
Package ‘gammaFuncModel’
February 5, 2026

Type Package

Title Non-Linear Mixed Effects Model Based on the Gamma Function Form

Version 6.0

Date 2026-02-04

Description Identifies biomarkers that exhibit differential response dynam-
ics by time across groups and estimates kinetic properties of biomarkers.

License GPL

RoxygenNote 7.2.3

Imports Rdpack, nlme, dplyr, cubature, rootSolve, patchwork, scales,
ggplot2, future.apply, gridExtra, rlang, grDevices, stats, grid

NeedsCompilation no

Author Hongting Chen [aut, cre],
Liming Liang [aut]

Maintainer Hongting Chen <hongtingchen@berkeley.edu>

Repository CRAN

Date/Publication 2026-02-05 07:00:09 UTC

Contents
calculate_AUC . 2
calculate_Cmax . 3
calculate_half_life . 4
calculate_Tmax . 6
diffGrpResponse . 7
diffGrpResponse_parallel . 9
gammaFunction . 11
generatePlot . 13
generate_f_function . 14
generate_models . 16
grpResp2Time . 18
grpResp2Time_parallel . 19
pk_calculation . 21

1

2 calculate_AUC

Index 23

calculate_AUC Function that produces Area Under the Curve(AUC) property for a
single individual in a particular group, for a specific metabolite

Description

Function that produces Area Under the Curve(AUC) property for a single individual in a particular
group, for a specific metabolite

Usage

calculate_AUC(f, upperbound)

Arguments

f function that returns the prediction of a metabolite concentration, for a single
individual in a particular group

upperbound Numeric value that serves as the upperbound of integration

Value

AUC for this metabolite, in a particular group for a single individual

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(cubature)
require(dplyr)
require(nlme)
modify.df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = NA

)
for (i in 1:10) {
for (d in 1:3) {
C0 <- runif(1, 10, 15) # initial concentration

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

calculate_Cmax 3

k <- runif(1, 0.1, 0.3) # decay rate constant
modify.df$Concentration[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d] <-
C0 * exp(-k * modify.df$Time[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d])

}
}
covariates <- c("ID", "Diet", "Age", "BMI")
model <- gammaFunction(

modify.df,
covariates,
time_grp_inter = FALSE,

return_ml_model = FALSE, include_grp = TRUE
)[[1]]
test_data <- modify.df %>%

filter(Diet == 1 & ID == "04") %>%
select(-c("Concentration", "ID", "Diet"))

f_dat = modify.df %>%
filter(Diet == 1 & ID == "04") %>%
select(-Concentration)

f <- generate_f_function(
data = f_dat,
model = model,
grp_var = 1,
grp_name = "Diet",
ID = "04",
ref = 1

)
AUC <- calculate_AUC(f, 9)
AUCInf <- calculate_AUC(f, Inf)

calculate_Cmax Function that produces Cmax property for a single individual in a par-
ticular group, for a specific metabolite

Description

Function that produces Cmax property for a single individual in a particular group, for a specific
metabolite

Usage

calculate_Cmax(data, model, grp_var, ID, grp_name = "Diet", Tmax)

Arguments

data Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other individiual characteristics covariates (exlcluding other forms of
’Time’) Note: Data must be complete (No missing values).

model Fitted model for the metabolite in question

4 calculate_half_life

grp_var Value of the grouping variable

ID Subject ID

grp_name Name of the grouping variable. Default is ’Diet’

Tmax for this metabolite, in a particular group for a single individual

Value

Cmax for this metabolite, in a particular group for a single individual

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(rootSolve)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = round(runif(270, 5, 15), 2)

)
covariates <- c("ID", "Diet", "Age", "BMI")
model <- gammaFunction(

df,
covariates,
time_grp_inter = FALSE,
return_ml_model = FALSE,
include_grp = TRUE
)[[1]]

test_data = df %>% filter(Diet == 1 & ID == "02") %>% select(-c("Concentration", "ID", "Diet"))
Tmax <- calculate_Tmax(data = test_data, model, grp_var = 1, ID = "02", grp_name = 'Diet', ref = 1)
Cmax <- calculate_Cmax(data = test_data, model, grp_var = 1, ID = "02", grp_name = "Diet", Tmax)

calculate_half_life Function that produces Half-life property for a single individual in a
particular group, for a specific metabolite

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

calculate_half_life 5

Description

Function that produces Half-life property for a single individual in a particular group, for a specific
metabolite

Usage

calculate_half_life(f, Tmax, Cmax)

Arguments

f function that returns the prediction of a metabolite concentration, for a single
individual in a particular group

Tmax Tmax property of a metabolite, for a single individual in a particular group

Cmax Cmax property of a metabolite, for a single individual in a particular group

Value

Half-life for this metabolite, in a particular group for a single individual

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(rootSolve)
require(dplyr)
require(nlme)

modify.df <- data.frame(
ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = NA

)
for (i in 1:10) {
for (d in 1:3) {
C0 <- runif(1, 10, 15) # initial concentration
k <- runif(1, 0.1, 0.3) # decay rate constant
modify.df$Concentration[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d] <-
C0 * exp(-k * modify.df$Time[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d])

}
}
covariates <- c("ID", "Diet", "Age", "BMI")

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

6 calculate_Tmax

model <- gammaFunction(
modify.df,
covariates,
time_grp_inter = FALSE,
return_ml_model = FALSE,
include_grp = TRUE
)[[1]]

test_data = modify.df %>%
filter(Diet == 1 & ID == "03") %>%
select(-c("Concentration", "ID", "Diet"))

Tmax <- calculate_Tmax(data = test_data, model, grp_var = 1, ID = "03", grp_name = 'Diet', ref = 1)
Cmax <- calculate_Cmax(data = test_data, model, grp_var = 1, ID = "03", grp_name = "Diet", Tmax)
f_dat = modify.df %>% filter(Diet == 1 & ID == "03") %>% select(-Concentration)
f <- generate_f_function(

data = f_dat,
model = model,
grp_var = 1,
grp_name = "Diet",
ID = "03",
ref = 1)

half_life <- calculate_half_life(f, Tmax, Cmax)

calculate_Tmax Function that produces Tmax property for a single individual in a par-
ticular group, for a specific metabolite

Description

Function that produces Tmax property for a single individual in a particular group, for a specific
metabolite

Usage

calculate_Tmax(data, model, grp_var, ID, grp_name = "Diet", ref = 1)

Arguments

data Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other individiual characteristics covariates(excluding other forms of
’Time’) Note: Data must be complete (No missing values);

model Fitted model for the metabolite in question

grp_var Value of the grouping variable

ID Subject ID

grp_name Name of the grouping variable. Default is ’Diet’

ref numeric or character. The reference level for the grouping variable, as a factor

diffGrpResponse 7

Value

Tmax for this metabolite, in a particular group for a single individual

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(rootSolve)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = round(runif(270, 5, 15), 2)

)
covariates <- c("ID", "Diet", "Age", "BMI")
model <- gammaFunction(

df,
covariates,
time_grp_inter = FALSE,
return_ml_model = FALSE,
include_grp = TRUE

)[[1]]
test_data = df %>% filter(Diet == 1 & ID == "01") %>% select(-c("Concentration", "ID", "Diet"))
Tmax <- calculate_Tmax(data = test_data, model, grp_var = 1, ID = "01", grp_name = 'Diet', ref = 1)

diffGrpResponse Function that produces a summary table for coefficient estimates, their
p-values and LRT p-values for every metabolite in the dataframe

Description

Function that produces a summary table for coefficient estimates, their p-values and LRT p-values
for every metabolite in the dataframe

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

8 diffGrpResponse

Usage

diffGrpResponse(
df,
met_vec,
covariates,
time_terms = c("Time", "log(Time)"),
grp = "Diet",
random_formula = ~1 + Time | ID/Diet,
correlation_formula = corSymm(form = ~Time | ID/Diet),
weights = varIdent(form = ~1 | Time)

)

Arguments

df Data frame containing columns Group(numeric or character); ID(subject ID:
character); Time(positive: numeric); other Time terms (numeric); other indi-
vidual characteristics covariates; as well columns of metabolite concentrations
Note: All non-concentration columns must be complete (No missing values);
concentration columns can have missing values in the forms of either numeric 0
or ’NA’.

met_vec Vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

time_terms Vector that contains all additional form of the covariate ’Time" (including the
’Time’ covariate), and must contain ’log(Time)’, other forms also include I(Time^2)
and I(Time^3);

grp Grouping variable;

random_formula Random effects formula for the model, nested effects of Diet within ID (could
also add random slope for ’Time’);

correlation_formula

Correlation formula. Default is autorgressive but can accommodate other forms
such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity

Value

Data frame that contains the coefficient estimates, their corresponding p-values; LRT p-values for
Time-Group interactions (for every ’Time’ term);LRT p-values for Group and Time-Group interac-
tions (for every ’Time’ term); as well as the fitted models for each metabolite

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

diffGrpResponse_parallel 9

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
covariates <- c("ID", "Diet", "Age", "BMI")
result <- diffGrpResponse(df, metvar, covariates)[[1]]
summary(result)

diffGrpResponse_parallel

Parallelized version of diffGrpResponse()

Description

Parallelized version of diffGrpResponse()

Usage

diffGrpResponse_parallel(
df,
met_vec,
covariates,
time_terms = c("Time", "log(Time)"),
grp = "Diet",
random_formula = ~1 + Time | ID/Diet,
correlation_formula = corSymm(form = ~Time | ID/Diet),
weights = varIdent(form = ~1 | Time)

)

Arguments

df Data frame containing columns Group(numeric or character); ID(subject ID:
character); Time(positive: numeric); other Time terms (numeric); other indi-
vidual characteristics covariates; as well columns of metabolite concentrations
Note: All non-concentration columns must be complete (No missing values);
concentration columns can have missing values in the forms of either numeric 0
or ’NA’.

10 diffGrpResponse_parallel

met_vec Vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

time_terms Vector that contains all additional form of the covariate ’Time" (including the
’Time’ covariate), and must contain ’log(Time)’, other forms also include I(Time^2)
and I(Time^3);

grp Grouping variable;

random_formula Random effects formula for the model, nested effects of Diet within ID (could
also add random slope for ’Time’);

correlation_formula

Correlation formula. Default is autorgressive but can accommodate other forms
such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity

Value

Data frame that contains the coefficient estimates, their corresponding p-values; LRT p-values for
Time-Group interactions (for every ’Time’ term);LRT p-values for Group and Time-Group interac-
tions (for every ’Time’ term); as well as the fitted models for each metabolite

Note

This function uses parallel processing via the ‘future.apply‘ package. To enable parallel execution,
runs the following before calling this function:

library(future.apply) plan(multisession, workers = parallel::detectCores() - 1)

You only need to set the plan once per session.

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

Not run:
require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

gammaFunction 11

concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
covariates <- c("ID", "Diet", "Age", "BMI")
result <- diffGrpResponse(df, metvar, covariates)[[1]]
summary(result)

End(Not run)

gammaFunction Implementation of the novel non-linear mixed-effects model based on
gamma function form with nested covariance structure where random
effects are specified for each Diet level within each subject (ID), cap-
turing within-subject correlation across dietary conditions. to identify
metabolites that responds to time differentially across dietary groups

Description

Implementation of the novel non-linear mixed-effects model based on gamma function form with
nested covariance structure where random effects are specified for each Diet level within each sub-
ject (ID), capturing within-subject correlation across dietary conditions. to identify metabolites that
responds to time differentially across dietary groups

Usage

gammaFunction(
data,
covariates,
time_terms = c("Time", "log(Time)"),
grp = "Diet",
random_formula = ~1 + Time | ID/Diet,
correlation_formula = corSymm(form = ~Time | ID/Diet),
weights = varIdent(form = ~1 | Time),
time_grp_inter = TRUE,
return_ml_model = FALSE,
include_grp

)

Arguments

data Data frame that contains the ’ID’ column along with all covariates as well as
concentration column, named ’Concentration’, for a single metabolite Note: All
non-concentration columns must be complete (No missing values); the concen-
tration column can have missing values in the forms of either numeric 0 or ’NA’.

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

12 gammaFunction

time_terms Vector that contains all additional form of the covariate ’Time" (including the
’Time’ covariate), and must contain ’log(Time)’, other forms also include I(Time^2)
and I(Time^3);

grp Grouping variable;

random_formula Random effects formula for the model, nested effects of Diet within ID (could
also add random slope for ’Time’);

correlation_formula

Correlation formula. Default is autorrgressive but can accomodate other forms
such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity

time_grp_inter Boolean value that indicates if the model should include interactions terms of
’time_terms’ with ’Group’;

return_ml_model

Boolean value that indicates if the model should fit "ML" model as well as
"REML" model(default)

include_grp boolean value to indicate whether or not ’grp’ should be included in the model
construction

Value

mixed effects models for a single metabolites: one with REML, the other with ML

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = round(runif(270, 5, 15), 2)

)
covariates <- c("ID", "Diet", "Age", "BMI")
model <- gammaFunction(

df,
covariates,
random_formula = ~ 1 | ID/Diet,
correlation_formula = corAR1(form = ~ Time | ID/Diet),

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

generatePlot 13

weights = NULL,
include_grp = TRUE)[[1]]

summary(model)

generatePlot Function that generate plots for metabolite models

Description

Function that generate plots for metabolite models

Usage

generatePlot(
graph,
df,
met_vec,
covariates,
grp = "Diet",
models,
save_path = NULL

)

Arguments

graph character string, ’None’ by default. If not ’None, in addition to returning models,
produces pdf file of graphs based on the specific value of ’graph’.

df Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other Time terms (numeric); other individidual characteristics covari-
ates; as well columns of metabolite concentrations; Note: All non-concentration
columns must be complete (No missing values); concentration columns can have
missing values in the forms of either numeric 0 or ’NA’.

met_vec the vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates;

grp is the grouping variable;

models a list of fitted non-linear mixed effects metabolite models

save_path location (file path, not directory) where the pdf file will be saved (must end in
’.pdf’); default is NULL, i.e. pdf is saved to a temporary location

Value

A pdf file for fitted concenration curves that is saved to a user provided file location; otherwise
saved to a temporary location

14 generate_f_function

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
require(patchwork)
require(scales)
df <- data.frame(
ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
covariates <- c("ID", "Diet", "Age", "BMI")
mods <- generate_models(df = df, met_vec = metvar, covariates = covariates, graph = 'None')
generatePlot(

graph = "individual_separated",
df = df,
met_vec = metvar,
covariates = covariates,
grp = "Diet",
models = mods,
save_path = NULL
)

generate_f_function Function produce predictions from the model

Description

Function produce predictions from the model

Usage

generate_f_function(data, model, grp_var, grp_name = "Diet", ID, ref = 1)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

generate_f_function 15

Arguments

data Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other individiual characteristics covariates (exlcluding other forms of
’Time’) Note: Data must be complete (No missing values).

model Fitted model for the metabolite in question

grp_var Value of the grouping variable

grp_name Name of the grouping variable. Default is ’Diet’

ID Subject ID

ref reference group

Value

f function that produces the prediction from this model for a specific individual in a specific group

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
modify.df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1),
Concentration = NA

)
for (i in 1:10) {
for (d in 1:3) {

C0 <- runif(1, 10, 15) # initial concentration
k <- runif(1, 0.1, 0.3) # decay rate constant
modify.df$Concentration[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d] <-
C0 * exp(-k * modify.df$Time[modify.df$ID == sprintf("%02d", i) & modify.df$Diet == d])

}
}
covariates <- c("ID", "Diet", "Age", "BMI")
model <- gammaFunction(

modify.df,
covariates,
time_grp_inter = FALSE,
return_ml_model = FALSE,
include_grp = TRUE
)[[1]]

test_data = modify.df %>%
filter(Diet == 1 & ID == "04") %>%
select(-c("Concentration", "ID", "Diet"))

f_dat = modify.df %>% filter(Diet == 1 & ID == "04") %>% select(-Concentration)
f <- generate_f_function(

data = f_dat,
model = model,

16 generate_models

grp_var = 1,
grp_name = "Diet",
ID = "04",
ref = 1
)

generate_models Function that produces a fitted gamma model for each metabolite

Description

Function that produces a fitted gamma model for each metabolite

Usage

generate_models(
df,
met_vec,
covariates,
time_terms = c("Time", "log(Time)"),
grp_name = "Diet",
random_formula = ~1 + Time | ID/Diet,
correlation_formula = corSymm(form = ~Time | ID/Diet),
weights = varIdent(form = ~1 | Time),
graph = "None",
save_path = NULL

)

Arguments

df Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other Time terms (numeric); other individidual characteristics covari-
ates; as well columns of metabolite concentrations Note: All non-concentration
columns must be complete (No missing values); concentration columns can have
missing values in the forms of either numeric 0 or ’NA’.

met_vec the vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

time_terms is the vector that contains all additional form of the covariate ’Time" (including
the ’Time’ covariate), and must contain ’log(Time)’, other forms also include
I(Time^2) and I(Time^3);

grp_name is the grouping variable;

random_formula is the random effects formula for the model, nested effects of Diet within ID
(could also add random slope for ’Time’);

generate_models 17

correlation_formula

is the correlation formula. Default is autorgressive but can accommodate other
forms such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity;

graph character string, ’None’ by default. If not ’None, in addition to returning models,
produces pdf file of graphs based on the specific value of ’graph’.

save_path location where the pdf file will be saved; default is NULL, i.e. pdf is saved to a
temporary location

Value

List that contains fitted models for each metabolite and a pdf file for fitted concenration curves.

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(
ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
covariates <- c("ID", "Diet", "Age", "BMI")
mods <- generate_models(

df = df,
met_vec = metvar,
covariates = covariates,
graph = 'None',
save_path = NULL)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

18 grpResp2Time

grpResp2Time Function that produces a summary table for coefficient estimates, their
p-values and LRT p-values for every metabolite in the dataframe, for
a single Group

Description

Function that produces a summary table for coefficient estimates, their p-values and LRT p-values
for every metabolite in the dataframe, for a single Group

Usage

grpResp2Time(
df,
met_vec,
covariates,
time_terms = c("Time", "log(Time)"),
grp = "Diet",
random_formula = ~1 | ID,
correlation_formula = corAR1(form = ~Time | ID),
weights = NULL

)

Arguments

df Data frame containing information for a single group, containing columns grp;
ID(subject ID: character); Time(positive: numeric); other Time terms (numeric);
other individual characteristics covariates; as well columns of metabolite con-
centrations Note: All non-concentration columns must be complete (No missing
values); concentration columns can have missing values in the forms of either
numeric 0 or ’NA’.

met_vec Vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

time_terms Vector that contains all additional form of the covariate ’Time" (including the
’Time’ covariate), and must contain ’log(Time)’, other forms also include I(Time^2)
and I(Time^3);

grp Grouping variable (should be a single valued column);

random_formula Random effects formula for the model, within ID (could also add random slope
for ’Time’);

correlation_formula

Correlation formula. Default is autorgressive but can accommodate other forms
such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity

grpResp2Time_parallel 19

Value

Data frame that contains the coefficient estimates, their corresponding p-values as well as LRT
p-values for ’Time’ terms

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
df_single_diet <- subset(df, Diet == 1)
covariates <- c("ID","Diet", "Age", "BMI")
result_SD <- grpResp2Time(df_single_diet, metvar, covariates)[[1]]
summary(result_SD)

grpResp2Time_parallel Vectorized version of grpRes2Time()

Description

Vectorized version of grpRes2Time()

Usage

grpResp2Time_parallel(
df,
met_vec,
covariates,
time_terms = c("Time", "log(Time)"),
grp = "Diet",

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

20 grpResp2Time_parallel

random_formula = ~1 | ID,
correlation_formula = corAR1(form = ~Time | ID),
weights = NULL

)

Arguments

df Data frame containing information for a single group, containing columns grp;
ID(subject ID: character); Time(positive: numeric); other Time terms (numeric);
other individual characteristics covariates; as well columns of metabolite con-
centrations Note: All non-concentration columns must be complete (No missing
values); concentration columns can have missing values in the forms of either
numeric 0 or ’NA’.

met_vec Vector of metabolite names

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

time_terms Vector that contains all additional form of the covariate ’Time" (including the
’Time’ covariate), and must contain ’log(Time)’, other forms also include I(Time^2)
and I(Time^3);

grp Grouping variable (should be a single valued column);

random_formula Random effects formula for the model, within ID (could also add random slope
for ’Time’);

correlation_formula

Correlation formula. Default is autorgressive but can accommodate other forms
such as unstructured covariance or exponential covariance;

weights specify a variance function that models heteroscedasticity

Value

Data frame that contains the coefficient estimates, their corresponding p-values as well as LRT
p-values for ’Time’ terms

Note

This function uses parallel processing via the ‘future.apply‘ package. To enable parallel execution,
runs the following before calling this function:

library(future.apply) plan(multisession, workers = parallel::detectCores() - 1)

You only need to set the plan once per session.

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

pk_calculation 21

Examples

Not run:
require(gammaFuncModel)
require(dplyr)
require(nlme)
df <- data.frame(

ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
concentration_data <- replicate(10, round(runif(270, 5, 15), 2))
colnames(concentration_data) <- metvar[1:10]
df <- cbind(df, as.data.frame(concentration_data))
df_single_diet <- subset(df, Diet == 1)
covariates <- c("ID","Diet", "Age", "BMI")
result_SD <- grpResp2Time_parallel(df_single_diet, metvar, covariates)[[1]]
summary(result_SD)

End(Not run)

pk_calculation Function that returns a data frame for Tmax, Cmax, half-life, AUC
and AUCInf for metabolites

Description

Function that returns a data frame for Tmax, Cmax, half-life, AUC and AUCInf for metabolites

Usage

pk_calculation(df, met_vec, models, grp_name = "Diet", covariates, ref = 1)

Arguments

df Data frame containing columns Group(factor); ID(subject ID: character); Time(positive:
numeric); other individiual characteristics covariates (exlcluding other forms of
’Time’) Note: Data must be complete (No missing values).

met_vec Vector of metabolite names

models Fitted models for all metabolites of interest

grp_name Name of the grouping variable

covariates Vector containing the names of the "ID" covariate, grouping covariate and other
covariates excluding any "Time" covariates

ref reference level for the grouping variable. could be numeric or character

22 pk_calculation

Value

Data frame with the pharmacokinetic properties of each metabolite

References

Wickham, H. (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10. Avail-
able at: https://CRAN.R-project.org/package=dplyr

Pinheiro, J. C., & Bates, D. M. (2022). nlme: Linear and Nonlinear Mixed Effects Models. R
package version 3.1-153. Available at: https://CRAN.R-project.org/package=nlme

Examples

require(gammaFuncModel)
require(dplyr)
Not run:
df <- data.frame(
ID = rep(sprintf("%02d", 1:10), each = 9 * 3),
Time = rep(rep(1:9, each = 3), 10),
Diet = as.factor(rep(1:3, times = 9 * 10)),
Age = rep(sample(20:70, 10, replace = TRUE), each = 9 * 3),
BMI = round(rep(runif(10, 18.5, 35), each = 9 * 3), 1)

)
metvar <- paste0("met", 1:10)
n_rows <- nrow(df)
concentration_data <- sapply(1:10, function(m) {
shape <- runif(1, 2, 5)
scale <- runif(1, 1, 3)
rgamma(n_rows, shape = shape, scale = scale)

})
colnames(concentration_data) <- metvar
df <- cbind(df, as.data.frame(concentration_data))
covariates <- c("ID", "Diet", "Age", "BMI")
mods <- generate_models(df = df, met_vec = metvar, covariates = covariates, graph = 'None')
result <- pk_calculation(

df = df,
met_vec = metvar,
models = mods,
grp_name = "Diet",
covariates = covariates
)

End(Not run)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=nlme

Index

calculate_AUC, 2
calculate_Cmax, 3
calculate_half_life, 4
calculate_Tmax, 6

diffGrpResponse, 7
diffGrpResponse_parallel, 9

gammaFunction, 11
generate_f_function, 14
generate_models, 16
generatePlot, 13
grpResp2Time, 18
grpResp2Time_parallel, 19

pk_calculation, 21

23

	calculate_AUC
	calculate_Cmax
	calculate_half_life
	calculate_Tmax
	diffGrpResponse
	diffGrpResponse_parallel
	gammaFunction
	generatePlot
	generate_f_function
	generate_models
	grpResp2Time
	grpResp2Time_parallel
	pk_calculation
	Index

