Package 'fclust'

November 16, 2022

Type Package Title Fuzzy Clustering **Version** 2.1.1.1 Date 2019-09-16 Author Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini Maintainer Paolo Giordani <paolo.giordani@uniroma1.it> Description Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visualizing fuzzy clustering results. **Depends** R (>= 3.3), base, stats, graphics, grDevices, utils Imports Rcpp (>= 0.12.5), MASS (>= 7.3) LinkingTo Rcpp, RcppArmadillo (>= 0.7) License GPL (>= 2) ByteCompile true **Repository** CRAN NeedsCompilation yes LazyLoad yes **Encoding** UTF-8 Date/Publication 2022-11-16 16:34:44 UTC

R topics documented:

ARI.F	3
butterfly	4
cl.memb	5
cl.memb.H	6
cl.memb.t	7
cl.size	
cl.size.H	9
Fclust	10
Fclust.compare	11

Fclust.index	13
FKM	14
FKM.ent	16
FKM.ent.noise	18
FKM.gk	21
FKM.gk.ent	23
FKM.gk.ent.noise	25
FKM.gk.noise	28
FKM.gkb	30
FKM.gkb.ent	32
FKM.gkb.ent.noise	34
FKM.gkb.noise	37
FKM.med	39
FKM.med.noise	42
FKM.noise	44
FKM.pf	46
FKM.pf.noise	48
houseVotes	50
Hraw	51
JACCARD.F	52
Mc	54
MPC	55
NBA	56
NEFRC	57
NEFRC.noise	59
PC	61
PE	62
plot.fclust	63
print.fclust	65
RI.F	66
SIL	67
SIL.F	68
summary.fclust	69
synt.data	70
synt.data2	71
unemployment	72
VAT	73
VCV	74
VCV2	75
VIFCR	77
ХВ	78

ARI.F

Description

Produces the fuzzy version of the adjusted Rand index between a hard (reference) partition and a fuzzy partition.

Usage

ARI.F(VC, U, t_norm)

Arguments

VC	Vector of class labels
U	Fuzzy membership degree matrix or data.frame
t_norm	Type of the triangular norm: "minimum" (minimum triangular norm), "triangu- lar product" (product norm) (default: "minimum")

Value

ari.fValue of the fuzzy adjusted Rand index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841. Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification, 2, 193-218.

See Also

RI.F, JACCARD.F, Fclust.compare

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
```

butterfly

```
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy adjusted Rand index
ari.f=ARI.F(VC=Mc$Type,U=clust$U)
```

Butterfly data

End(Not run)

butterfly

Description

Synthetic dataset with 2 clusters and some outliers.

Usage

data(butterfly)

Format

A matrix with 17 rows and 2 columns.

Details

The butterfly data motivate the need for the fuzzy approach to clustering. The presence of outliers can be handled using fuzzy k-means with noise cluster. In fact, differently from fuzzy k-means, the membership degrees of the outliers are low for all the clusters.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, FKM, FKM.noise

Examples

```
## butterfly data
data(butterfly)
plot(butterfly,type='n')
text(butterfly[,1],butterfly[,2],labels=rownames(butterfly),cex=0.7,lwd=2)
## membership degree matrix using fuzzy k-means (rounded)
round(FKM(butterfly)$U,2)
## membership degree matrix using fuzzy k-means with noise cluster (rounded)
round(FKM.noise(butterfly,delta=3)$U,2)
```

4

cl.memb

Description

Produces a summary of the membership degree information.

Usage

cl.memb (U)

Arguments U

Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree. Therefore, it produces the closest hard clustering partition

Value

info.U	Matrix containing the indexes of the clusters where the objects are assigned (row
	1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.memb.H, cl.memb.t

```
n=20
k=3
## randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
info.U=cl.memb(U)
## objects assigned to cluster 2
rownames(info.U[info.U[,1]==2,])
```

cl.memb.H

Description

Produces a summary of the membership degree information in the hard clustering sense (objects are considered to be assigned to clusters only if the corresponding membership degree are >=0.5).

Usage

cl.memb.H (U)

Arguments

U

Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is >=0.5, otherwise it is assumed that an object is not assigned to any cluster (denoted by cluster index = 0 in row 1).

Value

info.U	Matrix containing the indexes of the clusters where the objects are assigned (row
	1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.memb, cl.memb.t

```
n=20
k=3
## randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
info.U=cl.memb.H(U)
## objects assigned to clusters in the hard clustering sense
rownames(info.U[info.U[,1]!=0,])
```

cl.memb.t

Description

Produces a summary of the membership degree information according to a threshold.

Usage

cl.memb.t (U, t)

Arguments

U	Membership degree matrix
t	Threshold in [0,1] (default: 0)

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is $\geq t$, otherwise it is assumed that an object is not assigned to any cluster (denoted by cluster index = 0 in row 1). The function can be useful to select the subset of objects clearly assigned to clusters (objects with maximal membership degrees $\geq t$).

Value

info.U	Matrix containing the indexes of the clusters where the objects are assigned (row
	1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.memb,cl.memb.H

```
n=20
k=3
## randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
## threshold t=0.6
info.U=cl.memb.t(U,0.6)
## objects clearly assigned to clusters
rownames(info.U[info.U[,1]!=0,])
```

cl.size

Description

Produces the sizes of the clusters.

Usage

cl.size (U)

Arguments

U Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree.

Value

clus.size Vector containing the sizes of the clusters

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.size.H

```
n=20
k=3
## randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
clus.size=cl.size(U)
```

cl.size.H

Description

Produces the sizes of the clusters in the hard clustering sense (objects are considered to be assigned to clusters only if the corresponding membership degree are >=0.5).

Usage

cl.size.H (U)

Arguments

U

Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is >=0.5, otherwise it is assumed that an object is not assigned to any cluster.

Value

clus.size Vector containing the sizes of the clusters

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.size

```
n=20
k=3
## randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
## cluster size in the hard clustering sense
clus.size=cl.size.H(U)
```

Fclust

Description

Performs fuzzy clustering by using the algorithms available in the package.

Usage

Fclust (X, k, type, ent, noise, stand, distance)

Arguments

Х	Matrix or data.frame
k	An integer value specifying the number of clusters (default: 2)
type	Fuzzy clustering algorithm: "standard" (standard algorithms: FKM - type if distance=TRUE, NEFRC - type if if distance=FALSE), "polynomial" (algorithms with the polynomial fuzzifier), "gk" (Gustafson and Kessel - like algorithms), "gkb" (Gustafson, Kessel and Babuska - like algorithms), "medoids" (Medoid - based algorithms) (default: "standard")
ent	If ent=TRUE, the entropy regularization variant of the algorithm is run (default: FALSE)
noise	If noise=TRUE, the noise cluster variant of the algorithm is run (default: FALSE)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
distance	If distance=TRUE, X is assumed to be a distance/dissimilarity matrix (default: FALSE)

Details

The clustering algorithms are run by using default options. To specify different options, use the corresponding function.

Value

clust	Object of class fclust
-------	------------------------

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

print.fclust, summary.fclust, plot.fclust, FKM, FKM.ent, FKM.gk, FKM.gk.ent, FKM.gkb, FKM.gkb.ent, FKM.med, FKM.pf, FKM.noise, FKM.ent.noise, FKM.gk.noise, FKM.gkb.ent.noise, FKM.gkb.noise, FKM.gk.ent.noise, FKM.med.noise, FKM.pf.noise, NEFRC, NEFRC.noise, Fclust.index, Fclust.compare

Fclust.compare

Examples

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with polynomial fuzzifier
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="polynomial",ent=FALSE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with entropy regularization
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=TRUE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with noise cluster
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=TRUE,stand=1,distance=FALSE)
```

End(Not run)

Fclust.compare Similarity between partitions

Description

Performs some measures of similarity between a hard (reference) partition and a fuzzy partition.

Usage

```
Fclust.compare(VC, U, index, tnorm)
```

Arguments

VC	Vector of class labels
U	Fuzzy membership degree matrix or data.frame
index	Measures of similarity: "ARI.F" (fuzzy version of the adjuster Rand index), "RI.F" (fuzzy version of the Rand index), "JACCARD.F" (fuzzy version of the Jaccard index), "ALL" for all the indexes (default: "ALL")
tnorm	Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Details

index is not case-sensitive. All the measures of similarity share the same properties of their non-fuzzy counterpart.

Value

out.indexVector containing the similarity measures

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841.
Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification, 2, 193-218.
Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.
Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.

See Also

RI.F, ARI.F, JACCARD.F

Examples

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## all measures of similarity
all.indexes=Fclust.compare(VC=Mc$Type,U=clust$U)
## fuzzy adjusted Rand index
Fari.index=Fclust.compare(VC=Mc$Type,U=clust$U,index="ARI.F")
```

End(Not run)

Fclust.index

Description

Performs some cluster validity indexes for choosing the optimal number of clusters k.

Usage

Fclust.index (fclust.obj, index, alpha)

Arguments

fclust.obj	Object of class fclust
index	Cluster validity indexes to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni),ALL for all the indexes (default: "ALL")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

Details

index is not case-sensitive.

Value

out.index	Vector con	ntaining	the	index	values
-----------	------------	----------	-----	-------	--------

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

PC, PE, MPC, SIL, SIL.F, XB, Fclust, Mc

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
```

```
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## cluster validity indexes
all.indexes=Fclust.index(clust)
## Xie and Beni cluster validity index
XB.index=Fclust.index(clust,'XB')
```

FKM

Fuzzy k-means

Description

Performs the fuzzy *k*-means clustering algorithm.

Usage

FKM (X, k, m, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

FKM

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM)
b	Parameter of the polynomial fuzzifier (NULL for FKM)
vp	Volume parameter (NULL for FKM)
delta	Noise distance (NULL for FKM)
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM)
mcn	Maximum condition number for the fuzzy covariance matrices (NULL for FKM)
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

See Also

FKM.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means (excluded the factor column Type (last column)), fixing the number of clusters
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy k-means (excluded the factor column Type (last column)), selecting the number of clusters
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=2:6,m=1.5,stand=1)
```

FKM.ent

Fuzzy k-means with entropy regularization

Description

Performs the fuzzy k-means clustering algorithm with entropy regularization.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the proto-types are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

Usage

FKM.ent (X, k, ent, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

16

FKM.ent

conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. The default value for ent is in general not reasonable if FKM.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.ent using standardized data (stand=1).

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.ent)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.ent)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.ent)
ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.ent)
vp	Volume parameter (NULL for FKM.ent)
delta	Noise distance (NULL for FKM.ent)
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.ent)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ ({\tt NULL}\ for\ {\tt FKM.\ ent})$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.ent)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Li R., Mukaidono M., 1995. A maximum entropy approach to fuzzy clustering. Proceedings of the Fourth IEEE Conference on Fuzzy Systems (FUZZ-IEEE/IFES '95), pp. 2227-2232. Li R., Mukaidono M., 1999. Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets and Systems, 102, 253-258.

See Also

FKM.ent.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means with entropy regularization, fixing the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.ent(Mc[,1:(ncol(Mc)-1)],k=6,ent=3,RS=10,stand=1)
## fuzzy k-means with entropy regularization, selecting the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.ent(Mc[,1:(ncol(Mc)-1)],k=2:6,ent=3,RS=10,stand=1)
```

FKM.ent.noise

Fuzzy k-means with entropy regularization and noise cluster

Description

Performs the fuzzy k-means clustering algorithm with entropy regularization and noise cluster. The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.ent.noise (X, k, ent, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

FKM.ent.noise

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.ent using the same values of k and m)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. The default value for ent is in general not reasonable if FKM.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.ent using standardized data (stand=1).

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.ent.noise)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.ent.noise)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.ent.noise)

ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.ent.noise)
vp	Volume parameter (NULL for FKM.ent.noise)
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.ent.noise)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ ({\tt NULL}\ for\ {\tt FKM.ent.noise})$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.ent.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Li R., Mukaidono M., 1995. A maximum entropy approach to fuzzy clustering. Proceedings of the Fourth IEEE Conference on Fuzzy Systems (FUZZ-IEEE/IFES '95), pp. 2227-2232.

Li R., Mukaidono M., 1999. Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets and Systems, 102, 253-258.

See Also

FKM.ent, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, butterfly

```
## butterfly data
data(butterfly)
## fuzzy k-means with entropy regularization and noise cluster, fixing the number of clusters
clust=FKM.ent.noise(butterfly,k = 2, RS=5,delta=3)
## fuzzy k-means with entropy regularization and noise cluster, selecting the number of clusters
clust=FKM.ent.noise(butterfly,RS=5,delta=3)
```

FKM.gk

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm. Differently from fuzzy k-means, it is able to discover non-spherical clusters.

Usage

FKM.gk (X, k, m, vp, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
vp	Volume parameter (default: rep(1,k))
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

The Babuska et al. variant in FKM.gkb is recommended.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.gk)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.gk)
b	Parameter of the polynomial fuzzifier (NULL for FKM.gk)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance (NULL for FKM.gk)
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk)
mcn	Maximum condition number for the fuzzy covariance matrices (NULL for FKM.gk) $% \left({{\rm NULL}} \right) = {{\rm NULL}} \left({{\rm NUL}} \right) = {{\rm NULL}} \left({{\rm NULL}} \right)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gk)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.

See Also

FKM.gkb, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

FKM.gk.ent

Examples

```
## Not run:
## unemployment data
data(unemployment)
## Gustafson and Kessel-like fuzzy k-means, fixing the number of clusters
clust=FKM.gk(unemployment,k=3,RS=10)
## Gustafson and Kessel-like fuzzy k-means, selecting the number of clusters
clust=FKM.gk(unemployment,k=2:6,RS=10)
```

End(Not run)

FKM.gk.ent

Gustafson and Kessel - like fuzzy k-means with entropy regularization

Description

Performs the Gustafson and Kessel - like fuzzy *k*-means clustering algorithm with entropy regularization.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the proto-types are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

Usage

FKM.gk.ent (X, k, ent, vp, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
vp	Volume parameter (default: rep(1,k))
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, the algorithm stops and the element of value is NaN.

The default value for ent is in general not reasonable if FKM.gk.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent using standardized data (stand=1).

The Babuska et al. variant in FKM.gkb.ent is recommended.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.gk.ent)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.gk.ent)
ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.gk.ent)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance (NULL for FKM.gk.ent)
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk.ent)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ ({\tt NULL}\ for\ {\tt FKM}\ .\ gk\ .\ ent)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gk.ent)
call	Matched call

FKM.gk.ent.noise

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Ferraro M.B., Giordani P., 2013. A new fuzzy clustering algorithm with entropy regularization. Proceedings of the meeting on Classification and Data Analysis (CLADAG).

See Also

FKM.gkb.ent, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```
## unemployment data
data(unemployment)
## Gustafson and Kessel-like fuzzy k-means with entropy regularization,
##fixing the number of clusters
clust=FKM.gk.ent(unemployment,k=3,ent=0.2,RS=10,stand=1)
## Not run:
## Gustafson and Kessel-like fuzzy k-means with entropy regularization,
##selecting the number of clusters
clust=FKM.gk.ent(unemployment,k=2:6,ent=0.2,RS=10,stand=1)
```

End(Not run)

FKM.gk.ent.noise

Gustafson and Kessel - like fuzzy k-means with entropy regularization and noise cluster

Description

Performs the Gustafson and Kessel - like fuzzy *k*-means clustering algorithm with entropy regularization and noise cluster.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gk.ent.noise (X,k,ent,vp,delta,RS,stand,startU,index,alpha,conv,maxit,seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
vp	Volume parameter (default: rep(1,k))
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.gk.ent using the same values of k and m)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).

If startU is given, the first element of value, cput and iter refer to the rational start.

If a cluster covariance matrix becomes singular, the algorithm stops and the element of value is NaN.

The default value for ent is in general not reasonable if FKM.gk.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent.noise using standardized data (stand=1).

The Babuska et al. variant in FKM.gkb.ent.noise is recommended.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	$Vector\ containing\ the\ indexes\ of\ the\ medoid\ objects\ (\texttt{NULL}\ for\ \texttt{FKM}.\ \texttt{gk.ent.noise})$
value	Vector containing the loss function values for the RS starts

criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.gk.ent.noise)
ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.gk.ent.noise)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.ent.noise)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ (NULL\ for\ FKM.\ ent.\ noise)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.ent.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Ferraro M.B., Giordani P., 2013. A new fuzzy clustering algorithm with entropy regularization. Proceedings of the meeting on Classification and Data Analysis (CLADAG).

See Also

FKM.gkb.ent.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

Not run: ## unemployment data data(unemployment) ## Gustafson and Kessel-like fuzzy k-means with entropy regularization and noise cluster, ##fixing the number of clusters clust=FKM.gk.ent.noise(unemployment,k=3,ent=0.2,delta=1,RS=10,stand=1) ## Gustafson and Kessel-like fuzzy k-means with entropy regularization and noise cluster, ##selecting the number of clusters clust=FKM.gk.ent.noise(unemployment,k=2:6,ent=0.2,delta=1,RS=10,stand=1)

End(Not run)

```
FKM.gk.noise
```

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm with noise cluster. Differently from fuzzy k-means, it is able to discover non-spherical clusters. The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gk.noise (X, k, m, vp, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.gk using the same values of k and m)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

The Babuska et al. variant in FKM.gkb.noise is recommended.

FKM.gk.noise

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.gk.noise)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.gk.noise)
b	Parameter of the polynomial fuzzifier (NULL for FKM.gk.noise)
vp	Volume parameter
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk.noise)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ ({\tt NULL}\ for\ {\tt FKM.gk.noise})$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gk.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.

See Also

FKM.gkb.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```
## Not run:
## unemployment data
data(unemployment)
## Gustafson and Kessel-like fuzzy k-means with noise cluster, fixing the number of clusters
clust=FKM.gk.noise(unemployment,k=3,delta=20,RS=10)
## Gustafson and Kessel-like fuzzy k-means with noise cluster, selecting the number of clusters
clust=FKM.gk.noise(unemployment,k=2:6,delta=20,RS=10)
```

End(Not run)

FKM.gkb

Gustafson, Kessel and Babuska - like fuzzy k-means

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy *k*-means clustering algorithm. Differently from fuzzy *k*-means, it is able to discover non-spherical clusters. The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.

Usage

FKM.gkb (X, k, m, vp, gam, mcn, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
vp	Volume parameter (default: rep(1,k))
gam	Weighting parameter for the fuzzy covariance matrices (default: 0)
mcn	Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+2)
seed	Seed value for random number generation (default: NULL)

30

FKM.gkb

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.gkb)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of clustering index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.gkb)
b	Parameter of the polynomial fuzzifier (NULL for FKM.gkb)
vp	Volume parameter
delta	Noise distance (NULL for FKM.gkb)
gam	Weighting parameter for the fuzzy covariance matrices
mcn	Maximum condition number for the fuzzy covariance matrices
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gkb)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Babuska R., van der Veen P.J., Kaymak U., 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1081-1085.

Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.

See Also

FKM.gk, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```
## Not run:
## unemployment data
data(unemployment)
## Gustafson, Kessel and Babuska-like fuzzy k-means, fixing the number of clusters
clust=FKM.gkb(unemployment,k=3,RS=10)
## Gustafson, Kessel and Babuska-like fuzzy k-means, selecting the number of clusters
clust=FKM.gkb(unemployment,k=2:6,RS=10)
## End(Not run)
```

```
FKM.gkb.ent
```

Gustafson, Kessel and Babuska - like fuzzy k-means with entropy regularization

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy *k*-means clustering algorithm with entropy regularization.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

Usage

FKM.gkb.ent (X, k, ent, vp, gam, mcn, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
vp	Volume parameter (default: rep(1,k))
gam	Weighting parameter for the fuzzy covariance matrices (default: 0)
mcn	Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
RS	Number of (random) starts (default: 1)

FKM.gkb.ent

stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+2)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, the algorithm stops and the element of value is NaN.

The default value for ent is in general not reasonable if FKM.gk.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent using standardized data (stand=1).

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.gkb.ent)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	A integer value or vector indicating the number of clusters. (default: 2:6)
m	Parameter of fuzziness (NULL for FKM.gkb.ent)
ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.gkb.ent)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance (NULL for FKM.gkb.ent)
gam	Weighting parameter for the fuzzy covariance matrices

mcn	Maximum condition number for the fuzzy covariance matrices
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gkb.ent)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Babuska R., van der Veen P.J., Kaymak U., 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1081-1085.

Ferraro M.B., Giordani P., 2013. A new fuzzy clustering algorithm with entropy regularization. Proceedings of the meeting on Classification and Data Analysis (CLADAG).

See Also

FKM.gk.ent, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```
## Not run:
## unemployment data
data(unemployment)
## Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization,
##fixing the number of clusters
clust=FKM.gkb.ent(unemployment,k=3,ent=0.2,RS=10,stand=1)
## Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization,
##selecting the number of clusters
clust=FKM.gkb.ent(unemployment,k=2:6,ent=0.2,RS=10,stand=1)
## End(Not run)
```

FKM.gkb.ent.noise	Gustafson, Kessel and Babuska - like fuzzy k-means with entropy reg-
	ularization and noise cluster

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy *k*-means clustering algorithm with entropy regularization and noise cluster.

Differently from fuzzy *k*-means, it is able to discover non-spherical clusters.

The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm. The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy *ent*, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gkb.ent.noise (X,k,ent,vp,delta,gam,mcn,RS,stand,startU,index,alpha,conv,maxit,seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent	Degree of fuzzy entropy (default: 1)
vp	Volume parameter (default: rep(1,max(k)). If k is a vector, for each group the first k element of vpare considered.
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.gk.ent using the same values of k and m)
gam	Weighting parameter for the fuzzy covariance matrices (default: 0)
mcn	Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+2)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).

If startU is given, the first element of value, cput and iter refer to the rational start.

If a cluster covariance matrix becomes singular, the algorithm stops and the element of value is NaN.

The default value for ent is in general not reasonable if FKM.gk.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent.noise using standardized data (stand=1). Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	$Vector\ containing\ the\ indexes\ of\ the\ medoid\ objects\ ({\tt NULL}\ for\ {\tt FKM}\ .\ gkb\ .\ {\tt ent}\ .\ {\tt noise})$
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.gkb.ent.noise)
ent	Degree of fuzzy entropy
b	Parameter of the polynomial fuzzifier (NULL for FKM.gkb.ent.noise)
vp	Volume parameter
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices
mcn	Maximum condition number for the fuzzy covariance matrices
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.gkb.ent.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Babuska R., van der Veen P.J., Kaymak U., 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1081-1085.

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Ferraro M.B., Giordani P., 2013. A new fuzzy clustering algorithm with entropy regularization. Proceedings of the meeting on Classification and Data Analysis (CLADAG).

See Also

FKM.gk.ent.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment
FKM.gkb.noise

Examples

Not run: ## unemployment data data(unemployment) ## Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization and noise cluster, ##fixing the number of clusters clust=FKM.gkb.ent.noise(unemployment,k=3,ent=0.2,delta=1,RS=10,stand=1) ## Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization and noise cluster, ##selecting the number of clusters clust=FKM.gkb.ent.noise(unemployment,k=2:6,ent=0.2,delta=1,RS=10,stand=1)

End(Not run)

FKM.gkb.noise

Gustafson, Kessel and Babuska - like fuzzy k-means with noise cluster

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy *k*-means clustering algorithm with noise cluster.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gkb.noise (X,k,m,vp,delta,gam,mcn,RS,stand,startU,index,alpha,conv,maxit,seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
vp	Volume parameter (default: rep(1,k))
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.gk using the same values of k and m)
gam	Weighting parameter for the fuzzy covariance matrices (default: 0)
mcn	Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)

index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+2)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

Value

Object of class fclust, which is a list with the following components:

 H Prototype matrix F Array containing the covariance matrices of all the clusters 	
clus Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2))
medoid Vector containing the indexes of the medoid objects (NULL for FKM.gkb.noise	/
value Vector containing the loss function values for the RS starts	
criterion Vector containing the values of the cluster validity index	
iter Vector containing the numbers of iterations for the RS starts	
k Number of clusters	
m Parameter of fuzziness	
ent Degree of fuzzy entropy (NULL for FKM.gkb.noise)	
b Parameter of the polynomial fuzzifier (NULL for FKM.gkb.noise)	
vp Volume parameter (default: rep(1,max(k)). If k is a vector, for each group th first k element of vpare considered.	e
delta Noise distance	
gam Weighting parameter for the fuzzy covariance matrices	
mcn Maximum condition number for the fuzzy covariance matrices	
stand Standardization (Yes if stand=1, No if stand=0)	
Xca Data used in the clustering algorithm (standardized data if stand=1)	
X Raw data	
D Dissimilarity matrix (NULL for FKM.gkb.noise)	
call Matched call	

FKM.med

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Babuska R., van der Veen P.J., Kaymak U., 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1081-1085.

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.

See Also

FKM.gk.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

Not run: ## unemployment data data(unemployment) ## Gustafson, Kessel and Babuska-like fuzzy k-means with noise cluster, ##fixing the number of clusters clust=FKM.gkb.noise(unemployment,k=3,delta=20,RS=10) ## Gustafson, Kessel and Babuska-like fuzzy k-means with noise cluster, ##selecting the number of clusters clust=FKM.gkb.noise(unemployment,k=2:6,delta=20,RS=10) ## End(Not run)

FKM.med

Fuzzy k-medoids

Description

Performs the fuzzy k-medoids clustering algorithm.

Differently from fuzzy k-means where the cluster prototypes (centroids) are artificial objects computed as weighted means, in the fuzzy k-medoids the cluster prototypes (medoids) are a subset of the observed objects.

Usage

FKM.med (X, k, m, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector indicating the number of clusters (default: 2:6)
m	Parameter of fuzziness (default: 1.5)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. In FKM.med the parameter of fuzziness is usually lower than the one used in FKM.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.med)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.med)
b	Parameter of the polynomial fuzzifier (NULL for FKM.med)
vp	Volume parameter (NULL for FKM.med)
delta	Noise distance (NULL for FKM.med)

FKM.med

gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.med)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ (NULL\ for\ FKM.\ med)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.med)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Krishnapuram R., Joshi A., Nasraoui O., Yi L., 2001. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9, 595-607.

See Also

FKM.med.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2: (ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-medoids, fixing the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.med(Mc[,1:(ncol(Mc)-1)],k=6,m=1.1,RS=10,stand=1)
## fuzzy k-medoids, selecting the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.med(Mc[,1:(ncol(Mc)-1)],k=2:6,m=1.1,RS=10,stand=1)
```

End(Not run)

FKM.med.noise

Description

Performs the fuzzy k-medoids clustering algorithm with noise cluster.

Differently from fuzzy k-means where the cluster prototypes (centroids) are artificial objects computed as weighted means, in the fuzzy k-medoids the cluster prototypes (medoids) are a subset of the observed objects.

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.med.noise (X, k, m, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 1.5)
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.med using the same values of k and m)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start. As for FKM.med, in FKM.med.noise the parameter of fuzziness is usually lower than the one used in FKM.

FKM.med.noise

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.med.noise)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of clustering index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.med.noise)
b	Parameter of the polynomial fuzzifier (NULL for FKM.med.noise)
vp	Volume parameter (NULL for FKM.med.noise)
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.med.noise)
mcn	$Maximum\ condition\ number\ for\ the\ fuzzy\ covariance\ matrices\ (NULL\ for\ FKM.\ med.\ noise)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.med.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Krishnapuram R., Joshi A., Nasraoui O., Yi L., 2001. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9, 595-607.

See Also

FKM.med, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, butterfly

Examples

```
## butterfly data
data(butterfly)
## fuzzy k-medoids with noise cluster, fixing the number of clusters
clust=FKM.med.noise(butterfly,k=2,RS=5,delta=3)
## fuzzy k-medoids with noise cluster, selecting the number of clusters
clust=FKM.med.noise(butterfly,RS=5,delta=3)
```

FKM.noise

Fuzzy k-means with noise cluster

Description

Performs the fuzzy k-means clustering algorithm with noise cluster. The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.noise (X, k, m, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
delta	Noise distance (default: average Euclidean distance between objects and proto-types from FKM using the same values of k and m)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

44

FKM.noise

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM. noise)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.noise)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for FKM.noise)
b	Parameter of the polynomial fuzzifier (NULL for FKM.noise)
vp	Volume parameter (NULL for FKM.noise)
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.noise)
mcn	Maximum condition number for the fuzzy covariance matrices (NULL for FKM.noise)
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

See Also

FKM, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, butterfly

Examples

```
## butterfly data
data(butterfly)
## fuzzy k-means with noise cluster, fixing the number of clusters
clust=FKM.noise(butterfly, k = 2, RS=5,delta=3)
## fuzzy k-means with noise cluster, selecting the number of clusters
clust=FKM.noise(butterfly,RS=5,delta=3)
```

FKM.pf

Fuzzy k-means with polynomial fuzzifier

Description

Performs the fuzzy *k*-means clustering algorithm with polynomial fuzzifier function. The polynomial fuzzifier creates areas of crisp membership degrees around the prototypes while, outside of these areas of crisp membership degrees, fuzzy membership degrees are given. Therefore, the polynomial fuzzifier produces membership degrees equal to one for objects clearly assigned to clusters, that is, very close to the cluster prototypes.

Usage

FKM.pf (X, k, b, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
b	Parameter of the polynomial fuzzifier (default: 0.5)
RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette), "XB" (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

46

FKM.pf

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.pf)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.pf)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.pf)
ent	Degree of fuzzy entropy (NULL for FKM.pf)
b	Parameter of the polynomial fuzzifier
vp	Volume parameter (NULL for FKM.pf)
delta	Noise distance (NULL for FKM.pf)
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.pf)
mcn	Maximum condition number for the fuzzy covariance matrices (NULL for FKM.pf) $% \left({{\rm NULL}} \right)$
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.pf)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Winkler R., Klawonn F., Hoeppner F., Kruse R., 2010. Fuzzy Cluster Analysis of Larger Data Sets. In: Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design IGI Global, pp. 302-331. IGI Global, Hershey.

Winkler R., Klawonn F., Kruse R., 2011. Fuzzy clustering with polynomial fuzzifier function in connection with M-estimators. Applied and Computational Mathematics, 10, 146-163.

See Also

FKM.pf.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means with polynomial fuzzifier, fixing the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.pf(Mc[,1:(ncol(Mc)-1)],k=6,stand=1)
## fuzzy k-means with polynomial fuzzifier, selecting the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.pf(Mc[,1:(ncol(Mc)-1)],k=2:6,stand=1)
```

FKM.pf.noise

Fuzzy k-means with polynomial fuzzifier and noise cluster

Description

Performs the fuzzy *k*-means clustering algorithm with polynomial fuzzifier function and noise cluster.

The polynomial fuzzifier creates areas of crisp membership degrees around the prototypes while, outside of these areas of crisp membership degrees, fuzzy membership degrees are given. Therefore, the polynomial fuzzifier produces membership degrees equal to one for objects clearly assigned to clusters, that is, very close to the cluster prototypes.

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```
FKM.pf.noise (X, k, b, delta, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

Х	Matrix or data.frame
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
b	Parameter of the polynomial fuzzifier (default: 0.5)
delta	Noise distance (default: average Euclidean distance between objects and proto- types from FKM.pf using the same values of k and m)

48

FKM.pf.noise

RS	Number of (random) starts (default: 1)
stand	Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU	Rational start for the membership degree matrix U (default: no rational start)
index	Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix
F	Array containing the covariance matrices of all the clusters (NULL for FKM.pf.noise)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for FKM.pf.noise)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness (NULL for FKM.pf.noise)
ent	Degree of fuzzy entropy (NULL for FKM.pf.noise)
b	Parameter of the polynomial fuzzifier
vp	Volume parameter (NULL for FKM.pf.noise)
delta	Noise distance
gam	Weighting parameter for the fuzzy covariance matrices (NULL for FKM.pf.noise)
mcn	Maximum condition number for the fuzzy covariance matrices (NULL for FKM.pf.noise)
stand	Standardization (Yes if stand=1, No if stand=0)
Хса	Data used in the clustering algorithm (standardized data if stand=1)
Х	Raw data
D	Dissimilarity matrix (NULL for FKM.pf.noise)
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

Winkler R., Klawonn F., Hoeppner F., Kruse R., 2010. Fuzzy cluster analysis of larger data sets. In: Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design IGI Global, pp. 302-331. IGI Global, Hershey.

Winkler R., Klawonn F., Kruse R., 2011. Fuzzy clustering with polynomial fuzzifier function in connection with M-estimators. Applied and Computational Mathematics, 10, 146-163.

See Also

FKM.pf, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-means with polynomial fuzzifier and noise cluster, fixing the number of clusters ## (excluded the factor column Type (last column)) clust=FKM.pf.noise(Mc[,1:(ncol(Mc)-1)],k=6,stand=1) ## fuzzy k-means with polynomial fuzzifier and noise cluster, selecting the number of clusters ## (excluded the factor column Type (last column)) clust=FKM.pf.noise(Mc[,1:(ncol(Mc)-1)],k=2:6,stand=1)

houseVotes

Congressional Voting Records Data

Description

1984 United Stated Congressional Voting Records for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac.

Usage

data(houseVotes)

Format

A data.frame with 435 rows on 17 columns (16 qualitative variables and 1 classification variable).

Hraw

Details

The data collect 1984 United Stated Congressional Voting Records for each of the 435 U.S. House of Representatives Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac (CQA). The variable class splits the observations in democrat and republican. The qualitative variables refer to the votes on handicapped-infants, water-project-cost-sharing, adoption-of-the-budget-resolution, physician-fee-freeze, el-salvador-aid, religious-groups-in-schools, anti-satellite-test-ban, aid-to-nicaraguan-contras, mx-missile, immigration, synfuels-corporation-cutbac education-spending, superfund-right-to-sue, crime, duty-free-exports, and export-administration-act-sout All these 16 variables are objects of class factor with three levels according to the CQA scheme: y refers to the types of votes "voted for", "paired for" and "announced for"; n to "voted against", "paired against" and "announced against"; codeyn to "voted present", "voted present to avoid conflict of interest" and "did not vote or otherwise make a position known".

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Source

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

References

Schlimmer, J.C., 1987. Concept acquisition through representational adjustment. Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine, CA.

See Also

NEFRC, NEFRC.noise

Examples

```
data(houseVotes)
X=houseVotes[,-1]
class=houseVotes[,1]
```

Hraw

Raw prototypes

Description

Produces prototypes using the original units of measurement of *X* (useful if the clustering algorithm is run using standardized data).

Usage

Hraw (X, H)

Arguments

Х	Matrix or data.frame
Н	Prototype matrix

Value

Hraw	Prototypes matrix using the original units of measurement of X
------	--

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, unemployment

Examples

```
## example n.1 (k-means case)
## unemployment data
data(unemployment)
## fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
## standardized prototypes
unempFKM$H
## prototypes using the original units of measurement
unempFKM$Hraw=Hraw(unempFKM$X,unempFKM$H)
## example n.2 (k-medoids case)
## unemployment data
data(unemployment)
## fuzzy k-medoids
## Not run:
## It may take more than a few seconds
unempFKM.med=FKM.med(unemployment,k=3,RS=10,stand=1)
## prototypes using the original units of measurement:
## in fuzzy k-medoids one can equivalently use
unempFKM.med$Hraw1=Hraw(unempFKM.med$X,unempFKM.med$H)
unempFKM.med$Hraw2=unempFKM.med$X[unempFKM.med$medoid,]
## End(Not run)
```

JACCARD.F

Fuzzy Jaccard index

Description

Produces the fuzzy version of the Jaccard index between a hard (reference) partition and a fuzzy partition.

JACCARD.F

Usage

JACCARD.F(VC, U, t_norm)

Arguments

VC	Vector of class labels
U	Fuzzy membership degree matrix or data.frame
t_norm	Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Value

jaccard. fValue of the fuzzy Jaccard index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841.

Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.

See Also

ARI.F, RI.F, Fclust.compare

Examples

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy Jaccard index
jaccard.f=JACCARD.F(VC=Mc$Type,U=clust$U)
```

End(Not run)

Description

Nutrition analysis of McDonald's menu items.

Usage

data(Mc)

Format

A data.frame with 81 rows and 16 columns.

Details

Data are from McDonald's USA Nutrition Facts for Popular Menu Items. A subset of menu items is reported. Beverages are excluded. In case of duplications, regular size or medium size information is reported. The variable Type is a factor the levels of which specify the kind of the menu items. Although some menu items could be well described by more than one level, only one level of the variable Type specifies each menu item. Percent Daily Values (%DV) are based on a 2,000 calorie diet. Some menu items are registered trademarks.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, FKM, FKM.ent, FKM.med

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
p=(ncol(Mc)-1)
## fuzzy k-means (excluded the factor column Type (last column))
clust.FKM=FKM(Mc[,1:p],k=6,m=1.5,stand=1)
## new factor column Cluster.FKM containing the cluster assignment information
## using fuzzy k-means
Mc[,ncol(Mc)+1]=factor(clust.FKM$clus[,1])
colnames(Mc)[ncol(Mc)]=("Cluster.FKM")
```

Мс

MPC

levels(Mc\$Cluster.FKM)=paste("Clus FKM",1:clust.FKM\$k,sep=" ") ## contingency table (Cluster.FKM vs Type) ## to assess whether clusters can be interpreted in terms of the levels of Type table(Mc\$Type,Mc\$Cluster.FKM) ## prototypes using the original units of measurement clust.FKM\$Hraw=Hraw(clust.FKM\$X,clust.FKM\$H) clust.FKM\$Hraw ## fuzzy k-means with entropy regularization ## (excluded the factor column Type (last column)) ## Not run: ## It may take more than a few seconds clust.FKM.ent=FKM.ent(Mc[,1:p],k=6,ent=3,RS=10,stand=1) ## new factor column Cluster.FKM.ent containing the cluster assignment information ## using fuzzy k-medoids with entropy regularization Mc[,ncol(Mc)+1]=factor(clust.FKM.ent\$clus[,1]) colnames(Mc)[ncol(Mc)]=("Cluster.FKM.ent") levels(Mc\$Cluster.FKM.ent)=paste("Clus FKM.ent",1:clust.FKM.ent\$k,sep="") ## contingency table (Cluster.FKM.ent vs Type) ## to assess whether clusters can be interpreted in terms of the levels of Type table(Mc\$Type,Mc\$Cluster.FKM.ent) ## prototypes using the original units of measurement clust.FKM.ent\$Hraw=Hraw(clust.FKM.ent\$X,clust.FKM.ent\$H) clust.FKM.ent\$Hraw ## End(Not run) ## fuzzy k-medoids ## (excluded the factor column Type (last column)) clust.FKM.med=FKM.med(Mc[,1:p],k=6,m=1.1,RS=10,stand=1) ## new factor column Cluster.FKM.med containing the cluster assignment information ## using fuzzy k-medoids with entropy regularization Mc[,ncol(Mc)+1]=factor(clust.FKM.med\$clus[,1]) colnames(Mc)[ncol(Mc)]=("Cluster.FKM.med") levels(Mc\$Cluster.FKM.med)=paste("Clus FKM.med",1:clust.FKM.med\$k,sep="") ## contingency table (Cluster.FKM.med vs Type) ## to assess whether clusters can be interpreted in terms of the levels of Type table(Mc\$Type,Mc\$Cluster.FKM.med) ## prototypes using the original units of measurement clust.FKM.med\$Hraw=Hraw(clust.FKM.med\$X,clust.FKM.med\$H) clust.FKM.med\$Hraw ## or, equivalently, Mc[clust.FKM.med\$medoid,1:p]

MPC

Modified partition coefficient

Description

Produces the modified partition coefficient index. The optimal number of clusters k is such that the index takes the maximum value.

Usage

MPC (U)

Arguments U

Membership degree m	natrix
---------------------	--------

Value

mpc Value of the modified partition coefficient index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Dave' R.N., 1996. Validating fuzzy partitions obtained through *c*-shells clustering. Pattern Recognition Letters, 17, 613-623.

See Also

PC, PE, SIL, SIL.F, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## modified partition coefficient
mpc=MPC(clust$U)
```

```
NBA
```

NBA teams data

Description

NBA team statistics from the 2017-2018 regular season.

Usage

data(NBA)

NEFRC

Format

A data.frame with 30 rows and 22 columns.

Details

Data refer to some statistics of the NBA teams for the regular season 2017-2018. The teams are distinguished according to two classification variables.

The statistics are: number of wins (W), field goals made (FGM), field goals attempted (FGA), field goals percentage (FGP), 3 point field goals made (3PM), 3 point field goals attempted (3PA), 3 point field goals percentage (3PP), free throws made (FTM), free throws attempted (FTA), free throws percentage (FTP), offensive rebounds (OREB), defensive rebounds (DREB), assists (AST), turnovers (TOV), steals (STL), blocks (BLK), blocked field goal attempts (BLKA), personal fouls (PF), personal fouls drawn (PFD) and points (PTS). Moreover, reported are the conference (Conference) and the playoff appearance (Playoff).

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Source

https://stats.nba.com/teams/traditional/

See Also

FKM

Examples

```
## Not run:
```

```
data(NBA)
## A subset of variables is considered
X <- NBA[,c(4,7,10,11,12,13,14,15,16,17,20)]
clust.FKM=FKM(X=X,k=2:6,m=1.5,RS=50,stand=1,index="SIL.F",alpha=1)
summary(clust.FKM)</pre>
```

End(Not run)

NEFRC

Non-Euclidean Fuzzy Relational Clustering

Description

Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm.

Usage

NEFRC(D, k, m, RS, startU, index, alpha, conv, maxit, seed)

Arguments

D	Matrix or data.frame containing distances/dissimilarities
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
RS	Number of (random) starts (default: 1)
startU	Rational start for the membership degree matrix U (default: no rational start)
conv	Convergence criterion (default: 1e-9)
index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix (NULL for NEFRC)
F	Array containing the covariance matrices of all the clusters (NULL for NEFRC).
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for NEFRC).
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for NEFRC)
b	Parameter of the polynomial fuzzifier (NULL for NEFRC)
vp	Volume parameter (NULL for NEFRC)
delta	Noise distance (NULL for NEFRC)
stand	Standardization (Yes if stand=1, No if stand=0) (NULL for NEFRC)
Хса	Data used in the clustering algorithm (NULL for NEFRC, D is used)
Х	Raw data (NULL for NEFRC)
D	Dissimilarity matrix
call	Matched call

NEFRC.noise

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Davé, R. N., & Sen, S. 2002. Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems, 10(6), 713-727.

See Also

NEFRC.noise, print.fclust, summary.fclust, plot.fclust

Examples

```
## Not run:
require(cluster)
data("houseVotes")
X <- houseVotes[,-1]
D <- daisy(x = X, metric = "gower")
clust.NEFRC <- NEFRC(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFRC)
plot(clust.NEFRC)
```

End(Not run)

NEFRC.noise

Non-Euclidean Fuzzy Relational Clustering with noise cluster

Description

Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm. The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```
NEFRC.noise(D, k, m, delta, RS, startU, index, alpha, conv, maxit, seed)
```

Arguments

D	Matrix or data.frame containing distances/dissimilarities
k	An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m	Parameter of fuzziness (default: 2)
delta	Noise distance (default: average observed distance)
RS	Number of (random) starts (default: 1)
startU	Rational start for the membership degree matrix U (default: no rational start)

index	Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette) (default: "SIL.F")
alpha	Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv	Convergence criterion (default: 1e-9)
maxit	Maximum number of iterations (default: 1e+6)
seed	Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)). If startU is given, the first element of value, cput and iter refer to the rational start.

Value

Object of class fclust, which is a list with the following components:

U	Membership degree matrix
Н	Prototype matrix (NULL for NEFRC.noise)
F	Array containing the covariance matrices of all the clusters (NULL for NEFRC.noise)
clus	Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid	Vector containing the indexes of the medoid objects (NULL for NEFRC.noise)
value	Vector containing the loss function values for the RS starts
criterion	Vector containing the values of the cluster validity index
iter	Vector containing the numbers of iterations for the RS starts
k	Number of clusters
m	Parameter of fuzziness
ent	Degree of fuzzy entropy (NULL for NEFRC.noise)
b	Parameter of the polynomial fuzzifier (NULL for NEFRC.noise)
vp	Volume parameter (NULL for NEFRC.noise)
delta	Noise distance (NULL for NEFRC.noise).
stand	Standardization (Yes if stand=1, No if stand=0) (NULL for NEFRC.noise).
Хса	Data used in the clustering algorithm (NULL for NEFRC.noise), D is used)
Х	Raw data (NULL for NEFRC.noise)
D	Dissimilarity matrix
call	Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

PC

References

Davé, R. N., & Sen, S. 2002. Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems, 10(6), 713-727.

See Also

NEFRC, print.fclust, summary.fclust, plot.fclust

Examples

```
## Not run:
require(cluster)
data("houseVotes")
X <- houseVotes[,-1]
D <- daisy(x = X, metric = "gower")
clust.NEFRC.noise <- NEFRC.noise(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFRC.noise)
plot(clust.NEFRC.noise)
```

End(Not run)

PC

Partition coefficient

Description

Produces the partition coefficient index. The optimal number of clusters k is is such that the index takes the maximum value.

Usage

PC (U)

Arguments

U Membership degree matrix

Value

pc Value of the partition coefficient index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., 1974. Cluster validity with fuzzy sets. Journal of Cybernetics, 3, 58-73.

See Also

PE, MPC, SIL, SIL.F, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition coefficient
pc=PC(clust$U)
```

ΡE

Partition entropy

Description

Produces the partition entropy index. The optimal number of clusters k is is such that the index takes the minimum value.

Usage

PE (U, b)

Arguments

U	Membership degree matrix
b	Logarithmic base (default: exp(1))

Value

pe Value of the partition entropy index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

plot.fclust

See Also

PC, MPC, SIL, SIL.F, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition entropy index
pe=PE(clust$U)
```

plot.fclust

Plotting fuzzy clustering output

Description

Plot method for class fclust. The function creates a scatter plot visualizing the cluster structure. The objects are represented by points in the plot using observed variables or principal components.

Usage

S3 method for class fclust
S3 method for class 'fclust'
plot(x, v1v2, colclus, umin, ucex, pca, ...)

Arguments

х	Object of class fclust
v1v2	Vector with two elements specifying the numbers of the variables (or of the principal components) to be plotted (default: 1:2); in case of relational data, the argument is ignored
colclus	Vector specifying the color palette for the clusters (default: palette(rainbow(k)))
umin	Lowest maximal membership degree such that an object is assigned to a cluster (default: 0)
ucex	Logical value specifying if the points are magnified according to the maximal membership degree (if ucex=TRUE) (default: ucex=FALSE)
рса	Logical value specifying if the objects are represented using principal components (if pca=TRUE) (default: pca=FALSE); in case of relational data, the argument is ignored
	Additional arguments arguments for plot

Details

In the scatter plot the objects are represented by circles (pch=16) and the prototypes by stars (pch=8) using observed variables (if pca=FALSE) or principal components (if pca=TRUE), the numbers of which are specified in v1v2. Their colors differ for every cluster according to colclus. Objects such that their maximal membership degrees are lower than umin are in black. The sizes of the circles depends on the maximal membership degrees of the corresponding objects if ucex=TRUE. Also note that principal components are extracted using standardized data.

In case of relational data, the first two components resulting from Non-metric Multidimensional Scaling performed using the package **MASS** are used.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

VIFCR, VAT, VCV, VCV2, Fclust, print.fclust, summary.fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## Scatter plot of Calories vs Cholesterol (mg)
names(Mc)
plot(clust,v1v2=c(1,5))
## Scatter plot of Calories vs Cholesterol (mg) using gray levels for the clusters
plot(clust,v1v2=c(1,5),colclus=gray.colors(6))
## Scatter plot of Calories vs Cholesterol (mg)
## coloring in black objects with maximal membership degree lower than 0.5
plot(clust, v1v2=c(1,5), umin=0.5)
## Scatter plot of Calories vs Cholesterol (mg)
## coloring in black objects with maximal membership degree lower than 0.5
## and magnifying the points according to the maximal membership degree
plot(clust,v1v2=c(1,5),umin=0.5,ucex=TRUE)
## Scatter plot using the first two principal components and
## coloring in black objects with maximal membership degree lower than 0.3
plot(clust,v1v2=1:2,umin=0.3,pca=TRUE)
```

64

print.fclust

Description

Print method for class fclust.

Usage

```
## S3 method for class fclust
## S3 method for class 'fclust'
print(x, ...)
```

Arguments

х	Object of class fclust
	Additional arguments for print

Details

The function displays the number of objects, the number of clusters, the closest hard clustering partition (objects assigned to the clusters with the highest membership degree) and the membership degree matrix (rounded).

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, summary.fclust, plot.fclust, unemployment

Examples

```
## unemployment data
data(unemployment)
## fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
unempFKM
```

RI.F

Description

Produces the fuzzy version of the Rand index between a hard (reference) partition and a fuzzy partition.

Usage

RI.F(VC, U, t_norm)

Arguments

VC	Vector of class labels
U	Fuzzy membership degree matrix or data.frame
t_norm	Type of the triangular norm: "minimum" (minimum triangular norm), "triangu- lar product" (product norm) (default: "minimum")

Value

ri.fValue of the fuzzy adjusted Rand index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841. Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.

See Also

ARI.F, JACCARD.F, Fclust.compare

Examples

```
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
```

SIL

```
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy Rand index
ri.f=RI.F(VC=Mc$Type,U=clust$U)
```

End(Not run)

SIL

Silhouette index

Description

Produces the silhouette index. The optimal number of clusters k is is such that the index takes the maximum value.

Usage

SIL (Xca, U, distance)

Arguments

Хса	Matrix or data.frame
U	Membership degree matrix
distance	If distance=TRUE, Xca is assumed to contain distances/dissimilarities (default: FALSE)

Details

Xca should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then SIL should be computed using the same standardized data. Set distance=TRUE if Xca is a distance/dissimilarity matrix.

Value

sil.obj	Vector containing the silhouette indexes for all the objects
sil	Value of the silhouette index (mean of sil.obj)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Kaufman L., Rousseeuw P.J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.

67

See Also

PC, PE, MPC, SIL.F, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## silhouette index
sil=SIL(clust$Xca,clust$U)
```

```
SIL.F
```

Fuzzy silhouette index

Description

Produces the fuzzy silhouette index. The optimal number of clusters k is is such that the index takes the maximum value.

Usage

SIL.F (Xca, U, alpha, distance)

Arguments

Хса	Matrix or data.frame
U	Membership degree matrix
alpha	Weighting coefficient (default: 1)
distance	If distance=TRUE, Xca is assumed to contain distances/dissimilarities (default: FALSE)

Details

Xca should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then SIL.F should be computed using the same standardized data. Set distance=TRUE if Xca is a distance/dissimilarity matrix.

Value

sil.f Value of the fuzzy silhouette index

68

summary.fclust

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Campello R.J.G.B., Hruschka E.R., 2006. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157, 2858-2875.

See Also

PC, PE, MPC, SIL, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy silhouette index
sil.f=SIL.F(clust$Xca,clust$U)
```

summary.fclust Summarizing fuzzy clustering output

Description

Summary method for class fclust.

Usage

```
## S3 method for class fclust
## S3 method for class 'fclust'
summary(object, ...)
```

Arguments

object	Object of class fclust
	Additional arguments for summary

Details

The function displays the number of objects, the number of clusters, the cluster sizes, the closest hard clustering partition (objects assigned to the clusters with the highest membership degree), the cluster memberships (using the closest hard clustering partition), the number of objects with unclear assignment (when the maximal membership degree is lower than 0.5), the objects with unclear assignment and the cluster sizes without unclear assignments (only if objects with unclear assignment are present), the cluster summary (for every cluster: size, minimal membership degree, maximal membership degree, average membership degree, number of objects with unclear assignment) and the Euclidean distance matrix for the cluster prototypes.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, print.fclust, plot.fclust, unemployment

Examples

```
## unemployment data
data(unemployment)
## fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
summary(unempFKM)
```

synt.data

Synthetic data

Description

Synthetic dataset with 2 non-spherical clusters.

Usage

data(synt.data)

Format

A matrix with 302 rows and 2 columns.

Details

Although two clusters are clearly visible, fuzzy k-means fails to discover them. The Gustafson and Kessel-like fuzzy k-means should be used for finding the known-in-advance clusters.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

70

synt.data2

See Also

Fclust, FKM, FKM.gk, plot.fclust

Examples

```
## Not run:
## synthetic data
data(synt.data)
plot(synt.data)
## fuzzy k-means
syntFKM=FKM(synt.data)
## Gustafson and Kessel-like fuzzy k-means
syntFKM.gk=FKM.gk(synt.data)
## plot of cluster structures from fuzzy k-means and Gustafson and Kessel-like fuzzy k-means
par(mfcol = c(2,1))
plot(syntFKM)
plot(syntFKM.gk)
```

```
## End(Not run)
```

synt.data2

Synthetic data

Description

Synthetic dataset with 2 non-spherical clusters.

Usage

data(synt.data2)

Format

A matrix with 240 rows and 2 columns.

Details

Although three clusters are clearly visible, Gustafson and Kessel - like fuzzy k-means clustering algorithm FKM.gk fails due to singularity of some covariance matrix. The Gustafson, Kessel and Babuska - like fuzzy k-means clustering algorithm FKM.gkb should be used to avoid singularity problem.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.

See Also

Fclust, FKM.gk, FKM.gkb, plot.fclust

Examples

data(synt.data2)
plot(synt.data2)

```
## Gustafson and Kessel-like fuzzy k-means
syntFKM.gk=FKM.gk(synt.data2, k = 3, RS = 1, seed = 123)
## Gustafson, Kessel and Babuska-like fuzzy k-means
syntFKM.gkb=FKM.gkb(synt.data2, k = 3, RS = 1, seed = 123)
```

unemployment Unemployment data

Description

Unemployment data about some European countries in 2011.

Usage

data(unemployment)

Format

A data.frame with 32 rows and 3 columns.

Details

The source is Eurostat news-release 104/2012 - 4 July 2012. The 32 observations are European countries: BELGIUM, BULGARIA, CZECHREPUBLIC, DENMARK, GERMANY, ESTONIA, IRELAND, GREECE, SPAIN, FRANCE, ITALY, CYPRUS, LATVIA, LITHUANIA, LUXEM-BOURG, HUNGARY, MALTA, NETHERLANDS, AUSTRIA, POLAND, PORTUGAL, ROMA-NIA, SLOVENIA, SLOVAKIA, FINLAND, SWEDEN, UNITEDKINGDOM, ICELAND, NOR-WAY, SWITZERLAND, CROATIA, TURKEY. The 3 variables are: the total unemployment rate, defined as the percentage of unemployed persons aged 15-74 in the economically active population (Variable 1); the youth unemployment rate, defined as the unemployment rate for young people aged between 15 and 24 (Variable 2); the long-term unemployment share, defined as the Percentage of unemployed for 12 months or more (Variable 3). Non-spherical clusters seem to be present in the data. The Gustafson and Kessel-like fuzzy k-means should be used for finding them.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

VAT

See Also

Fclust, FKM, FKM.gk

Examples

```
## unemployment data
data(unemployment)
## fuzzy k-means (only spherical clusters)
unempFKM=FKM(unemployment,k=3)
## Gustafson and Kessel-like fuzzy k-means (non-spherical clusters)
unempFKM.gk=FKM.gk(unemployment,k=3,RS=10)
```

VAT

Visual Assessment of (Cluster) Tendency

Description

Digital intensity image to inspect the number of clusters

Usage

VAT (Xca)

Arguments

Хса

Matrix or data.frame (usually data to be used in the clustering algorithm)

Details

Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, k dark blocks along its main diagonal suggest that the data contain k (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., Hathaway, R.J., 2002. VAT: a tool for visual assessment of (cluster) tendency. Proceedings of the IEEE International Joint Conference on Neural Networks, , pp. 2225?2230. Hathaway R.J., Bezdek J.C., 2003. Visual cluster validity for prototype generator clustering models. Pattern Recognition Letters, 24, 1563?1569.

Huband J.M., Bezdek J.C., 2008. VCV2 ? Visual Cluster Validity. In Zurada J.M., Yen G.G., Wang J. (Eds.): Lecture Notes in Computer Science, 5050, pp. 293?308. Springer-Verlag, Berlin Heidelberg.

See Also

plot.fclust, VIFCR, VCV, VCV2, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## data standardization (after removing the column Serving Size)
Mc=scale(Mc[,1:(ncol(Mc)-1)],center=TRUE,scale=TRUE)[,]
## plot of VAT
VAT(Mc)
```

VCV

Visual Cluster Validity

Description

Digital intensity image generated using the prototype matrix (and the membership degree matrix) to do cluster validation. The function also plots the VAT image.

Usage

VCV (Xca, U, H, which)

Arguments

Хса	Matrix or data.frame (usually data used in the clustering algorithm)
U	Membership degree matrix
Н	Prototype matrix
which	If a subset of the plots is required, specify a subset of the numbers 1:2 (default: 1:2).

Details

Plot 1 (which=1): VAT. Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, k dark blocks along its main diagonal suggest that the data contain k (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Plot 2 (which=2): VCV. Each cell refers to a dissimilarity between a pair of objects computed with respect to the cluster prototypes. Small dissimilarities are represented by dark shades and large

74

VCV2

dissimilarities are represented by light shades. In the plot the dissimilarities are organized by reordering the clusters (the original first cluster is the first reordered cluster and the remaining clusters are reordered so that (new) cluster c+1 is the nearest of the remaining clusters to (newly indexed) cluster c) and the objects (in accordance with decreasing membership degrees). If k dark blocks along its main diagonal are visible, then a k-cluster structure is revealed. Note that the actual number of clusters can be revealed even when a larger number of clusters is used. This suggests that the correct value of k can sometimes be found by running the algorithm with a large value of k, and then ascertaining its correct value from the visual evidence in the VCV image.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., Hathaway, R.J., 2002. VAT: a tool for visual assessment of (cluster) tendency. Proceedings of the IEEE International Joint Conference on Neural Networks, , pp. 2225?2230. Hathaway R.J., Bezdek J.C., 2003. Visual cluster validity for prototype generator clustering models. Pattern Recognition Letters, 24, 1563?1569.

See Also

plot.fclust, VIFCR, VAT, VCV2, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## plots of VAT and VCV
VCV(clust$Xca,clust$U,clust$H)
## plot of VCV
VCV(clust$Xca,clust$U,clust$H, 2)
```

VCV2

(New) Visual Cluster Validity

Description

Digital intensity image generated using the membership degree matrix to do cluster validation. The function also plots the VAT image.

Usage

VCV2 (Xca, U, which)

Arguments

Хса	Matrix or data.frame (usually data used in the clustering algorithm)
U	Membership degree matrix
which	If a subset of the plots is required, specify a subset of the numbers 1:2 (default: 1:2).

Details

Plot 1 (which=1): VAT. Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, k dark blocks along its main diagonal suggest that the data contain k (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Plot 2 (which=2): VCV2. Each cell refers to a dissimilarity between a pair of objects computed with respect to the cluster membership degrees. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized by using the VAT reordering. If k dark blocks along its main diagonal are visible, then a k-cluster structure is revealed. Note that the actual number of clusters can be revealed even when a larger number of clusters is used. This suggests that the correct value of k can sometimes be found by running the algorithm with a large value of k, and then ascertaining its correct value from the visual evidence in the VCV2 image.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., Hathaway, R.J., 2002. VAT: a tool for visual assessment of (cluster) tendency. Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 2225?2230. Huband J.M., Bezdek J.C., 2008. VCV2 ? Visual Cluster Validity. In Zurada J.M., Yen G.G., Wang J. (Eds.): Lecture Notes in Computer Science, 5050, pp. 293?308. Springer-Verlag, Berlin Heidelberg.

See Also

plot.fclust, VIFCR, VAT, VCV, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
```

VIFCR

```
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## plots of VAT and VCV2
VCV2(clust$Xca,clust$U)
## plot of VCV2
VCV2(clust$Xca,clust$U, 2)
```

VIFCR

Visual inspection of fuzzy clustering results

Description

Plots for validation of fuzzy clustering results. Three plots (selected by which) are available.

Usage

```
VIFCR (fclust.obj, which)
```

Arguments

fclust.obj	Object of class fclust
which	If a subset of the plots is required, specify a subset of the numbers 1:3 (default:
	1:3).

Details

Plot 1 (which=1). Histogram of the membership degrees setting breaks=seq(from=0, to=1, by=0.1). The frequencies are scaled so that the heights of the first and the latter rectangles are the same in the ideal case of crisp (non-fuzzy) memberships. The fuzzy clustering solution should be such that the heights of the first and the latter rectangles are high and those of the rectangles in the middle are low. High heights of rectangles in the middle denote the presence of ambiguous membership degrees. This is an indicator for a non-optimal clustering result.

Plot 2 (which=2). Scatter plot of the objects at the co-ordinates (u1,u2). For each object, u1 and u2 denote, respectively, the highest and the second highest membership degrees. All points lie within the triangle with vertices (0,0), (0.5,0.5) and (1,0). In the ideal case of (almost) crisp membership degrees all points are near the vertex (1,0). Points near the vertex (0.5,0.5) highlight ambiguous objects shared by two clusters. Points near the vertex (0,0) are usually outliers characterized by low membership degrees to all clusters (provided that the noise approach is considered).

Plot 3 (which=3). For each cluster, scatter plot of the objects at the co-ordinates (dc,uc). For each object, dc is the squared Euclidean distance between the object and the cluster prototype and uc is the membership degree of the object to the cluster. The ideal case is such that points are in the upper left area or in the lower right area. In fact, this highlights high membership degrees for small distances and low membership degrees for large distances.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Klawonn F., Chekhtman V., Janz E., 2003. Visual inspection of fuzzy clustering results. In Benitez J.M., Cordon O., Hoffmann, F., Roy R. (Eds.): Advances in Soft Computing - Engineering Design and Manufacturing, pp. 65-76. Springer, London.

See Also

plot.fclust, VAT, VCV, VCV2, unemployment

Examples

```
## unemployment data
data(unemployment)
## fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
## all plots
VIFCR(unempFKM)
## plots 1 and 3
VIFCR(unempFKM,c(1,3))
```

ΧВ

Xie and Beni index

Description

Produces the Xie and Beni index. The optimal number of clusters k is is such that the index takes the minimum value.

Usage

XB (Xca, U, H, m)

Arguments

Хса	Matrix or data.frame
U	Membership degree matrix
Н	Prototype matrix
m	Parameter of fuzziness (default: 2)

Details

Xca should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then XB should be computed using the same standardized data. m should be the same parameter of fuzziness used in the clustering algorithm.

Value

xb

Value of the Xie and Beni index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Xie X.L., Beni G. (1991). A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841-847.

See Also

PC, PE, MPC, SIL, SIL.F, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## Xie and Beni index
xb=XB(clust$Xca,clust$U,clust$H,clust$m)
```

Index

* datasets synt.data2,71 * data butterfly, 4 houseVotes, 50Mc, 54 NBA, 56 synt.data, 70 unemployment, 72 * multivariate ARI.F, 3butterfly, 4 cl.memb.5 cl.memb.H,6 cl.memb.t.7 cl.size, 8 cl.size.H,9 Fclust, 10 Fclust.compare, 11 Fclust.index, 13 FKM, 14 FKM.ent, 16 FKM.ent.noise, 18 FKM.gk, 21 FKM.gk.ent, 23 FKM.gk.ent.noise, 25 FKM.gk.noise, 28 FKM.gkb, 30FKM.gkb.ent, 32FKM.gkb.ent.noise, 34 FKM.gkb.noise, 37 FKM.med. 39 FKM.med.noise, 42 FKM.noise, 44 FKM.pf, 46 FKM.pf.noise, 48 houseVotes, 50 Hraw, 51 JACCARD.F, 52

Mc, 54 MPC, 55 NBA, 56 NEFRC, 57 NEFRC.noise, 59 PC, 61 PE, 62 plot.fclust, 63 print.fclust, 65 RI.F, 66 SIL, 67 SIL.F, 68 summary.fclust, 69 synt.data, 70 unemployment, 72 VAT, 73 VCV, 74 VCV2, 75 VIFCR, 77 XB, 78 ARI.F, 3, 12, 53, 66 butterfly, 4, 20, 43, 45 cl.memb, 5, 6, 7 cl.memb.H, 5, 6, 7 cl.memb.t, 5, 6, 7 cl.size, 8, 9 cl.size.H, 8, 9 Fclust, 4, 10, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 45, 48, 50, 52, 54, 56, 62–65, 68–73, 79 Fclust.compare, 3, 10, 11, 53, 66 Fclust.index, 10, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 45, 48, 50 FKM, 4, 10, 14, 45, 54, 57, 71, 73 FKM.ent, 10, 16, 20, 54 FKM.ent.noise, 10, 18, 18

INDEX

FKM.gk, 10, 21, 32, 71–73 FKM.gk.ent, 10, 23, 34 FKM.gk.ent.noise, 10, 25, 36 FKM.gk.noise, 10, 28, 39 FKM.gkb, 10, 22, 30, 72 FKM.gkb.ent, 10, 25, 32 FKM.gkb.ent.noise, 10, 27, 34 FKM.gkb.noise, 10, 29, 37 FKM. med, 10, 39, 43, 54 FKM.med.noise, 10, 41, 42 FKM.noise, 4, 10, 15, 44 FKM.pf, 10, 46, 50 FKM.pf.noise, 10, 48, 48 houseVotes, 50 Hraw, 51 JACCARD. F, 3, 12, 52, 66 Mc, 13, 15, 18, 41, 48, 50, 54, 56, 62-64, 68, 69, 74-76, 79 MPC, 13, 55, 62, 63, 68, 69, 79 NBA, 56 NEFRC, 10, 51, 57, 61 NEFRC.noise, 10, 51, 59, 59 PC, 13, 56, 61, 63, 68, 69, 79 PE, 13, 56, 62, 62, 68, 69, 79 plot, 63 plot.fclust, 10, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 45, 48, 50, 59, 61, 63, 65, 70–72, 74–76, 78 print, 65 print.fclust, 10, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 45, 48, 50, 59, 61, 64, 65, 70 RI.F, 3, 12, 53, 66 SIL, 13, 56, 62, 63, 67, 69, 79 SIL.F, 13, 56, 62, 63, 68, 68, 79 summary, 69 summary.fclust, 10, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 45, 48, 50, 59, 61, 64, 65, 69 synt.data, 70 synt.data2,71 unemployment, 22, 25, 27, 29, 32, 34, 36, 39, 52, 65, 70, 72, 78

VAT, *64*, 73, 75, 76, 78 VCV, *64*, 74, 74, 76, 78 VCV2, *64*, 74, 75, 75, 78 VIFCR, *64*, 74–76, 77

XB, 13, 56, 62, 63, 68, 69, 78