integer of length 1.

status_fit Status ID for fitting

Description

An integer status that denotes [fit()] has been completed.

Usage

status_fit

Format

An object of class integer of length 1.

status_init Status ID for initialization

Description

An integer status that denotes a [pk()] object has been initialized.

Usage

status_init

Format

An object of class integer of length 1.

status_prefit

199

status_prefit Status ID for pre-fitting

Description

An integer status that denotes [prefit()] has been completed.

Usage

status_prefit

Format

An object of class integer of length 1.

status_preprocess Status ID for preprocessing

Description

An integer status that denotes [preprocess_data()] has been completed.

Usage

status_preprocess

Format

An object of class integer of length 1.

stat_error_model Error model

Description

Define an error model.

Usage

stat_error_model(...)

Arguments

A set of unquoted variables whose unique combinations define a group with its
own error variance. These variables refer to the ‘data‘ element of the ‘pk* object.

Default is ‘Chemical, Species, Reference*.

200 stat_loq_group

Details

‘stat_error_model‘ defines groupings for a fixed-effects error model. For each model in ‘stat_model‘,
a single set of model parameters will be fit to ‘data‘. In order to do the fitting, the residual errors
(observed concentrations - model-predicted concentrations) are assumed to obey a zero-mean nor-
mal distribution. However, in this package, the residuals are not all required to obey the *same*
zero-mean normal distribution. Different groups of residuals may obey zero-mean normal distri-
butions with different variances. ‘stat_error_model‘ defines these groups as unique combinations
of the variables given in argument ‘error_group‘. For example, the default value ‘vars(Chemical,
Species, Reference, Media)‘ means that for each group of observations in ‘data‘ with a unique
combination of ‘Chemical‘, ‘Species‘, ‘Reference’, and ‘Media‘, there is a separate residual error
variance. For example, if there happened to be three such unique combinations, there would be
three error variances.

If you want all residuals to obey the same zero-mean normal distribution (i.e., for there to be only
one residual error variance), then you should provide an ‘error_group‘ that puts all the data in the
same group. For example, since all data in ‘data‘ should already be for a single ‘Chemical* and
‘Species*, you could provide ‘error_group = vars(Chemical, Species)‘ to put all the data in the same
group.

Note that, since all data in ‘data‘ should already be for a single ‘Chemical‘ and ‘Species‘, you could
leave out ‘Chemical‘ and ‘Species‘ from ‘error_group‘ and still get the same result. However, we
recommend explicitly including ‘Chemical® and ‘Species‘. Tncluding them will make your code
more explicit and transparent, and it does no harm. In addition, [invivopkfit] may be extended in
the future to allow input of data with multiple chemicals or species; explicitly including ‘Chemical’
and ‘Species‘ in your ‘error_group‘ will future-proof your code in that sense.

The error variance(s) are hyperparameters that will be estimated from the data along with the model
parameters. That means there needs to be enough data to fit the model parameters plus the error
variances. For example, if you are fitting a 1-compartment model to oral and IV data measured
in plasma, and using an error model with three separate error-variance groups (e.g. three different
References), then you are trying to fit 4 model parameters (kelim, Vdist, Fgutabs, kgutabs) plus 3
error variances, for a total of 7 parameters. That means you need to have at least 8 data points.
(When you call [prefit()], this checking is done automatically. But it is useful to be aware of this, in
case you are trying to figure out why your fit was aborted due to insufficient data availability.)

Value

An object of class ‘pk_stat_error_model‘: A named list of all the arguments to ‘stat_error_model".

Author(s)

Caroline Ring

stat_log_group LOQ Group

Description

Defines the grouping variables for LOQ imputation in [do_preprocess.pk()].

stat_model 201

Usage

stat_log_group(...)

Arguments
A set of unquoted variables whose unique combinations define a group with
which to impute missing LOQ values (using the minimum non-missing LOQ
value in the group multiplied by ‘calc_loq_factor‘). Default is ‘Chemical, Species,
Reference, Media“.

Value

A list of expressions. This is added to the ‘pk‘ object.

Author(s)

Gilberto Padilla Mercado

stat_model Add PK model(s) to be fitted

Description

Add PK model(s) to be fitted

Usage

stat_model(model = c("model_flat”, "model_lcomp”, "model_2comp”), ...)
Arguments

model A character vector: the name(s) of models to be fitted. These should be the

names of objects of class ‘pk_model‘. Built-in options are [‘model_flat‘], [‘model_1comp‘],
and [‘model_2comp‘]. You may add your own model by using [pk_model()].

Additional arguments not currently in use.

202 stat_sd_group

stat_nca_group NCA group

Description

NCA group

Usage

stat_nca_group(...)

Arguments
A set of variables. Data will be split into groups according to unique combi-
nations of these variables, and non-compartmental analysis will be performed
separately on each group. Default ‘Chemical, Species, Reference, Route, Me-
dia, Dose°.

Value

An object of class ‘c(pkproto, pk_nca_group)*

stat_sd_group SD Group

Description

Defines the grouping to calculate standard deviation of data in [do_preprocess.pk()].

Usage

stat_sd_group(...)

Arguments
A set of unquoted variables whose unique combinations define a group with
which to impute missing SD values (using the minimum non-missing SD value
in the group). Default is ‘Chemical, Species, Reference, Media“.

Value

A list of expressions. This is added to the ‘pk* object.

Author(s)
Gilberto Padilla Mercado

subtract_pk 203

subtract_pk Subtract various ‘pkproto‘ objects from a ‘pk* object

Description

Subtract various ‘pkproto‘ objects from a ‘pk* object

Usage

subtract_pk(pk_obj, object, objectname)

Arguments
pk_obj The ‘pk‘ object
object The ‘pkproto‘ object to be subtracted
objectname The name of the ‘pkproto* object to be subtracted
Value

The ‘pk* object modified by the subtraction.

summary . pk Print summary of a ‘pk* object

Description

This summary includes summary information about the data; about any data transformations ap-
plied; about the models being fitted; about the error model being applied; and any fitting results,
if the ‘pk‘ object has been fitted. It also includes TK quantities calculated from the fitted model
parameters, e.g. halflife; clearance; tmax; Cmax; AUC; Css.

Usage
S3 method for class 'pk'
summary (object, ...)
Arguments
object A [pk] object.

Additional arguments. Currently not in use.

Value

A list of ‘data.frame‘s consisting of a summary table of fitting options and results.

204

Author(s)

Caroline Ring

time_units

time_conversions Time conversion table

Description

A ‘data.frame° that has the converted units from "time_units"

Usage

time_conversions

Format

An object of class data. frame with 121 rows and 3 columns.

time_units Allowable time units

Description

A ‘character‘ vector of allowable units for time variables.

Usage

time_units

Format

An object of class character of length 11.

Details

These are the time units understood by [lubridate::period()] and [lubridate::duration()].

tkstats_1comp

205

tkstats_1comp

Toxicokinetic statistics for 1-compartment model

Description

Calculate predicted toxicokinetic statistics for a 1-compartment model.

Usage
tkstats_lcomp(pars, route, medium, dose, time_unit, conc_unit, vol_unit, ...)
Arguments
pars A named numeric vector of model parameters (e.g. from [coef.pk()]).
route Character: The route for which to compute TK stats. Currently only "oral" and
"iv" are supported.
medium Character: the media (tissue) for which to compute TK stats. Currently only
"blood" and "plasma" are supported.
dose Numeric: A dose for which to calculate TK stats.
time_unit Character: the units of time used for the parameters ‘par‘. For example, if
‘par["kelim"]‘ is in units of 1/weeks, then ‘time_unit = "weeks" ‘. If ‘par["kelim"]*
is in units of 1/hours, then ‘time_unit = "hours"‘. This is used to calculate
the steady-state plasma/blood concentration for long-term daily dosing of 1
mg/kg/day.
conc_unit Character: The units of concentration.
vol_unit Character: The units of dose.
Additional arguments not currently in use.
Value

A ‘data.frame* with two variables: - ‘param_name*‘ = ‘c("CLtot", "CLtot/Fgutabs", "Css", "halflife",
"tmax", "Cmax", "AUC_infinity")‘ - ‘param_value‘ = The corresponding values for each statistic
(which may be NA if that statistic could not be computed).

Statistics computed

Total clearance:
CLtot == kelim + Vdist

Steady-state plasma concentration for long-term daily dose of 1 mg/kg/day: The dosing
interval 7 = ﬁ will be converted to the same units as ke,

To convert to steady-state *blood* concentration, multiply by the blood-to-plasma ratio.

Oral route:
C.. = Fgutabsvdist
ss —

kelimT

206

tkstats_2comp

Intravenous route:

Half-life of elimination:

1
CSS B 24 * CLtot
log (2
Halflife — 128(2)
elim

Time of peak concentration: For oral route:

Kgutabs
10g< ketim)

kgutabs - kelim

For intravenous route, time of peak concentration is always 0.
Peak concentration: Evaluate [cp_lcomp_cl()] at the time of peak concentration.

AUC evaluated at infinite time: Evaluate [auc_lcomp_cl()] at time = ‘Inf".

AUC evaluated at the time of the last observation: Evaluate [auc_lcomp_cl()] at time = ‘tlast".

Author(s)

John Wambaugh, Caroline Ring

tkstats_2comp

Toxicokinetic statistics for 1-compartment model

Description

Calculate predicted toxicokinetic statistics for a 1-compartment model.

Usage
tkstats_2comp(pars, route, medium, dose, time_unit, conc_unit, vol_unit, ...)
Arguments
pars A named numeric vector of model parameters (e.g. from [coef.pk()]).
route Character: The route for which to compute TK stats. Currently only "oral" and
"iv" are supported.
medium Character: the media (tissue) for which to compute TK stats. Currently only
"blood" and "plasma" are supported.
dose Numeric: A dose for which to calculate TK stats.
time_unit Character: the units of time used for the parameters ‘par‘. For example, if

‘par["kelim"]* is in units of 1/weeks, then ‘time_unit = "weeks" ‘. If ‘par["kelim"]*
is in units of 1/hours, then ‘time_unit = "hours"‘. This is used to calculate
the steady-state plasma/blood concentration for long-term daily dosing of 1

mg/kg/day.

tkstats_2comp 207

conc_unit Character: The units of concentration.
vol_unit Character: The units of dose.

Additional arguments not currently in use.

Value

A ‘data.frame* with two variables: - ‘param_name* = ‘c("CLtot", "CLtot/Fgutabs", "Css", "halflife",
"tmax", "Cmax", "AUC_infinity", "A", "B", "alpha", "beta", "Vbeta", "Vbeta_Fgutabs", "Vss",
"Vss_Fgutabs")* - ‘param_value‘ = The corresponding values for each statistic (which may be NA if
that statistic could not be computed; e.g. all of the *"x_Fgutabs"* parameters can only be computed
if ‘route = "oral"*).

"e

Statistics computed

Total clearance:
CLtot = kelim + ‘/1

Steady-state plasma concentration for long-term daily dose of 1 mg/kg/day: To convert to
steady-state *blood* concentration, multiply by the blood-to-plasma ratio.

The dosing interval 7 = L will be converted to the same units as kejipm,.-
day

Oral route:

F utabs Vl
Css =1
kelimT
Intravenous route:
o _ 1
= CLotT
Half-life of elimination:
log(2
Halflife — 28()
elim

Time of peak concentration: For oral route:

Kgutabs
log(Ketim)
kgutabs - kelim

For intravenous route, time of peak concentration is always 0.

Peak concentration: Evaluate [cp_lcomp()] at the time of peak concentration.

AUC evaluated at infinite time: Evaluate [auc_lcomp()] at time = ‘Inf".

AUC evaluated at the time of the last observation: Evaluate [auc_lcomp()] at time = ‘tlast".

Author(s)

John Wambaugh, Caroline Ring

208 tkstats_flat

See Also

Other built-in model functions: auc_Tcomp (), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_1comp(),
get_starts_2comp(), get_starts_flat(), get_starts_httk_gas_pbtk(), transformed_params_2comp()

Other 2-compartment model functions: auc_2comp (), cp_2comp (), cp_2comp_dt (), get_params_2comp(),
get_starts_2comp(), transformed_params_2comp()

tkstats_flat TK stats for flat model

Description

TK stats for flat model

Usage
tkstats_flat(pars, route, medium, dose, time_unit, conc_unit, vol_unit, ...)
Arguments
pars A named numeric vector of model parameters (e.g. from [coef.pk()]).
route Character: The route for which to compute TK stats. Currently only "oral" and
"iv" are supported.
medium Character: the media (tissue) for which to compute TK stats. Currently only
"blood" and "plasma" are supported.
dose Numeric: A dose for which to calculate TK stats.
time_unit Character: the units of time.
conc_unit Character: The units of concentration.
vol_unit Character: The units of dose.
Additional arguments not currently in use.
Value

A ‘data.frame® with two variables: - ‘param_name* = ‘c("CLtot", "CLtot/Fgutabs", "Css_Ilmgkgday",
"halflife", "Cmax", "AUC_infinity")‘ - ‘param_value‘ = The corresponding values for each statistic
(which may be NA if that statistic could not be computed).

Author(s)

John Wambaugh, Caroline Ring

tkstats_httk_gas_pbtk

209

tkstats_httk_gas_

pbtk TK stats for gas_pbtk model fit with inivivoPKfit

Description

TK stats for gas_pbtk model fit with inivivoPKfit

Usage

tkstats_httk_gas_pbtk(

pars,
route,
medium,

dose,
time_unit,
conc_unit,
vol_unit,
this_chenm,
this_species,

Arguments

pars
route

medium

dose
time_unit
conc_unit
vol_unit
this_chem
this_species

Value

A named numeric vector of model parameters (e.g. from [coef.pk()]).

Character: The route for which to compute TK stats. Currently only "oral" and
"iv" are supported.

Character: the media (tissue) for which to compute TK stats. Currently only
"blood" and "plasma" are supported.

Numeric: A dose for which to calculate TK stats.
Character: the units of time.

Character: The units of concentration.

Character: The units of dose.

Character: The DTXSID of a chemical.
Character: The species of a subject.

Additional arguments not currently in use.

A ‘data.frame’ with two variables: - ‘param_name* = ‘c("CLtot", "CLtot/Fgutabs", "Css_lmgkgday",

"halflife", "Cmax",

"AUC_infinity")‘ - ‘param_value‘ = The corresponding values for each statistic

(which may be NA if that statistic could not be computed).

Author(s)

Gilberto Padilla Mercado

210 transformed_params_2comp

toggle_clearance_mode Switch between model parameters to optimize

Description

Switch between model parameters to optimize

Usage

toggle_clearance_mode(model)

Arguments

model An object of class ‘pk_model".

Value

An object of class ‘pk_model‘ with set/updated ‘param_fun_args‘ to include ‘pars_to_optimize*
argument specifying the parameters to be optimized.

Author(s)
Gilberto Padilla Mercado

See Also

Other pk_model modifiers: adjust_model_name(), set_params_optimize(), set_params_starts()

transformed_params_2comp
Transformed parameters for 2-compartment model

Description

Transformed parameters for 2-compartment model

Usage
transformed_params_2comp(params, ...)
Arguments
params A named numeric vector of parameters for the 2-compartment model. Any miss-

ing parameters will be filled with ‘NA_real_°*.

Additional arguments (not currently used).

twofold_test 211

Value

A named numeric vector of transformed parameters with elements "alpha", "beta", "A_iv_unit",
"B_iv_unit", "A_oral_unit", "B_oral_unit".

Author(s)

Caroline Ring, Gilberto Padilla Mercado, John Wambaugh

See Also

Other built-in model functions: auc_Tcomp(), auc_2comp(), auc_flat(), auc_httk_gas_pbtk(),
cp_l1comp(), cp_2comp(), cp_2comp_dt (), cp_flat(), cp_httk_gas_pbtk(), get_params_1comp(),
get_params_2comp(), get_params_flat(), get_params_httk_gas_pbtk(), get_starts_Tcomp(),
get_starts_2comp(), get_starts_flat(), get_starts_httk_gas_pbtk(), tkstats_2comp()

Other 2-compartment model functions: auc_2comp (), cp_2comp (), cp_2comp_dt(), get_params_2comp(),
get_starts_2comp(), tkstats_2comp()

twofold_test twofold_test()

Description

This is the S3 method generic for twofold_test()

Usage
twofold_test(obj, ...)
Arguments
obj An object.
Additional arguments currently not in use.
Value

A list of data frames.

See Also

[twofold_test.pk()] for the method for class [pk()]

212 twofold_test.pk

twofold_test.default Default method for twofold_test()

Description

Default method for twofold_ test()

Usage

Default S3 method:
twofold_test(obj, ...)

Arguments

obj An object

Additional arguments currently not in use.

Value

An error, when a non-pk object is used for the first argument.

twofold_test.pk Evaluate whether data and predictions are within two-fold of mean or
concentration, respectively

Description

At each timepoint across CvT experimental data, there are three ways that data may be presented.
These can be found as either: - multiple individual observations - single individual observation -
summarized group of observations (mean concentration and standard deviation)

Usage

S3 method for class 'pk'
twofold_test(
obj,
sub_pLOQ = TRUE,
suppress.messages = NULL,
model = NULL,
method = NULL,

twofold_test.pk

Arguments

obj
sub_pL0Q

213

A pk object.

TRUE (default): Substitute all predictions below the LOQ with the LOQ before
computing fold errors. FALSE: do not. Only used if ‘obj‘ has been fitted and
predictions are possible.

suppress.messages

model

method

Details

Logical: whether to suppress message printing. If NULL (default), uses the
setting in ‘obj$pk_settings$preprocess$suppress.messages ‘.

Optional: Specify one or more of the fitted models for which to make predic-
tions. If NULL (the default), predictions will be returned for all of the models
in ‘object$stat_model‘.

Optional: Specify one or more of the [optimx::optimx()] methods for which to
make predictions. If NULL (the default), predictions will be returned for all of
the models in ‘object$pk_settings$optimx$method".

Additional arguments. Currently unused.

For the purposes of this calculations we largely divide the data into two groups, those with individual
observations, where N_Subjects == 1, and the summarized group of observations.

First this creates mean-normalized concentrations for individual data. Then it summarizes data
(individual & summarized) by ‘mean‘ and ‘sd°‘. It tests whether predictions are within two-fold of
mean, in the latter case whether the 95

Furthermore if ‘pk* object ‘status == 5° then it calculates the model error by evaluating _predic-
tion/concentration_ at each timepoint for all data. Each test is done for data from individual subject
observations and for all data by summarizing the observations.

Only non-excluded detects are included in this analysis.

Value

A list of data frames.

Author(s)

Gilberto Padilla Mercado

Index

* 1-compartment model functions
auc_1lcomp, 16
cp_1comp, 50
get_params_1comp, 104
get_starts_1comp, 122
* 2-compartment model functions
auc_2comp, 18
cp_2comp, 51
cp_2comp_dt, 52
get_params_2comp, 106
get_starts_2comp, 125
tkstats_2comp, 206
transformed_params_2comp, 210
* built-in model functions
auc_1lcomp, 16
auc_2comp, 18
auc_flat, 19
auc_httk_gas_pbtk, 20
cp_1comp, 50
cp_2comp, 51
cp_2comp_dt, 52
cp_flat, 54
cp_httk_gas_pbtk, 55
get_params_1comp, 104
get_params_2comp, 106
get_params_flat, 109
get_params_httk_gas_pbtk, 112
get_starts_1comp, 122
get_starts_2comp, 125
get_starts_flat, 128
get_starts_httk_gas_pbtk, 130
tkstats_2comp, 206
transformed_params_2comp, 210
x datasets

cvt, 57
cvt_2.0.0, 60
cvt_date, 60

cvtdb_original, 59
model_Tcomp, 151

214

model_2comp, 152
model_flat, 152
model_httk_gas_pbtk, 153
pkdataset_nheerlcleaned, 161
status_data_info, 198
status_fit, 198
status_init, 198
status_prefit, 199
status_preprocess, 199
time_conversions, 204
time_units, 204

* fit evaluation metrics

AAFE .pk, 9
AFE.pk, 13
AIC.pk, 15
BIC.pk, 23
logLik.pk, 145
rmse.pk, 185
rsq.pk, 190

* flat model functions

auc_flat, 19
cp_flat, 54
get_params_flat, 109
get_starts_flat, 128

* get_params functions

get_params_Tcomp, 104
get_params_2comp, 106
get_params_flat, 109

* get_starts functions

get_starts_1comp, 122
get_starts_2comp, 125
get_starts_flat, 128
get_starts_httk_gas_pbtk, 130

* httk model functions

auc_httk_gas_pbtk, 20
cp_httk_gas_pbtk, 55
get_params_httk_gas_pbtk, 112
get_starts_httk_gas_pbtk, 130

* log likelihood functions

INDEX

AIC.pk, 15
BIC.pk, 23
loglLik.pk, 145
+x methods for fitted pk objects
AAFE.pk, 9
AFE.pk, 13
AIC.pk, 15
BIC.pk, 23
coef.pk, 40
coef_sd.pk, 42
eval_tkstats.pk, 74
get_fit.pk, 96
get_hessian.pk, 98
get_tkstats.pk, 136
logLik.pk, 145
predict.pk, 176
residuals.pk, 182
rmse.pk, 185
rsq.pk, 190
+x model AUC functions
auc_1lcomp, 16
auc_2comp, 18
auc_flat, 19
+ model auc functions
auc_httk_gas_pbtk, 20
+x model concentration functions
cp_1comp, 50
cp_2comp, 51
cp_flat, 54
cp_httk_gas_pbtk, 55
get_params_httk_gas_pbtk, 112
+ pk_model modifiers
adjust_model_name, 11
set_params_optimize, 196
set_params_starts, 197
toggle_clearance_mode, 210
+.pk, 7
-.pk, 7
AAFE, 8
AAFE.default, 8
AAFE.pk, 9, 14-16, 24,41, 44, 76, 96, 99, 138,
147,178, 184, 188, 193
add_pk, 11
adjust_model_name, 11, 197, 210
AFE, 12
AFE.default, 12
AFE.pk, 10, 11,13, 16, 24,41, 44, 76, 96, 99
138, 147,178, 184, 188, 193

215

AIC.pk, 10, 11,14, 15, 15,24,41, 44, 76, 96,
99, 138, 147, 178, 184, 188, 193

auc_1lcomp, 16, 19-21, 51-53, 55, 57, 106,
109,111,113, 125,128, 130, 132,
208, 211

auc_2comp, 18, 18, 20, 21, 51-53, 55, 57, 106,
109,111,113, 125,128, 130, 132,
208, 211

auc_flat, 18, 19,19, 21, 51-53, 55, 57, 106,
109,111,113,125, 128, 130, 132,
208, 211

auc_httk_gas_pbtk, 18-20, 20, 51-53, 55,
57,106,109,111,113,125, 128,
130, 132,208, 211

auto_units, 22

BIC.pk, 10, 11, 14-16, 23,41, 44, 76, 96, 99,
138, 147, 178, 184, 188, 193

calc_hessian, 24

calc_nca, 25

calc_rmse, 27

calc_rsq, 29

calc_sds_alerts, 32

check_group_hierarchy, 33

check_method, 34

check_model, 34

check_newdata, 35

check_params_1comp, 36

check_params_2comp, 36

check_params_flat, 37

check_required_status, 38

check_required_status.default, 38

check_required_status.pk, 39

coef.pk, 11,15, 16,24, 40, 44, 76, 96, 99,
138,147,178, 184, 188, 193

coef_sd, 41

coef_sd.default, 42

coef_sd.pk, 11,15, 16, 24,41,42, 76, 96, 99,
138, 147, 178, 184, 188, 193

combined_sd, 44

compare_models, 45

compare_models.default, 46

compare_models.pk, 46

conc_scale_use, 47

convert_summary_to_log10, 48

convert_time, 49

cp_Tcomp, 1821, 50, 52, 53,55, 57, 106, 109,
111,113,125,128, 130, 132, 208,

216

211

cp_2comp, 18-21, 51,51, 53,55, 57, 106, 109,
111,113,125,128, 130, 132, 208,
211

cp_2comp_dt, 18-21, 51, 52,52, 55, 57, 106,
109, 111,113,125, 128, 130, 132,
208, 211

cp_flat, 18-21, 51-53,54, 57, 106, 109, 111,
113,125,128, 130, 132,208, 211

cp_httk_gas_pbtk, 18-21, 51-53, 55, 55,
106,109, 111,113,125,128, 130,
132,208, 211

cvt, 57

cvt_2.0.0, 60

cvt_date, 60

cvtdb_original, 59

data_summary, 61
data_summary.default, 61
data_summary.pk, 62
dlnorm_summary, 63
dnorm_summary, 64
do_data_info, 65
do_data_info.default, 65
do_data_info.pk, 66
do_fit, 66
do_fit.default, 67
do_fit.pk, 67
do_prefit, 68
do_prefit.default, 69
do_prefit.pk, 69
do_preprocess, 70
do_preprocess.default, 71
do_preprocess.pk, 71

eval_tkstats, 73

eval_tkstats.default, 74

eval_tkstats.pk, 11, 15, 16, 24,41, 44, 74,
96,99, 138, 147, 178, 184, 188, 193

facet_data, 76
fill_params_1comp, 77
fill_params_2comp, 78
fill_params_flat, 78
fit_group, 79
fit_sigma.pk, 80
fold_error, 81
fold_error.default, 81
fold_error.pk, 82

INDEX

get_data, 83
get_data.default, 84
get_data.pk, 84
get_data_group, 85
get_data_group.default, 85
get_data_group.pk, 86
get_data_info, 86
get_data_info.default, 87
get_data_info.pk, 87
get_data_original, 88
get_data_original.default, 88
get_data_original.pk, 89
get_data_sigma_group, 89
get_data_sigma_group.default, 90
get_data_sigma_group.pk, 90
get_data_summary, 91
get_data_summary.default, 92
get_elbow, 92
get_error_group, 93
get_error_group.default, 94
get_error_group.pk, 94
get_fit, 95
get_fit.default, 95
get_fit.pk, 11,15, 16, 24,41, 44, 76, 96, 99,
138, 147,178, 184, 188, 193
get_hessian, 97
get_hessian.default, 97
get_hessian.pk, 11, 15, 16, 24,41, 44, 76,
96,98, 138, 147, 178, 184, 188, 193
get_mapping, 99
get_mapping.default, 99
get_mapping.pk, 100
get_nca, 100
get_nca.default, 101
get_nca.pk, 101
get_nca_group, 102
get_nca_group.default, 102
get_nca_group.pk, 103
get_params_Tcomp, 18-21, 51-53, 55, 57,
104, 109, 111, 113, 125, 128, 130,
132,208, 211
get_params_2comp, 18-21, 51-53, 55, 57,
106,106, 111, 113, 125, 128, 130,
132,208, 211
get_params_flat, 18-21, 51-53, 55, 57, 106,
109,109, 113, 125, 128, 130, 132,
208, 211
get_params_httk_gas_pbtk, 18-21, 51-53,

INDEX

55,57,106,109, 111,112, 125, 128,
130, 132,208, 211
get_peak, 113
get_prefit, 114
get_prefit.default, 115
get_prefit.pk, 115
get_scale_conc, 116
get_scale_conc.default, 116
get_scale_conc.pk, 117
get_scale_time, 117
get_scale_time.default, 118
get_scale_time.pk, 119
get_settings_optimx, 119
get_settings_optimx.default, 120
get_settings_optimx.pk, 120
get_settings_preprocess, 121
get_settings_preprocess.default, 121
get_settings_preprocess.pk, 122
get_starts_1lcomp, 18-21, 51-53, 55, 57,
106,109, 111, 113,122,128, 130,
132,208, 211
get_starts_2comp, 18-21, 51-53, 55, 57,
106, 109, 111,113, 125, 125, 130,
132,208, 211
get_starts_flat, 18-21, 51-53, 55, 57, 106,
109,111,113,125, 128,128, 132,
208, 211
get_starts_httk_gas_pbtk, 18-21, 51-53,
55,57,106,109,111,113,125, 128,
130, 130, 208, 211
get_stat_model, 134
get_stat_model.default, 134
get_stat_model.pk, 135
get_status, 132
get_status.default, 132
get_status.pk, 133
get_tkstats, 135
get_tkstats.default, 136
get_tkstats.pk, 11, 15, 16, 24,41, 44, 76,
96, 99, 136, 147, 178, 184, 188, 193
get_winning_model, 138
get_winning_model.default, 139
get_winning_model.pk, 139

hess_sd1, 140
hess_sd2, 141

ignore_unused_imports, 142
is.pk, 142

217

is.pk_faceted, 143
is.pk_model, 144
is.pk_scales, 144
is.pkproto, 143

log_likelihood, 147
loglLik.pk, 10, 11, 14-16, 24,41, 44, 76, 96,
99, 138,145, 178, 184, 188, 193

mapping, 150
midpt_logl1@, 151
model_Tcomp, 151
model_2comp, 152
model_flat, 152
model_httk_gas_pbtk, 153

nca, 154
nca.default, 154
nca.pk, 155

parameterize_3comp2, 113, 131

pk, 156

pk_add, 161

pk_add.default, 162

pk_add.pk_facet_data, 163

pk_add.pk_log_group, 163

pk_add.pk_nca_group, 164

pk_add.pk_scales, 164

pk_add.pk_sd_group, 165

pk_add.pk_settings_optimx, 166

pk_add.pk_settings_preprocess, 166

pk_add.pk_stat_error_model, 167

pk_add.pk_stat_model, 168

pk_add.uneval, 168

pk_model, 169

pk_subtract, 172

pk_subtract.default, 173

pk_subtract.pk_stat_model, 173

pkdataset_nheerlcleaned, 161

plot.pk, 174

post_name_value, 176

predict.pk, 11,15, 16, 24,41, 44, 76, 96, 99,
138, 147,176, 184, 188, 193

print.pk, 178

pseudo_cvt, 179

recalculate_httk_pbtk_params, 180

rename2_cvt, 182

residuals.pk, 11, 15, 16, 24,41, 44, 76, 96,
99, 138, 147, 178, 182, 188, 193

218

rmse, 184

rmse.default, 185

rmse.pk, 10, 11, 14-16, 24,41, 44, 76, 96, 99,
138,147,178, 184, 185, 193

rowwise_calc_percentages, 188

rsq, 189

rsq.default, 189

rsq.pk, 10, 11, 14-16, 24,41, 44, 76, 96, 99,
138,147, 178, 184, 188, 190

scale_conc, 193

scale_time, 194
set_params_optimize, 12, 196, 197, 210
set_params_starts, 12, 197,197, 210
settings_optimx, 194
settings_preprocess, 195
stat_error_model, 199
stat_log_group, 200
stat_model, 201
stat_nca_group, 202
stat_sd_group, 202
status_data_info, 198
status_fit, 198

status_init, 198
status_prefit, 199
status_preprocess, 199
subtract_pk, 203

summary . pk, 203

time_conversions, 204

time_units, 204

tkstats_1comp, 205

tkstats_2comp, 18-21, 51-53, 55, 57, 106,
109, 111,113,125, 128, 130, 132,
206, 211

tkstats_flat, 208

tkstats_httk_gas_pbtk, 209

toggle_clearance_mode, 12, 197,210

transformed_params_2comp, 1821, 51-53,
55,57,106,109, 111,113,125, 128,
130, 132, 208, 210

twofold_test, 211

twofold_test.default, 212

twofold_test.pk, 212

INDEX

	+.pk
	-.pk
	AAFE
	AAFE.default
	AAFE.pk
	add_pk
	adjust_model_name
	AFE
	AFE.default
	AFE.pk
	AIC.pk
	auc_1comp
	auc_2comp
	auc_flat
	auc_httk_gas_pbtk
	auto_units
	BIC.pk
	calc_hessian
	calc_nca
	calc_rmse
	calc_rsq
	calc_sds_alerts
	check_group_hierarchy
	check_method
	check_model
	check_newdata
	check_params_1comp
	check_params_2comp
	check_params_flat
	check_required_status
	check_required_status.default
	check_required_status.pk
	coef.pk
	coef_sd
	coef_sd.default
	coef_sd.pk
	combined_sd
	compare_models
	compare_models.default
	compare_models.pk
	conc_scale_use
	convert_summary_to_log10
	convert_time
	cp_1comp
	cp_2comp
	cp_2comp_dt
	cp_flat
	cp_httk_gas_pbtk
	cvt
	cvtdb_original
	cvt_2.0.0
	cvt_date
	data_summary
	data_summary.default
	data_summary.pk
	dlnorm_summary
	dnorm_summary
	do_data_info
	do_data_info.default
	do_data_info.pk
	do_fit
	do_fit.default
	do_fit.pk
	do_prefit
	do_prefit.default
	do_prefit.pk
	do_preprocess
	do_preprocess.default
	do_preprocess.pk
	eval_tkstats
	eval_tkstats.default
	eval_tkstats.pk
	facet_data
	fill_params_1comp
	fill_params_2comp
	fill_params_flat
	fit_group
	fit_sigma.pk
	fold_error
	fold_error.default
	fold_error.pk
	get_data
	get_data.default
	get_data.pk
	get_data_group
	get_data_group.default
	get_data_group.pk
	get_data_info
	get_data_info.default
	get_data_info.pk
	get_data_original
	get_data_original.default
	get_data_original.pk
	get_data_sigma_group
	get_data_sigma_group.default
	get_data_sigma_group.pk
	get_data_summary
	get_data_summary.default
	get_elbow
	get_error_group
	get_error_group.default
	get_error_group.pk
	get_fit
	get_fit.default
	get_fit.pk
	get_hessian
	get_hessian.default
	get_hessian.pk
	get_mapping
	get_mapping.default
	get_mapping.pk
	get_nca
	get_nca.default
	get_nca.pk
	get_nca_group
	get_nca_group.default
	get_nca_group.pk
	get_params_1comp
	get_params_2comp
	get_params_flat
	get_params_httk_gas_pbtk
	get_peak
	get_prefit
	get_prefit.default
	get_prefit.pk
	get_scale_conc
	get_scale_conc.default
	get_scale_conc.pk
	get_scale_time
	get_scale_time.default
	get_scale_time.pk
	get_settings_optimx
	get_settings_optimx.default
	get_settings_optimx.pk
	get_settings_preprocess
	get_settings_preprocess.default
	get_settings_preprocess.pk
	get_starts_1comp
	get_starts_2comp
	get_starts_flat
	get_starts_httk_gas_pbtk
	get_status
	get_status.default
	get_status.pk
	get_stat_model
	get_stat_model.default
	get_stat_model.pk
	get_tkstats
	get_tkstats.default
	get_tkstats.pk
	get_winning_model
	get_winning_model.default
	get_winning_model.pk
	hess_sd1
	hess_sd2
	ignore_unused_imports
	is.pk
	is.pkproto
	is.pk_faceted
	is.pk_model
	is.pk_scales
	logLik.pk
	log_likelihood
	mapping
	midpt_log10
	model_1comp
	model_2comp
	model_flat
	model_httk_gas_pbtk
	nca
	nca.default
	nca.pk
	pk
	pkdataset_nheerlcleaned
	pk_add
	pk_add.default
	pk_add.pk_facet_data
	pk_add.pk_loq_group
	pk_add.pk_nca_group
	pk_add.pk_scales
	pk_add.pk_sd_group
	pk_add.pk_settings_optimx
	pk_add.pk_settings_preprocess
	pk_add.pk_stat_error_model
	pk_add.pk_stat_model
	pk_add.uneval
	pk_model
	pk_subtract
	pk_subtract.default
	pk_subtract.pk_stat_model
	plot.pk
	post_name_value
	predict.pk
	print.pk
	pseudo_cvt
	recalculate_httk_pbtk_params
	rename2_cvt
	residuals.pk
	rmse
	rmse.default
	rmse.pk
	rowwise_calc_percentages
	rsq
	rsq.default
	rsq.pk
	scale_conc
	scale_time
	settings_optimx
	settings_preprocess
	set_params_optimize
	set_params_starts
	status_data_info
	status_fit
	status_init
	status_prefit
	status_preprocess
	stat_error_model
	stat_loq_group
	stat_model
	stat_nca_group
	stat_sd_group
	subtract_pk
	summary.pk
	time_conversions
	time_units
	tkstats_1comp
	tkstats_2comp
	tkstats_flat
	tkstats_httk_gas_pbtk
	toggle_clearance_mode
	transformed_params_2comp
	twofold_test
	twofold_test.default
	twofold_test.pk
	Index

