
Package ‘geiger’
April 3, 2023

Type Package

Title Analysis of Evolutionary Diversification

Version 2.0.11

Date 2023-04-01

Author Luke Harmon, Matthew Pennell, Chad Brock, Joseph Brown, Wendell Challenger,
Jon Eastman, Rich FitzJohn, Rich Glor, Gene Hunt, Liam Revell, Graham Slater,
Josef Uyeda, Jason Weir and CRAN team (corrections in 2022)

Maintainer Luke Harmon <lukeh@uidaho.edu>

Depends ape (>= 3.0-6), R (>= 2.15.0), phytools (>= 1.5-1)

Imports MASS, mvtnorm, subplex, deSolve (>= 1.7), digest, Rcpp (>=
0.11.0), coda, ncbit, colorspace, methods

Suggests TreeSim

LinkingTo Rcpp

Description Methods for fitting macroevolutionary models to phylogenetic trees
Pennell (2014) <doi:10.1093/bioinformatics/btu181>.

License GPL (>= 2)

ByteCompile yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-04-03 20:10:02 UTC

R topics documented:
geiger-package . 2
aicm . 3
aicw . 4
aov.phylo . 5
bd.ms . 6
calibrate.mecca . 8
calibrate.rjmcmc . 10
congruify.phylo . 11

1

https://doi.org/10.1093/bioinformatics/btu181

2 geiger-package

dcount . 12
drop.extinct . 13
dtt . 14
fitContinuous . 16
fitContinuousMCMC . 21
fitDiscrete . 24
gbresolve . 27
geiger-data . 29
geiger-defunct . 31
geiger-example . 32
geiger-internal . 32
load.rjmcmc . 33
make.gbm . 34
mecca . 37
medusa . 40
name.check . 42
nh.test . 43
nodelabel.phylo . 45
plot.medusa . 47
pp.mcmc . 49
r8s.phylo . 51
ratematrix . 53
rc . 54
rescale.phylo . 56
rjmcmc.bm . 59
sim.bd . 61
sim.bdtree . 63
sim.char . 64
startingpt.mecca . 65
subset.phylo . 67
tips . 68
to.auteur . 69
treedata . 70

Index 71

geiger-package GEIGER

Description

A package for macroevolutionary simulation and estimating parameters related to diversification
from comparative phylogenetic data.

aicm 3

Details

Package: geiger
Type: Package
License: GPL version 2 or greater?

Author(s)

LJ Harmon, J Weir, C Brock, RE Glor, W Challenger, G Hunt, R FitzJohn, MW Pennell, GJ Slater,
JW Brown, J Uyeda, and JM Eastman

Maintainer: Matt Pennell <mwpennell@gmail.com>

aicm Akaike’s Information Criterion for MCMC samples (AICM)

Description

Computes Akaike’s Information Criterion for MCMC samples (AICM: see Raftery et al. 2007).
Can be used to perform model selection using output from fitContinuousMCMC.

Usage

aicm(x)

Arguments

x a vector containing sampled likelihoods from the MCMC chain. Assumes that
burn-in has been removed prior to computation of AICM score.

Details

AICM is one way of comparing model fit using posterior likelihood samples. It has advantages
over approaches such as thermodynamic integration in that it uses the chain output directly and
thus has little added time cost. Furthermore, it has been shown to perform better than the harmonic
mean estimator of the marginal likelihood. However, it is also less robust than stepping-stone or
thermodynamic integration approaches and should be used with care.

Value

AICM - Akaike’s Information Criterion for the posterior sample

Author(s)

Graham Slater

4 aicw

References

Raftery et al. 2007. Estimating the integrated likelihood via posterior simulation using the harmonic
mean identity. In. Bernardo et al. (eds) Bayesian Statistics. Oxford University Press.

Examples

generate a random set of values from a normal distribution,
similar to a set of likelihood samples obtained via MCMC.

x <- rnorm(1000, -275, 2);
aicm(x);

aicw determining Akaike weights

Description

This function computes Akaike Weights and ranks model based on their support from a vector of
AIC scores.

Usage

aicw(x)

Arguments

x a named vector of AIC scores

Value

An nx3 matrix, where n is the number of models being compared. The first column contains the
AIC scores, the second contains the deltaAIC score and the third the Akaike Weight. Models are
ranked in descending order according to weight. Rownames are the model names taken from the
input vector.

Author(s)

Graham Slater

Examples

AIC.scores <- c(3,7,-5, 6)
names(AIC.scores) <- c("model1", "model2", "model3", "model4")
aicw(AIC.scores)

aov.phylo 5

aov.phylo phylogenetic ANOVA and MANOVA

Description

computing phylogenetic ANOVA or MANOVA

Usage

aov.phylo(formula, phy, nsim = 1000,
test = c("Wilks", "Pillai", "Hotelling-Lawley", "Roy"), ...)

Arguments

formula a formula specifying the model (see Examples)

phy a phylogenetic tree of class ’phylo’

nsim number of simulations to run

test test statistic to apply if MANOVA

... additional arguments to be passed to print.anova

Details

This function performs an ANOVA or MANOVA in a phylogenetic context. First, the test statistic
for ANOVA (one dependent variable) or MANOVA (more than one dependent variable) is cal-
culated. The null distribution of this test statistic is then obtained by simulating new sets of de-
pendent variables on the phylogenetic tree. Simulations are run under a Brownian-motion model.
For ANOVA, the rate parameter is estimated from the average squared independent contrast; for
MANOVA the simulations use an estimated variance-covariance matrix from ratematrix.

For MANOVA, you can specify the test statistic for the summary table. Wilks’ statistic is most
popular in the literature and for further details, see summary.manova.

Value

The function prints (and returns) a standard ANOVA or MANOVA table and p-value based on
simulations (from the Pr(phy) column). For convenience, the summary table is included as an
attribute of the returned object (see Examples).

Author(s)

JM Eastman and LJ Harmon

References

Garland T Jr, AW Dickerman, CM Janis, and JA Jones. 1993. Phylogenetic analysis of covariance
by computer simulation. Systematic Biology 42(3):265-292.

6 bd.ms

See Also

aov; anova; summary.manova; ratematrix

Examples

Not run:
geo=get(data(geospiza))
dat=geo$dat
d1=dat[,1]
grp<-as.factor(c(rep(0, 7), rep(1, 6)))
names(grp)=rownames(dat)

MANOVA
x=aov.phylo(dat~grp, geo$phy, nsim=50, test="Wilks")
print(attributes(x)$summary) # summary table

ANOVA
x1=aov.phylo(d1~grp, geo$phy, nsim=50)

End(Not run)

bd.ms estimate net diversification rate

Description

estimating net diversification rate with confidence limits and testing diversities

Usage

bd.ms(phy=NULL, time, n, missing = 0, crown=TRUE, epsilon = 0)
bd.km(phy=NULL, time, n, missing = 0, crown=TRUE)
crown.p(phy=NULL, time, n, r, epsilon)
stem.p(phy=NULL, time, n, r, epsilon)
crown.limits(time, r, epsilon, CI=0.95)
stem.limits(time, r, epsilon, CI=0.95)

Arguments

phy a phylogenetic tree of class ’phylo’ (see Details)

time time interval (can be a vector)

n number of extant species

r net diversification rate, birth - death

epsilon extinction rate as a fraction of speciation rate

missing number of taxa missing from tree

crown whether time is treated as crown age (or otherwise as stem age)

CI confidence level for estimated parameters

bd.ms 7

Details

bd.ms uses the Magallon and Sanderson (2000) method to calculate net diversification rate for a
clade given extant diversity and age. bd.km computes the Kendall-Moran estimate of speciation
rate, which assumes a complete phylogenetic tree.

Associated functions crown.p and stem.p also calculate the probability of obtaining a clade with
at least n species given a net diversification rate (r), extinction fraction (epsilon), and time in-
terval. Associated functions stem.limits and crown.limits generate confidence limits on extant
diversity given a net diversification rate (r), extinction fraction (epsilon), and time interval.

Where a function calls for a time and an n element, a tree may be given instead (as argument
phy). The argument n is taken from the number of tips in the tree. The method will attempt to
discern whether the model should be fitted assuming crown or stem. If the tree has a non-NULL
phy$root.edge element, the length will be assumed for the stem and crown is assumed to be FALSE
(see also read.tree).

Value

• bd.ms returns net diversification rate (r = lambda - mu)

• bd.km returns speciation rate assuming a completely sampled tree

• crown.p and stem.p return the probability of obtaining a clade as big as (or bigger than) size
n, given time, r, and epsilon

• crown.limits and stem.limits return lower (lb) and upper (ub) confidence intervals for clade
size given time, r, and epsilon

Author(s)

LJ Harmon and C Brock

References

Magallon S and MJ Sanderson. 2000. Absolute diversification rates in angiosperm clades. Evolu-
tion 55:1762-1780.

Examples

geo=get(data(geospiza))

Assuming no extinction
bd.ms(phy=geo$phy, missing=1, epsilon=0)

Assuming high extinction
bd.ms(phy=geo$phy, missing=1, epsilon=0.9)

8 calibrate.mecca

calibrate.mecca calibrating MECCA

Description

Runs a user defined number of calibration simulations (Wegmann et al. 2009) to generate tuning
parameters MECCA’s ABC-MCMC. The function takes a large number of arguments but in most
cases these can remain at default settings.

Usage

calibrate.mecca(phy, richness, model = c("BM", "Trend", "twoRate"),
prior.list = list(priorSigma = c(-4.961845, 4.247066), priorMean = c(-10, 10)),
Ncalibrations = 10000, sigmaPriorType = "uniform", rootPriorType = "uniform",
divSampleFreq = 0, initPars = "ML", propWidth = 0.1,

SigmaBounds = c(-4.961845, 4.247066),
hotclade = NULL, BOXCOX = TRUE, optimRange = c(-1000, 10))

Arguments

phy A time calibrated phylogenetic tree of class "phylo"

richness A named vector of species richnesses corresponding to tips in the tree; if a tip
does not represent a higher level taxon, its richness should be 1.

model The model of trait evolution to be used. Options currently implemented are:
"BM" = Brownian Motion, "Trend" = Brownian moton with a trend, "twoRate"
= two Brownian rate model (see hotclade below).

prior.list A namedlist containing prior distribution parameters. If no values are specified,
default values will be used. Default values for the BM rate are taken from the
range reported in Harmon et al. 2010.

Ncalibrations The number of calibration simulations to use. No fewer than 10,000 are recom-
mended.

sigmaPriorType The type of prior distribution on the Brownian rate parameter. Currently, uni-
form and normal are implemented.

rootPriorType The type of prior distribution on the root state rate parameter. Currently, uniform
is implemented.

divSampleFreq Should new trees be simulated at every step? The default (0) is yes. If a non-
zero value is given, this will determine the frequency (every n steps) with which
new tip trees are simulated. This option is designed for use with large datasets
where simulating new trees will slow MECCA down considerably.

initPars Should Maximum Likelihood ("ML") values be used to start the diversification
rate sampler? if not, two numeric values should be specified for speciation and
extinction rates.

propWidth Proposal width for the diversification MCMC. The default value of 0.1 seems to
work well.

calibrate.mecca 9

SigmaBounds If a normal prior is used for the trait evolution rate, it can be bounded with
reasonable values to ensure that the chain does not get stuck in areas of low
likelihood. Default values correspond to the range of rates reported in Harmon
et al. (2010).

hotclade If a two-rate model is to be fit, which clade takes the second rate? There are
two ways to do this - either a clade is designated or a single edge. For a clade,
two tip names that span the clade of interest should be specified in a vector. If a
single edge is to be used pass a two-item vector, where the first item is a single
terminal name (for a tip branch) or the number of a node (for an internal edge)
and the second item is NULL

BOXCOX Will summaries be BOX-COX standardized? Default is yes and is recommended.
Raw summaries will be returned, along with parameters for Box-Cox transfor-
mation.

optimRange Optimization range for the lambda parameter for Box-Cox. Default params
should work in most cases.

Value

$diversification

A 3-column matrix containing 1) birth-rates and 2) death-rates sampled by the
MCMC, plus 3) their associated likelihoods

$trait A matrix of trait evolution parameters sampled from their priors and summary
statistics from the simulations. If BM is used, columns 1 and 2 are the rate and
root state parameter samples. If Trend or twoRate are the models, the first two
columns are the same but the third contains the additional rate or trend parameter

$stdz, $lambda, $GM, $BoxCox

If BOXCOX = T, these items will also be output to BoxCox transform simula-
tions in the MCMC

Note

Tree simulation is done using modified code from Tanja Stadler’s TreeSim package. Trait evolution
is done using modified code from Liam Revell’s phytools package.

Author(s)

Graham J Slater, Luke Harmon, Dan Wegmann

References

Slater, GJ, Harmon, LJ, Wegmann D, Joyce, P., Revell, LJ, Alfaro ME. in press. Evolution, also
Wegmann D, Leuenberger C, Excoffier L. 2009. Genetics 182:1207-1218. Harmon LJ et al. 2010.
Early Bursts of body size and shape evolution are rare in comparative data. Evolution 64: 2385 -
2396

10 calibrate.rjmcmc

Examples

example(mecca)

calibrate.rjmcmc initialize proposal width

Description

estimating a reasonable proposal width to initiate sampling for Markov sampling

Usage

calibrate.rjmcmc(phy, dat, nstep = 10000, widths = 2^(-3:3), type=c("bm",
"rbm", "jump-bm", "jump-rbm"), ...)

Arguments

phy a phylogenetic tree of class ’phylo’

dat a named vector of continuous trait values, associated with each species in phy

nstep number of proposal steps over which to assess proposal widths

widths if unspecified, a series of proposal widths from 1/8 to 8 will be considered

type a model type available in rjmcmc.bm

... arguments to be passed to make.gbm and rjmcmc.bm

Details

This function may be useful for constraining subsequent runs after an adequate proposal width
has been approximated. MCMC samples from this calibration are not stored and do not become
available to the user. This function is solely used to give the user a sense of acceptance rates that
can be expected for different proposal widths. The narrower the width, the more easily the chain
can become stuck. With a wider width, the chain will more quickly explore a broader parameter
space, yet acceptance rates may become unacceptably low.

Author(s)

JM Eastman

See Also

rjmcmc.bm

congruify.phylo 11

Examples

n=40
phy=rcoal(n=n)
dat=rTraitCont(phy=phy, model="BM", sigma=sqrt(0.1))
r=paste(sample(letters,9,replace=TRUE),collapse="")

calibrate proposal width
calibrate.rjmcmc(phy=phy, dat=dat, nstep=500, widths=2^(-3:0), type="rbm")

congruify.phylo ultrametricization of trees from a supplied timetree

Description

automagically generating secondary calibrations

Usage

congruify.phylo(reference, target, taxonomy = NULL, tol = 0,
scale=c(NA, "PATHd8", "treePL"), ncores=NULL)

Arguments

reference an ultrametric tree used to time-scale the target

target a phylogram that is sought to be ultrametricized based on the reference phy-
logeny

taxonomy a linkage table between tips of the phylogeny and clades represented in the tree;
rownames of ’taxonomy’ should be tips found in the phylogeny

tol branching time in reference above which secondary constraints will be applied
to target

scale NA, "PATHd8" or "treePL" (if PATHd8 or "treePL" are available in the R PATH)

ncores number of cores to be used

Details

This function uses the reference to inform secondary calibrations in the target. The primary
output is a table of ’congruent’ nodes between the reference and target with associated dates
extracted from corresponding nodes in the reference.

If multiple trees are supplied as the reference, a ’congruification’ table is generated for each.

If scale="PATHd8", the target will be smoothed by PATHd8 using the "d8 calculation" (see http:
//www2.math.su.se/PATHd8/PATHd8manual.pdf). This scaling method requires that PATHd8 is
available on the user’s PATH variable that can be accessed by Sys.getenv("PATH").

If scale="treePL", the target will be smoothed by treePL. This scaling method requires that
treePL is available on the user’s PATH variable that can be accessed by Sys.getenv("PATH").

http://www2.math.su.se/PATHd8/PATHd8manual.pdf
http://www2.math.su.se/PATHd8/PATHd8manual.pdf

12 dcount

Author(s)

JM Eastman

References

Eastman JM, LJ Harmon, and DC Tank. 2013. Congruification: support for time scaling large
phylogenetic trees. Methods in Ecology and Evolution, in press.

Examples

Not run:
sal=get(data(caudata))
res=congruify.phylo(salfam, salphy, sal$tax, tol=0, scale=NA, ncores=2)
print(res$calibrations)
plot(ladderize(sal$phy,right=FALSE), cex=0.35, type="fan", label.offset=2.5)
plot(ladderize(sal$fam,right=FALSE), cex=0.5, type="fan", label.offset=2.5, no.margin=FALSE)

if you have PATHd8 installed you can also run
res=congruify.phylo(salfam, salphy, sal$tax, tol=0, scale=\"PATHd8\")
print(res)

End(Not run)

dcount prior densities for truncated discrete random variable

Description

creating a prior density function for a truncated discrete random variable

Usage

dcount(x, FUN, ...)

Arguments

x an integer vector spanning from the minimal to maximal values

FUN a probability density function (see Examples)

... additional arguments to be passed to FUN

Author(s)

JM Eastman

See Also

make.gbm

drop.extinct 13

Examples

range=0:100
u=dcount(range, FUN=dunif, min=min(range), max=max(range))
g=dcount(range, FUN=dgeom, prob=0.05)
p=dcount(range, FUN=dtpois, min=min(range), max=max(range), lambda=0.5)
priors=list(pois=p, geom=g, unif=u)
plot(range(range), c(0,1), xlab="index", ylab="cumsum(prob)", type="n", bty="n")
for(i in 1:length(priors)){
points(attributes(attributes(priors[[i]])$density)$cumsum, col=i, pch=22, cex=0.35)
}
legend("bottomright", bty="n", legend=names(priors), col=1:length(priors), pch=22)

LN prior probabilities
print(u(0)) ## dunif
print(g(0)) ## dgeom
print(p(0)) ## dtpois

drop.extinct prune specified taxa from a phylogenetic tree

Description

pruning a set of taxa from a tree

Usage

drop.extinct(phy, tol = NULL)
drop.random(phy, n)

Arguments

phy a phylogenetic tree of class ’phylo’

tol rounding-error tolerance for taxa that do not reach the present day exactly

n number of random taxa to prune from the tree

Details

The functions prune taxa from a tree either at random or based either on a temporal criterion
(whether the leaves reach the present within a given tol). By default, tol = min(phy$edge.length)/100.
The result is a tree that has been pruned based on the given criterion. The function is.extinct will
return a vector of the tip labels of inferred extinct taxa (or NULL is no extinct taxa exist).

Author(s)

LJ Harmon, and JW Brown

14 dtt

See Also

drop.tip

Examples

Birth-death tree with extinct taxa
p1 <- sim.bdtree(b=0.2, d=0.1, stop="time", seed=1, t=30)
plot(p1, cex=0.25)

List extinct taxa
p1.extinct <- is.extinct(p1)

Previous tree with extinct taxa removed
p2 <- drop.extinct(p1)
plot(p2, cex=0.5)

dtt disparity-through-time

Description

calculating and plotting disparity-through-time for a phylogenetic tree and phenotypic data

Usage

disparity(phy=NULL, data, index = c("avg.sq", "avg.manhattan", "num.states"))
dtt(phy, data, index=c("avg.sq", "avg.manhattan", "num.states"),

mdi.range=c(0,1), nsim=0, CI=0.95, plot=TRUE, calculateMDIp=F)

Arguments

phy a phylogenetic tree of class ’phylo’

data a named vector or matrix of continuous trait values, associated with species in
phy

index disparity index to use (see Details)

mdi.range time range over which to calculate MDI statistic

nsim number of simulations used to calculate null disparity-through-time plot (see
Details)

CI confidence level from which to plot simulated disparities

plot whether to plot disparities through time

calculateMDIp calculate p-value for MDI compared to null; only valid if nsim is not zero

dtt 15

Details

The most complete implementation of dtt (where nsim is greater than 0) carries out the entire
disparity-through-time (DTT) procedure described in Harmon et al. 2003, where simulated data are
used to construct a null DTT distribution. The function disparity simply computes the morpho-
logical disparity for a set of species. Note that for mdi.range, time is relative to a total tree length
of 1. The default mdi.range is the entire temporal span of the tree, from 0 (root) to 1 (tips).

For either function, the disparity index can be one of the following:

• avg.sq is average squared Euclidean distance among all pairs of points; this is the most com-
mon distance metric for disparity in macroevolution

• avg.manhattan is average Manhattan distance among all pairs of points

• num.states is number of unique character states; this is currently the only option for discrete
character data

Value

The function disparity returns the disparity of the supplied data. If given a tree, disparity
will return disparities computed for each subtree. The vector of disparities is indexed based on the
numeric node-identifier of the subtending subtree (e.g., the root is indexed by N+1, where N is the
number of species in the tree; see read.tree).

The function dtt returns elements from the list below:

• dtt is average disparity for clades whose stem crosses each time interval in the tree

• times are times for each value in disparity-through-time calculation; these are just the branch-
ing times of the phylogeny

• sim are disparities at time intervals for each simulated dataset

• MDI is the value of the MDI statistic, which is the area between the DTT for the data and the
median of the simulations

If results are plotted, the mean DTT from the simulated datasets appears in dashed line and the
empirical DTT in solid line.

Author(s)

LJ Harmon and GJ Slater

References

Foote M. 1997. The evolution of morphological diversity. ARES 28:129-152.

Harmon LJ, JA Schulte, JB Losos, and A Larson. 2003. Tempo and mode of evolutionary radiation
in iguanian lizards. Science 301:961-964.

Slater GJ, SA Price, F Santini, and MA Alfaro. 2010. Diversity vs disparity and the evolution of
modern cetaceans. PRSB 277:3097 -3104.

16 fitContinuous

Examples

Not run:
geo=get(data(geospiza))

disparity -- not tree-based
disparity(data=geo$dat) # not tree-based

cladewise disparities
disparity(phy=geo$phy, data=geo$dat)

disparity through time of culmen length
dttcul<-dtt(phy=geo$phy, data=geo$dat[,"culmenL"], nsim=100, plot=TRUE)

disparity through time of entire dataset -- without simulated data
dttgeo<-dtt(phy=geo$phy, data=geo$dat, nsim=0, plot=TRUE)

End(Not run)

fitContinuous Model fitting for continuous comparative data

Description

fitting macroevolutionary models to phylogenetic trees

Usage

fitContinuous(phy, dat, SE = 0,
model = c("BM","OU","EB","rate_trend","lambda","kappa","delta","mean_trend","white"),
bounds= list(), control = list(method = c("subplex","L-BFGS-B"),
niter = 100, FAIL = 1e+200, hessian = FALSE, CI = 0.95), ncores=NULL, ...)

Arguments

phy a phylogenetic tree of class phylo

dat data vector for a single trait, with names matching tips in phy

SE a single value or named vector of standard errors associated with values in dat;
if any elements in the vector SE are NA, SE will be estimated

model model to fit to comparative data (see Details)

bounds range to constrain parameter estimates (see Details)

control settings used for optimization of the model likelihood

ncores Number of cores. If NULL then number of cores is detected

... additional arguments to be passed to the internal likelihood function bm.lik

fitContinuous 17

Details

This function fits various likelihood models for continuous character evolution. The function returns
parameter estimates and the likelihood for univariate datasets.

The model likelihood is maximized using methods available in optim as well as subplex. Op-
timization methods to be used within optim can be specified through the control object (i.e.,
control$method).

A number of random starting points are used in optimization and are given through the niter ele-
ment within the control object (e.g., control$niter). The FAIL value within the control object
should be a large value that will be considerably far from -lnL of the maximum model likelihood. In
most cases, the default setting for control$FAIL will be appropriate. The Hessian may be used to
compute confidence intervals (CI) for the parameter estimates if the hessian element in control
is TRUE.

Beware: difficulty in finding the optimal solution is determined by an interaction between the na-
ture and complexity of the likelihood space (which is data- and model-dependent) and the numer-
ical optimizer used to explore the space. There is never a guarantee that the optimal solution is
found, but using many random starting points (control$niter) and many optimization methods
(control$method) will increase these odds.

Bounds for the relevant parameters of the fitted model may be given through the bounds argument.
Bounds may be necessary (particularly under the OU model) if the likelihood surface is character-
ized by a long, flat ridge which can be exceedingly difficult for optimization methods. Several
bounds can be given at a time (e.g., bounds=list(SE=c(0,0.1),alpha=c(0,1)) would constrain
measurement error as well as the ’constraint’ parameter of the Ornstein-Uhlenbeck model). Default
bounds under the different models are given below.

Possible models are as follows:

• BM is the Brownian motion model (Felsenstein 1973), which assumes the correlation struc-
ture among trait values is proportional to the extent of shared ancestry for pairs of species.
Default bounds on the rate parameter are sigsq=c(min=exp(-500),max=exp(100)). The
same bounds are applied to all other models, which also estimate sigsq

• OU is the Ornstein-Uhlenbeck model (Butler and King 2004), which fits a random walk with
a central tendency with an attraction strength proportional to the parameter alpha. The OU
model is called the hansen model in ouch, although the way the parameters are fit is slightly
different here. Default bounds are alpha = c(min = exp(-500), max = exp(1))

• EB is the Early-burst model (Harmon et al. 2010) and also called the ACDC model (accelerating-
decelerating; Blomberg et al. 2003). Set by the a rate parameter, EB fits a model where the
rate of evolution increases or decreases exponentially through time, under the model r[t] =
r[0] * exp(a * t), where r[0] is the initial rate, a is the rate change parameter, and t is time.
The maximum bound is set to -0.000001, representing a decelerating rate of evolution. The
minimum bound is set to log(10^-5)/depth of the tree.

• rate_trend is a diffusion model with linear trend in rates through time (toward larger or
smaller rates). Used to be denominated the "trend" model, which is still accepted by fitContinuous
for backward compatibility. Default bounds are slope = c(min = -100, max = 100)

• lambda is one of the Pagel (1999) models that fits the extent to which the phylogeny predicts
covariance among trait values for species. The model effectively transforms the tree: values
of lambda near 0 cause the phylogeny to become more star-like, and a lambda value of 1
recovers the BM model. Default bounds are lambda = c(min = exp(-500), max = 1

18 fitContinuous

• kappa is a punctuational (speciational) model of trait evolution (Pagel 1999), where character
divergence is related to the number of speciation events between two species. Note that if
there are speciation events that are missing from the given phylogeny (due to extinction or
incomplete sampling), interpretation under the kappa model may be difficult. Considered
as a tree transformation, the model raises all branch lengths to an estimated power (kappa).
Default bounds are kappa = c(min = exp(-500), max = 1)

• delta is a time-dependent model of trait evolution (Pagel 1999). The delta model is similar
to ACDC insofar as the delta model fits the relative contributions of early versus late evolution
in the tree to the covariance of species trait values. Where delta is greater than 1, recent evo-
lution has been relatively fast; if delta is less than 1, recent evolution has been comparatively
slow. Intrepreted as a tree transformation, the model raises all node depths to an estimated
power (delta). Default bounds are delta = c(min = exp(-500), max = 3)

• mean_trend is a model of trait evolution with a directional drift or trend component (i.e.,
toward smaller or larger values through time). This model is sensible only for non-ultrametric
trees, as the likelihood surface is entirely flat with respect to the slope of the trend if the tree is
ultrametric. The model used to be denominated the "drift" model, which is still accepted by
fitContinuous for backward compatibility. Default bounds are drift = c(min = -100, max
= 100)

• white is a white-noise (non-phylogenetic) model, which assumes data come from a single nor-
mal distribution with no covariance structure among species. The variance parameter sigsq
takes the same bounds defined under the BM model

Value

fitContinuous returns a list with the following four elements:

lik is the function used to compute the model likelihood. The returned function
(lik) takes arguments that are necessary for the given model. For instance,
if estimating a Brownian-motion model with unknown standard error, the ar-
guments (pars) to the lik function would be sigsq and SE. By default, the
function evaluates the likelihood of the model by assuming the maximum likeli-
hood root state. This behavior can be changed in the call to lik with lik(pars,
root=ROOT.GIVEN) where pars includes a value for the root state (z0). See
Examples for a demonstration. The tree and data are stored internally within
the lik function, which permits those elements to be efficiently reused when
computing the likelihood under different parameter values

bnd is a matrix of the used bounds for the relevant parameters estimated in the model.
Warnings will be issued if any parameter estimates occur at the supplied (or
default) parameter bounds

res is a matrix of results from optimization. Rownames of the res matrix are the
optimization methods (see optim and subplex). The columns in the res matrix
are the estimated parameter values, the estimated model likelihood, and an indi-
cation of optimization convergence. Values of convergence not equal to zero are
not to be trusted

opt is a list of the primary results: estimates of the parameters, the maximum-
likelihood estimate (lnL) of the model, the optimization method used to compute
the MLE, the number of model parameters (k, including one parameter for the

fitContinuous 19

root state), the AIC (aic), sample-size corrected AIC (aicc). The number of
observations for AIC computation is taken to be the number of trait values ob-
served. If the Hessian is used, confidence intervals on the parameter estimates
(CI) and the Hessian matrix (hessian) are also returned

Note

To speed the likelihood search, one may set an environment variable to make use of parallel pro-
cessing, used by mclapply. To set the environment variable, use options(mc.cores=INTEGER),
where INTEGER is the number of available cores. Alternatively, the mc.cores variable may be preset
upon the initiation of an R session (see Startup for details).

Author(s)

LJ Harmon, W Challenger, and JM Eastman

References

Blomberg SP, T Garland, and AR Ives. 2003. Testing for phylogenetic signal in comparative data:
behavioral traits are more labile. Evolution 57:717-745.

Butler MA and AA King, 2004. Phylogenetic comparative analysis: a modeling approach for
adaptive evolution. American Naturalist 164:683-695.

Felsenstein J. 1973. Maximum likelihood estimation of evolutionary trees from continuous charac-
ters. American Journal of Human Genetics 25:471-492.

Harmon LJ et al. 2010. Early bursts of body size and shape evolution are rare in comparative data.
Evolution 64:2385-2396.

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884

Examples

Not run:
geo=get(data(geospiza))

tmp=treedata(geophy, geodat)
phy=tmp$phy
dat=tmp$data

#---- STORE RESULTS
brownFit <- fitContinuous(phy, dat[,"wingL"], SE=NA, control=list(niter=50), ncores=2)

#---- PRINT RESULTS
print(names(brownFit))
print(brownFit)

\donttest{
#---- COMPUTE LIKELIHOOD
flik=brownFit$lik
print(argn(flik))

#---- CREATE a FUNCTION to COMPARE MODELS

20 fitContinuous

fitGeospiza=function(trait=c("wingL","tarsusL","culmenL","beakD","gonysW")){

trait=match.arg(trait, c("wingL","tarsusL","culmenL","beakD","gonysW"))

define set of models to compare
models=c("BM", "OU", "EB", "white")
summaries=c("diffusion", "Ornstein-Uhlenbeck", "early burst", "white noise")

ESTIMATING measurement error
aic.se=numeric(length(models))
lnl.se=numeric(length(models))

for(m in 1:length(models)){
cat("\n\n\n\n\t*** ", paste(toupper(summaries[m]),": fitting ", sep=""), models[m],
" with SE *** \n", sep="")
tmp=fitContinuous(phy,dat[,trait],SE=NA, model=models[m],

bounds=list(SE=c(0,0.5)), ncores=2)
print(tmp)
aic.se[m]=tmpoptaicc
lnl.se[m]=tmpoptlnL
}

ASSUMING no measurement error
aic=numeric(length(models))
lnl=numeric(length(models))

for(m in 1:length(models)){
cat("\n\n\n\n\t*** ", paste(toupper(summaries[m]),": fitting ", sep=""), models[m],
" *** \n", sep="")

tmp=fitContinuous(phy,dat[,trait],SE=0,model=models[m], ncores=2)
print(tmp)
aic[m]=tmpoptaicc
lnl[m]=tmpoptlnL
}

COMPARE AIC
names(aic.se)<-names(lnl.se)<-names(aic)<-names(lnl)<-models
delta_aic<-function(x) x-x[which(x==min(x))]

no measurement error
daic=delta_aic(aic)
cat("\n\n\n\t\t\t\t*** MODEL COMPARISON: ",trait," *** \n",sep="")
cat("\tdelta-AIC values for models assuming no measurement error

\t\t\t\t zero indicates the best model\n\n")
print(daic, digits=2)

measurement error
daic.se=delta_aic(aic.se)
cat("\n\n\n\n\t\t\t\t*** MODEL COMPARISON: ",trait," ***\n",sep="")
cat("\t\t delta-AIC values for models estimating SE

\t\t\t\t zero indicates the best model\n\n")
print(daic.se, digits=2)

fitContinuousMCMC 21

cat("\n\n\n")

res_aicc=rbind(aic, aic.se, daic, daic.se)
rownames(res_aicc)=c("AICc","AICc_SE","dAICc", "dAICc_SE")

return(res_aicc)
}

#---- COMPARE MODELS for WING LENGTH
res=fitGeospiza("wingL")
print(res)
}

End(Not run)

fitContinuousMCMC Fit models of continuous trait evolution to comparative data using
MCMC

Description

This function is essentially an MCMC version of the fitContinuous function that fits models using
Maximum Likelihood. The main advantage of using MCMC is that informative prior distributions
may be placed on node values when such information is available, for example from the fossil
record. In such cases, model selection may be improved upon and differ from results using extant
taxa only.

Usage

fitContinuousMCMC(phy, d, model = c("BM", "Trend", "SSP", "ACDC.exp","ACDC.lin"),
Ngens = 1e+06, sampleFreq = 1000, printFreq = 1000,
propwidth = rep(0.1, 5), node.priors = NULL, root.prior = NULL,
acdc.prior = NULL, sample.node.states = T, outputName = "mcmc.output")

Arguments

phy A phylogenetic tree in phylo format

d A named numeric vector of tip values

model The type of model to be fitted. Options are: "BM" - Brownian motion, "Trend"
= BM with a directional trend (this option can only be used with non ultrametric
trees or when node priors are available for an ultrametric tree), "SSP" - the sin-
gle stationary peak, or single-optimum OU model, "ACDC.exp" - Accelerating-
Decelerating evolution where the change in rate is exponential with respect to
time. The DC portion of this model corresponds to the EB model in Harmon et
al. (2010), "ACDC.lin" - Accelerating-Decelerating evolution where the change
in rate is linear with respect to time (see the supplementary information for Har-
mon et al. 2010 for details).

Ngens The number of generations that the MCMC should be run for.

22 fitContinuousMCMC

sampleFreq The frequency with which likelihoods and parameters should be sampled from
the chain. For large trees and/or if ancestral states are being sampled, this value
should be large (at least equal to the number of internal nodes in the tree).

printFreq The frequency with which progress should be printed to the screen.
propwidth A numeric vector containing five values corresponding to proposal widths. The

order is: 1 - root state proposal width, 2 - rate proposal width, 3 - scaler (alpha,
rate change, trend parameter) proposal width, 4 - Theta (OU optimum) proposal
width (not yet implemented), and 5- node state proposal width. 5 Values should
be provided regardless of the model being fitted. Dummy or random values can
be used for non-applicable parameters in such cases.

node.priors A data frame of informative node priors. The default is node.priors=NULL, in
which case uniformative priors will be assumed for all nodes. Alternatively,
the user may provide a dataframe with five columns. The first two columns
should specify the tips spanning the clade descended from the node on which an
informative prior is to be placed. Columns 3 and 4 give parameters related to
the prior while column 5 specifies the type of prior distribution. Current options,
along with the associated parameters required in columns 3 and 4, are "normal"
(mean and sd), "uniform" (min and max), and "exp" (offset and rate).

root.prior A prior for the root value. The default is root.prior = NULL, in which case an
uniformative root prior is assumed. Alternatively, the user may provide a vector
containing 3 values: 1 & 2 are the parameters for the root prior parameter values,
while the 3rd is the type of prior. Current prior types are the same as for node
priors.

acdc.prior For the ACDC models, it is wise to bound the values of the rate change parame-
ter as unreasonable proposed values can result in rounding issues and negatively
infinite log-likelihoods. The default for this option is NULL. If an ACDC model
is selected and no prior is given, a bounded, informative uniform prior will be
assigned based on the root height of the tree. Alternatively, the user may provide
bounds of their own. This may be particularly useful if the user is only interested
in a subset of the parameter space area (eg., EB).

sample.node.states

Logical. If sample.node.states = TRUE, node states (ancestral state values) will
be logged to a separate output file. If sample.node.states = FALSE, ancestral
states will be treated as nuisance parameters and discarded after computation of
likelihoods.

outputName stem name for output file(s)

Details

Unlike fitContinuous, which returns output as a list, fitContinuousMCMC outputs directly to text
file(s). The model parameter file is designed to be compatatible with the popular Tracer software
used in conjunction with BEAST. The output can easily be read back into R for further analysis. A
particular advantage of writing directly to text file is that crashes etc do not result in the complete
loss of long runs, and memory is saved.

Value

If sample.node.states = FALSE, one text file is written to the current working directory.

fitContinuousMCMC 23

outputName_model_params.txt

a text file containing sampled prior, posterior, likelihood, and model parameter
values from the MCMC run

If sample.node.states = TRUE, a second text file is written

outputName_nodestates.txt

contains the posterior sample of ancestral states for internal nodes

Author(s)

Graham Slater

References

Slater GJ, LJ Harmon, and ME Alfaro. 2012. Integrating fossils with molecular phylogenies im-
proves inference of trait evolution. Evolution 66:3931-3944.

Examples

Not run:
data(caniformia)
phy <- caniformia$phy
d <- caniformia$dat
node.priors <- caniformia$node.priors
root.prior <- caniformia$root.prior

as an example, we will run a very short (too short!) analysis,
##fitting BM and Trend to the caniform data

fitContinuousMCMC(phy, d, model = "BM", Ngens = 1000, sampleFreq =100,
printFreq = 100, node.priors = node.priors, root.prior = root.prior,
outputName ="BM_caniforms")

fitContinuousMCMC(phy, d, model = "Trend", Ngens = 1000, sampleFreq=100,
printFreq = 100, node.priors = node.priors, root.prior = root.prior,
outputName ="Trend_caniforms")

bm.res <- read.table("BM_caniforms_model_params.txt", header= TRUE)
head(bm.res)

trend.res <- read.table("Trend_caniforms_model_params.txt", header= TRUE)
head(trend.res)

produce trace plots of logLk scores

plot(bm.res$generation, bm.res$logLk, type = "l",
ylim = c(min(bm.res$logLk), max = max(trend.res$logLk)))

lines(trend.res$generation, trend.res$logLk, col = "red")
legend("bottomleft", c("bm", "trend"), lwd = 3, col = c("black", "red"))

End(Not run)

24 fitDiscrete

fitDiscrete Model fitting for discrete comparative data

Description

fitting macroevolutionary models to phylogenetic trees

Usage

fitDiscrete(phy, dat,
model = c("ER","SYM","ARD","meristic"),
transform = c("none", "EB", "lambda", "kappa", "delta", "white"),
bounds = list(), control = list(method = c("subplex", "L-BFGS-B"),
niter = 100, FAIL = 1e+200, hessian = FALSE, CI = 0.95), ncores=NULL,
...)

S3 method for class 'gfit'
as.Qmatrix(x, ...)

Arguments

phy a phylogenetic tree of class phylo

dat data vector for a single trait, with names matching tips in phy

model an Mkn model to fit to comparative data (see Details)

transform an evolutionary model used to transform the tree (see Details)

bounds range to constrain parameter estimates (see Details)

control settings used for optimization of the model likelihood

ncores Number of cores. If NULL then number of cores is detected

x Object of class "gfit" for S3 method as.Qmatrix

... if model="meristic", ... can dictate whether the matrix is asymmetric (symmetric=FALSE)

Details

This function fits various likelihood models for discrete character evolution. The function returns
parameter estimates and the likelihood for univariate datasets. All of the models are continuous-
time Markov models of trait evolution (see Yang 2006 for a good general discussion of this type of
model).

The model likelihood is maximized using methods available in optim as well as subplex. Opti-
mization methods to be used within optim can be specified through the control object.

A number of random starting points are used in optimization and are given through the niter
element within the control object (e.g., control$niter). Finding the maximum likelihood fit
is sometimes tricky, especially as the number of parameters in the model increases. Even in the
example below, a slightly suboptimal fit is occasionally returned with the default settings fitting the
general (ARD) model. There is no rule of thumb for the number of iterations that will be appropriate
for a given dataset and model, but one use the variance in fitted likelihoods across iterations as an

fitDiscrete 25

indication of the difficulty of the likelihood space (see details of the res object in Value). Twenty
optimization iterations per parameter seems to be a decent starting point for fitting these models.

The FAIL value within the control object should be a large value that will be considerably far from
-lnL of the maximum model likelihood. In most cases, the default setting for control$FAIL will
be appropriate. The Hessian may be used to compute confidence intervals (CI) for the parameter
estimates if the hessian element in control is TRUE.

The function can handle traits with any number of character states, under a range of models. The
character model is specified by the model argument:

• ER is an equal-rates model of where a single parameter governs all transition rates
• SYM is a symmetric model where forward and reverse transitions share the same parameter
• ARD is an all-rates-different model where each rate is a unique parameter
• meristic is a model wherein transitions occur in a stepwise fashion (e.g., 1 to 2 to 3 to 2)

without skipping intermediate steps; this requires a sensible coding of the character states as
consecutive integers are assumed to be neighboring states

• matrix is a user supplied model (given as a dummy matrix representing transition classes
between states); elements that are zero signify rates that are also zero (see Examples)

The transform argument allows one to test models where rates vary across the tree. Bounds for
the relevant parameters of the tree transform may be given through the bounds argument. Several
bounds can be given at a time. Default bounds under the different models are given below. Options
for transform are as follows:

• none is a model of rate constancy through time
• EB is the Early-burst model (Harmon et al. 2010) and also called the ACDC model (accelerating-

decelerating; Blomberg et al. 2003). Set by the a rate parameter, EB fits a model where the rate
of evolution increases or decreases exponentially through time, under the model r[t] = r[0] *
exp(a * t), where r[0] is the initial rate, a is the rate change parameter, and t is time. Default
bounds are a = c(min = -10, max = 10)

• lambda is one of the Pagel (1999) models that fits the extent to which the phylogeny predicts
covariance among trait values for species. The model effectively transforms the tree: values
of lambda near 0 cause the phylogeny to become more star-like, and a lambda value of 1
recovers the none model. Default bounds are lambda = c(min = 0, max = 1)

• kappa is a punctuational (speciational) model of trait evolution (Pagel 1999), where character
divergence is related to the number of speciation events between two species. Note that if
there are speciation events in the given phylogeny (due to extinction or incomplete sampling),
interpretation under the kappa model may be difficult. Considered as a tree transformation,
the model raises all branch lengths to an estimated power (kappa). Default bounds are kappa
= c(min = 0, max = 1)

• delta is a time-dependent model of trait evolution (Pagel 1999). The delta model is similar
to ACDC insofar as the delta model fits the relative contributions of early versus late evolution
in the tree to the covariance of species trait values. Where delta is greater than 1, recent evo-
lution has been relatively fast; if delta is less than 1, recent evolution has been comparatively
slow. Intrepreted as a tree transformation, the model raises all node depths to an estimated
power (delta). Default bounds are delta = c(min = 0, max = 3)

• white is a white-noise (non-phylogenetic) model, which converts the tree into a star phy-
logeny

26 fitDiscrete

Value

fitDiscrete returns a list with the following four elements:

lik is the function used to compute the model likelihood. The returned function
(lik) takes arguments that are necessary for the given model. For instance, if
estimating an untransformed ER model, there would be a single argument (the
transition rate) necessary for the lik function. The tree and data are stored
internally within the lik function, which permits those elements to be efficiently
reused when computing the likelihood under different parameter values. By
default, the function evaluates the likelihood of the model by weighting root
states in accordance with their conditional probability given the data (this is the
"obs" option; see FitzJohn et al. 2009). This default behavior can be changed
in the call to lik with lik(pars, root="flat"), for instance, which would
weight each state equally at the root. The other useful option is "given", where
the user must also supply a vector (root.p) of probabilities for each possible
state. To make likelihoods roughly comparable between geiger and ape, one
should use the option lik(pars, root="given", root.p=rep(1,k)), where
k is the number of character states. See Examples for a demonstration

bnd is a matrix of the used bounds for the relevant parameters estimated in the model.
Warnings will be issued if any parameter estimates occur at the supplied (or
default) parameter bounds

res is a matrix of results from optimization. Rownames of the res matrix are the
optimization methods (see optim and subplex). The columns in the res matrix
are the estimated parameter values, the estimated model likelihood, and an indi-
cation of optimization convergence. Values of convergence not equal to zero are
not to be trusted

opt is a list of the primary results: estimates of the parameters, the maximum-
likelihood estimate (lnL) of the model, the optimization method used to compute
the MLE, the number of model parameters (k, including one parameter for the
root state), the AIC (aic), sample-size corrected AIC (aicc). The number of
observations for AIC computation is taken to be the number of trait values ob-
served. If the Hessian is used, confidence intervals on the parameter estimates
(CI) and the Hessian matrix (hessian) are also returned

Note

To speed the likelihood search, one may set an environment variable to make use of parallel pro-
cessing, used by mclapply. To set the environment variable, use options(mc.cores=INTEGER),
where INTEGER is the number of available cores. Alternatively, the mc.cores variable may be preset
upon the initiation of an R session (see Startup for details).

Author(s)

LJ Harmon, RE Glor, RG FitzJohn, and JM Eastman

gbresolve 27

References

Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford. FitzJohn
RG, WP Maddison, and SP Otto. 2009. Estimating trait-dependent speciation and extinction rates
from incompletely resolved molecular phylogenies. Systematic Biology 58:595-611.

Examples

Not run:
match data and tree
tmp=get(data(geospiza))
td=treedata(tmpphy, tmpdat)
geo=list(phy=td$phy, dat=td$data)
gb=round(geo$dat[,5]) ## create discrete data
names(gb)=rownames(geo$dat)

tmp=fitDiscrete(geo$phy, gb, model="ER", control=list(niter=5), ncores=2) #-7.119792
using the returned likelihood function
lik=tmp$lik
lik(0.3336772, root="obs") #-7.119792
lik(0.3336772, root="flat") #-8.125354
lik(0.3336772, root="given", root.p=rep(1/3,3)) #-8.125354
lik(0.3336772, root="given", root.p=c(0, 1, 0)) #-7.074039
lik(c(0.3640363), root="given", root.p=rep(1,3)) #-7.020569 & comparable to ape:::ace solution

End(Not run)

general model (ARD)
match data and tree
tmp=get(data(geospiza))
td=treedata(tmpphy, tmpdat)
geo=list(phy=td$phy, dat=td$data)
gb=round(geo$dat[,5]) ## create discrete data
names(gb)=rownames(geo$dat)
fitDiscrete(geo$phy, gb, model="ARD", ncores=1) #-6.064573

user-specified rate classes
mm=rbind(c(NA, 0, 0), c(1, NA, 2), c(0, 2, NA))
fitDiscrete(geo$phy, gb, model=mm, ncores=1) #-7.037944

symmetric-rates model
fitDiscrete(geo$phy, gb, model="SYM", ncores=1)#-6.822943

gbresolve NCBI taxonomy

Description

working with NCBI taxonomy

28 gbresolve

Usage

gbresolve(x, rank="phylum", within="", ncores=1, ...)
gbcontain(x, rank="species", within="", ncores=1,...)

Arguments

x a phylogenetic tree of class ’phylo’ (gbresolve.phylo), or a string vector (gbresolve),
or a single string (gbcontain)

rank a Linnaean rank to restrict taxonomic resolution

within a character string representing a group within which to resolve query

ncores number of cores to use.

... additional arguments to be passed to the taxdump constructor (ncbit)

Details

The functions access the NCBI taxonomy resource (https://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/; see also ncbit). gbresolve resolves the taxonomic hierarchy for queried
taxa up to the given rank (or between the given ranks if two are given), and gbcontain resolves all
taxa found within a given queried group and occurring at a specified rank. The rank must be found
within the object Linnaean (see Examples). The argument within can restrict the group within
which to conduct the search (see Examples).

The local copy of the taxonomy resource (accessible in with data(ncbi) from ncbit) can be up-
dated with a call to ncbit(update=TRUE).

Setting the ncores argument to NULL will use all available cores.

Author(s)

JM Eastman

Examples

call up NCBI taxonomy
ncbi=ncbit::ncbit(update=FALSE)

possible ranks
print(Linnaean)

resolve taxa
gbresolve(c("Ambystoma_laterale", "Dicamptodon_copei"))
gbresolve("Andrias japonicus")

resolve taxa found in tree
sal=get(data(caudata))
x=gbresolve(sal$phy, rank=c("genus", "order"))
plot(x$phy, show.node=TRUE, type="f", show.tip=FALSE, cex=0.3)

https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

geiger-data 29

find all genera within salamanders
gbcontain("caudata", rank="genus")

geiger-data example datasets

Description

providing access to comparative datasets

Usage

data(amphibia)
data(caniformia)
data(carnivores)
data(caudata)
data(chelonia)
data(geospiza)
data(primates)
data(whales)

Details

The objects caudata, chelonia, carnivores, geospiza, and primates each have at least two
items, a phy object and a dat object. The phy object is a phylogenetic tree of class ’phylo’ (see
read.tree). The dat object (e.g., caudata$dat) is a named vector of (natural log-transformed)
body sizes for each group. The salamander data (object caudata) also includes the systematics
for all recognized taxa (object caudata$tax) as well as a time-calibrated family-level phylogeny
(caudata$fam) from Zhang and Wake (2009). The object caudata$phy is an unpublished glomo-
gram of mostly family level phylogenies from the literature. The backbone for that tree is from
Zhang and Wake (2009).

The amphibia object is a set of three trees, the last of which is a time-scaled estimate of the Pyron
and Wiens (2011) tree (see congruify.phylo).

The whales object is a dataset including a tree and a taxon richness matrix (see medusa).

References

Data are from the following sources:

AMPHIBIANS (amphibia)

• Roelants K, DJ Gower, M Wilkinson, SP Loader, SD Biju, K Guillaume, L Moriau, and F
Bossuyt. 2007. Global patterns of diversification in the history of modern amphibians. PNAS
104:887-892.

• Pyron RA and JJ Wiens. 2011. A large-scale phylogeny of Amphibia including over 2800
species, and a revised classification of extant frogs, salamanders, and caecilians. MPE 61:543-
583.

30 geiger-data

SALAMANDERS (caudata)

• Adams DC, CM Berns, KH Kozak, and JJ Wiens. 2009. Are rates of species diversification
correlated with rates of morphological evolution? PRSB 276:2729-2738.

• Bonett RM, PT Chippindale, PE Moler, RW van Devender, and DB Wake. 2009. Evolution
of gigantism in amphiumid salamanders. PLoSONE 4(5):e5615.

• Kozak KH, RW Mendyk, and JJ Wiens. 2009. Can Parallel Diversification Occur in Sym-
patry? Repeated Patterns of Body-Size Evolution in Coexisting Clades of North American
Salamanders. Evolution 63:1769-1784.

• Weisrock DW, TJ Papenfuss, JR Macey, SN Litvinchuk, R Polymeni, IH Ugurtas, E Zhao, H
Jowkar, and A Larson. 2006. A molecular assessment of phylogenetic relationships and lin-
eage accumulation rates within the family Salamandridae (Amphibia, Caudata). MPE 41:368-
383.

• Wiens JJ and JT Hoverman. 2008. Digit reduction, body size, and paedomorphosis in sala-
manders. Evolution and Development 10:449-463.

• Zhang P, Y-Q Chen, H Zhou, X-L Wang, TJ Papenfuss, DB Wake and L-H Qu. 2006. Phy-
logeny, evolution, and biogeography of Asiatic salamanders (Hynobiidae). PNAS 103:7360-
7365.

• Zhang P and DB Wake. 2009. Higher-level salamander relationships and divergence dates
inferred from complete mitochondrial genomes. MPE 53:492-508.

PRIMATES (primates)

• Redding DW, C DeWolff, and AO Mooers. 2010. Evolutionary distinctiveness, threat status
and ecological oddity in primates. Conservation Biology 24:1052-1058.

• Vos RA and AO Mooers. 2006. A new dated supertree of the Primates. Chapter 5. In: VOS
RA (Ed.) Inferring large phylogenies: the big tree problem. [Ph.D. thesis]. Burnaby BC,
Canada: Simon Fraser University.

CARNIVORES (carnivores)

• Eizirik E, WJ Murphy, K-P Koepfli, WE Johnson, JW Dragoo, RK Wayne, and SJ O’Brien.
2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from
multiple nuclear gene sequences. Molecular Phylogenetic and Evolution 56:49-63.

• Wozencraft WC. 2005. Order Carnivora in Wilson DE and DM Reeder (Eds.) Mammal
Species of the World. Johns Hopkins University Press.

• Jones KE, J Bielby, M Cardillo, et al. 2009. Ecological Archives E090-184.

CANIFORMS (caniformia)

• Slater GJ, LJ Harmon, and ME Alfaro. 2012. Integrating fossils with molecular phylogenies
improves inference of trait evolution. Evolution 66:3931-3944.

TURTLES (chelonia)

• Jaffe AL, GJ Slater, and ME Alfaro. 2011. Ecological habitat and body size evolution in
turtles. Biology Letters 7:558-561.

geiger-defunct 31

DARWINS FINCHES (geospiza)

• Schluter D

WHALES (whales)

• data compiled by GJ Slater

• Paleobiology Database. 2011. https://paleobiodb.org/.

geiger-defunct deprecated functions in GEIGER

Description

This function has been deprecated in geiger and auteur or may be available from another package.
Below shows the original function and the suggested function to use in its place.

Details

• area.between.curves: use geiger:::.area.between.curves

• BDsim: use sim.bd

• birthdeath.tree: use sim.bdtree

• calibrate.proposalwidth: use calibrate.rjmcmc

• deltaTree: use rescale.phylo

• disp.calc: use disparity

• dtt.full: use dtt

• exponentialchangeTree: use rescale.phylo

• get.simulation.matrix: use geiger:::.get.simulation.matrix

• getAncStates: use fastAnc

• ic.sigma: use ratematrix

• intercalate.samples: use geiger:::.intercalate.rjmcmc

• kappaTree: use rescale.phylo

• lambdaTree: use rescale.phylo

• linearchangeTree: use rescale.phylo

• name.check: use geiger:::.treedata

• node.leaves: use tips

• node.sons: use geiger:::.get.desc.of.node

• ouTree: use rescale.phylo

• phy.anova: use aov.phylo

• phy.manova: use aov.phylo

• pool.rjmcmcsamples: use load

https://paleobiodb.org/

32 geiger-internal

• prune.extinct.taxa: use drop.extinct

• prune.random.taxa: use drop.random

• rate.estimate: use bd.ms or bd.km

• rescaleTree: use rescale.phylo

• runMedusa: use medusa

• shifts.plot: use plot

• speciationalTree: use rescale.phylo

• tip.disparity: use disparity

• tracer: use of plot.mcmc and other functions in coda recommended

• transform.phylo: use rescale.phylo

• tworateTree: use rescale.phylo

• vmat: use geiger:::.vmat

geiger-example internal geiger functions

Description

geiger-example functions are used solely for demonstrative purposes

geiger-internal internal geiger functions

Description

geiger-internal functions are either not typically called by the user or are currently undocu-
mented

Details

This is an internal geiger function, either not intended to be called directly by the user or is currently
undocumented.

load.rjmcmc 33

load.rjmcmc posterior samples from single or multiple MCMC runs

Description

generating a pooled and thinned sample of posterior estimates from rjmcmc

Usage

load.rjmcmc(x, phy = NULL, burnin = NULL, thin = NULL, ...)

Arguments

x a vector of directory names (character strings) in which samples generated by
geiger are found

phy a phylogenetic tree of class ’phylo’ for which to compile results; if NULL, the
tree stored within each generated rda file is used

burnin the proportion of each chain to be removed as burnin

thin an integer specifying the thinning interval for chains

... arguments to be passed to other functions (has no effect in the present context)

Details

This function provides a means to compile results from at least a single MCMC run, and is espe-
cially useful in pooling of multiple independent runs. In cases where MCMC chains were sampled
using a set of (different) trees, the argument phy can be used to summarize compiled results against a
single summary tree. Branchwise samples are stored with unique edge identifiers (character strings)
that are more reliable than the use of numeric node-identifiers (see digest for the function used to
generate these unique edge labels).

If it is desired to run analyses for the same trait data across a set of trees (see Examples), it is
strongly recommended that the set of trees be sent to rjmcmc.bm as a multiPhylo object (see
read.tree).

Value

an object of class rjmcmc or rjmcmcmc

Author(s)

JM Eastman

See Also

rjmcmc.bm

34 make.gbm

Examples

sal=get(data(caudata))
a<-sim<-sal$phy
bl=c(386,387,388,183,184,185,186)
mod=match(bl, sim$edge[,2])
sim$edge.length[mod]=sim$edge.length[mod]*64
dat=rTraitCont(sim)
while(1){
b=a
b$tip.label[183:186]=sample(b$tip.label[183:186])
if(!all(a$tip.label==b$tip.label)) break()
}

trees=list(a=a,b=b, c=ladderize(a, right=TRUE), d=ladderize(a, right=FALSE))
class(trees)="multiPhylo"
rjmcmc.bm(trees, dat, ngen=1e3, type="rbm")

res=load.rjmcmc(paste("relaxedBM", names(trees), sep="."), phy=trees$d, burnin=0.25)
plot(res, par="shifts", show.tip=FALSE, edge.width=2.5)

make.gbm tailor reversible-jump Markov chain Monte Carlo sampling

Description

controlling reversible-jump Markov chain Monte Carlo sampling

Usage

make.gbm(phy, dat, SE=NA, type = c("bm", "rbm", "jump-bm", "jump-rbm"), ...)

Arguments

phy a phylogenetic tree of class ’phylo’

dat a named vector of continuous trait values, associated with each species in phy

SE a named vector of standard errors for each trait value; applied to all trait values
if given a single value

type the class of model to use (see rjmcmc.bm)

... arguments passed internally to control other settings (see Details)

make.gbm 35

Details

The argument ... controls the substitution of default settings for Markov-chain Monte Carlo sam-
pling. Below are the settings that are controllable by the user. These parameters and their default
settings can also be found with an empty call to the function (e.g., make.gbm()).

measurement error (SE): one of the arguments necessary for running rjmcmc.bm is SE, which is
a statement about the error associated with the values given in dat. Measurement error (whose
argument is SE) can be a named vector of numeric values (including NA) or a single value (including
NA). If given as a vector, SE must have names that correspond to the those found for dat. If given
a single value for SE, the sampler will apply that value of measurement error to all tips in the tree.
If NA appears for the measurement error for any species, SE becomes an additional parameter of
the model: this density is consequently sampled by rjmcmc.bm. The default for rjmcmc.bm is to
estimate a single SE (which is applied to all species).

control settings: default settings for each control parameter are given below. Note that for the
discrete random variables (for which dlnSHIFT and dlnJUMP) apply, certain criteria must be met
if the user prefers to supply a different prior density. The function dcount is useful for building a
custom prior density function for discrete variables.

Value

The items that can be tailored in the resulting control object are as follows:

method default direct; this defines the implementation for computing model likelihood
(currently with only the default available)

constrainSHIFT default FALSE; if integer given, this constrains the number of local clocks in the
diffusive process

constrainJUMP default FALSE; if integer given, this constrains the number of pulses in the jump
process

dlnSHIFT default dcount(0:(nn - 1), FUN = dpois, lambda = log(2)), where nn is the
number of branches in the tree; this controls the prior density on the number of
shifts between local clocks in the tree (and applies only if the type argument to
rjmcmc.bm is "rbm" or "jump-rbm") and if constrainSHIFT is FALSE)

dlnJUMP default dcount(0:nn, FUN = dlunif, min = 0, max = nn, dzero = 0.5), where
nn is the number of branches in the tree; this controls the prior density on the
number of evolutionary pulses across the tree (and applies only if the type ar-
gument to rjmcmc.bm is "jump-bm" or "jump-rbm" and if constrainJUMP is
FALSE)

dlnRATE default function (x) dexp(x, rate = 1/(10^3), log = TRUE); this defines the
prior density on rate scalars

dlnSE default function (x) dexp(x, rate = 1/(10^3), log = TRUE); this defines the
prior density on measurement error

dlnPULS default function (x) dexp(x, rate = 1/(10^3), log = TRUE); this defines the
prior density on jump variance

dlnROOT default function (x) dunif(x, min=-10^3, max=10^3, log=TRUE); this de-
fines the prior density on root state

36 make.gbm

rate.lim default list(min=0, max=Inf); this defines the numerical limits on the rate
scalars

se.lim default list(min=0, max=Inf); this defines the numerical limits on the mea-
surement error

root.lim default list(min=-Inf, max=Inf); this defines the numerical limits on the root
state

jump.lim default 1; determines the number of jumps permissible along each branch (1 is
currently supported)

excludeSHIFT default c(); if this argument is not empty, these are branches (specified by nu-
meric node-identifiers) which cannot be chosen for a novel local clock

excludeJUMP default c(); if this argument if not empty, these are branches (specified by nu-
meric node-identifiers) which cannot be chosen for an evolutionary pulse

bm.jump default 0.5; this defines the ratio between proposals for the diffusion and jump
processes (0.5 is perfectly balanced)

mergesplit.shift
default 0.5; this defines the ratio between proposals that scale model complexity
and those that do not

tune.scale default 0.65; this defines the ratio between proposals that modify the model
branchwise versus treewide

slide.mult default 0.25; this defines the ratio between sliding window and multiplier pro-
posals

prob.dimension default 0.65; this defines the proportion of proposals used to modify model
dimensionality

prob.effect default 0.3; this defines the proportion of proposals that do not alter dimension-
ality

prob.SE default 0.03; this defines the proportion of proposals that alter the (unknown)
measurement error

prob.root default 0.02; this defines the proportion of proposals that alter the root state

prop.width default 1; this defines the proposal width used for multiplier and sliding-window
proposals

simple.start default TRUE; this determines whether to start the MCMC sampler with minimal
dimensionality

filebase default "result"; this defines a ’base’ filename for the output

Author(s)

JM Eastman

See Also

rjmcmc.bm

mecca 37

mecca running a MECCA analysis

Description

Runs MECCA’s hybrid ABC-MCMC algorithm to jointly estimate diversification rates and trait
evolution from incompletely sampled comparative data. Many of the arguments taken by this func-
tion are the same as those in calibrateMecca().

Usage

mecca(phy, richness, cladeMean, cladeVariance, model = c("BM", "Trend", "twoRate"),
prior.list = list(priorSigma = c(-4.961845, 4.247066), priorMean = c(-10, 10)),
start = start, Ngens = 10000, printFreq = 100, sigmaPriorType = "uniform",

rootPriorType = "uniform", SigmaBounds = c(-4.961845, 4.247066), hotclade = NULL,
divPropWidth = 0.1, scale = 1, divSampleFreq = 0, BoxCox = TRUE, outputName = "mecca")

Arguments

phy time-calibrated phylogenetic tree of class ’phylo’

richness named vector of species richnesses corresponding to tips in the tree (if a tip does
not represent a higher level taxon, its richness should be 1)

cladeMean named vector of trait means (all tips in the tree must be represented)

cladeVariance named vector of trait variances (all tips in the tree must be represented; if only
one taxon is present, use 0 for the variance)

model model of trait evolution to be used – options currently implemented are "BM"
= Brownian Motion, "Trend" = Brownian moton with a trend, and "twoRate" =
two Brownian rate model (see hotclade below).

prior.list a list containing prior distribution parameters (default values used if this argu-
ment is empty)

start ouput of startingpt.mecca

Ngens number of generations to run MECCA

printFreq frequency of printing the acceptance rate

sigmaPriorType type of prior distribution on the Brownian rate parameter (currently either "uni-
form" or "normal")

rootPriorType type of prior distribution on the root state rate parameter (currently "uniform" is
available)

SigmaBounds bounds for sigma (default values correspond to a wide range taken from Harmon
et al. 2010)

hotclade if a two-rate model is to be fit, this specifies which clade takes the second rate –
two names should be specified in a vector; either the two tip names that span the
clade of interest, or the name of a terminal/internal edge and NULL if only one
branch takes the second rate

38 mecca

divPropWidth proposal width for the diversification MCMC (default value of 0.1 seems to
work well)

scale a numeric value by which the proposal width for trait evolution parameters will
be multiplied (a value of 2 seems to work well, but this should be adjusted for
each individual dataset)

divSampleFreq whether new trees are simulated at every step – the default (0) is yes; if a non-
zero value is given, this will determine the frequency (every n steps) with which
new tip trees are simulated

BoxCox whether summaries are BOX-COX standardized – default (1) is yes and is rec-
ommended; this should always be consistent with the calibration step

outputName name stem for output file names

Details

The output files produced are formatted to be used with the C++ Program ABCtoolbox (Wegmann et
al. 2010), which produces adjusted posterior distributions and can perform model selection without
likelihoods.

Value

MECCA does not store any output in memory. Instead, five output files are generated to the cur-
rent working directory. This files are fully compatible with ABCtoolbox (Wegmann et al. 2011).
The first file (outputname_bdSimFile.tx) will output the posterior sample for diversification param-
eters. The second file (outputname_bmSimFile.txt) ouputs the sampled trait evolution parameters
and their associated raw summary statistics while outputname_ObsFile.txt gives the observed sum-
maries.For ABC toolbox though, it will often be more efficient to use pls-transformed versions of
the observed and simulated summary statistics. These are available in outputname_distObs.txt, and
outputname_distSimFile.txt.

Note

The numbers printed to the screen during the run give the current generation, acceptance rate for
diversification parameters, acceptance rate for trait evolutionary rate parameters and acceptance rate
for root state parameters, respectively

Author(s)

Graham Slater, Luke Harmon, Daniel Wegmann

References

Slater GJ, LJ Harmon, D Wegmann, P Joyce, LJ Revell, and ME Alfaro. 2012. Fitting models of
continuous trait evolution to incompletely sampled comparative data using approximate Bayesian
computation. Evolution 66:752-762.

mecca 39

Examples

Not run:
data(carnivores)
phy <- carnivores$phy
data <- carnivores$dat
richness <- data[,1]
names(richness) <- rownames(data)

priors <- list(priorSigma = c(-4.5, 4.5), priorMean = c(-5, 2))

CALIBRATION (far too short for a real analysis)
Cal <- calibrate.mecca(phy, richness, model = "BM", prior.list = priors, Ncalibrations = 1000)

params <- Cal$trait[, c(1,2)] ## extract the calibration BM parameters
stats <- Cal$trait[, -c(1,2)] ## extract the calibration summary stats

now we run pls, determining combinations of summaries that explain variation in our parameters
For BM, 2 components is sufficient. For more complex models, more componenets will be required.
require(pls)
myPlsr<-pls::plsr(as.matrix(params) ~ as.matrix(stats), scale=F, ncomp = 2)

plot(RMSEP(myPlsr)) ## Look at Root Mean Square error plots

summary(myPlsr) ## take a look at

plsdat <- myPlsr$loadings

extract means and variances from the carnivore data

cladeMean<-data[,2]
names(cladeMean)<-rownames(data)
cladeVariance<-data[,3]
names(cladeVariance)<-rownames(data)

STARTING POINT
And now we can compute starting values for the ABC-MCMC
start <- startingpt.mecca(Cal, phy, cladeMean, cladeVariance,
tolerance = 0.05, plsdat, BoxCox = TRUE)

MECCA (far too short for a real analysis)
mecca(phy, richness, cladeMean, cladeVariance, model = "BM", prior.list = priors, start = start,

Ngens = 1000, printFreq = 100, sigmaPriorType = "uniform", rootPriorType = "uniform",
SigmaBounds = c(-4.5, 4.5), divPropWidth = 0.1, scale = 2, divSampleFreq = 0, BoxCox = TRUE,
outputName ="MeccaBM.txt")

PASTE UNCOMMENTED FOLLOWING LINE TO DROP FILES CREATED BY MECCA
unlink(dir(pattern=paste(r)),recursive=TRUE)

End(Not run)

40 medusa

medusa MEDUSA: modeling evolutionary diversification using stepwise AIC

Description

Fits piecewise birth-death models to ultrametric phylogenetic tree(s) according to phylogenetic
(edge-length) and taxonomic (richness) likelihoods. Optimal model size is determined via a step-
wise AIC approach.

Usage

medusa(phy, richness = NULL, criterion = c("aicc", "aic"),
partitions=NA, threshold=NA, model = c("mixed", "bd", "yule"),
cut = c("both","stem","node"), stepBack = TRUE,
init = c(r=0.05, epsilon=0.5), ncores = NULL, verbose = FALSE, ...)

Arguments

phy an ultrametric phylogenetic tree of class ’phylo’

richness an optional matrix of taxonomic richnesses (see Details)

criterion an information criterion to use as stopping criterion

partitions the maximum number of models to be considered

threshold the improvement in AIC score that should be considered significant (see Details)

model the flavor of piecewise models to consider (see Details)

cut determines where shifts are placed on the tree (see Details)

stepBack determines whether parameter/model removal is considered. default = TRUE.
(see Details)

init initial conditions for net diversification and relative extinction

ncores the number of processor cores to using in parallel processing. default = all

verbose print out extra information. default = FALSE

... additional arguments to be passed to treedata

Details

The MEDUSA model fits increasingly complex diversification models to a dataset including richness
information for sampled tips in phy. The tree must have branch lengths proportional to time. The
richness object is optional, but must be given if the tree is not completely sampled. MEDUSA
assumes that the entire extant diversity in the group is sampled either in phy or given by informa-
tion contained within the richness object. The richness object associates species richness with
lineages sampled in the tree. For instance, if a genus containing a total of 10 species is exemplied in
the tree by a single tip, the total diversity of the clade must be recorded in the richness object (see
Examples). All taxa missing from the tree have to be assigned to one of the tips in the richness
matrix. If the richness object is NULL, the tree is assumed to be completely sampled.

medusa 41

The algorithm first fits a single diversification model to the entire dataset. A series of single break-
points in the diversification process is then added, so that different parts of the tree evolve with
different parameter values (per-lineage net diversification–r and relative extinction rates–epsilon).
Initial values for these diversification parameters are given through the init argument and may
need to be tailored for particular datasets. The algorithm compares all single-breakpoint models to
the initial model, and retains the best breakpoint. Then all possible two-breakpoint models are com-
pared with the best single-breakpoint model, and so on. Breakpoints may be considered at a "node",
a "stem" branch, or both (as dictated by the cut argument). Birth-death or pure-birth (Yule) pro-
cesses (or a combination of these processes) may be considered by the MEDUSA algorithm. The
model flavor is determined through the model argument.

Two stopping criteria are available for the MEDUSA algorithm. The user can either limit the num-
ber of piecewise models explored by MEDUSA or this number may be determined based on model
fits. A maximum number of model partitions to be explored may be given a priori (if given a non-
zero number through the partitions argument) or an information criterion is used to choose
sufficient model complexity. If the latter stopping criterion is used, one needs to specify whether
to use Akaike information criterion ("aic") or sample-size corrected AIC ("aicc"); the latter is
recommended, and is the default setting. An appropriate threshold in AICc differences between dif-
ferent MEDUSA models has been shown to be dependent on tree size. The threshold used for model
selection is computed internally (and is based on extensive simulation study); this value is reported
to the user. The user may choose to specify an alternative AIC-threshold with the ("threshold")
argument, making the algorithm more (or less) strict in scrutinizing model improvement.

The user will almost certainly want to summarize the object returned from MEDUSA with the
function TBA.

Value

A list object is returned including fits for all model complexities as well as summary information:

control is a list object specifying the stopping criterion, the information criterion and
threshold used (if appropriate), or the number of partitions explored

cache is a list object primarily used internally (including the tree and richness infor-
mation)

models is a list object containing each optimized piecewise model, primarily for internal
use

summary is a dataframe containing breakpoints and fit values for optimal models at each
model complexity. If partitions is used as a stopping criterion. Other data in-
clude: the number of parameters for each model (k, determined by the number
of breakpoints, independent net-diversification rates, and independent relative-
extinction values), the branch or node chosen for each successive piecewise
model (split), whether the split occurs at a node or stem (cut), and the model
likelihood (lnL)

FUN is a function used to summarize a particular model (indexed by number) and is
primarily for internal use

Author(s)

JW Brown <phylo.jwb@gmail.com>, RG FitzJohn, ME Alfaro, LJ Harmon, and JM Eastman

42 name.check

References

Alfaro, ME, F Santini, C Brock, H Alamillo, A Dornburg, DL Rabosky, G Carnevale, and LJ
Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed
vertebrates. Proceedings of the National Academy of Sciences 106: 13410-13414.

See Also

plot.medusa

Examples

dat=get(data(whales))
phy=dat$phy
richness=dat$richness

USING AICc as STOPPING CRITERION
res1=medusa(phy, richness, warnings=FALSE)
print(names(res1)) # output list elements
print(res1$summary) # show 'summary' object
summary(res1, criterion="aicc") # select best model based on AICc

PLOTTING RESULTS
plot breakpoints for the best model chosen by AICc
invoking plot.medusa()
plot(res1, cex=0.5,label.offset=1, edge.width=2)

name.check Compares taxa in data and tree

Description

This function is a general tool for checking for concordance between a data file and a phylogenetic
tree. For the data, names can be specified as the names of objects in the vector, rownames of the
data array or as ’data.names’. The name.check function finds and lists all taxa present in data set
but not in the tree, and vice-versa. The treedata function returns a list containing both the tree and
the data after pruning out any species that are not found in both.

Usage

name.check(phy, data, data.names=NULL)

Arguments

phy an object of class "phylo"
data data for tips of the tree
data.names names of the tips in the order of the data; if this is not given, names will be taken

from the names or rownames of the object data

nh.test 43

Value

Tree.not.data Taxa in tree but not data

Data.not.tree Taxa in data but not tree

...

Author(s)

Luke J. Harmon

Examples

data(geospiza)

tmp <- name.check(geospiza$phy, geospiza$dat)
tmp

then match data to tree
newphy <- drop.tip(geospiza$phy, tip=tmp$tree_not_data)

name check should now say "OK"
name.check(newphy, geospiza$dat)

this can all be done in one step using treedata
td <- treedata(geospiza$phy, geospiza$dat)
td

all(tdphytip.label == newphy$tip.label)

nh.test using the Freckleton and Harvey node-height test

Description

Fits a linear model between the absolute magnitude of the standardized independent contrasts and
the height above the root of the node at which they were being compared to identify early bursts of
trait evolution.

Usage

nh.test(phy, d, regression.type, log = TRUE, rlm.maxit = 20 , show.plot = TRUE, ...)

44 nh.test

Arguments

phy A time calibrated phylogeny in "phylo" format

d A named vector of trait values.
regression.type

The type of regression to be used. Specify regression.type="lm" to fit a stan-
dard linear model or regression.type="rlm" to fit a robust regression model

log Whether the data should be logged or not.

rlm.maxit The maximum number of iterations to fit the robust regression model. This is
ignored if regression.type="lm".

show.plot Binary argument indicating whether plot should be made.

... Additional arguments passed to plot

Value

Function returns a lm or rlm object and outputs a plot if show.plot=TRUE

Author(s)

Graham Slater

References

Slater GJ and MW Pennell (in press) Robust regression and posterior predictive simulation increase
power to detect early bursts of trait evolution. Systematic Biology.

Freckleton RP and PH Harvey (2006) Detecting non-brownian evolution in adaptive radiations.
PLoS Biology 4:e373.

See Also

pp.mcmc, pic

Examples

data(whales)

tmp <- treedata(whales$phy, whales$dat[,1])

phy <- tmp$phy
dat <- tmp$data[,1]

nh.test(phy, dat, regression.type="lm", show.plot=TRUE)

nodelabel.phylo 45

nodelabel.phylo Blending information from taxonomies and trees

Description

working with systematic reference tables and phylogenies

Usage

nodelabel.phylo(phy, taxonomy, strict=TRUE, ncores=NULL)
phylo.lookup(taxonomy, ncores=NULL)
lookup.phylo(phy, taxonomy = NULL, clades = NULL, ncores=NULL)
phylo.clades(clades, phy=NULL, unplaced=TRUE, ncores=NULL)
glomogram.phylo(phy, subtrees)

Arguments

phy a phylogenetic tree of class ’phylo’ (’multiPhylo’ in phylo.clades)

taxonomy a linkage table (of class matrix) between tips of the phylogeny and clades rep-
resented in the tree; rownames of ’taxonomy’ should be tips found in the phy-
logeny

clades a named list of clade definitions (i.e., spanning taxa; see Examples); spanning
taxa may invoke other definitions found within the clades list

unplaced whether to use ’unplaced’ taxa if given as an element in clades

subtrees a list of trees to be grafted into phy; each subtrees element must either be a
’phylo’ or ’multiPhylo’ object with branch lengths in the same units as phy (see
Examples)

strict whether to enforce strict labeling of nodes or allow liberal estimates of the best
location of a given nodelabel

ncores the maximum number of cores to be used

Details

nodelabel.phylo provides a function (as part of the phylo object returned) to resolve the hash key
and node identifier for a label found in taxonomy. This function is the FUN element of the returned
object. If the taxonomic label cannot be properly placed in the tree (i.e., no subtree is found that
is absolutely consistent with the supplied taxonomy, the nearest matching node(s) will be returned
when invoking FUN).

phylo.lookup converts a taxonomy into a phylogenetic tree.

lookup.phylo converts a phylogenetic tree (phy) into a linkage table based on nodelabels associ-
ated with phy, which can be supplemented with a taxonomy and (or) clades object.

phylo.clades returns a series of phylogenetic subtrees based on clade definitions found in the
clades object. Definitions can be handles that are recursive (see Examples).

46 nodelabel.phylo

Author(s)

JM Eastman

Examples

Not run:
sal=get(data(caudata))
print(head(sal$tax))

TREE from TABLE: phylo.lookup()
tax=cbind(sal$tax[,c("subfamily", "family", "suborder")], order="Caudata")
tphy=phylo.lookup(tax, ncores=2)
print(tphy)
head(tphy$node.label)

TABLE from TREE: lookup.phylo()
tax=sal$tax[,c("genus", "family")]
cld=list(
Sirenoidea=c("Siren", "Pseudobranchus"),
Salamandroidea=c("Ambystomatidae", "Plethodontidae"),
Cryptobranchoidea=c("Hynobius_naevius", "Cryptobranchus_alleganiensis"),
CAUDATA=c("Sirenoidea","Salamandroidea","Cryptobranchoidea")
)
lkp=lookup.phylo(sal$phy, taxonomy=tax, clades=cld, ncores=2)
print(lkp)
nphy=nodelabel.phylo(sal$phy, lkp, ncores=2)
dev.new()
plot.phylo(ladderize(nphy,right=FALSE), cex=0.35,
type="fan", label.offset=2.5, no.margin=TRUE, edge.color="gray", edge.width=0.5)

nodelabels(nphy$node.label, cex=0.45, col="red", frame="n")

CLADES to TREE: phylo.clades()
fmrca=geiger:::.mrca
salamandroidea=extract.clade(nphy, fmrca(c("Ambystomatidae", "Plethodontidae"), nphy))
cryptobranchoidea=extract.clade(nphy, fmrca(c("Cryptobranchidae", "Hynobiidae"), nphy))
siren=extract.clade(nphy, fmrca(c("Siren_lacertina", "Siren_intermedia"), nphy))

clades=list(
Sirenoidea=c("Siren", "Pseudobranchus"),
Caudata=c("Sirenoidea","Salamandroidea","Cryptobranchoidea"),
AMPHIBIA=c("Caudata","Anura","Gymnophiona")

)

phy=list(Cryptobranchoidea=cryptobranchoidea, Salamandroidea=salamandroidea, Siren=siren)
class(phy)="multiPhylo"

res=phylo.clades(clades, phy, ncores=2)
amph=nodelabel.phylo(res$AMPHIBIA, lkp, ncores=2)
print(amph$FUN("Salamandroidea"))
dev.new()
plot(ladderize(amph, right=FALSE), cex=0.2, label.offset=0.05)

plot.medusa 47

nodelabels(amph$node.label, cex=0.35, col="red", frame="n")

GLOMOGRAM
sirenidae=extract.clade(nphy, fmrca(c("Siren_lacertina", "Pseudobranchus_axanthus"), nphy))
ambystomatidae=extract.clade(nphy, fmrca(c("Ambystoma_gracile", "Ambystoma_texanum"), nphy))
trees=list(
Cryptobranchoidea=cryptobranchoidea,
Sirenidae=sirenidae,
Ambystomatidae=ambystomatidae
)
class(trees)="multiPhylo"

fam=sal$fam
ftax=unique(sal$tax[,c("family", "suborder")])
rownames(ftax)=unname(ftax[,"family"])
fam=nodelabel.phylo(fam, ftax, ncores=2)
fam$FUN("Salamandroidea")

res=glomogram.phylo(fam, trees)
dev.new()
zz=match(res$tip.label, fam$tip.label)
cc=integer(length(zz))
cc[!is.na(zz)]=1

plot(ladderize(res, right=FALSE), cex=1, label.offset=5, tip.color=ifelse(cc==1, "red", "black"))

End(Not run)

plot.medusa MEDUSA: modeling evolutionary diversification using stepwise AIC

Description

summarizing piecewise diversification models estimated by MEDUSA

Usage

S3 method for class 'medusa'
plot(x, cex = 0.5, time = TRUE, ...)

Arguments

x an object of class medusa for plotting

cex text size

time logical. should a time axis be plotted. default = TRUE.

... additional arguments to be passed to internal functions

48 plot.medusa

Details

The medusa model returns a raw list object. This function is used to generate a modified edge
matrix (see read.tree for details on the edge matrix), giving all relevant information about the
estimated diversification process. The returned z-matrix includes: the ancestor (anc) and descen-
dant (dec) relationships between nodes of the tree (using ape indices); the beginning (t.0) and
ending (t.1) times and length (t.len) of each branch; the diversities at the start (n.0) and end
(n.t) of each branch; the piecewise model assigned partition to the branch; whether the branch
is associated with a shift; the timing of the shift (t.shift); the net-diversification rate (r) and
relative-extinction rate (epsilon) associated with the branch as well as for the direct ancestor of the
branch (ancestral.r and ancestral.epsilon). The z-matrix also includes a summary attribute
that shows which model is chosen and associated information on model fit (see Examples).

The raw output of medusa contains an optimized model. The summary output may then be sent
to a plotting function which will display the location on the tree where breakpoints have been
placed. Note that the first piecewise model corresponds to the root and all descendants (until another
breakpoint is encountered).

Author(s)

JW Brown <phylo.jwb@gmail.com>, RG FitzJohn, ME Alfaro, LJ Harmon, and JM Eastman

References

Alfaro, ME, F Santini, C Brock, H Alamillo, A Dornburg, DL Rabosky, G Carnevale, and LJ
Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed
vertebrates. Proceedings of the National Academy of Sciences 106: 13410-13414.

See Also

medusa

Examples

dat=get(data(whales))
phy=dat$phy
richness=dat$richness

res <- medusa(phy, richness)

select best model based on AICc (showing the third model as best)
plot(res, cex=0.5, label.offset=1) # using plot.medusa()
title("AICc-chosen model")

pp.mcmc 49

pp.mcmc using posterior predictive MCMC for modeling quantitative trait evo-
lution

Description

performs posterior predictive checks for models of quantitative trait evolution. At present, only BM,
EB, and clade.shift models are implemented

Usage

pp.mcmc(phy, d, Ngens = 1000000, sampleFreq = 1000, printFreq = 1000,
prop.width = 1, model = "BM", eb.type = "exponential",
clade = NULL, rlm.maxit = 20)

Arguments

phy A time calibrated phylogeny in "phylo" format

d A named vector or dataframe of trait values.

Ngens Number of generations that the posterior predictive MCMC will run for. Default
is 1 million generations

sampleFreq The frequency with which model parameters will be sampled from the chain and
simulations run. Default is every 1000 generations

printFreq The frequency with which the current number of generations and acceptance
rates will be printed to screen. Default is every 1000 generations

prop.width The width of the sliding window proposal distribution for ln(Sigmasq) and, if
applicable, the exponential change parameter for EB. The width for the EB pa-
rameter is obtained by dividing by 10. Default proposal width is 1.

model The model to fit and simulate under. Default is Brownian motion (BM). Other
options are early burst (EB) or an edge shift model (edge.shift) where the rate
is allowed to change along an internal edge leading to a specified clade (see
argument "clade" and Slater and Pennell in press for an example)

eb.type The type of exponential change model assumed. If eb.type = "exponential" (the
default), then an exponentially declining rate will be assumed and contrasts will
be log transformed when computing the node height test. If eb.type = "linear", a
linear decline in rate will be assumed and untransformed contrasts will be used.

clade Default = NULL and is used if model = "BM" or model = "EB". If using model
= "edge.shift", then a clade must be specified for which the stem lineage expe-
riences a different rate of evolution. The clade is specified by giving the names
of two taxa spanning the clade of interest, e.g. clade = c("A", "B")

rlm.maxit Maximum number of interations to use for the iteratively reweighted least squares
optimization of the robust regression algorithm (see ?rlm). Default is 20 and
should be sufficient for most problems

50 pp.mcmc

Details

This function runs a posterior predictive MCMC under the specified model, sampling model pa-
rameters from their posterior distributions and simulating under that model. Simulated data are
summarized using the Node height test (Freckleton and Harvey 2006) slope (OLS and robust re-
gression) and Morphological Disparity Index (Harmon et al. 2003). Model adequacy can then
be assessed by comparing observed values for these summary statistics to the posterior predictive
distributions

Value

A dataframe containing the following columns:

$generation the generation at which parameters where sampled and simulations conducted

$logLk The sampled logLikelihood values for the model

$Sigma Brownian rate parameter values
$node.height.slope.lm

posterior predictive distribution of slopes for the node height test using an ordi-
nary least squares regression

$node.height.slope.rlm

posterior predictive distribution of slopes for the node height test using a robust
regression

$MDI posterior predictive distribution of MDI values

Author(s)

Graham Slater and Matthew Pennell

References

Slater GJ and MW Pennell (2014) Robust regression and posterior predictive simulation increase
power to detect early bursts of trait evolution. Systematic Biology.

Freckleton RP and PH Harvey (2006) Detecting non-brownian evolution in adaptive radiations.
PLoS Biology 4:e373.

Harmon LJ, JA Schulte, A Larson, and JB Losos (2003). Tempo and mode of evolutionary readia-
tions in iguanian lizards. Science 301:961-964.

See Also

nh.test, dtt, fitContinuous

Examples

data(whales)

tmp <- treedata(whales$phy, whales$dat[,1])

phy <- tmp$phy

r8s.phylo 51

dat <- tmp$data[,1]

compute observed statistics

nht.ols <- nh.test(phy, dat, regression.type = "lm",
log = TRUE, show.plot = FALSE)$coefficients[2,1]

nht.rlm <- nh.test(phy, dat, regression.type = "rlm",
log = TRUE, show.plot = FALSE)$coefficients[2,1]

mdi.exp <- 0

#---- run short pp.mcmc

pp.eb <- pp.mcmc(phy, dat, Ngens = 1000, sampleFreq = 10, printFreq = 100, model ="EB")

---- plot results

quartz(width = 5, height = 7)
par(mar = c(4,5,1,1))
par(mfcol = c(3,1))

hist(pp.eb$MDI, col = "gray", border = "gray", main = NULL, xlab = "pp.MDI",
ylab = "Frequency", cex.axis = 1.2)

abline(v = mdi.exp, col = "black", lwd = 3, lty = 2)

mdi.p <- length(which(pp.eb$MDI<=0))/length(pp.eb$MDI)

hist(pp.eb$node.height.slope.lm, col = "gray", border = "gray", main = NULL, xlab = "pp.nht_ols",
ylab = "Frequency", cex.axis = 1.2)

abline(v = nht.ols, col = "black", lwd = 3, lty = 2)

node.height.ols.p <- length(which(pp.eb$node.height.slope.lm <= nht.ols)) /
(length(pp.eb$node.height.slope.lm) +1)

hist(pp.eb$node.height.slope.rlm, col = "gray", border = "gray", main = NULL, xlab = "pp.nht_ols",
ylab = "Frequency", cex.axis = 1.2)

abline(v = nht.rlm, col = "black", lwd = 3, lty = 2)

node.height.rr.p <- length(which(pp.eb$node.height.slope.rlm <= nht.rlm)) /
(length(pp.eb$node.height.slope.rlm) +1)

r8s.phylo call r8s from geiger

52 r8s.phylo

Description

call r8s, including a calibration file

Usage

r8s.phylo(phy, calibrations=NULL, base="r8srun", ez.run="none", rm=TRUE,
blformat=c(lengths="persite", nsites=10000, ultrametric="no", round="yes"),
divtime=c(method="NPRS", algorithm="POWELL"),
cv=c(cvStart=0, cvInc=0.5, cvNum=8), do.cv=FALSE)

Arguments

phy a phylogram to turn into a chronogram

calibrations a set of calibrations

base file name

ez.run if set to "PL" or "NPRS", does the analysis with settings appropriate for each

rm remove the output files

blformat blformat options for r8s. Pay special attention to nsites.

divtime divtime options for r8s

cv cv options for r8s

do.cv Boolean for whether to do cross validation or not

Details

This function uses r8s and a calibration to make your tree ultrametric

Author(s)

JM Eastman & B O’Meara

References

SANDERSON r8s ____NEED TO ADD_____

Examples

Not run:
phy <- read.tree(text=paste0("(Marchantia:0.033817,",

"(Lycopodium:0.040281,((Equisetum:0.048533",
"Osmunda:0.033640,Asplenium:0.036526):0.000425):",
"0.011806,((((Cycas:0.009460,Zamia:0.018847):",
"0.005021,Ginkgo:0.014702):1.687e-86,((Pinus:",
"0.021500,(Podocarpac:0.015649,Taxus:0.021081):",
"0.006473):0.002448,(Ephedra:0.029965,(Welwitsch",
":0.011298,Gnetum:0.014165):0.006883):0.016663)",
":0.006309):0.010855,((Nymphaea:0.016835,(((((Saururus:",
"0.019902,Chloranth:0.020151):1.687e-86,",

ratematrix 53

"((Araceae:0.020003,(Palmae:0.006005,Oryza:0.031555):",
"0.002933):0.007654,Acorus:0.038488):0.007844)",
":1.777e-83,(Calycanth:0.013524,Lauraceae:0.035902):",
"0.004656):1.687e-86,((Magnolia:0.015119,Drimys:",
"0.010172):0.005117,(Ranunculus:0.029027,((Nelumbo:",
"0.006180,Platanus:0.002347):0.003958,(Buxaceae:",
"0.013294,((Pisum:0.035675,(Fagus:0.009848,Carya:",
"0.008236):0.001459):0.001994,(Ericaceae:0.019136,",
"Solanaceae:0.041396):0.002619):1.687e-86):0.004803)",
":1.687e-86):0.006457):0.002918):0.007348,",
"Austrobail:0.019265):1.687e-86):1.687e-86,Amborella:",
"0.019263):0.003527):0.021625):0.012469):",
"0.019372);"))

calibrations <- data.frame(MRCA="LP", MaxAge=450, MinAge=450,
taxonA="marchantia", taxonB="pisum", stringsAsFactors=FALSE)

phy.nprs <- r8s.phylo(phy=phy, calibrations=calibrations, base="nprs_file", ez.run="NPRS")
phy.pl <- r8s.phylo(phy=phy, calibrations=calibrations, base="pl_file", ez.run="PL")

End(Not run)

ratematrix evolutionary VCV matrix

Description

estimating the evolutionary or phylogenetic variance-covariance matrix

Usage

ratematrix(phy, dat)

Arguments

phy a phylogenetic tree of class ’phylo’

dat a named vector or matrix of continuous trait values, associated with species in
phy

Details

If given dat for n quantitative variables, this function returns the estimated evolutionary variance-
covariance matrix of the variables under a multivariate Brownian motion model. Note that other
evolutionary models may be possible if the tree is first transformed (see rescale.phylo and Ex-
amples). If you have n characters in your analysis, this will be an nxn matrix. Diagonal elements
represent rate estimates for individual characters, while off-diagonal elements represent the esti-
mated covariance between two characters.

54 rc

Author(s)

LJ Harmon

References

Revell, L. J., L. J. Harmon, R. B. Langerhans, and J. J. Kolbe. 2007. A phylogenetic approach to
determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis
cristatellus. Evolutionary Ecology Research 9: 261-282.

Examples

geo <- get(data(geospiza))

EVOLUTIONARY VCV
ratematrix(geophy, geodat)

EVOLUTIONARY VCV -- assuming speciational model
kphy <- rescale(geo$phy, "kappa", 0)
ratematrix(kphy, geo$dat)
geo <- get(data(geospiza))

EVOLUTIONARY VCV
ratematrix(geophy, geodat)

EVOLUTIONARY VCV -- assuming speciational model
kphy <- rescale(geo$phy, "kappa", 0)
ratematrix(kphy, geo$dat)

rc relative cladogenesis test

Description

conducting the relative cladogenesis test for all slices through a tree

Usage

rc(phy, plot=TRUE, ...)

Arguments

phy a phylogenetic tree of class ’phylo’

plot whether to plot tree with significant branches highlighted

... arguments passed for plotting (see plot.phylo)

rc 55

Details

A list of nodes is returned, along with the number of lineages alive just before that node, the max-
imum number of descendents that any of those lineages has at the present day, a p-value for this
observation under the null hypothesis of a birth-death process (that is, given the null, what is the
probability that one of these lineages had at least that many descendents), and the p-value after
Bonferroni correction (given that a total of n-1 comparisons are made).

If a plot is made, asterisks will mark significantly diverse clades. These asterisks appear just to the
right of the MRCA of the diverse clade.

The Bonferroni correction used here is exceedingly conservative for a tree of any reasonable size
(and not necessarily recommended, especially given the exploratory nature of this test and the non-
independence of the comparisons). Plotting defaults to indicating which nodes are significant with-
out a Bonferroni correction and a P-value of 0.05 as a cutoff (see Examples for modifying this
behavior).

One will often see significant results "trickle down" nodes in the tree - that is, if one clade is
expecially diverse, then one or more of its parent clades will also be diverse. The most parsimonious
place to attribute this effect is to the most shallow significant branch - that is, the branch closest to
the tips (see Moore et al. 2004).

Value

Table of results with four columns: Number of ancestors, Maximum descendents, p-value, Bonferroni-
corrected p-value

Author(s)

LJ Harmon

References

Purvis A, S Nee, and PH Harvey. 1995. Proc. R. Soc. London Ser. B 260:329-333.

Moore BR, KMA Chan, and MJ Donoghue. 2004. Detecting diversification rate variation in su-
pertrees. In O.R.P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to
Reveal the Tree of Life, pp. 487-533. Kluwer Academic, Netherlands:Dordrecht.

Examples

geo <- get(data(geospiza))

WITHOUT BONFERRONI CORRECTION
rc(geo$phy)

WITH BONFERRONI CORRECTION and ALPHA=0.15
rc(geo$phy, bonf=TRUE, p.cutoff=0.15)

56 rescale.phylo

rescale.phylo Rescale object of class "phylo"

Description

Applying various transformation to the branches of a phylogenetic tree.

Usage

S3 method for class 'phylo'
rescale(x, model = c("BM", "OU", "EB", "nrate", "lrate",

"trend", "lambda", "kappa", "delta", "white", "depth"), ...)

Arguments

x an object of class "phylo"/

model a model used to transform the tree (see Details).

... argument(s) to be passed to the transformation function (see Examples).

Details

This function takes a tree and returns either a transformed tree if ... is not empty and gives the
parameter value(s) for the tree transformation. If ... is left empty, a function is returned to the
user that can be efficiently iterated over many parameter values for transformation. The available
models are meant to correspond with changing the model of phenotypic evolution for discrete or
continuous characters.

Value

A transformation function (or rescaled phylogenetic tree of class ’phylo’ (ape format) is returned.
Possible transforms include the following:

BM is the Brownian motion model, which fits a random walk with variance sigsq

OU is the Ornstein-Uhlenbeck model (Butler and King 2004), which fits a random
walk with a central tendency with an attraction strength proportional to the pa-
rameter alpha. The OU model is called the hansen model in ouch, although
the way the parameters are fit is slightly different here. The parameter used for
transformation is alpha

EB is the Early-burst model (Harmon et al. 2010) and also called the ACDC model
(accelerating-decelerating; Blomberg et al. 2003). Set by the a rate parameter,
EB fits a model where the rate of evolution increases or decreases exponentially
through time, under the model r[t] = r[0] * exp(a * t), where r[0] is the initial
rate, a is the rate change parameter, and t is time. The parameter used for
transformation is a.

rescale.phylo 57

nrate is the multiple-rates model where time slices have independent rates of evolu-
tion. The parameters used for transformation are time and rate, both of which
may be vectors. If rates for several time slices are given, the vectors time and
rate must match in length. The time argument is expected in relative branching
heights (where the root is 0 and the tips of an ultrametric tree terminate at a rela-
tive time of 1). Note that the default behavior is for the multirate transformation
to rescale the tree to its original height, while preserving the relative rates across
the tree. Note also that the default initial relative rate (sigsq, for the rootmost
time slice) is 1.

lrate is the multiple-rates model where local clades have independent rates of evolu-
tion. The parameters used for transformation are node and rate, both of which
may be vectors. If rates for several lineages are given, the vectors node and
rate must match in length. The node argument is expected to have node identi-
fiers consistent with ape labeling (see read.tree). This node argument defines
where breakpoints occur in the tree (at which a transition to the associated rela-
tive rate occurs). Note that the stem branch associated with the node is included
as part of the defined rate partition. Rates given are relative to a default rootmost
partition with a rate scalar (sigsq) of 1.

trend is a diffusion model with linear trend in rates through time. The parameter used
for transformation is slope.

lambda is one of the Pagel (1999) models that fits the extent to which the phylogeny
predicts covariance among trait values for species. The model effectively trans-
forms the tree as follows: values of lambda near 0 cause the phylogeny to be-
come more star-like, and a lambda value of 1 recovers the BM model. The pa-
rameter used for transformation is lambda.

kappa is a punctuational (speciational) model of trait evolution (Pagel 1999), where
character divergence is related to the number of speciation events between two
species. Note that if there are missing speciation events in the given phylogeny
(due to extinction or incomplete sampling), interpretation under the kappa model
may be difficult. Considered as a tree transformation, the model raises all branch
lengths to an estimated power (kappa). The parameter used for transformation
is kappa.

delta is a time-dependent model of trait evolution (Pagel 1999). The delta model is
similar to ACDC insofar as the delta model fits the relative contributions of early
versus late evolution in the tree to the covariance of species trait values. Where
delta is greater than 1, recent evolution has been relatively fast; if delta is
less than 1, recent evolution has been comparatively slow. Intrepreted as a tree
transformation, the model raises all node depths to an estimated power (delta).
The parameter used for transformation is delta. Note that the default behavior
is for the delta transformation to rescale the tree to its original height.

white is a white-noise (non-phylogenetic) model, which assumes data come from a
single normal distribution with no covariance structure among species

depth is simply a transformation of the total depth of the tree; stretching the tree has
an effect of increasing rates of evolution under Brownian motion (relative to
characters evolved on the unstretched tree), and compressing the tree has the
opposite effect. The parameter used for transformation is depth.

58 rescale.phylo

Author(s)

LJ Harmon and JM Eastman

References

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884.

Butler, M.A. and A.A. King, 2004. Phylogenetic comparative analysis: a modeling approach for
adaptive evolution. American Naturalist 164:683-695.

Various papers in prep., L. J. Harmon and J. T. Weir.

Examples

geo <- get(data(geospiza))

returning a function
ltrns <- rescale(geo$phy, "lambda")
plot(ltrns(0))
title("lambda: 0.0")

plot(ltrns(0.5))
title("lambda: 0.5")

plot(ltrns(1))
title("lambda: 1")

transforming the tree
lphy <- rescale(geo$phy, "lambda", 0.5) # transform tree in one fell swoop
plot(lphy)
title("lambda: 0.5")

multirate tree -- time
rtrns <- rescale(geo$phy, "nrate")
rphy <- rtrns(time=c(0.2, 0.4, 0.6, 0.8), rate=c(2, 4, 8, 16))
plot(rphy)
title("5-rate tree: by time")

multirate tree -- lineages
mtrns <- rescale(geo$phy, "lrate")
mphy <- mtrns(node=c(25, 20), rate=c(4, 8))
plot(mphy)
title("3-rate tree: by lineages")

rjmcmc.bm 59

rjmcmc.bm Bayesian sampling of shifts in trait evolution: relaxed Brownian mo-
tion

Description

Implements reversible-jump Markov chain Monte Carlo sampling for trait evolutionary models

Usage

rjmcmc.bm(phy, dat, SE=NA, ngen = 50000, samp = 100,
type = c("jump-rbm", "rbm", "jump-bm", "bm"), ...)

Arguments

phy a phylogenetic tree of class ’phylo’

dat a named vector of continuous trait values, associated with each species in phy

SE a named vector of standard errors for each trait value; applied to all trait values
if given a single value

ngen number of sampling generations

samp frequency with which Markov samples are retained (e.g., samp=10 retains every
tenth sample in the chain)

type the class of model to use (see Details)

... arguments passed to make.gbm

Details

Implemented is an MCMC sampler for a general model of Brownian motion, which in the full
model (type="jump-rbm") allows relaxed local clocks and also a point process of pulses in evo-
lutionary rate along individual branches. Restricted models include global-rate Brownian motion
(type="bm"), relaxed-rates Brownian motion (type="rbm"), and models including jumps but a sin-
gle rate of diffusion across the tree (type="jump-bm").

Where applicable, posterior estimates of shifts between local rates, estimates of the rates them-
selves, and inferred jumps (or pulses) are provided as output. Estimates are stored as an MCMC-
generations-by-branches matrix (see Examples), and branches are uniquely labeled by a crypto-
graphic function to ensure comparability amongst trees differing in topology (see digest).

Note that default settings (as the user assumes if nothing is specified in ...) provide absolutely
no guarantee of the chain achieving convergence. The user is emphatically encouraged to supply
informed arguments for what are the most critical aspects of this MCMC sampler (see make.gbm
for more information on permissible modifications to the MCMC sampler). Finding reasonable run
parameters will likely require much trial and error. Run diagnosis and inspection of chain mixing
is facilitated by the R-package coda or by the Java application, Tracer (http://tree.bio.ed.ac.
uk/software/tracer/).

In the Examples below, do not expect such short chains to reach stationarity!

http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/

60 rjmcmc.bm

Value

After a run has completed, acceptance rates for the primary proposal mechanisms are printed to the
console, along with settings of control parameters for the run (see make.gbm).

Posterior results are written to several files within a base directory, the contents of which are as
follows:

log is a logfile including the following for each Markov chain: the generations at
which samples were retained (state), the min, max, and median rate of the
diffusion process across the tree, the number of evolutionary pulses (jumps)
along single branches, the variance associated with the jump process (jumpvar),
the root state, and the likelihood (lnL) and prior (lnLp) of the model at sampled
generations.

rda is a compressed R object, which stores branchwise estimates of the jump and
diffusion processes. In order to be interpretable, the rda file should be processed
by the function load.rjmcmc. The package coda can be used within R for run
diagnostics on the processed output (see, e.g., heidel.diag and autocorr.

Author(s)

JM Eastman, LJ Harmon, AL Hipp, and JC Uyeda

References

Eastman JM, ME Alfaro, P Joyce, AL Hipp, and LJ Harmon. 2011. A novel comparative method
for identifying shifts in the rate of character evolution on trees. Evolution 65:3578-3589.

See Also

load.rjmcmc

Examples

GENERATE DATA: jump-diffusion
phy <- ladderize(sim.bdtree(n=200), right=FALSE)
r <- paste(sample(letters,9,replace=TRUE),collapse="")
defpar <- par(no.readonly=TRUE)

tmp <- ex.jumpsimulator(phy, jumps=10)
dat <- tmp$dat
hist <- tmp$hist

ex.traitgram(phy, hist, alpha=0) # plot history of trait change

RUN ANALYSIS

coda package is not a dependency of geiger
but is very useful for evaluating mcmc runs

sim.bd 61

library(coda)

rjmcmc.bm(phy,dat, prop.width=1.5, ngen=20000, samp=500, filebase=r,
simple.start=TRUE, type="jump-bm")

outdir <- paste("jump-BM", r, sep=".")
ps <- load.rjmcmc(outdir)

dev.new()
plot(x=ps, par="jumps", burnin=0.25, legend=FALSE, show.tip=FALSE, type="fan", edge.width=2)
mm=match(phy$edge[,2],hist$descendant)
hist=hist[mm,]
edgelabels.auteur(text=NULL, pch=21, cex=hist$cex, bg=NA, col=ifelse(hist$cex>0, 1, NA), lty=2)
title("red (estimated); black (true jump size)", line=-5)
par(defpar)

dev.new()
from the coda package
coda::autocorr.plot(ps$log, ask=dev.interactive())
plot(ps$log, ask=dev.interactive())

GENERATE DATA: multi-rate diffusion
scl <- ex.ratesimulator(phy, min=12, show.tip=FALSE)
dat <- rTraitCont(scl)

RUN ANALYSIS
rjmcmc.bm(phy, dat, prop.width=1.5, ngen=20000, samp=500, filebase=r, simple.start=TRUE, type="rbm")
outdir <- paste("relaxedBM", r, sep=".")
ps <- load.rjmcmc(outdir)
dev.new()
plot(x=ps, par="shifts", burnin=0.25, legend=TRUE, show.tip=FALSE, edge.width=2)

if(!interactive()) { ## clean up
dirs <- dir(pattern="^(jump-BM|relaxedBM)")
unlink(dirs, recursive=TRUE)

}

sim.bd birth-death population simulator

Description

simulating species richness (or population growth) under a uniform, time-homogeneous birth-death
process

Usage

sim.bd(b=1, d=0, n0=1, times=0:4, seed=0)

62 sim.bd

Arguments

b per-lineage birth (speciation) rate

d per-lineage death (extinction) rate

n0 number of taxa at starting time zero

times vector of times where extant species are counted

seed random number seed (default is to seed based on the clock)

Details

This function simulates species diversification under a uniform birth-death process. This differs
from sim.bdtree in that only the number of species, and not their phylogenetic affinities, are
stored. This function relates to bd.ms and bd.km, which are also non-phylogenetic.

Value

a matrix of population size at each time point

Author(s)

RE Glor and LJ Harmon

References

Yule, GU. 1924. A mathematical theory of evolution based on the conclusions of Dr. J. C. Willis,
FRS. Philos. Trans. R. Soc. London Ser. B 213:21-87

See Also

bd.ms; bd.km

Examples

pop1 <- sim.bd(b=0.1, d=0, n0=10, times=1:10)
pop2 <- sim.bd(b=0, d=0.1, n0=10, times=1:10)
pop3 <- sim.bd(b=0.1, d=0.1, n0=10, times=1:10)

plot(pop1, type="l", ylim=c(0,max(c(pop1[,"n"], pop2[,"n"], pop3[,"n"]))))
lines(pop2, col="red")
lines(pop3, col="blue")

sim.bdtree 63

sim.bdtree birth-death tree simulator

Description

simulating phylogenetic trees under a uniform birth-death process

Usage

sim.bdtree(b=1, d=0, stop=c("taxa", "time"), n=100, t=4, seed=0, extinct=TRUE)

Arguments

b per-lineage birth (speciation) rate

d per-lineage death (extinction) rate

stop stopping criterion

n maximum number of taxa in simulation

t maximum time steps of simulation

seed random number seed (default is to seed based on the clock)

extinct whether to return trees where all lineages have gone extinct (see Details)

Details

Starting from a root node - i.e., two living lineages - this function simulates the growth of a phylo-
genetic tree under a uniform, time-homogeneous birth-death process. This means that every lineage
has a constant probability of speciating, and a constant probability of going extinct, per unit time.
If birth is greater than death, then the number of lineages is expected to grow exponentially. If
extinct=FALSE, the function will build trees until one is simulated with at least one surviving
lineage.

Value

A phylogenetic tree in ’phylo’ format is returned. If death rate is non-zero, then the returned tree
will likely include some extinct lineages (terminating before the present day). See drop.extinct
for a function to remove these lineages.

Note

One note of caution: it is easy to set parameter values that result in tremendously huge trees. If the
function seems to hang up, this could be the problem.

Other tree simulators are available from the packages ape (rbdtree), TreeSim (sim.bd.taxa,
sim.bd.age, and sim.bd.taxa.age), and phytools (pbtree).

Author(s)

LJ Harmon and J Weir

64 sim.char

See Also

sim.bd for non-phylogenetic simulations; drop.extinct

Examples

Pure-birth tree
p1 <- sim.bdtree(b=0.1, d=0, stop="time", t=20)
plot(p1)

Birth-death tree with extinct taxa
The extinct flag prevents trees with no survivors

p2 <- sim.bdtree(b=0.2, d=0.05, stop="time", t=20, extinct=FALSE)
plot(p2)

Previous tree with extinct taxa removed
p3 <- drop.extinct(p2)

sim.char simulate character evolution

Description

simulating evolution of discrete or continuous characters on a phylogenetic tree

Usage

sim.char(phy, par, nsim = 1, model = c("BM", "speciational", "discrete"), root = 1)

Arguments

phy a phylogenetic tree of class ’phylo’

par matrix describing model (either vcv matrix or Q matrix)

nsim number of simulations to run

model a model from which to simulate data

root starting state (value) at root

Details

This function simulates either discrete or continuous data on a phylogenetic tree. The model
variable determines the type of simulation to be run. There are three options: discrete, which
evolves characters under a continuous time Markov model, and two continuous models, BM and
speciational. The BM model is a constant rate Brownian-motion model, while speciational is a
Brownian model on a tree where all branches have the same length. The model.matrix parameter
gives the structure of the model, and should be either a transition matrix, Q, for the discrete model,

startingpt.mecca 65

or a trait variance-covariance matrix for BM or speciational models. For discrete models, multiple
characters may be simulated if model.matrix is given as a list of Q matrices (see Examples). For
continuous models, multivariate characters can be simulated, with their evolution goverened by a
covariance matrix specified in the model.matrix.

Value

An array of simulated data, either two or three-dimensional, is returned. The first dimension is the
number of taxa, the second the number of characters, and the third the number of simulated data
sets.

Author(s)

LJ Harmon

Examples

Not run:
geo <- get(data(geospiza))

Continuous character -- univariate
usims <- sim.char(geo$phy, 0.02, 100)

Use a simulated dataset in fitContinuous()
fitC <- fitContinuous(geo$phy, usims[,,1], model="BM", control=list(niter=10), ncores=2)

Continuous character -- multivariate
s <- ratematrix(geophy, geodat)
csims <- sim.char(geo$phy, s, 100)

Discrete character -- univariate
q <- list(rbind(c(-.5, .5), c(.5, -.5)))
dsims <- sim.char(geo$phy, q, model="discrete", n=10)

Use a simulated dataset in fitDiscrete()
fitD <- fitDiscrete(geo$phy, dsims[,,1], model="ER", niter=10, ncores=2)

Discrete character -- multivariate
qq <- list(rbind(c(-.5, .5), c(.5, -.5)), rbind(c(-.05, .05), c(.05, -.05)))
msims <- sim.char(geo$phy, qq, model="discrete", n=10)

End(Not run)

startingpt.mecca starting values for MECCA

66 startingpt.mecca

Description

This function takes the output of calibrateMecca along with observed data and partial least squares
loadings and outputs starting values and tuning parameters for the ABC-MCMC (Wegmann et al.
2009).

Usage

startingpt.mecca(calibrationOutput, phy, cladeMean, cladeVariance,
tolerance = 0.01, plsComponents, BoxCox = TRUE)

Arguments

calibrationOutput

The output from calibrateMecca
phy A time calibrated phylogeny in "phylo" format
cladeMean A named vector of trait means. All tips in the tree must be represented
cladeVariance A names vector of trait variances. All tips in the tree must be represented. If

only one taxon is present, use 0 for the variance
tolerance The proportion of calibrations simulations that fall closest to the oberved data

that will be retained to compute MECCA tuning parameters
plsComponents a matrix of Partial Least Squares component loadings
BoxCox Logical - Should Summary Statistics be Box-Cox transformed? Default is yes

and is recommended

Details

You will need to compute PLS loadings using the package "pls" prior to running this function.
MECCA performs extremely poorly if summaries are not PLS transformed. If Bayes Factors are to
be computed to perform model selection (Leuenberger and Wegmann 2010), raw summaries will
need to be used in the post-sampling adjustment step. However, PLS transformed summaries can
still be used in the acceptance/rejection step of the MCMC and can also be used to determine which
simulations to retain

Value

$tuning a matrix containing starting values and proposal widths for trait evolution pa-
rameters

$startingBirth

Starting value for speciation
$startingDeath

Starting value for extinction
$dcrit the criticial distance - simulated data must fall within this distance of the ob-

served data in order to be accepted
$obsTraits the observed data
$plsObserved Partial Least Squared transformed observed data
$plsLoadings Partial Least Squared componenent loadings - these are used to transform data

during the MCMC

subset.phylo 67

Author(s)

Graham Slater, Luke Harmon, Daniel Wegman

References

Slater GJ, Harmon LJ, Wegmann D, Joyce P, Revell LJ, Alfaro ME. in press Evolution, Leuenberger
C, and Wegmann D. 2010. Genetics 184: 243-252., Wegmann D, Leuenberger C, Excoffier L. 2009.
Genetics 182: 1207-1218.

Examples

example(mecca)

subset.phylo blending information from taxonomies and trees

Description

working with systematic reference tables and phylogenies

Usage

S3 method for class 'phylo'
subset(x, taxonomy, rank="", ncores=1, ...)

Arguments

x a phylogenetic tree of class ’phylo’

taxonomy a (’matrix’) linkage table between tips of the phylogeny and clades represented
in the tree; rownames of ’taxonomy’ should be tips found in the phylogeny

rank a column name in ’taxonomy’ at which to resample the tree (see Examples)

ncores max number of cores to use

... arguments to be passed to other functions (has no effect in the present context)

Author(s)

JM Eastman

68 tips

Examples

Not run:
sal <- get(data(caudata))
print(head(sal$tax))

nphy <- subset(salphy, saltax, "genus", ncores=1)
plot(nphy, type="fan", cex=0.15)

End(Not run)

tips descendents of a given node in a phylogenetic tree

Description

finding descendants of a node in a tree

Usage

tips(phy, node)

Arguments

phy a phylogenetic tree of class ’phylo’

node numeric node-identifier (an integer)

Value

The function returns the set of tips subtended by the given node.

Author(s)

LJ Harmon

Examples

geo <- get(data(geospiza))

tips(geo$phy, 18)

to.auteur 69

to.auteur conversion of MCMC samples between auteur and coda

Description

converting MCMC samples between auteur and coda

Usage

to.auteur(obj, phy = NULL, ...)
to.coda(obj)

Arguments

obj for to.auteur – an object of class codaMCMCMC, mcmc.list, or an object ex-
ported to an rda file by auteur; for to.coda – an object of class auteurMCMCMC
or a list of objects individually of class auteurMCMC

phy a phylogenetic tree of class ’phylo’ against which to compile results; if NULL,
the tree stored within the rda file is used

... arguments (burnin and thin) to be passed to load.rjmcmc

Details

A coda format of run(s) is recommended for diagnostic purposes; for summarization, auteur for-
mats are advised. For single chains, the format adopted by both auteur and coda is identical (an
object of class mcmc). For a series of combined runs, formats differ between the auteur and coda
packages: auteur requires an intercalated (single) matrix of values, whereas functions within coda
expect the values to be concatenated into a list (of class mcmc.list). The function to.coda is used
solely for pooling multiple runs into a format compatible with the coda package.

Value

For to.auteur, an object of class auteurMCMCMC (given multiple runs) or auteurMCMC (given a
single run) is returned; for to.coda, an object of class codaMCMCMC is returned.

Author(s)

JM Eastman

See Also

load.rjmcmc

70 treedata

treedata compare taxa in data and tree

Description

matching species found in a comparative dataset

Usage

treedata(phy, data, sort=FALSE, warnings=TRUE)

Arguments

phy a phylogenetic tree of class ’phylo’

data a named vector or matrix of continuous trait values, for species in phy

sort whether to sort the data based on names found in phy

warnings whether to report warnings of mismatched taxa between phy and data

Details

This function is a general tool for checking for concordance between a data object and a phyloge-
netic tree. For the data, names can be specified as the names of objects in the vector or rownames
of the data array.

Value

The function returns a list of two elements (phy and data) that are manipulated to include only
those species found in both the tree and data supplied by the user.

Author(s)

LJ Harmon

Examples

geo <- get(data(geospiza))

treedata(geophy, geodat, sort=TRUE, warnings=TRUE)

Index

∗ arith
bd.ms, 6
dcount, 12
dtt, 14
fitDiscrete, 24
name.check, 42
ratematrix, 53
rc, 54
sim.bd, 61
sim.bdtree, 63
sim.char, 64

∗ datasets
geiger-data, 29

∗ data
calibrate.rjmcmc, 10
gbresolve, 27
load.rjmcmc, 33
nodelabel.phylo, 45
sim.char, 64
to.auteur, 69
treedata, 70

∗ graphics
plot.medusa, 47

∗ graphs
congruify.phylo, 11
drop.extinct, 13
gbresolve, 27
nodelabel.phylo, 45
r8s.phylo, 51
rescale.phylo, 56
sim.bdtree, 63
subset.phylo, 67
tips, 68
treedata, 70

∗ manip
congruify.phylo, 11
drop.extinct, 13
load.rjmcmc, 33
nodelabel.phylo, 45

r8s.phylo, 51
rescale.phylo, 56
subset.phylo, 67
to.auteur, 69
treedata, 70

∗ models
fitContinuous, 16
fitDiscrete, 24
make.gbm, 34
medusa, 40
rjmcmc.bm, 59

∗ multivariate
aov.phylo, 5

∗ univar
aov.phylo, 5

aicm, 3
aicw, 4
amphibia (geiger-data), 29
anova, 6
aov, 6
aov.phylo, 5, 31
area.between.curves (geiger-defunct), 31
argn (geiger-internal), 32
argn<- (geiger-internal), 32
as.phylo.hphylo (geiger-internal), 32
as.Qmatrix.gfit (fitDiscrete), 24
autocorr, 60

bd.km, 32, 62
bd.km (bd.ms), 6
bd.ms, 6, 32, 62
BDsim (geiger-defunct), 31
bf (geiger-internal), 32
birthdeath.tree (geiger-defunct), 31
bm.lik (geiger-internal), 32

calibrate.mecca, 8
calibrate.proposalwidth

(geiger-defunct), 31

71

72 INDEX

calibrate.rjmcmc, 10, 31
caniformia (geiger-data), 29
carnivores (geiger-data), 29
caudata (geiger-data), 29
chelonia (geiger-data), 29
cherries (geiger-internal), 32
coef.gfit (geiger-internal), 32
coef.gfits (geiger-internal), 32
compare.rates (geiger-defunct), 31
congruify.phylo, 11, 29
constrain (geiger-internal), 32
crown.limits (bd.ms), 6
crown.p (bd.ms), 6

dcount, 12, 35
deltaTree (geiger-defunct), 31
digest, 33, 59
disp.calc (geiger-defunct), 31
disparity, 31, 32
disparity (dtt), 14
dlunif (geiger-internal), 32
drop.extinct, 13, 32, 63, 64
drop.random, 32
drop.random (drop.extinct), 13
drop.tip, 14
drop.tip (geiger-internal), 32
dtpois (geiger-internal), 32
dtt, 14, 31, 50
dtt.full (geiger-defunct), 31

edgelabels.auteur (geiger-internal), 32
edges.phylo (geiger-internal), 32
ess (geiger-internal), 32
ex.jumpsimulator (geiger-example), 32
ex.ratesimulator (geiger-example), 32
ex.traitgram (geiger-example), 32
exemplar.phylo (geiger-internal), 32
exponentialchangeTree (geiger-defunct),

31

fastAnc, 31
fitContinuous, 16, 50
fitContinuousMCMC, 21
fitDiscrete, 24
fitDiversification (geiger-internal), 32
fitSplitModel (geiger-internal), 32

gbcontain (gbresolve), 27
gbresolve, 27

gbresolve.default (geiger-internal), 32
gbtaxdump (geiger-internal), 32
geiger (geiger-package), 2
geiger-data, 29
geiger-defunct, 31
geiger-example, 32
geiger-internal, 32
geiger-package, 2
gen (geiger-internal), 32
geospiza (geiger-data), 29
get.simulation.matrix (geiger-defunct),

31
getAncStates (geiger-defunct), 31
getBD (geiger-internal), 32
getDiversificationModel

(geiger-internal), 32
getFullSplitModel (geiger-internal), 32
glomogram.phylo (nodelabel.phylo), 45

hash.node (geiger-internal), 32
hashes.phylo (geiger-internal), 32
hashes.rjmcmc (geiger-internal), 32
hdr (geiger-internal), 32
heidel.diag, 60
heights (geiger-internal), 32
hme (geiger-internal), 32

ic.sigma (geiger-defunct), 31
intercalate.samples (geiger-defunct), 31
is.constrained (geiger-internal), 32
is.extinct (drop.extinct), 13
is.phylo (geiger-internal), 32
is.root (geiger-internal), 32

kappaTree (geiger-defunct), 31
kendallmoran.rate (geiger-internal), 32

lambdaTree (geiger-defunct), 31
likfx.bm (geiger-internal), 32
linearchangeTree (geiger-defunct), 31
Linnaean (geiger-internal), 32
lm, 44
load, 31
load (geiger-internal), 32
load.rjmcmc, 33, 60, 69
logLik.gfit (geiger-internal), 32
logLik.gfits (geiger-internal), 32
lookup.phylo (nodelabel.phylo), 45

make.bm.relaxed (geiger-internal), 32

INDEX 73

make.gbm, 10, 12, 34, 59, 60
mclapply, 19, 26
mecca, 37
medusa, 29, 32, 40, 48
mkn.lik (geiger-internal), 32

name.check, 42
ncbit, 28
nh.test, 43, 50
node.leaves (geiger-defunct), 31
node.sons (geiger-defunct), 31
nodelabel.phylo, 45

optim, 17, 18, 24, 26
ouTree (geiger-defunct), 31

PATHd8.phylo (geiger-internal), 32
pbtree, 63
phy.anova (geiger-defunct), 31
phy.manova (geiger-defunct), 31
phylo.clades (nodelabel.phylo), 45
phylo.lookup (nodelabel.phylo), 45
pic, 44
plot.auteurMCMC (geiger-internal), 32
plot.auteurMCMCMC (geiger-internal), 32
plot.mcmc, 32
plot.medusa, 42, 47
plot.phylo, 54
plot.rjmcmc (geiger-internal), 32
plotDiversificationSurface

(geiger-internal), 32
pool.rjmcmcsamples (geiger-defunct), 31
pp.mcmc, 44, 49
primates (geiger-data), 29
print.auteurRAW (geiger-internal), 32
print.bayesfactor (geiger-internal), 32
print.bm (geiger-internal), 32
print.constraint.m (geiger-internal), 32
print.glnL (geiger-internal), 32
print.gprior (geiger-internal), 32
print.mcmc.list (geiger-internal), 32
print.medusa (medusa), 40
print.mkn (geiger-internal), 32
print.rbm (geiger-internal), 32
print.rjmcmc (geiger-internal), 32
print.rjmcmcmc (geiger-internal), 32
print.taxdump (geiger-internal), 32
print.transformer (geiger-internal), 32
prune.extinct.taxa (geiger-defunct), 31

prune.random.taxa (geiger-defunct), 31

r8s.phylo, 51
rate.estimate (geiger-defunct), 31
ratematrix, 5, 6, 31, 53
rbdtree, 63
rc, 54
read.tree, 7, 15, 29, 33, 48, 57
rescale.phylo, 31, 32, 53, 56
rescaleTree (geiger-defunct), 31
resplitEdgeMatrixGeiger

(geiger-internal), 32
rjmcmc.bm, 10, 33–36, 59
rlm, 44
root.phylo (geiger-internal), 32
runMedusa (geiger-defunct), 31

sem (geiger-internal), 32
shifts.plot (geiger-defunct), 31
sim.bd, 31, 61, 64
sim.bd.age, 63
sim.bd.taxa, 63
sim.bd.taxa.age, 63
sim.bdtree, 31, 62, 63
sim.char, 64
sim.mecca (geiger-internal), 32
span.phylo (geiger-internal), 32
speciationalTree (geiger-defunct), 31
splitEdgeMatrixGeiger

(geiger-internal), 32
startingpt.mecca, 37, 65
Startup, 19, 26
stem.limits (bd.ms), 6
stem.p (bd.ms), 6
subplex, 17, 18, 24, 26
subset.phylo, 67
summary.manova, 5, 6
Sys.getenv, 11

tip.disparity (geiger-defunct), 31
tips, 31, 68
to.auteur, 69
to.coda (to.auteur), 69
tracer (geiger-defunct), 31
transform.phylo (geiger-defunct), 31
treedata, 40, 70
tworateTree (geiger-defunct), 31

ultrametricize.phylo (geiger-internal),
32

74 INDEX

unique.phylo (geiger-internal), 32
uniqueMultiPhylo (geiger-internal), 32

vmat (geiger-defunct), 31

whales (geiger-data), 29
white.mkn (geiger-internal), 32
write.pathd8 (geiger-internal), 32
write.r8s (geiger-internal), 32
write.treePL (geiger-internal), 32

	geiger-package
	aicm
	aicw
	aov.phylo
	bd.ms
	calibrate.mecca
	calibrate.rjmcmc
	congruify.phylo
	dcount
	drop.extinct
	dtt
	fitContinuous
	fitContinuousMCMC
	fitDiscrete
	gbresolve
	geiger-data
	geiger-defunct
	geiger-example
	geiger-internal
	load.rjmcmc
	make.gbm
	mecca
	medusa
	name.check
	nh.test
	nodelabel.phylo
	plot.medusa
	pp.mcmc
	r8s.phylo
	ratematrix
	rc
	rescale.phylo
	rjmcmc.bm
	sim.bd
	sim.bdtree
	sim.char
	startingpt.mecca
	subset.phylo
	tips
	to.auteur
	treedata
	Index

