
R Package deSolve, Writing Code in Compiled

Languages

Karline Soetaert

Royal Netherlands Institute
of Sea Research (NIOZ)

Yerseke
The Netherlands

Thomas Petzoldt

Technische Universität
Dresden
Germany

R. Woodrow Setzer

National Center for
Computational Toxicology

US Environmental Protection Agency

Abstract

This document describes how to use the deSolve package (Soetaert, Petzoldt, and
Setzer 2010a) to solve models that are written in FORTRAN or C.

Keywords: differential equation solvers, compiled code, performance, FORTRAN, C.

1. Introduction

deSolve (Soetaert et al. 2010a; Soetaert, Petzoldt, and Setzer 2010b), the successor of R

package odesolve (Setzer 2001) is a package to solve ordinary differential equations (ODE),
differential algebraic equations (DAE) and partial differential equations (PDE). One of the
prominent features of deSolve is that it allows specifying the differential equations either as:

• pure R code (R Development Core Team 2008),

• functions defined in lower-level languages such as FORTRAN, C, or C++, which are
compiled into a dynamically linked library (DLL) and loaded into R.

In what follows, these implementations will be referred to as R models and DLL models

respectively. Whereas R models are easy to implement, they allow simple interactive devel-
opment, produce highly readible code and access to Rs high-level procedures, DLL models

have the benefit of increased simulation speed. Depending on the problem, there may be a
gain of up to several orders of magnitude computing time when using compiled code.

Here are some rules of thumb when it is worthwhile or not to switch to DLL models:

• As long as one makes use only of Rs high-level commands, the time gain will be modest.
This was demonstrated in Soetaert et al. (2010a), where a formulation of two interacting
populations dispersing on a 1-dimensional or a 2-dimensional grid led to a time gain of
a factor two only when using DLL models.

• Generally, the more statements in the model, the higher will be the gain of using com-
piled code. Thus, in the same paper (Soetaert et al. 2010a), a very simple, 0-D, Lotka-
Volterrra type of model describing only 2 state variables was solved 50 times faster when
using compiled code.

2 R Package deSolve, Writing Code in Compiled Languages

• As even R models are quite performant, the time gain induced by compiled code will
often not be discernible when the model is only solved once (who can grasp the difference
between a run taking 0.001 or 0.05 seconds to finish). However, if the model is to be
applied multiple times, e.g. because the model is to be fitted to data, or its sensitivity is
to be tested, then it may be worthwhile to implement the model in a compiled language.

Starting from deSolve version 1.4, it is now also possible to use forcing functions in compiled
code. These forcing functions are automatically updated by the integrators. See last chapter.

2. A simple ODE example

Assume the following simple ODE (which is from the LSODA source code):

dy1

dt
= −k1 · y1 + k2 · y2 · y3

dy2

dt
= k1 · y1 − k2 · y2 · y3 − k3 · y2 · y2

dy3

dt
= k3 · y2 · y2

where y1, y2 and y3 are state variables, and k1, k2 and k3 are parameters.

We first implement and run this model in pure R, then show how to do this in C and in
FORTRAN.

2.1. ODE model implementation in R

An ODE model implemented in pure R should be defined as:

yprime = func(t, y, parms, ...)

where t is the current time point in the integration, y is the current estimate of the variables in
the ODE system, and parms is a vector or list containing the parameter values. The optional
dots argument (...) can be used to pass any other arguments to the function. The return
value of func should be a list, whose first element is a vector containing the derivatives of y

with respect to time, and whose next elements contain output variables that are required at
each point in time.

The R implementation of the simple ODE is given below:

R> model <- function(t, Y, parameters) {

+ with (as.list(parameters),{

+

+ dy1 = -k1*Y[1] + k2*Y[2]*Y[3]

+ dy3 = k3*Y[2]*Y[2]

+ dy2 = -dy1 - dy3

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 3

+

+ list(c(dy1, dy2, dy3))

+ })

+ }

The Jacobian (∂y′

∂y
) associated to the above example is:

R> jac <- function (t, Y, parameters) {

+ with (as.list(parameters),{

+

+ PD[1,1] <- -k1

+ PD[1,2] <- k2*Y[3]

+ PD[1,3] <- k2*Y[2]

+ PD[2,1] <- k1

+ PD[2,3] <- -PD[1,3]

+ PD[3,2] <- k3*Y[2]

+ PD[2,2] <- -PD[1,2] - PD[3,2]

+

+ return(PD)

+ })

+ }

This model can then be run as follows:

R> parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)

R> Y <- c(1.0, 0.0, 0.0)

R> times <- c(0, 0.4*10^(0:11))

R> PD <- matrix(nrow = 3, ncol = 3, data = 0)

R> out <- ode(Y, times, model, parms = parms, jacfunc = jac)

2.2. ODE model implementation in C

In order to create compiled models (.DLL = dynamic link libraries on Windows or .so =
shared objects on other systems) you must have a recent version of the GNU compiler suite
installed, which is quite standard for Linux. Windows users find all the required tools on
https://cran.r-project.org/bin/windows/Rtools/. Getting DLLs produced by other
compilers to communicate with R is much more complicated and therefore not recommended.
More details can be found on https://cran.r-project.org/doc/manuals/R-admin.html.

The call to the derivative and Jacobian function is more complex for compiled code compared
to R-code, because it has to comply with the interface needed by the integrator source codes.

Below is an implementation of this model in C:

/* file mymod.c */

#include <R.h>

static double parms[3];

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/doc/manuals/R-admin.html

4 R Package deSolve, Writing Code in Compiled Languages

#define k1 parms[0]

#define k2 parms[1]

#define k3 parms[2]

/* initializer */

void initmod(void (* odeparms)(int *, double *))

{

int N=3;

odeparms(&N, parms);

}

/* Derivatives and 1 output variable */

void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip)

{

if (ip[0] <1) error("nout should be at least 1");

ydot[0] = -k1*y[0] + k2*y[1]*y[2];

ydot[2] = k3 * y[1]*y[1];

ydot[1] = -ydot[0]-ydot[2];

yout[0] = y[0]+y[1]+y[2];

}

/* The Jacobian matrix */

void jac(int *neq, double *t, double *y, int *ml, int *mu,

double *pd, int *nrowpd, double *yout, int *ip)

{

pd[0] = -k1;

pd[1] = k1;

pd[2] = 0.0;

pd[(*nrowpd)] = k2*y[2];

pd[(*nrowpd) + 1] = -k2*y[2] - 2*k3*y[1];

pd[(*nrowpd) + 2] = 2*k3*y[1];

pd[(*nrowpd)*2] = k2*y[1];

pd[2*(*nrowpd) + 1] = -k2 * y[1];

pd[2*(*nrowpd) + 2] = 0.0;

}

/* END file mymod.c */

The implementation in C consists of three parts:

1. After defining the parameters in global C-variables, through the use of #define state-
ments, a function called initmod initialises the parameter values, passed from the R-
code.

This function has as its sole argument a pointer to C-function odeparms that fills a
double array with double precision values, to copy the parameter values into the global
variable.

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 5

2. Function derivs then calculates the values of the derivatives. The derivative function
is defined as:

void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip)

where *neq is the number of equations, *t is the value of the independent variable, *y

points to a double precision array of length *neq that contains the current value of the
state variables, and *ydot points to an array that will contain the calculated derivatives.

*yout points to a double precision vector whose first nout values are other output
variables (different from the state variables y), and the next values are double precision
values as passed by parameter rpar when calling the integrator. The key to the elements
of *yout is set in *ip

*ip points to an integer vector whose length is at least 3; the first element (ip[0])
contains the number of output values (which should be equal or larger than nout),
its second element contains the length of *yout, and the third element contains the
length of *ip; next are integer values, as passed by parameter ipar when calling the
integrator.1

Note that, in function derivs, we start by checking whether enough memory is allo-
cated for the output variables (if (ip[0] < 1)), else an error is passed to R and the
integration is stopped.

3. In C, the call to the function that generates the Jacobian is as:

void jac(int *neq, double *t, double *y, int *ml,

int *mu, double *pd, int *nrowpd, double *yout, int *ip)

where *ml and *mu are the number of non-zero bands below and above the diagonal of
the Jacobian respectively. These integers are only relevant if the option of a banded
Jacobian is selected. *nrow contains the number of rows of the Jacobian. Only for full
Jacobian matrices, is this equal to *neq. In case the Jacobian is banded, the size of
*nrowpd depends on the integrator. If the method is one of lsode, lsoda, vode, then
*nrowpd will be equal to *mu + 2 * *ml + 1, where the last *ml rows should be filled
with 0s.

For radau, *nrowpd will be equal to *mu + *ml + 1

See example dynload/odeband.R in the directory doc/dynload, and chapter 4.6.

2.3. ODE model implementation in FORTRAN

Models may also be defined in FORTRAN.

1Readers familiar with the source code of the ODEPACK solvers may be surprised to find the double

precision vector yout and the integer vector ip at the end. Indeed none of the ODEPACK functions allow this,

although it is standard in the vode and daspk codes. To make all integrators compatible, we have altered the

ODEPACK FORTRAN codes to consistently pass these vectors.

dynload/odeband.R

6 R Package deSolve, Writing Code in Compiled Languages

c file mymodf.f

subroutine initmod(odeparms)

external odeparms

double precision parms(3)

common /myparms/parms

call odeparms(3, parms)

return

end

subroutine derivs (neq, t, y, ydot, yout, ip)

double precision t, y, ydot, k1, k2, k3

integer neq, ip(*)

dimension y(3), ydot(3), yout(*)

common /myparms/k1,k2,k3

if(ip(1) < 1) call rexit("nout should be at least 1")

ydot(1) = -k1*y(1) + k2*y(2)*y(3)

ydot(3) = k3*y(2)*y(2)

ydot(2) = -ydot(1) - ydot(3)

yout(1) = y(1) + y(2) + y(3)

return

end

subroutine jac (neq, t, y, ml, mu, pd, nrowpd, yout, ip)

integer neq, ml, mu, nrowpd, ip

double precision y(*), pd(nrowpd,*), yout(*), t, k1, k2, k3

common /myparms/k1, k2, k3

pd(1,1) = -k1

pd(2,1) = k1

pd(3,1) = 0.0

pd(1,2) = k2*y(3)

pd(2,2) = -k2*y(3) - 2*k3*y(2)

pd(3,2) = 2*k3*y(2)

pd(1,3) = k2*y(2)

pd(2,3) = -k2*y(2)

pd(3,3) = 0.0

return

end

c end of file mymodf.f

In FORTRAN, parameters may be stored in a common block (here called myparms). During
the initialisation, this common block is defined to consist of a 3-valued vector (unnamed), but
in the subroutines derivs and jac, the parameters are given a name (k1, ...).

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 7

2.4. Running ODE models implemented in compiled code

To run the models described above, the code in mymod.f and mymod.c must first be compiled2.
This can simply be done in R itself, using the system command:

R> system("R CMD SHLIB mymod.f")

for the FORTRAN code or

R> system("R CMD SHLIB mymod.c")

for the C code.

This will create file mymod.dll on windows, or mymod.so on other platforms.

We load the DLL, in windows as:

dyn.load("mymod.dll")

and in unix:

dyn.load("mymod.so")

or, using a general statement:

dyn.load(paste("mymod", .Platform$dynlib.ext, sep = ""))

The model can now be run as follows:

parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)

Y <- c(y1 = 1.0, y2 = 0.0, y3 = 0.0)

times <- c(0, 0.4*10^(0:11))

out <- ode(Y, times, func = "derivs", parms = parms,

jacfunc = "jac", dllname = "mymod",

initfunc = "initmod", nout = 1, outnames = "Sum")

The integration routine (here ode) recognizes that the model is specified as a DLL due to
the fact that arguments func and jacfunc are not regular R-functions but character strings.
Thus, the integrator will check whether the function is loaded in the DLL with name mymod.

Note that mymod, as specified by dllname gives the name of the shared library without exten-
sion. This DLL should contain all the compiled function or subroutine definitions referred to
in func, jacfunc and initfunc.

Also, if func is specified in compiled code, then jacfunc and initfunc (if present) should
also be specified in a compiled language. It is not allowed to mix R-functions and compiled
functions.

2This requires a correctly installed GNU compiler, see above.

8 R Package deSolve, Writing Code in Compiled Languages

Note also that, when invoking the integrator, we have to specify the number of ordinary
output variables, nout. This is because the integration routine has to allocate memory to
pass these output variables back to R. There is no way to check for the number of output
variables in a DLL automatically. If in the calling of the integration routine the number
of output variables is too low, then R may freeze and need to be terminated! Therefore it
is advised that one checks in the code whether nout has been specified correctly. In the
FORTRAN example above, the statement if (ip(1) < 1) call rexit("nout should be

at least 1") does this. Note that it is not an error (just a waste of memory) to set nout to
a too large value.

Finally, in order to label the output matrix, the names of the ordinary output variables have
to be passed explicitly (outnames). This is not necessary for the state variables, as their
names are known through their initial condition (y).

3. Alternative way of passing parameters and data in compiled code

All of the solvers in deSolve take an argument parms which may be an arbitrary R object. In
models defined in R code, this argument is passed unprocessed to the various functions that
make up the model. It is possible, as well, to pass such R-objects to models defined in native
code.

The problem is that data passed to, say, ode in the argument parms is not visible by default to
the routines that define the model. This is handled by a user-written initialization function,
for example initmod in the C and FORTRAN examples from sections 2.2 and 2.3. However,
these set only the values of the parameters.

R-objects have many attributes that may also be of interest. To have access to these, we need
to do more work, and this mode of passing parameters and data is much more complex than
what we saw in previous chapters.

In C, the initialization routine is declared:

void initmod(void (* odeparms)(int *, double *));

That is, initmod has a single argument, a pointer to a function that has as arguments a
pointer to an int and a pointer to a double. In FORTRAN, the initialization routine has a
single argument, a subroutine declared to be external. The name of the initialization function
is passed as an argument to the deSolve solver functions.

In C, two approaches are available for making the values passed in parms visible to the model
routines, while only the simpler approach is available in FORTRAN. The simpler requires
that parms be a numeric vector. In C, the function passed from deSolve to the initialization
function (called odeparms in the example) copies the values from the parameter vector to a
static array declared globally in the file where the model is defined. In FORTRAN, the values
are copied into a COMMON block.

It is possible to pass more complicated structures to C functions. Here is an example, an ini-
tializer called deltamethrin from a model describing the pharmacokinetics of that pesticide:

#include <R.h>

#include <Rinternals.h>

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 9

#include <R_ext/Rdynload.h>

#include "deltamethrin.h"

/* initializer */

void deltamethrin(void(* odeparms)(int *, double *))

{

int Nparms;

DL_FUNC get_deSolve_gparms;

SEXP gparms;

get_deSolve_gparms = R_GetCCallable("deSolve","get_deSolve_gparms");

gparms = get_deSolve_gparms();

Nparms = LENGTH(gparms);

if (Nparms != N_PARMS) {

PROBLEM "Confusion over the length of parms"

ERROR;

} else {

_RDy_deltamethrin_parms = REAL(gparms);

}

}

In deltamethrin.h, the variable _RDy_deltamethrin_parms and macro N_PARMS are de-
clared:

#define N_PARMS 63

static double *_RDy_deltamethrin_parms;

The critical element of this method is the function R_GetCCallable which returns a function
(called get_deSolve_gparms in this implementation) that returns the parms argument as a
SEXP data type. In this example, parms was just a real vector, but in principle, this method
can handle arbitrarily complex objects. For more detail on handling R objects in native code,
see R Development Core Team (2008).

4. deSolve integrators that support DLL models

In the most recent version of deSolve all integration routines can solve DLL models. They
are:

• all solvers of the lsode familiy: lsoda, lsode, lsodar, lsodes,

• vode, zvode,

• daspk,

• radau,

• the Runge-Kutta integration routines (including the Euler method).

10 R Package deSolve, Writing Code in Compiled Languages

For some of these solvers the interface is slightly different (e.g. zvode, daspk), while in
others (lsodar, lsodes) different functions can be defined. How this is implemented in a
compiled language is discussed next.

4.1. Complex numbers, function zvode

zvode solves ODEs that are composed of complex variables. The program below uses zvode

to solve the following system of 2 ODEs:

dz

dt
= i · z

dw

dt
= −i · w · w · z

where

w(0) = 1/2.1 + 0i

z(0) = 1i

on the interval t = [0, 2 π]

The example is implemented in FORTRAN3, FEX implements the function func:

SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)

INTEGER NEQ, IPAR(*)

DOUBLE COMPLEX Y(NEQ), YDOT(NEQ), RPAR(*), CMP

DOUBLE PRECISION T

character(len=100) msg

c the imaginary unit i

CMP = DCMPLX(0.0D0,1.0D0)

YDOT(1) = CMP*Y(1)

YDOT(2) = -CMP*Y(2)*Y(2)*Y(1)

RETURN

END

JEX implements the function jacfunc

SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)

INTEGER NEQ, ML, MU, NRPD, IPAR(*)

DOUBLE COMPLEX Y(NEQ), PD(NRPD,NEQ), RPAR(*), CMP

DOUBLE PRECISION T

c the imaginary unit i

3this can be found in file "zvodedll.f", in the doc/dynload subdirectory of the package

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 11

CMP = DCMPLX(0.0D0,1.0D0)

PD(2,3) = -2.0D0*CMP*Y(1)*Y(2)

PD(2,1) = -CMP*Y(2)*Y(2)

PD(1,1) = CMP

RETURN

END

Assuming this code has been compiled and is in a DLL called "zvodedll.dll", this model is
solved in R as follows:

dyn.load("zvodedll.dll")

outF <- zvode(func = "fex", jacfunc = "jex", y = yini, parms = NULL,

times = times, atol = 1e-10, rtol = 1e-10, dllname = "zvodedll",

initfunc = NULL)

Note that in R names of FORTRAN DLL functions (e.g. for func and jacfunc) have to be
given in lowercase letters, even if they are defined upper case in FORTRAN.

Also, there is no initialiser function here (initfunc = NULL).

4.2. DAE models, integrator daspk

daspk is one of the integrators in the package that solve DAE models. In order to be used
with DASPK, DAEs are specified in implicit form:

0 = F (t, y, y′, p)

i.e. the DAE function (passed via argument res) specifies the “residuals” rather than the
derivatives (as for ODEs).

Consequently the DAE function specification in a compiled language is also different. For
code written in C, the calling sequence for res must be:

void myres(double *t, double *y, double *ydot, double *cj,

double *delta, int *ires, double *yout, int *ip)

where *t is the value of the independent variable, *y points to a double precision vector that
contains the current value of the state variables, *ydot points to an array that will contain the
derivatives, *delta points to a vector that will contain the calculated residuals. *cj points
to a scalar, which is normally proportional to the inverse of the stepsize, while *ires points
to an integer (not used). *yout points to any other output variables (different from the state
variables y), followed by the double precision values as passed via argument rpar; finally *ip

is an integer vector containing at least 3 elements, its first value (*ip[0]) equals the number
of output variables, calculated in the function (and which should be equal to nout), its second
element equals the total length of *yout, its third element equals the total length of *ip, and
finally come the integer values as passed via argument ipar.

For code written in FORTRAN, the calling sequence for res must be as in the following
example:

12 R Package deSolve, Writing Code in Compiled Languages

subroutine myresf(t, y, ydot, cj, delta, ires, out, ip)

integer :: ires, ip(*)

integer, parameter :: neq = 3

double precision :: t, y(neq), ydot(neq), delta(neq), out(*)

double precision :: K, ka, r, prod, ra, rb

common /myparms/K,ka,r,prod

if(ip(1) < 1) call rexit("nout should be at least 1")

ra = ka* y(3)

rb = ka/K *y(1) * y(2)

!! residuals of rates of changes

delta(3) = -ydot(3) - ra + rb + prod

delta(1) = -ydot(1) + ra - rb

delta(2) = -ydot(2) + ra - rb - r*y(2)

out(1) = y(1) + y(2) + y(3)

return

end

Similarly as for the ODE model discussed above, the parameters are kept in a common block
which is initialised by an initialiser subroutine:

subroutine initpar(daspkparms)

external daspkparms

integer, parameter :: N = 4

double precision parms(N)

common /myparms/parms

call daspkparms(N, parms)

return

end

See the ODE example for how to initialise parameter values in C.

Similarly, the function that specifies the Jacobian in a DAE differs from the Jacobian when
the model is an ODE. The DAE Jacobian is set with argument jacres rather than jacfunc

when an ODE.

For code written in FORTRAN, the jacres must be as:

subroutine resjacfor (t, y, dy, pd, cj, out, ipar)

integer, parameter :: neq = 3

integer :: ipar(*)

double precision :: K, ka, r, prod

double precision :: pd(neq,neq),y(neq),dy(neq),out(*)

common /myparms/K,ka,r,prod

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 13

!res1 = -dD - ka*D + ka/K *A*B + prod

PD(1,1) = ka/K *y(2)

PD(1,2) = ka/K *y(1)

PD(1,3) = -ka -cj

!res2 = -dA + ka*D - ka/K *A*B

PD(2,1) = -ka/K *y(2) -cj

PD(2,2) = -ka/K *y(2)

PD(2,3) = ka

!res3 = -dB + ka*D - ka/K *A*B - r*B

PD(3,1) = -ka/K *y(2)

PD(3,2) = -ka/K *y(2) -r -cj

PD(3,3) = ka

return

end

4.3. DAE models, integrator radau

Function radau solves DAEs in linearly implicit form, i.e. in the form My′ = f(t, y, p).

The derivative function f is specified in the same way as for an ODE, i.e.

void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip)

and

subroutine derivs (neq, t, y, ydot, out, IP)

for C and FORTRAN code respectively.

To show how it should be used, we implement the caraxis problem as in (Mazzia and Magherini
2008). The implementation of this index 3 DAE, comprising 8 differential, and 2 algebraic
equations in R is the last example of the radau help page. We first repeat the R implemen-
tation:

R> caraxisfun <- function(t, y, parms) {

+ with(as.list(c(y, parms)), {

+ yb <- r * sin(w * t)

+ xb <- sqrt(L * L - yb * yb)

+ Ll <- sqrt(xl^2 + yl^2)

+ Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)

+

+ dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

+

+ dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb

+ dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g

+

+ dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)

14 R Package deSolve, Writing Code in Compiled Languages

+ dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

+

+ c1 <- xb * xl + yb * yl

+ c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

+

+ list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))

+ })

+ }

R> eps <- 0.01; M <- 10; k <- M * eps^2/2;

R> L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1

R> parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0,

+ r = r, w = w, g = g)

R> yini <- c(xl = 0, yl = L0, xr = L, yr = L0, ul = -L0/L, vl = 0,

+ ur = -L0/L, vr = 0, lam1 = 0, lam2 = 0)

R> # the mass matrix

R> Mass <- diag(nrow = 10, 1)

R> Mass[5,5] <- Mass[6,6] <- Mass[7,7] <- Mass[8,8] <- M * eps * eps/2

R> Mass[9,9] <- Mass[10,10] <- 0

R> Mass

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 0 0 0e+00 0e+00 0e+00 0e+00 0 0

[2,] 0 1 0 0 0e+00 0e+00 0e+00 0e+00 0 0

[3,] 0 0 1 0 0e+00 0e+00 0e+00 0e+00 0 0

[4,] 0 0 0 1 0e+00 0e+00 0e+00 0e+00 0 0

[5,] 0 0 0 0 5e-04 0e+00 0e+00 0e+00 0 0

[6,] 0 0 0 0 0e+00 5e-04 0e+00 0e+00 0 0

[7,] 0 0 0 0 0e+00 0e+00 5e-04 0e+00 0 0

[8,] 0 0 0 0 0e+00 0e+00 0e+00 5e-04 0 0

[9,] 0 0 0 0 0e+00 0e+00 0e+00 0e+00 0 0

[10,] 0 0 0 0 0e+00 0e+00 0e+00 0e+00 0 0

R> # index of the variables: 4 of index 1, 4 of index 2, 2 of index 3

R> index <- c(4, 4, 2)

R> times <- seq(0, 3, by = 0.01)

R> out <- radau(y = yini, mass = Mass, times = times, func = caraxisfun,

+ parms = parameter, nind = index)

R> plot(out, which = 1:4, type = "l", lwd = 2)

The implementation in FORTRAN consists of an initialiser function and a derivative function.

c--

c Initialiser for parameter common block

c--

subroutine initcaraxis(daeparms)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

04
0.

00
0.

04

xl

time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
49

70
0.

49
85

0.
50

00

yl

time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
94

0.
98

1.
02

xr

time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
40

0.
50

0.
60

yr

time

Figure 1: Solution of the caraxis model - see text for R-code

external daeparms

integer, parameter :: N = 8

double precision parms(N)

common /myparms/parms

call daeparms(N, parms)

return

end

c--

c rate of change

c--

subroutine caraxis(neq, t, y, ydot, out, ip)

implicit none

integer neq, IP(*)

double precision t, y(neq), ydot(neq), out(*)

double precision eps, M, k, L, L0, r, w, g

common /myparms/ eps, M, k, L, L0, r, w, g

double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2

double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr

double precision dul, dvl, dur, dvr, c1, c2

c expand state variables

xl = y(1)

yl = y(2)

xr = y(3)

yr = y(4)

ul = y(5)

vl = y(6)

16 R Package deSolve, Writing Code in Compiled Languages

ur = y(7)

vr = y(8)

lam1 = y(9)

lam2 = y(10)

yb = r * sin(w * t)

xb = sqrt(L * L - yb * yb)

Ll = sqrt(xl**2 + yl**2)

Lr = sqrt((xr - xb)**2 + (yr - yb)**2)

dxl = ul

dyl = vl

dxr = ur

dyr = vr

dul = (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb

dvl = (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k*g

dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)

dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g

c1 = xb * xl + yb * yl

c2 = (xl - xr)**2 + (yl - yr)**2 - L * L

c function values in ydot

ydot(1) = dxl

ydot(2) = dyl

ydot(3) = dxr

ydot(4) = dyr

ydot(5) = dul

ydot(6) = dvl

ydot(7) = dur

ydot(8) = dvr

ydot(9) = c1

ydot(10) = c2

return

end

Assuming that the code is in file “radaudae.f”, this model is compiled, loaded and solved in
R as:

system("R CMD SHLIB radaudae.f")

dyn.load(paste("radaudae", .Platform$dynlib.ext, sep = ""))

outDLL <- radau(y = yini, mass = Mass, times = times, func = "caraxis",

initfunc = "initcaraxis", parms = parameter,

dllname = "radaudae", nind = index)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 17

dyn.unload(paste("radaudae", .Platform$dynlib.ext, sep = ""))

4.4. The root function from integrators lsodar and lsode

lsodar is an extended version of integrator lsoda that includes a root finding function. This
function is spedified via argument rootfunc. In deSolve version 1.7, lsode has also been
extended with root finding capabilities.

Here is how to program such a function in a lower-level language. For code written in C, the
calling sequence for rootfunc must be:

void myroot(int *neq, double *t, double *y, int *ng, double *gout,

double *out, int *ip)

where *neq and *ng are the number of state variables and root functions respectively, *t is
the value of the independent variable, y points to a double precision array that contains the
current value of the state variables, and gout points to an array that will contain the values
of the constraint function whose root is sought. *out and *ip are a double precision and
integer vector respectively, as described in the ODE example above.

For code written in FORTRAN, the calling sequence for rootfunc must be as in following
example:

subroutine myroot(neq, t, y, ng, gout, out, ip)

integer :: neq, ng, ip(*)

double precision :: t, y(neq), gout(ng), out(*)

gout(1) = y(1) - 1.e-4

gout(2) = y(3) - 1e-2

return

end

4.5. jacvec, the Jacobian vector for integrator lsodes

Finally, in integration function lsodes, not the Jacobian matrix is specified, but a vector,
one for each column of the Jacobian. This function is specified via argument jacvec.

In FORTRAN, the calling sequence for jacvec is:

SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ, OUT, IP)

DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*), OUT(*)

INTEGER NEQ, J, IP(*)

4.6. Banded jacobians in compiled code

In the call of the jacobian function, the number of bands below and above the diagonal (ml,

mu) and the number of rows of the Jacobian matrix, nrowPD is specified, e.g. for FORTRAN

code:

18 R Package deSolve, Writing Code in Compiled Languages

SUBROUTINE JAC (neq, T, Y, ml, mu, PD, nrowPD, RPAR, IPAR)

The jacobian matrix to be returned should have dimension nrowPD, neq.

In case the Jacobian is banded, the size of nrowPD depends on the integrator. If the method
is one of lsode, lsoda, vode, or related, then nrowPD will be equal to mu + 2 * ml + 1,
where the last ml rows should be filled with 0s.

For radau, nrowpd will be equal to mu + ml + 1

Thus, it is important to write the FORTRAN or C-code in such a way that it can be used
with both types of integrators - else it is likely that R will freeze if the wrong integrator is
used.

We implement in FORTRAN, the example of the lsode help file. The R-code reads:

R> ## the model, 5 state variables

R> f1 <- function (t, y, parms) {

+ ydot <- vector(len = 5)

+

+ ydot[1] <- 0.1*y[1] -0.2*y[2]

+ ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]

+ ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]

+ ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]

+ ydot[5] <- -0.3*y[4] +0.1*y[5]

+

+ return(list(ydot))

+ }

R> ## the Jacobian, written in banded form

R> bandjac <- function (t, y, parms) {

+ jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,

+ data = c(0 , -0.2, -0.2, -0.2, -0.2,

+ 0.1, 0.1, 0.1, 0.1, 0.1,

+ -0.3, -0.3, -0.3, -0.3, 0))

+ return(jac)

+ }

R> ## initial conditions and output times

R> yini <- 1:5

R> times <- 1:20

R> ## stiff method, user-generated banded Jacobian

R> out <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",

+ jacfunc = bandjac, bandup = 1, banddown = 1)

In FORTRAN, the code might look like this:

c Rate of change

subroutine derivsband (neq, t, y, ydot,out,IP)

integer neq, IP(*)

DOUBLE PRECISION T, Y(5), YDOT(5), out(*)

ydot(1) = 0.1*y(1) -0.2*y(2)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 19

ydot(2) = -0.3*y(1) +0.1*y(2) -0.2*y(3)

ydot(3) = -0.3*y(2) +0.1*y(3) -0.2*y(4)

ydot(4) = -0.3*y(3) +0.1*y(4) -0.2*y(5)

ydot(5) = -0.3*y(4) +0.1*y(5)

RETURN

END

c The banded jacobian

subroutine jacband (neq, t, y, ml, mu, pd, nrowpd, RP, IP)

INTEGER neq, ml, mu, nrowpd, ip(*)

DOUBLE PRECISION T, Y(5), PD(nrowpd,5), rp(*)

PD(:,:) = 0.D0

PD(1,1) = 0.D0

PD(1,2) = -.02D0

PD(1,3) = -.02D0

PD(1,4) = -.02D0

PD(1,5) = -.02D0

PD(2,:) = 0.1D0

PD(3,1) = -0.3D0

PD(3,2) = -0.3D0

PD(3,3) = -0.3D0

PD(3,4) = -0.3D0

PD(3,5) = 0.D0

RETURN

END

Assuming that this code is in file "odeband.f", we compile from within R and load the shared
library (assuming the working directory holds the source file) with:

system("R CMD SHLIB odeband.f")

dyn.load(paste("odeband", .Platform$dynlib.ext, sep = ""))

To solve this problem, we write in R

out2 <- lsode(yini, times, "derivsband", parms = 0, jactype = "bandusr",

jacfunc = "jacband", bandup = 1, banddown = 1, dllname = "odeband")

out2 <- radau(yini, times, "derivsband", parms = 0, jactype = "bandusr",

jacfunc = "jacband", bandup = 1, banddown = 1, dllname = "odeband")

This will work both for the lsode family as for radau. In the first case, when entering
subroutine jacband, nrowpd will have the value 5, in the second case, it will be equal to 4.

20 R Package deSolve, Writing Code in Compiled Languages

5. Testing functions written in compiled code

Two utilities have been included to test the function implementation in compiled code:

• DLLfunc to test the implementation of the derivative function as used in ODEs. This
function returns the derivative dy

dt
and the output variables.

• DLLres to test the implementation of the residual function as used in DAEs. This
function returns the residual function dy

dt
− f(y, t) and the output variables.

These functions serve no other purpose than to test whether the compiled code returns what
it should.

5.1. DLLfunc

We test whether the ccl4 model, which is part of deSolve package, returns the proper rates
of changes. (Note: see example(ccl4model) for a more comprehensive implementation)

R> ## Parameter values and initial conditions

R> Parms <- c(0.182, 4.0, 4.0, 0.08, 0.04, 0.74, 0.05, 0.15, 0.32,

+ 16.17, 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671,

+ 0.4027255, 1000, 0.02, 1.0, 3.8)

R> yini <- c(AI=21, AAM=0, AT=0, AF=0, AL=0, CLT=0, AM=0)

R> ## the rate of change

R> DLLfunc(y = yini, dllname = "deSolve", func = "derivsccl4",

+ initfunc = "initccl4", parms = Parms, times = 1,

+ nout = 3, outnames = c("DOSE", "MASS", "CP"))

$dy

AI AAM AT AF AL

-20.0582048 6.2842256 9.4263383 0.9819102 2.9457307

CLT AM

0.0000000 0.0000000

$var

DOSE MASS CP

1.758626 0.000000 922.727067

5.2. DLLres

The deSolve package contains a FORTRAN implementation of the chemical model described
above (section 4.1), where the production rate is included as a forcing function (see next
section).

Here we use DLLres to test it:

R> pars <- c(K = 1, ka = 1e6, r = 1)

R> ## Initial conc; D is in equilibrium with A,B

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 21

R> y <- c(A = 2, B = 3, D = 2*3/pars["K"])

R> ## Initial rate of change

R> dy <- c(dA = 0, dB = 0, dD = 0)

R> ## production increases with time

R> prod <- matrix(nc=2,data=c(seq(0,100,by=10),seq(0.1,0.5,len=11)))

R> DLLres(y=y,dy=dy,times=5,res="chemres",

+ dllname="deSolve", initfunc="initparms",

+ initforc="initforcs", parms=pars, forcings=prod,

+ nout=2, outnames=c("CONC","Prod"))

$delta

A B D.K

0.00 -3.00 0.12

$var

CONC Prod

11.00 0.12

R>

6. Using forcing functions

Forcing functions in DLLs are implemented in a similar way as parameters. This means:

• They are initialised by means of an initialiser function. Its name should be passed to
the solver via argument initforc.

Similar as the parameter initialiser function, the function denoted by initforc has as
its sole argument a pointer to the vector that contains the forcing funcion values in the
compiled code. In case of C code, this will be a global vector; in case of FORTRAN,
this will be a vector in a common block.

The solver puts a pointer to this vector and updates the forcing functions in this memory
area at each time step. Hence, within the compiled code, forcing functions can be
assessed as if they are parameters (although, in contrast to the latter, their values will
generally change). No need to update the values for the current time step; this has been
done before entering the derivs function.

• The forcing function data series are passed to the integrator, via argument forcings;
if there is only one forcing function data set, then a 2-columned matrix (time, value)
will do; else the data should be passed as a list, containing (time, value) matrices with
the individual forcing function data sets. Note that the data sets in this list should be
in the same ordering as the declaration of the forcings in the compiled code.

A number of options allow to finetune certain settings. They are in a list called fcontrol

which can be supplied as argument when calling the solvers. The options are similar to the
arguments from R function approx, howevers the default settings are often different.

The following options can be specified:

22 R Package deSolve, Writing Code in Compiled Languages

• method specifies the interpolation method to be used. Choices are "linear" or "constant",
the default is "linear", which means linear interpolation (same as approx)

• rule, an integer describing how interpolation is to take place outside the interval
[min(times), max(times)]. If rule is 1 then an error will be triggered and the cal-
culation will stop if extrapolation is necessary. If it is 2, the default, the value at the
closest data extreme is used, a warning will be printed if verbose is TRUE.

Note that the default differs from the approx default.

• f, for method="constant" is a number between 0 and 1 inclusive, indicating a com-
promise between left- and right-continuous step functions. If y0 and y1 are the values
to the left and right of the point then the value is y0*(1-f)+y1*f so that f=0 is right-
continuous and f=1 is left-continuous. The default is to have f=0. For some data sets
it may be more realistic to set f=0.5.

• ties, the handling of tied times values. Either a function with a single vector argument
returning a single number result or the string "ordered".

Note that the default is "ordered", hence the existence of ties will NOT be investigated;
in practice this means that, if ties exist, the first value will be used; if the dataset is not
ordered, then nonsense will be produced.

Alternative values for ties are mean, min etc... which will average, or take the minimal
value if multiple values exist at one time level.

The default settings of fcontrol are:

fcontrol=list(method="linear", rule = 2, f = 0, ties = "ordered")

Note that only ONE specification is allowed, even if there is more than one forcing function
data set. (may/should change in the future).

6.1. A simple FORTRAN example

We implement the example from chapter 3 of the book (Soetaert and Herman 2009) in FOR-
TRAN.

This model describes the oxygen consumption of a (marine) sediment in response to deposition
of organic matter (the forcing function). One state variable, the organic matter content in
the sediment is modeled; it changes as a function of the deposition Flux (forcing) and organic
matter decay (first-order decay rate k).

dC

dt
= Fluxt − k · C

with initial condition C(t = 0) = C0; the latter is estimated as the mean of the flux divided
by the decay rate.

The FORTRAN code looks like this:

c Initialiser for parameter common block

subroutine scocpar(odeparms)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 23

external odeparms

integer N

double precision parms(2)

common /myparms/parms

N = 1

call odeparms(N, parms)

return

end

c Initialiser for forcing common block

subroutine scocforc(odeforcs)

external odeforcs

integer N

double precision forcs(1)

common /myforcs/forcs

N = 1

call odeforcs(N, forcs)

return

end

c Rate of change and output variables

subroutine scocder (neq, t, y, ydot,out,IP)

integer neq, IP(*)

double precision t, y(neq), ydot(neq), out(*), k, depo

common /myparms/k

common /myforcs/depo

if(IP(1) < 2) call rexit("nout should be at least 2")

ydot(1) = -k*y(1) + depo

out(1)= k*y(1)

out(2)= depo

return

end

Here the subroutine scocpar is business as usual; it initialises the parameter common block
(there is only one parameter). Subroutine odeforcs does the same for the forcing function,
which is also positioned in a common block, called myforcs. This common block is made
available in the derivative subroutine (here called scocder), where the forcing function is

24 R Package deSolve, Writing Code in Compiled Languages

named depo.

At each time step, the integrator updates the value of this forcing function to the correct time
point. In this way, the forcing functions can be used as if they are (time-varying) parameters.
All that’s left to do is to pass the forcing function data set and the name of the forcing
function initialiser routine. This is how to do it in R.

First the data are inputted:

R> Flux <- matrix(ncol=2,byrow=TRUE,data=c(

+ 1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73,0.277, 83,0.186,

+ 93,0.140,103, 0.255, 113, 0.231,123, 0.309,133,1.127,143,1.923,

+ 153,1.091,163,1.001, 173, 1.691,183, 1.404,194,1.226,204,0.767,

+ 214, 0.893,224,0.737, 234,0.772,244, 0.726,254,0.624,264,0.439,

+ 274,0.168,284 ,0.280, 294,0.202,304, 0.193,315,0.286,325,0.599,

+ 335, 1.889,345, 0.996,355,0.681,365,1.135))

R> head(Flux)

[,1] [,2]

[1,] 1 0.654

[2,] 11 0.167

[3,] 21 0.060

[4,] 41 0.070

[5,] 73 0.277

[6,] 83 0.186

and the parameter given a value (there is only one)

R> parms <- 0.01

The initial condition Yini is estimated as the annual mean of the Flux and divided by the
decay rate (parameter).

R> meanDepo <- mean(approx(Flux[,1],Flux[,2], xout=seq(1,365,by=1))$y)

R> Yini <- c(y=meanDepo/parms)

After defining the output times, the model is run, using integration routine ode.

The name of the derivate function "scocder", of the dll "deSolve"4 and of the initialiser
function "scocpar" are passed, as in previous examples.

In addition, the forcing function data set is also passed (forcings=Flux) as is the name of
the forcing initialisation function (initforc="scocforc").

R> times <- 1:365

R> out <- ode(y=Yini, times, func = "scocder",

+ parms = parms, dllname = "deSolve",

+ initforc="scocforc", forcings=Flux,

4this example is made part of the deSolve package, hence the name of the dll is "deSolve"

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 25

+ initfunc = "scocpar", nout = 2,

+ outnames = c("Mineralisation","Depo"))

R> head(out)

time y Mineralisation Depo

[1,] 1 63.00301 0.6300301 0.6540

[2,] 2 63.00262 0.6300262 0.6053

[3,] 3 62.95377 0.6295377 0.5566

[4,] 4 62.85694 0.6285694 0.5079

[5,] 5 62.71259 0.6271259 0.4592

[6,] 6 62.52124 0.6252124 0.4105

Now, the way the forcing functions are interpolated are changed: Rather than linear interpo-
lation, constant (block, step) interpolation is used.

R> fcontrol <- list(method="constant")

R> out2 <- ode(y=Yini, times, func = "scocder",

+ parms = parms, dllname = "deSolve",

+ initforc="scocforc", forcings=Flux, fcontrol=fcontrol,

+ initfunc = "scocpar", nout = 2,

+ outnames = c("Mineralisation","Depo"))

Finally, the results are plotted:

R> par (mfrow=c(1,2))

R> plot(out, which = "Depo", col="red",

+ xlab="days", ylab="mmol C/m2/ d", main="method='linear'")

R> lines(out[,"time"], out[,"Mineralisation"], lwd=2, col="blue")

R> legend("topleft",lwd=1:2,col=c("red","blue"), c("Flux","Mineralisation"))

R> plot(out, which = "Depo", col="red",

+ xlab="days", ylab="mmol C/m2/ d", main="method='constant'")

R> lines(out2[,"time"], out2[,"Mineralisation"], lwd=2, col="blue")

6.2. An example in C

Consider the following R-code which implements a resource-producer-consumer Lotka-Volterra
type of model in R (it is a modified version of the example of function ode):

R> SPCmod <- function(t, x, parms, input) {

+ with(as.list(c(parms, x)), {

+ import <- input(t)

+ dS <- import - b*S*P + g*C # substrate

+ dP <- c*S*P - d*C*P # producer

+ dC <- e*P*C - f*C # consumer

+ res <- c(dS, dP, dC)

+ list(res, signal = import)

26 R Package deSolve, Writing Code in Compiled Languages

0 100 200 300

0.
0

0.
5

1.
0

1.
5

method='linear'

days

m
m

ol
 C

/m
2/

 d

Flux
Mineralisation

Figure 2: Solution of the SCOC model, implemented in compiled code, and including a forcing
function - see text for R-code

+ })

+ }

R> ## The parameters

R> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

R> ## vector of timesteps

R> times <- seq(0, 100, by=0.1)

R> ## external signal with several rectangle impulses

R> signal <- as.data.frame(list(times = times,

+ import = rep(0, length(times))))

R> signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)

R> sigimp <- approxfun(signal$times, signal$import, rule = 2)

R> ## Start values for steady state

R> xstart <- c(S = 1, P = 1, C = 1)

R> ## Solve model

R> print (system.time(

+ out <- ode(y = xstart,times = times,

+ func = SPCmod, parms, input = sigimp)

+))

User System verstrichen

0.09 0.03 0.11

All output is printed at once:

R> plot(out)

The C-code, in file dynload/Forcing_lv.c, can be found in the packages doc/dynload sub-
directory.

It can be compiled, from within R by

dynload/Forcing_lv.c

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 27

0 20 40 60 80 100

1
2

3
4

5

S

time

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

P

time

0 20 40 60 80 100

1
2

3
4

5

C

time

0 20 40 60 80 100

0.
0

0.
4

0.
8

signal

time

Figure 3: Solution of the Lotka-Volterra resource (S)-producer (P) - consumer (C) model
with time-variable input (signal) - see text for R-code

28 R Package deSolve, Writing Code in Compiled Languages

system("R CMD SHLIB Forcing_lv.c")

After defining the parameter and forcing vectors, and giving them comprehensible names, the
parameter and forcing initialiser functions are defined (parmsc and forcc respectively). Next
is the derivative function, derivsc.

#include <R.h>

static double parms[6];

static double forc[1];

/* A trick to keep up with the parameters and forcings */

#define b parms[0]

#define c parms[1]

#define d parms[2]

#define e parms[3]

#define f parms[4]

#define g parms[5]

#define import forc[0]

/* initializers: */

void odec(void (* odeparms)(int *, double *))

{

int N=6;

odeparms(&N, parms);

}

void forcc(void (* odeforcs)(int *, double *))

{

int N=1;

odeforcs(&N, forc);

}

/* derivative function */

void derivsc(int *neq, double *t, double *y, double *ydot,

double *yout, int*ip)

{

if (ip[0] <2) error("nout should be at least 2");

ydot[0] = import - b*y[0]*y[1] + g*y[2];

ydot[1] = c*y[0]*y[1] - d*y[2]*y[1];

ydot[2] = e*y[1]*y[2] - f*y[2];

yout[0] = y[0] + y[1] + y[2];

yout[1] = import;

}

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 29

After defining the forcing function time series, which is to be interpolated by the integration
routine, and loading the DLL, the model is run:

Sigimp <- approx(signal$times, signal$import, xout=ftime,rule = 2)$y

forcings <- cbind(ftime,Sigimp)

dyn.load("Forcing_lv.dll")

out <- ode(y=xstart, times, func = "derivsc",

parms = parms, dllname = "Forcing_lv",initforc = "forcc",

forcings=forcings, initfunc = "parmsc", nout = 2,

outnames = c("Sum","signal"), method = rkMethod("rk34f"))

dyn.unload("Forcing_lv.dll")

This code executes about 30 times faster than the R-code.

With a longer simulation time, the difference becomes more pronounced, e.g. with times till
800 days, the DLL code executes 200 times faster5.

7. Implementing events in compiled code

An event occurs when the value of a state variable is suddenly changed, e.g. a certain
amount is added, or part is removed. The integration routines cannot deal easily with such
state variable changes. Typically these events occur only at specific times. In deSolve, events
can be imposed by means of an input file that specifies at which time a certain state variable
is altered, or via an event function.

Both types of events combine with compiled code.

Take the previous example, the Lotka-Volterra SPC model. Suppose that every 10 days, half
of the consumer is removed.

We first implement these events as a data.frame

R> eventdata <- data.frame(var=rep("C",10),time=seq(10,100,10),value=rep(0.5,10),

+ method=rep("multiply",10))

R> eventdata

var time value method

1 C 10 0.5 multiply

2 C 20 0.5 multiply

3 C 30 0.5 multiply

4 C 40 0.5 multiply

5 C 50 0.5 multiply

6 C 60 0.5 multiply

7 C 70 0.5 multiply

8 C 80 0.5 multiply

9 C 90 0.5 multiply

10 C 100 0.5 multiply

5this is due to the sequential update of the forcing functions by the solvers, compared to the bisectioning

approach used by approxfun

30 R Package deSolve, Writing Code in Compiled Languages

This model is solved, and plotted as:

dyn.load("Forcing_lv.dll")

out2 <- ode(y = y, times, func = "derivsc",

parms = parms, dllname = "Forcing_lv", initforc="forcc",

forcings = forcings, initfunc = "parmsc", nout = 2,

outnames = c("Sum", "signal"), events=list(data=eventdata))

dyn.unload("Forcing_lv.dll")

plot(out2, which = c("S","P","C"), type = "l")

The event can also be implemented in C as:

void event(int *n, double *t, double *y) {

y[2] = y[2]*0.5;

}

Here n is the length of the state variable vector y. and is then solved as:

dyn.load("Forcing_lv.dll")

out3 <- ode(y = y, times, func = "derivsc",

parms = parms, dllname = "Forcing_lv", initforc="forcc",

forcings = forcings, initfunc = "parmsc", nout = 2,

outnames = c("Sum", "signal"),

events = list(func="event",time=seq(10,90,10)))

dyn.unload("Forcing_lv.dll")

8. Delay differential equations

It is now also very simple to implement delay differential equations in compiled code and solve
them with dede. In order to do so, you need to get access to the R-functions lagvalue and
lagderiv that will give you the past value of the state variable or its derivative respectively.

8.1. Delays implemented in Fortran

If you use Fortran, then the easiest way is to link your code with a file called dynload-dede/

dedeUtils.c that you will find in the packages subdirectory doc/dynload-dede. This file
contains Fortran-callable interfaces to the delay-differential utility functions from package
deSolve, and that are written in C. Its content is:

void F77_SUB(lagvalue)(double *T, int *nr, int *N, double *ytau) {

static void(*fun)(double, int*, int, double*) = NULL;

if (fun == NULL)

fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagvalue");

fun(*T, nr, *N, ytau);

return;

}

dynload-dede/dedeUtils.c
dynload-dede/dedeUtils.c

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 31

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

S

time

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

P

time

0 20 40 60 80 100

1
2

3
4

C

time

Figure 4: Solution of the Lotka-Volterra resource (S) – producer (P) – consumer (C) model
with time-variable input (signal) and with half of the consumer removed every 10 days - see
text for R-code

32 R Package deSolve, Writing Code in Compiled Languages

void F77_SUB(lagderiv)(double *T, int *nr, int *N, double *ytau) {

static void(*fun)(double, int*, int, double*) = NULL;

if (fun == NULL)

fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagderiv");

fun(*T, nr, *N, ytau);

return;

}

Here T is the time at which the value needs to be retrieved, nr is an integer that defines the
number of the state variable or its derivative whose delay we want, N is the total number of
state variabes and ytau will have the result.

We start with an example, a Lotka-Volterra system with delay, that we will implement
in Fortran (you will find this example in the package directory doc/dynload-dede, in file
dede_lvF.f

The R-code would be:

R> derivs <- function(t, y, parms) {

+ with(as.list(c(y, parms)), {

+ if (t < tau)

+ ytau <- c(1, 1)

+ else

+ ytau <- lagvalue(t - tau, c(1, 2))

+

+ dN <- f * N - g * N * P

+ dP <- e * g * ytau[1] * ytau[2] - m * P

+ list(c(dN, dP), tau=ytau[1], tau=ytau[2])

+ })

+ }

R> yinit <- c(N = 1, P = 1)

R> times <- seq(0, 500)

R> parms <- c(f = 0.1, g = 0.2, e = 0.1, m = 0.1, tau = .2)

R> yout <- dede(y = yinit, times = times, func = derivs, parms = parms)

R> head(yout)

time N P tau tau

[1,] 0 1.0000000 1.0000000 1.0000000 1.0000000

[2,] 1 0.9119190 0.9228219 0.9277522 0.9378886

[3,] 2 0.8441425 0.8502511 0.8562938 0.8643922

[4,] 3 0.7924546 0.7823984 0.8016679 0.7955899

[5,] 4 0.7537398 0.7192603 0.7605654 0.7315146

[6,] 5 0.7256893 0.6607481 0.7305357 0.6720885

In Fortran the code looks like this:

! file dede_lfF.f

! Initializer for parameter common block

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 33

subroutine initmod(odeparms)

external odeparms

double precision parms(5)

common /myparms/parms

call odeparms(5, parms)

return

end

! Derivatives and one output variable

subroutine derivs(neq, t, y, ydot, yout, ip)

integer neq, ip(*)

double precision t, y(neq), ydot(neq), yout(*)

double precision N, P, ytau(2), tlag

integer nr(2)

double precision f, g, e, m, tau

common /myparms/f, g, e, m, tau

if (ip(1) < 2) call rexit("nout should be at least 2")

N = y(1)

P = y(2)

nr(1) = 0

nr(2) = 1

ytau(1) = 1.0

ytau(2) = 1.0

tlag = t - tau

if (tlag .GT. 0.0) call lagvalue(tlag, nr, 2, ytau)

ydot(1) = f * N - g * N * P

ydot(2) = e * g * ytau(1) * ytau(2) - m * P

yout(1) = ytau(1)

yout(2) = ytau(2)

return

end

During compilation, we need to also compile the file dedeUtils.c. Assuming that the above
Fortran code is in file dede_lvF.f, which is found in the working directory that also contains
file dedeUtils.c, the problem is compiled and run as:

system("R CMD SHLIB dede_lvF.f dedeUtils.c")

dyn.load(paste("dede_lvF", .Platform$dynlib.ext, sep=""))

34 R Package deSolve, Writing Code in Compiled Languages

yout3 <- dede(yinit, times = times, func = "derivs", parms = parms,

dllname = "dede_lvF", initfunc = "initmod", nout = 2)

8.2. Delays implemented in C

We now give the same example in C-code (you will find this file as dynload-dede/dede_lv.c).

#include <R.h>

#include <Rinternals.h>

#include <Rdefines.h>

#include <R_ext/Rdynload.h>

static double parms[5];

#define f parms[0]

#define g parms[1]

#define e parms[2]

#define m parms[3]

#define tau parms[4]

/* Interface to dede utility functions in package deSolve */

void lagvalue(double T, int *nr, int N, double *ytau) {

static void(*fun)(double, int*, int, double*) = NULL;

if (fun == NULL)

fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagvalue");

return fun(T, nr, N, ytau);

}

void lagderiv(double T, int *nr, int N, double *ytau) {

static void(*fun)(double, int*, int, double*) = NULL;

if (fun == NULL)

fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagderiv");

return fun(T, nr, N, ytau);

}

/* Initializer */

void initmod(void (* odeparms)(int *, double *)) {

int N = 5;

odeparms(&N, parms);

}

/* Derivatives */

void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip) {

if (ip[0] < 2) error("nout should be at least 1");

double N = y[0];

dynload-dede/dede_lv.c

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 35

double P = y[1];

int Nout = 2; // number of returned lags (<= n_eq !!)

int nr[2] = {0, 1}; // which lags are needed?

// numbering starts from zero !

double ytau[2] = {1.0, 1.0}; // array; initialize with default values !

double T = *t - tau;

if (*t > tau) {

lagvalue(T, nr, Nout, ytau);

}

ydot[0] = f * N - g * N * P;

ydot[1] = e * g * ytau[0] * ytau[1] - m * P;

yout[0] = ytau[0];

yout[1] = ytau[1];

}

Assuming this code is in a file called dede_lv.c, which is in the working directory, this file is
then compiled and run as:

system("R CMD SHLIB dede_lv.c")

dyn.load(paste("dede_lv", .Platform$dynlib.ext, sep=""))

yout2 <- dede(yinit, times = times, func = "derivs", parms = parms,

dllname = "dede_lv", initfunc = "initmod", nout = 2)

dyn.unload(paste("dede_lv", .Platform$dynlib.ext, sep=""))

9. Difference equations in compiled code

There is one special-purpose solver, triggered with method = "iteration" which can be used
in cases where the new values of the state variables are estimated by the user, and need not
be found by integration.

This is for instance useful when the model consists of difference equations, or for 1-D models
when transport is implemented by an implicit or a semi-implicit method.

An example of a discrete time model, represented by a difference equation is given in the help
file of solver ode. It consists of the host-parasitoid model described as from Soetaert and
Herman (2009, p283).

We first give the R-code, and how it is solved:

Parasite <- function (t, y, ks) {

P <- y[1]

H <- y[2]

36 R Package deSolve, Writing Code in Compiled Languages

f <- A * P / (ks +H)

Pnew <- H* (1-exp(-f))

Hnew <- H * exp(rH*(1.-H) - f)

list (c(Pnew, Hnew))

}

rH <- 2.82 # rate of increase

A <- 100 # attack rate

ks <- 15. # half-saturation density

out <- ode (func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50,

parms = ks, method = "iteration")

Note that the function returns the updated value of the state variables rather than the rate
of change (derivative). The method “iteration” does not perform any integration.

The implementation in FORTRAN consists of an initialisation function to pass the parame-
ter values (initparms) and the "update" function that returns the new values of the state
variables (parasite):

subroutine initparms(odeparms)

external odeparms

double precision parms(3)

common /myparms/parms

call odeparms(3, parms)

return

end

subroutine parasite (neq, t, y, ynew, out, iout)

integer neq, iout(*)

double precision t, y(neq), ynew(neq), out(*), rH, A, ks

common /myparms/ rH, A, ks

double precision P, H, f

P = y(1)

H = y(2)

f = A * P / (ks + H)

ynew(1) = H * (1.d0 - exp(-f))

ynew(2) = H * exp (rH * (1.d0 - H) - f)

return

end

The model is compiled, loaded and executed in R as:

system("R CMD SHLIB difference.f")

dyn.load(paste("difference", .Platform$dynlib.ext, sep = ""))

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 37

require(deSolve)

rH <- 2.82 # rate of increase

A <- 100 # attack rate

ks <- 15. # half-saturation density

parms <- c(rH = rH, A = A, ks = ks)

out <- ode (func = "parasite", y = c(P = 0.5, H = 0.5), times = 0:50,

initfunc = "initparms", dllname = "difference", parms = parms,

method = "iteration")

10. Final remark

Detailed information about communication between C, FORTRAN and R can be found in R

Development Core Team (2009).

Notwithstanding the speed gain when using compiled code, one should not carelessly decide
to always resort to this type of modelling.

Because the code needs to be formally compiled and linked to R much of the elegance when
using pure R models is lost. Moreover, mistakes are easily made and paid harder in compiled
code: often a programming error will terminate R. In addition, these errors may not be simple
to trace.

38 R Package deSolve, Writing Code in Compiled Languages

References

Mazzia F, Magherini C (2008). Test Set for Initial Value Problem Solvers, release 2.4.
Department of Mathematics, University of Bari, Italy. Report 4/2008, URL https:

//archimede.uniba.it/~testset/.

R Development Core Team (2008). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
https://www.R-project.org.

R Development Core Team (2009). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL https://www.R-project.org.

Setzer RW (2001). The odesolve Package: Solvers for Ordinary Differential Equations. R
package version 0.1-1.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Petzoldt T, Setzer R (2010a). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. doi:10.18637/

jss.v033.i09.

Soetaert K, Petzoldt T, Setzer RW (2010b). deSolve: General solvers for initial value problems
of ordinary differential equations (ODE), partial differential equations (PDE), differential
algebraic equations (DAE) and delay differential equations (DDE). R package version 1.8.

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl

URL: https://www.nioz.nl

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de

URL: https://tu-dresden.de/Members/thomas.petzoldt/

R. Woodrow Setzer
National Center for Computational Toxicology
US Environmental Protection Agency

https://archimede.uniba.it/~testset/
https://archimede.uniba.it/~testset/
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.18637/jss.v033.i09
mailto:karline.soetaert@nioz.nl
https://www.nioz.nl
mailto:thomas.petzoldt@tu-dresden.de
https://tu-dresden.de/Members/thomas.petzoldt/

	Introduction
	A simple ODE example
	ODE model implementation in R
	ODE model implementation in C
	ODE model implementation in FORTRAN
	Running ODE models implemented in compiled code

	Alternative way of passing parameters and data in compiled code
	deSolve integrators that support DLL models
	Complex numbers, function zvode
	DAE models, integrator daspk
	DAE models, integrator radau
	The root function from integrators lsodar and lsode
	jacvec, the Jacobian vector for integrator lsodes
	Banded jacobians in compiled code

	Testing functions written in compiled code
	DLLfunc
	DLLres

	Using forcing functions
	A simple FORTRAN example
	An example in C

	Implementing events in compiled code
	Delay differential equations
	Delays implemented in Fortran
	Delays implemented in C

	Difference equations in compiled code
	Final remark
	References

