
Package ‘fbati’
February 1, 2025

Version 1.0-11

Date 2025-01-18

Title Gene by Environment Interaction and Conditional Gene Tests for
Nuclear Families

Maintainer Thomas Hoffmann <tjhoffm@gmail.com>

Depends pbatR(>= 2.2-17)

Imports tcltk, fgui, rootSolve

Description Does family-based gene by environment interaction tests, joint gene, gene-
environment interaction test, and a test of a set of genes conditional on another set of genes.

License GPL

URL https://doi.org/10.1111/j.1541-0420.2011.01581.x

LazyLoad true

NeedsCompilation yes

Author Thomas Hoffmann [aut, cre]

Repository CRAN

Date/Publication 2025-02-01 21:30:02 UTC

Contents
fbatc . 2
fbatcStrategyStep . 5
fbatge . 7
fbati . 8
fbatme . 12
launchpad . 13
nuclify . 13
strataReduce . 14

Index 17

1

https://doi.org/10.1111/j.1541-0420.2011.01581.x

2 fbatc

fbatc fbatc

Description

Family based test for a group of markers conditional on another group of markers (typically condi-
tional on a single marker). To start the graphical interface, provide no options, i.e. type fbatc()
and press return.

Usage

fbatc(ped=NULL, phe=NULL, data=mergePhePed(ped, phe),
trait="AffectionStatus", traitType="auto",
markerAnalyze=NULL, markerCondition=NULL,
offset=NULL,
tempPrefix="temp",
MAXITER=1000, TOL=sqrt(.Machine$double.eps),
verbose=FALSE)

Arguments

ped Object from (f)read.ped or as.ped (non-symbolic). See write.ped in the
pbatR R package for more details on the file format.

phe Object from (f)read.phe or as.phe (non-symbolic). See write.phe in the
pbatR R package for more details on the file format.

data a data.frame object containing required data, or formed from merging a pedigree
and phenotype object together. The first columns of it must be as in a ‘ped’
object, while the next can be in any order representing marker or phenotype
information.

trait Trait to be analyzed. Defaults to AffectionStatus.

traitType “auto”,“binary”, or “continuous”: if set to “auto”, then “binary” will be chosen
if there is only two levels of outcome, otherwise “continuous”.

markerAnalyze Names of markers to analyze (without .a, e.g.).
markerCondition

Names of markers to condition on. If none are specified, then each marker will
be conditioned on in turn.

offset If set to NULL (i.e. left unset, the default) then for a continuous trait this is
estimated by the trait mean.

tempPrefix Temporary prefix to use for output files. These are safe to delete later.

MAXITER Maximum iterations before giving up on convergence for the nuisance parame-
ters.

TOL Relative tolerance for convergence for the nuisance parameters.

verbose For debug.

fbatc 3

Details

Implements the test as described in Hoffmann et. al. (please see References).

The results returned are a data.frame object. The column ‘pvalue’ and ‘rank’ are the pvalue and
rank of the empirical covariance matrix of the model-based test (dichotomous or normal). The
column ‘pvalueR’ and ‘rankR’ are the pvalue and rank of the robust test. The model-based test
has considerable more power over the robust test, but must assume a disease model. Please see
Hoffmann et. al. for more details.

This requires that FBAT be installed. If it is not, then the routine will attempt to automatically install
it when given permission to do so by the user.

References

Hoffmann, Thomas J. and Laird, Nan M. Parsing the Effects of Individual SNPs in Candidate Genes
in Families. Submitted.

Examples

Not run:
set.seed(13)

We simulate NO LD HERE, and a completely random trait!
Data here is only to show how to use the function

###################
IGNORE START:
###################

You can safely ignore how the data is generated,
and just see how to use it afterward.
NUM_FAMILIES <- 500
AFREQ <- c(0.2,0.2)
ped <- as.ped(data.frame(pid = kronecker(1:NUM_FAMILIES,c(1,1,1)),

id = kronecker(rep(1,NUM_FAMILIES), c(1,2,3)),
idfath = kronecker(rep(1,NUM_FAMILIES), c(0,0,1)),
idmoth = kronecker(rep(1,NUM_FAMILIES), c(0,0,2)),
sex = rep(0,NUM_FAMILIES*3),
AffectionStatus = kronecker(rep(1,NUM_FAMILIES), c(0,0,2)),
m0.a = rep(0,NUM_FAMILIES*3), ## missing for now
m0.b = rep(0,NUM_FAMILIES*3),
m1.a = rep(0,NUM_FAMILIES*3),
m1.b = rep(0,NUM_FAMILIES*3)))

CUR_FAMILY <- 1
while(CUR_FAMILY<=NUM_FAMILIES) {

Indexing: start=father, (start+1)=mother, (start+2)=child
start <- CUR_FAMILY*3-2

Draw the parental genotypes from the population
ped$m0.a[start:(start+1)] <- rbinom(1, 1, AFREQ[1]) + 1
ped$m0.b[start:(start+1)] <- rbinom(1, 1, AFREQ[1]) + 1
ped$m1.a[start:(start+1)] <- rbinom(1, 1, AFREQ[2]) + 1
ped$m1.b[start:(start+1)] <- rbinom(1, 1, AFREQ[2]) + 1

4 fbatc

Draw the children's genotype from the parents
ma <- rbinom(1, 1, 0.5)
mb <- rbinom(1, 1, 0.5)
if(rbinom(1, 1, 0.5) == 0) {

ped$m0.a[start+2] <- ped$m0.a[start]
ped$m1.a[start+2] <- ped$m1.a[start]

}else{
ped$m0.a[start+2] <- ped$m0.b[start]
ped$m1.a[start+2] <- ped$m1.b[start]

}
if(rbinom(1, 1, 0.5) == 0) {

ped$m0.b[start+2] <- ped$m0.a[start+1]
ped$m1.b[start+2] <- ped$m1.a[start+1]

}else{
ped$m0.b[start+2] <- ped$m0.b[start+1]
ped$m1.b[start+2] <- ped$m1.b[start+1]

}

CUR_FAMILY <- CUR_FAMILY + 1
}

Create a completely random phenotype as well
phe <- as.phe(data.frame(pid=ped$pid, id=ped$id, qtl=rnorm(nrow(ped))))

################
IGNORE END
################

Look at the first part of the pedigree
print(head(ped))
Look at the first part of the phenotype
print(head(phe))

Binary trait
-- fbatc default trait is AffectionStatus
-- fbatc default trait type is 'auto'
- Test marker m1 conditional on m0
print(fbatc(ped=ped, markerAnalyze="m1", markerCondition="m0"))
- Do the test the other way around, m0 conditional on m1
print(fbatc(ped=ped, markerAnalyze="m0", markerCondition="m1"))
- Otherwise, we could have done this in one step;
if markerCondition is not specified, each member
of markerAnalyze is used.
print(fbatc(ped=ped, markerAnalyze=c("m0","m1")))

QTL
print(fbatc(ped=ped, phe=phe, trait="qtl", markerAnalyze="m1", markerCondition="m0"))
print(fbatc(ped=ped, phe=phe, trait="qtl", markerAnalyze="m0", markerCondition="m1"))

Additionally, we could write out the data that we
generated to disk so that we can then use it.
write.ped("simulated", ped) ## to simulated.ped

fbatcStrategyStep 5

write.phe("simulated", phe) ## to simulated.phe

End(Not run)

fbatcStrategyStep FBAT-C Stepwise Strategy

Description

Apply the FBAT-C test in a stepwise fashion using fbatcStrategyStep (which does forward selec-
tion with fbatcStrategyStepUp, followed by backwards selection with fbatcStrategyStepDown)
and get the results ready for publication with fbatcStrategyStepLatex.

Usage

fbatcStrategyStepUp(ped, phe, markers=pedMarkerNames(ped), trait="trait",
traitType="auto", alphaMMarker=0.05, alphaStep=alphaMMarker, sortByCorrelation=TRUE,
tempPrefix="temp_", sim=FALSE, debug=FALSE)

fbatcStrategyStepDown(ped, phe, markers=pedMarkerNames(ped),
markersChosen=pedMarkerNames(ped), markersChosenR=markersChosen, trait="trait",
traitType="auto", alphaMMarker=0.05, alphaStep=alphaMMarker, sortByCorrelation=TRUE,
tempPrefix="temp_", sim=FALSE, debug=FALSE)

fbatcStrategyStep(ped, phe, markers=pedMarkerNames(ped), trait="trait",
traitType="auto", alphaMMarker=0.05, alphaStep=alphaMMarker, sortByCorrelation=TRUE,
tempPrefix="temp_", sim=FALSE, debug=FALSE)

fbatcStrategyStepLatex(res, digits=4, ffile="", preamble=FALSE, build=preamble, pdf="")
S3 method for class 'fbatcSStep'
print(x,...)

Arguments

ped Object from (f)read.ped or as.ped. See write.ped in the pbatR R package
for more details on the file format.

phe Object from (f)read.phe or as.phe. See write.phe in the pbatR R package
for more details on the file format.

markers Names of the markers to analyze.

trait Name of the trait to analyze. Can be dichotomous or continuous.

traitType "auto","dichotomous", or "continuous". If "auto" (the default), then "dichoto-
mous" will be set if there are only two levels of the phenotype.

alphaMMarker Alpha value for the multimarker test.

alphaStep Alpha value used in the stepwise procedure.
sortByCorrelation

Whether to sort the markers by putting those in highest correlation closest to
each other.

6 fbatcStrategyStep

tempPrefix The prefix to use for some intermittent files. Changing this is only necessary
when you want to run this routine in parallel when each process shares the same
disk.

sim Developer use only.

res Result of ’fbatcStrategyStep’ routine.

digits Number of significant digits to display.

ffile If set to a filename, then the output is redirected to that file instead of the standard
output.

preamble Whether to produce a latex file that can be compiled, or only the code for the
chart.

build Whether to run pdflatex on the file (requires preamble=TRUE), pdflatex must be
in your path (generally true in linux, but not in Windows).

pdf Name of the pdf viewer executable, if you also want to open the compiled file
immediately. Note that in this case, you may not be able to return to the R
session until you close this window.

markersChosen In the step-down approach, the markers to start with for the model-based ap-
proach.

markersChosenR In the step-down approach, the markers to start with for the model-free ap-
proach.

debug Developer use only.

x Result of fbatcStrategyStep, fbatcStrategyStepUp, fbatcStrategyStepDown.

... Extra arguments.

Details

fbatcStrategy returns a list with the following components.

mmarkerPvalue: p-value of the multi-marker test on those markers (Rakovski et. al 2008).

correlation: correlation matrix of the markers

univariate: univariate results

step: (model-based test) list of components pvalue (ith pvalue of the conditional test of mark-
ersAnalyze[i] on all markersCondition), numInf (number of informative families in the ith test),
markersAnalyze, and markersCondition

markersChosen: (model-based test) results from applying step-up strategy

stepR, markersChosenR: (model-free test) results similar to step and markersChosen.

fbatge 7

fbatge fbatge

Description

Family based test for gene-environment interaction utilizing arbitrary family structures and multiple
affected offspring. This method is recommended over the fbati routine in most scenarios.

If no arguments are passed, then a friendly graphical interface is presented to the user.

fbatge [GxE test], fbatj (see fbatj help) [G,GxE test], fbatme (see fbatme help) [G test] generally
have more options than fbatgeAll. fbatgeAll runs all three tests, and gives results of all of them, and
so uses only the options that are common to all three functions.

Usage

fbatge(ped=NULL, phe=NULL,
env=NULL, cov=NULL,
trait="AffectionStatus", geno=NULL,
strategy="hybrid", model="additive")

fbatgeAll(ped=NULL, phe=NULL, env=NULL, trait="AffectionStatus")

Arguments

ped Object from (f)read.ped or as.ped (non-symbolic). See write.ped in the
pbatR R package for more details on the file format.

phe Object from (f)read.phe or as.phe (non-symbolic). See write.phe in the
pbatR R package for more details on the file format.

env Environmental Exposure. Should be a string, corresponding to the name in the
’phe’ object.

cov Any covariates to adjust for (does not apply to RR method). Should be a vector
of strings, corresponding to names in the ’phe’ object.

trait Dichotomous trait name. Should be either "AffectionStatus", corresponding to
the affection status in the pedigree object, or a string in the phenotype object.

geno Names of the genetic markers, from the ’ped’ object. If NULL (default), then
all genetic markers are tested.

strategy One of ’hybrid’ (recommended, most efficient, requires rare disease), ’RR’ (rel-
ative risk model, generally for a rare disease), or ’CLR’ (conditional logistic
regression).

model Either ’additive’ for the additive genetic model, or ’codominant’ for the codom-
inant genetic model (indicator variables for the genotypes).

Details

Implements the test as described in Hoffmann et. al. (please see References).

NOTE: The allele frequency is simply based on the allele frequency in all genotyped individuals,
and is not the best choice.

8 fbati

References

Hoffmann, Thomas J., and Laird, Nan M. Combining Multiple Disease Models for a More Powerful
Gene-Environment Interaction Test in Nuclear Families.

Examples

Not run:
example(fbati) ## See fbati, creates a dataset for us in 'phe' and 'ped'
print(fbatge(ped=ped, phe=phe, env="env"))
The results are very close to the FBAT-I function, which
we would expect for trios.

End(Not run)

fbati fbati

Description

Family based test for gene-environment interaction for bi-allelic snps, command/line or GUI (pro-
vide no options to start the graphical interface, i.e. just type fbati() and press return).

Usage

fbati(ped=NULL, phe=NULL,
data=mergePhePed(ped,phe),
marker=NULL, ## pairs...
env,
method="fbati",
model="additive",
iter=10000,
seed=7,
maxSib=3,
fixNames=TRUE,
debug=FALSE)

Arguments

ped Object from (f)read.ped or as.ped. See write.ped in the pbatR R package
for more details on the file format.

phe Object from (f)read.phe or as.phe. See write.phe in the pbatR R package
for more details on the file format.

data a data.frame object containing required data, or formed from merging a pedigree
and phenotype object together. The first columns of it must be as in a ‘ped’
object, while the next can be in any order representing marker or phenotype
information.

fbati 9

marker Default is NULL for all markers. Otherwise, it can be the names of the marker
(if you load in with read.ped, this should be without the ’.a’/’.b’ added to differ-
entiate the two markers). If you are using more specialized loading routines, this
represents the numbers of the columns where the markers are at. For example,
7:10 would mean that columns 7 and 8 represent one locus, and columns 9 and
10 represent another locus.

env Character string representing the name of the environmental variable to use (a
column header name of the ’data’ parameter).

method Currently only ‘fbati’ is supported.
model one of "additive", "dominant", or "recessive".
iter The number of Monte-Carlo iterations to perform.
seed The random seed, so consistent answers are maintained. See NOTE 1 for more

details. NA/NULL disables this, but is not recommended.
maxSib When nonzero, employs the following rules to minimize the number of strata,

to improve the number of informative transmissions. When there are parents, a
random affected child is chosen. When parents are missing, a random affected
child with environmental exposure is chosen, and random genotyped siblings
are chosen to maxSib total offspring (so 2 indicates a sibpair, 3 a sibtrio, etc.),
and parents are treated as missing (even if there is one). See the ’strataReduce’
routine for more details and examples.

fixNames Just leave this to TRUE if creating from ped/phe objects (pops off the ’.a’ and
’.b’ added on to the names of the two markers that are added on when read in
via the (f)read.ped(...) routine).

debug Developer use only (extended output).

Details

Returns a data.frame object with the results. The columns entitled GX...X indicate the number
of informative families in each strata for the given marker. If these columns do not show up, it
indicates there was only one type of strata.

The parents need not be in the dataset if they have completely missing genotypes (they will be
inserted), but the snps must currently be bi-allelic (or you will get error messages).

fread.ped and fread.phe are suggested to enforce loading the whole dataset.

NOTE 1: The fbati test was developed for families with at least one affected, so if there is more
than one affected individual per family, only a random affected one will be used, and a random
unaffected to reduce strata, unless strataFix is disabled. This is done on a per marker basis, thus
the seed is set before every marker to obtain reproducible results.

NOTE 2: The data is converted into nuclear families. This is done by a call to ‘nuclifyMerged’ to
the passed in dataset to enforce this consistency.

References

Hoffmann, Thomas J., Lange, Christoph, Vansteelandt, Stijn, and Laird, Nan M. Gene-Environment
Interaction Test for Dichotomous Traits in Trios and Sibships. Submitted.

S. L. Lake and N. M. Laird. Tests of gene-environment interaction for case-parent triads with
general environmental exposures. Ann Hum Genet, 68(Pt 1):55-64, Jan 2004.

10 fbati

Examples

Not run:
Data is simulated according to the formula in the
paper (you can see it from the code).

Set the seed so you get the same results
set.seed(13)

Constants (you can vary these)
NUM_FAMILIES <- 500
AFREQ <- 0.1 ## Allele frequency
BG <- -0.25 ## main effect of gene
BE <- 0 ## main effect of environment
BGE <- 0.75 ## main gene-environment effect
ENV <- 0.2 ## environmental exposure frequency

(but don't modify this one)
MAX_PROB <- exp(BG*2 + BE*1 + BGE*2*1)

#####################################
Create a random dataset (trios)
#####################################

-- genotypes are set to missing for now,
everyone will be affected
ped <- as.ped(data.frame(pid = kronecker(1:NUM_FAMILIES,c(1,1,1)),

id = kronecker(rep(1,NUM_FAMILIES), c(1,2,3)),
idfath = kronecker(rep(1,NUM_FAMILIES), c(0,0,1)),
idmoth = kronecker(rep(1,NUM_FAMILIES), c(0,0,2)),
sex = rep(0,NUM_FAMILIES*3),
AffectionStatus = kronecker(rep(1,NUM_FAMILIES), c(0,0,2)),
m0.a = rep(0,NUM_FAMILIES*3), ## missing for now
m0.b = rep(0,NUM_FAMILIES*3))) ## missing for now

-- envioronment not generated yet
phe <- as.phe(data.frame(pid = ped$pid,

id = ped$id,
env = rep(NA,NUM_FAMILIES*3))) ## missing for now

50/50 chance of each parents alleles
mendelTransmission <- function(a, b) {

r <- rbinom(length(a), 1, 0.75)
return(a*r + b*(1-r))

}

Not the most efficient code, but it gets it done;
takes < 5 sec on pentium M 1.8Ghz
CUR_FAMILY <- 1
while(CUR_FAMILY<=NUM_FAMILIES) {

Indexing: start=father, (start+1)=mother, (start+2)=child
start <- CUR_FAMILY*3-2

Draw the parental genotypes from the population

fbati 11

ped$m0.a[start:(start+1)] <- rbinom(1, 1, AFREQ) + 1
ped$m0.b[start:(start+1)] <- rbinom(1, 1, AFREQ) + 1

Draw the children's genotype from the parents
ped$m0.a[start+2] <- mendelTransmission(ped$m0.a[start], ped$m0.b[start])
ped$m0.b[start+2] <- mendelTransmission(ped$m0.a[start+1], ped$m0.b[start+1])

Generate the environment
phe$env[start+2] <- rbinom(1, 1, ENV)

and the affection status
Xg <- as.integer(ped$m0.a[start+2]==2) + as.integer(ped$m0.b[start+2]==2)
if(rbinom(1, 1, exp(BG*Xg + BE*phe$env[start+2] + BGE*Xg*phe$env[start+2]) / MAX_PROB) == 1)

CUR_FAMILY <- CUR_FAMILY + 1
otherwise it wasn't a valid drawn individual

}

##############
Analysis
##############

Print the first 4 families
print(head(ped, n=12))
print(head(phe, n=12))

NOTE: We could have just put all of this info into a single dataframe otherwise,
that would look like just the results of this
data <- mergePhePed(ped, phe)
print(head(data, n=12))

And run the analysis on all the markers
fbati(ped=ped, phe=phe, env="env")

Or do it via the merged data.frame object
7 and 8 correspond to the marker columns
fbati(data=data, env="env", marker=c(7,8))

You may also want to up the number of Monte-Carlo
iterations from the default

And we could also run a joint test instead
(see fbatj)
fbatj temporarily removed from namespace
#fbatj(ped=ped, phe=phe, env="env")
#fbatj(data=data, env="env", marker=c(7,8))

This won't be run, but we could do this with the gui.
It requires the data to be written to disk, so we do so:
write.ped(ped, "simulated")
write.phe(phe, "simulated")
Then start the GUI -- specify the options as before,
but for the first two, navigate to the 'simulated.ped' and 'simulated.phe' files.

12 fbatme

fbati()

End(Not run)

fbatme FBAT Main effects Test

Description

Family based test for the main genetic effect, using the variance based on Mendelian transmissions.
The null hypothesis is that there is no linkage and no association.

Usage

fbatme(ped=NULL, phe=NULL,
data=mergePhePed(ped,phe),
marker=NULL,
trait="AffectionStatus",
model="additive",
fixNames=TRUE,
verbose = FALSE)

Arguments

ped Object from (f)read.ped or as.ped. See write.ped in the pbatR R package
for more details on the file format.

phe Object from (f)read.phe or as.phe. See write.phe in the pbatR R package
for more details on the file format.

data a data.frame object containing required data, or formed from merging a pedigree
and phenotype object together. The first columns of it must be as in a ‘ped’
object, while the next can be in any order representing marker or phenotype
information.

marker Default is NULL for all markers. Otherwise, it can be the names of the marker
(if you load in with read.ped, this should be without the ’.a’/’.b’ added to differ-
entiate the two markers). If you are using more specialized loading routines, this
represents the numbers of the columns where the markers are at. For example,
7:10 would mean that columns 7 and 8 represent one locus, and columns 9 and
10 represent another locus.

trait Character string representing the name of the trait variable to use (a column
header name of the ’data’ parameter).

model one of "additive", "dominant", or "recessive".

fixNames Just leave this to TRUE if creating from ped/phe objects (pops off the ’.a’ and
’.b’ added on to the names of the two markers that are added on when read in
via the (f)read.ped(...) routine).

verbose Developer use only (extended output).

launchpad 13

Details

Returns a data.frame object with the results. Uses the variance based on Mendelian transmissions.

NOTE: The allele frequency is simply based on the allele frequency in all genotyped individuals,
and is not the best choice.

launchpad Launchpad

Description

Provides a GUI launchpad for routines in the fbati (i.e. this package) and pbatR (a dependency of
this package) R packages.

Usage

launchpad()

See Also

fbati

nuclify Nuclify and Merge

Description

mergePhePed merges a phenotype and pedigree object into a single data.frame object.

nuclifyMerged chops a merged object into nuclear families of a dataset, generally a necessary
preprocessing option for tests.

nuclify chops instead a ‘ped’ and ‘phe’ object separately.

Usage

mergePhePed(ped, phe)
nuclifyMerged(data, OUT_MULT=2)
nuclify(ped, phe)

Arguments

ped Object from (f)read.ped or as.ped.
phe Object from (f)read.phe or as.phe.
data data.frame containing required data, or formed from merging a pedigree and

phenotype object together. The first columns of it must be as in a ‘ped’ object,
while the next can be in any order representing marker or phenotype informa-
tion.

OUT_MULT Hint for size of output, doesn’t matter if wrong.

14 strataReduce

Details

mergePhePed and nuclifyMerged both return data.frame objects. nuclify returns a list that con-
tains the ‘phe’ object and the ‘ped’ object with those respective names (see pbatR documentation,
both objects extend data.frame objects, and can be used for the most part as if data.frame objects).
When the data is nuclified, the parents of the nuclified families parents are lost.

NOTE: nuclifyMerged will modify the pedigree id (pid) to be [100*(previous pid) + (nuclear family
index)]. This should make it easy to observe the results of this call to your dataset.

Examples

Create some pedigree structure
##
100 --- 101
|
201---202
|

| | | |
301 302 303 304
ped <- as.ped(data.frame(pid = rep(1,8),

id = c(100,101, 201,202, 301,302,303,304),
idfath = c(0,0, 100,0, 201,201,201,201),
idmoth = c(0,0, 101,0, 202,202,202,202),
sex = c(1,2, 1,2, 2,2,2,2),
AffectionStatus = rep(0,8),
m0.a = rep(2,8),
m0.b = rep(2,8)))

Which should chop up into
100 --- 101 201---202
| |
201 -------------
| | | |
301 302 303 304
nuclifyMerged(ped)

NOTE: We could have merged the ped with a phe object,
via the 'mergePhePed' routine before running.

strataReduce Strata Reduction

Description

Reduces the number of strata in nuclear pedigrees for testing (for use with FBAT-I). For nuclear
families with both parents, a random affected child is drawn. For nuclear families with at least one
parent missing, a random affected and another random sib is used (parents ignored).

strataReduce 15

Usage

strataReduce(data, envCol, m0, m1=m0+1, maxSib=3)

Arguments

data data.frame of a merged pedigree/phenotype (see mergePhePed(...)).

envCol Integer representing environment column.

m0 Integer representing column of first marker.

m1 Integer representing column of second marker.

maxSib Maximum number of sibs to use per family to reduce the number of strata.

Examples

Function creates a family with the specified markers and statuses
NOTE: affection is false/true, whereas it is coded 1/2 in the ped file
createFam <- function(pa=c(0,0), pb=c(0,0),

ca, cb,
caffected=rep(TRUE,length(ca)),
env=1:length(ca)) {

pid, id, idfath, idmoth, sex, affection, m0a, m0b
numC <- length(ca)
return(data.frame(pid=rep(1,2+numC),

id=1:(2+numC),
idfath=c(0,0,rep(1,numC)),
idmoth=c(0,0,rep(2,numC)),
sex=c(2,1,rep(0,numC)),
affection=c(0,0,as.integer(caffected)+1),
m0.a=c(pa,ca), m0.b=c(pb,cb),
env=c(NA,NA,env)))

}
Function tests/exemplifies the strataReduce(...) routine
srFam <- function(...) {

data <- createFam(...)
data2 <- strataReduce(data=data, envCol=9, m0=7, maxSib=2)
cat("Original data:\n")
print(data)
cat("Reduced stratification data:\n")
print(data2)

}

Basic sib test
srFam(ca=c(1,1,2), cb=c(1,2,2))

Basic trio test
srFam(ca=c(1,1,2), cb=c(1,2,2), pa=c(1,1), pb=c(2,2))

a fairly comprehensive test here
The affected should always be one of the first three,
the unaffected could be one the first eight
for(i in 1:10)

16 strataReduce

srFam(ca=c(1:8,0,0), cb=c(1:8,0,0),
pa=c(1,1),
caffected=c(rep(TRUE,6),rep(FALSE,4)),
env=c(1:3,rep(NA,7)))

Now just to make sure, a full pedigree, rather than just one family
data <- createFam(ca=1:2, cb=1:2)
for(i in 2:10)

data <- rbind(data, createFam(ca=1:2, cb=1:2))
cat("Original data (full pedigree):\n")
print(data)
cat("Reduced stratification data (full pedigree), maxSib=3\n")
print(strataReduce(data=data, envCol=9, m0=7))

Index

∗ interface
fbatc, 2
fbatcStrategyStep, 5
fbatge, 7
fbati, 8
nuclify, 13
strataReduce, 14

fbatc, 2
fbatcStrategyStep, 5
fbatcStrategyStepDown

(fbatcStrategyStep), 5
fbatcStrategyStepLatex

(fbatcStrategyStep), 5
fbatcStrategyStepUp

(fbatcStrategyStep), 5
fbatge, 7
fbatgeAll (fbatge), 7
fbati, 8, 13
fbatme, 12

launchpad, 13

mergePhePed (nuclify), 13

nuclify, 13
nuclifyMerged (nuclify), 13

print.fbatcSStep (fbatcStrategyStep), 5

strataReduce, 14

17

	fbatc
	fbatcStrategyStep
	fbatge
	fbati
	fbatme
	launchpad
	nuclify
	strataReduce
	Index

