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deSolve-package General Solvers for Initial Value Problems of Ordinary Differential
Equations (ODE), Partial Differential Equations (PDE), Differential
Algebraic Equations (DAE) and delay differential equations (DDE).

Description

Functions that solve initial value problems of a system of first-order ordinary differential equations
(ODE), of partial differential equations (PDE), of differential algebraic equations (DAE) and delay
differential equations.

The functions provide an interface to the FORTRAN functions lsoda, lsodar, lsode, lsodes of the
ODEPACK collection, to the FORTRAN functions dvode, zvode and daspk, and a C-implementation
of solvers of the Runge-Kutta family with fixed or variable time steps.

The package contains routines designed for solving ODEs resulting from 1-D, 2-D and 3-D par-
tial differential equations (PDE) that have been converted to ODEs by numerical differencing. It
includes root-finding (or event location) and provides access to lagged variables and derivatives.

The system of differential equations is written as an R function or defined in compiled code that
has been dynamically loaded, see package vignette compiledCode for details. The solvers may be
used as part of a modeling package for differential equations, or for parameter estimation using any
appropriate modeling tool for non-linear models in R such as optim, nls, nlm or nlme, or FME.

Package Vignettes, Examples, Online Resources

• Solving Initial Value Differential Equations in R (pdf, R code)

• Writing Code in Compiled Languages (pdf, R code)

• Examples in R (code), and in Fortran or C (doc/dynload, doc/dynload-dede)

• Mailing list: mailto:r-sig-dynamic-models@r-project.org

Author(s)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer

References

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010): Solving Differential Equations in
R: Package deSolve Journal of Statistical Software, 33(9), 1–25. doi:10.18637/jss.v033.i09

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010): Solving differential equations in R.
The R Journal 2(2), 5-15. doi:10.32614/RJ2010013

Karline Soetaert, Thomas Petzoldt (2011): Solving ODEs, DAEs, DDEs and PDEs in R. Journal of
Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) 6(1-2), 51-65.

Karline Soetaert, Jeff Cash, Francesca Mazzia, (2012): Solving Differential Equations in R. Springer,
248 pp.

Alan C. Hindmarsh (1983): ODEPACK, A Systematized Collection of ODE Solvers, in Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, pp. 55-64.

../doc/deSolve.R
../doc/compiledCode.R
mailto:r-sig-dynamic-models@r-project.org
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.32614/RJ-2010-013
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L. R. Petzold, (1983): A Description of DASSL: A Differential/Algebraic System Solver, in Scien-
tific Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, pp. 65-68.

P. N. Brown, G. D. Byrne, A. C. Hindmarsh (1989): VODE: A Variable Coefficient ODE Solver,
SIAM J. Sci. Stat. Comput., 10, pp. 1038-1051. doi:10.1137/0910062

See also the references given on the specific help pages of the different methods.

See Also

ode for a general interface to most of the ODE solvers,

ode.band for solving models with a banded Jacobian,

ode.1D, ode.2D, ode.3D, for integrating 1-D, 2-D and 3-D models,

dede for a general interface to the delay differential equation solvers,

lsoda, lsode, lsodes, lsodar, vode, for ODE solvers of the Livermore family,

daspk, for a DAE solver up to index 1, of the Livermore family,

radau for integrating DAEs up to index 3 using an implicit Runge-Kutta,

rk, rkMethod, rk4, euler for Runge-Kutta solvers,

DLLfunc, DLLres, for testing model implementations in compiled code,

forcings, events, for how to implement forcing functions (external variables) and events (sudden
changes in state variables),

lagvalue, lagderiv, for how to get access to lagged values of state variables and derivatives.

Examples

library(deSolve)

## Chaos in the atmosphere
Lorenz <- function(t, state, parameters) {

with(as.list(c(state, parameters)), {
dX <- a * X + Y * Z
dY <- b * (Y - Z)
dZ <- -X * Y + c * Y - Z
list(c(dX, dY, dZ))

})
}

parameters <- c(a = -8/3, b = -10, c = 28)
state <- c(X = 1, Y = 1, Z = 1)
times <- seq(0, 100, by = 0.01)

out <- ode(y = state, times = times, func = Lorenz, parms = parameters)

plot(out)

## add a 3D figure if package scatterplot3D is available
if (require(scatterplot3d))

scatterplot3d(out[,-1], type = "l")

https://doi.org/10.1137/0910062
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aquaphy A Physiological Model of Unbalanced Algal Growth

Description

A phytoplankton model with uncoupled carbon and nitrogen assimilation as a function of light and
Dissolved Inorganic Nitrogen (DIN) concentration.

Algal biomass is described via 3 different state variables:

• low molecular weight carbohydrates (LMW), the product of photosynthesis,

• storage molecules (RESERVE) and

• the biosynthetic and photosynthetic apparatus (PROTEINS).

All algal state variables are expressed in mmolCm−3. Only proteins contain nitrogen and chloro-
phyll, with a fixed stoichiometric ratio. As the relative amount of proteins changes in the algae, so
does the N:C and the Chl:C ratio.

An additional state variable, dissolved inorganic nitrogen (DIN) has units of mmolNm−3.

The algae grow in a dilution culture (chemostat): there is constant inflow of DIN and outflow of
culture water, including DIN and algae, at the same rate.

Two versions of the model are included.

• In the default model, there is a day-night illumination regime, i.e. the light is switched on and
off at fixed times (where the sum of illuminated + dark period = 24 hours).

• In another version, the light is imposed as a forcing function data set.

This model is written in FORTRAN.

Usage

aquaphy(times, y, parms, PAR = NULL, ...)

Arguments

times time sequence for which output is wanted; the first value of times must be the
initial time,

y the initial (state) values ("DIN", "PROTEIN", "RESERVE", "LMW"), in that
order,

parms vector or list with the aquaphy model parameters; see the example for the order
in which these have to be defined.

PAR a data set of the photosynthetically active radiation (light intensity), if NULL,
on-off PAR is used,

... any other parameters passed to the integrator ode (which solves the model).
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Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code.

The source can be found in the ‘doc/examples/dynload’ subdirectory of the package.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Lancelot, C., Veth, C. and Mathot, S. (1991). Modelling ice-edge phytoplankton bloom in the
Scotia-Weddel sea sector of the Southern Ocean during spring 1988. Journal of Marine Systems 2,
333–346.

Soetaert, K. and Herman, P. (2008). A practical guide to ecological modelling. Using R as a
simulation platform. Springer.

See Also

ccl4model, the CCl4 inhalation model.

Examples

## ======================================================
##
## Example 1. PAR an on-off function
##
## ======================================================

## -----------------------------
## the model parameters:
## -----------------------------

parameters <- c(maxPhotoSynt = 0.125, # mol C/mol C/hr
rMortPHY = 0.001, # /hr
alpha = -0.125/150, # uEinst/m2/s/hr
pExudation = 0.0, # -
maxProteinSynt = 0.136, # mol C/mol C/hr
ksDIN = 1.0, # mmol N/m3
minpLMW = 0.05, # mol C/mol C
maxpLMW = 0.15, # mol C/mol C
minQuotum = 0.075, # mol C/mol C
maxStorage = 0.23, # /h
respirationRate= 0.0001, # /h
pResp = 0.4, # -
catabolismRate = 0.06, # /h
dilutionRate = 0.01, # /h
rNCProtein = 0.2, # mol N/mol C
inputDIN = 10.0, # mmol N/m3
rChlN = 1, # g Chl/mol N
parMean = 250., # umol Phot/m2/s
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dayLength = 15. # hours
)

## -----------------------------
## The initial conditions
## -----------------------------

state <- c(DIN = 6., # mmol N/m3
PROTEIN = 20.0, # mmol C/m3
RESERVE = 5.0, # mmol C/m3
LMW = 1.0) # mmol C/m3

## -----------------------------
## Running the model
## -----------------------------

times <- seq(0, 24*20, 1)

out <- as.data.frame(aquaphy(times, state, parameters))

## -----------------------------
## Plotting model output
## -----------------------------

par(mfrow = c(2, 2), oma = c(0, 0, 3, 0))
col <- grey(0.9)
ii <- 1:length(out$PAR)

plot(times[ii], out$Chlorophyll[ii], type = "l",
main = "Chlorophyll", xlab = "time, hours",ylab = "ug/l")

polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$Chlorophyll[ii], lwd = 2 )

plot (times[ii], out$DIN[ii], type = "l", main = "DIN",
xlab = "time, hours",ylab = "mmolN/m3")

polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$DIN[ii], lwd = 2 )

plot (times[ii], out$NCratio[ii], type = "n", main = "NCratio",
xlab = "time, hours", ylab = "molN/molC")

polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$NCratio[ii], lwd = 2 )

plot (times[ii], out$PhotoSynthesis[ii],type = "l",
main = "PhotoSynthesis", xlab = "time, hours",
ylab = "mmolC/m3/hr")

polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$PhotoSynthesis[ii], lwd = 2 )

mtext(outer = TRUE, side = 3, "AQUAPHY, PAR= on-off", cex = 1.5)
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## -----------------------------
## Summary model output
## -----------------------------
t(summary(out))

## ======================================================
##
## Example 2. PAR a forcing function data set
##
## ======================================================

times <- seq(0, 24*20, 1)

## -----------------------------
## create the forcing functions
## -----------------------------

ftime <- seq(0,500,by=0.5)
parval <- pmax(0,250 + 350*sin(ftime*2*pi/24)+

(runif(length(ftime))-0.5)*250)
Par <- matrix(nc=2,c(ftime,parval))

state <- c(DIN = 6., # mmol N/m3
PROTEIN = 20.0, # mmol C/m3
RESERVE = 5.0, # mmol C/m3
LMW = 1.0) # mmol C/m3

out <- aquaphy(times, state, parameters, Par)

plot(out, which = c("PAR", "Chlorophyll", "DIN", "NCratio"),
xlab = "time, hours",
ylab = c("uEinst/m2/s", "ug/l", "mmolN/m3", "molN/molC"))

mtext(outer = TRUE, side = 3, "AQUAPHY, PAR=forcing", cex = 1.5)

# Now all variables plotted in one figure...
plot(out, which = 1:9, type = "l")

par(mfrow = c(1, 1))

ccl4data Closed Chamber Study of CCl4 Metabolism by Rats.

Description

The results of a closed chamber experiment to determine metabolic parameters for CCl4 (carbon
tetrachloride) in rats.
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Usage

data(ccl4data)

Format

This data frame contains the following columns:

time the time (in hours after starting the experiment).

initconc initial chamber concentration (ppm).

animal this is a repeated measures design; this variable indicates which animal the observation
pertains to.

ChamberConc chamber concentration at time, in ppm.

Source

Evans, et al. 1994 Applications of sensitivity analysis to a physiologically based pharmacokinetic
model for carbon tetrachloride in rats. Toxicology and Applied Pharmacology 128: 36 – 44.

Examples

plot(ChamberConc ~ time, data = ccl4data, xlab = "Time (hours)",
xlim = range(c(0, ccl4data$time)),
ylab = "Chamber Concentration (ppm)", log = "y")

ccl4data.avg <- aggregate(ccl4data$ChamberConc,
by = ccl4data[c("time", "initconc")], mean)

points(x ~ time, data = ccl4data.avg, pch = 16)

ccl4model The CCl4 Inhalation Model

Description

The CCl4 inhalation model implemented in .Fortran

Usage

ccl4model(times, y, parms, ...)

Arguments

times time sequence for which the model has to be integrated.

y the initial values for the state variables ("AI", "AAM", "AT", "AF", "AL", "CLT"
and "AM"), in that order.

parms vector or list holding the ccl4 model parameters; see the example for the order
in which these have to be defined.

... any other parameters passed to the integrator ode (which solves the model).
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Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code.

The source can be found in the ‘/doc/examples/dynload’ subdirectory of the package.

Author(s)

R. Woodrow Setzer <setzer.woodrow@epa.gov>

See Also

Try demo(CCL4model) for how this model has been fitted to the dataset ccl4data,

aquaphy, another FORTRAN model, describing growth in aquatic phytoplankton.

Examples

## =================
## Parameter values
## =================

Pm <- c(
## Physiological parameters
BW = 0.182, # Body weight (kg)
QP = 4.0 , # Alveolar ventilation rate (hr^-1)
QC = 4.0 , # Cardiac output (hr^-1)
VFC = 0.08, # Fraction fat tissue (kg/(kg/BW))
VLC = 0.04, # Fraction liver tissue (kg/(kg/BW))
VMC = 0.74, # Fraction of muscle tissue (kg/(kg/BW))
QFC = 0.05, # Fractional blood flow to fat ((hr^-1)/QC
QLC = 0.15, # Fractional blood flow to liver ((hr^-1)/QC)
QMC = 0.32, # Fractional blood flow to muscle ((hr^-1)/QC)

## Chemical specific parameters for chemical
PLA = 16.17, # Liver/air partition coefficient
PFA = 281.48, # Fat/air partition coefficient
PMA = 13.3, # Muscle/air partition coefficient
PTA = 16.17, # Viscera/air partition coefficient
PB = 5.487, # Blood/air partition coefficient
MW = 153.8, # Molecular weight (g/mol)
VMAX = 0.04321671, # Max. velocity of metabolism (mg/hr) -calibrated
KM = 0.4027255, # Michaelis-Menten constant (mg/l) -calibrated

## Parameters for simulated experiment
CONC = 1000, # Inhaled concentration
KL = 0.02, # Loss rate from empty chamber /hr
RATS = 1.0, # Number of rats enclosed in chamber
VCHC = 3.8 # Volume of closed chamber (l)

)

## ================
## State variables
## ================
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y <- c(
AI = 21, # total mass , mg
AAM = 0,
AT = 0,
AF = 0,
AL = 0,
CLT = 0, # area under the conc.-time curve in the liver
AM = 0 # the amount metabolized (AM)

)

## ==================
## Model application
## ==================

times <- seq(0, 6, by = 0.1)

## initial inhaled concentration-calibrated
conc <- c(26.496, 90.197, 245.15, 951.46)

plot(ChamberConc ~ time, data = ccl4data, xlab = "Time (hours)",
xlim = range(c(0, ccl4data$time)),
ylab = "Chamber Concentration (ppm)",
log = "y", main = "ccl4model")

for (cc in conc) {
Pm["CONC"] <- cc

VCH <- Pm[["VCHC"]] - Pm[["RATS"]] * Pm[["BW"]]
AI0 <- VCH * Pm[["CONC"]] * Pm[["MW"]]/24450
y["AI"] <- AI0

## run the model:
out <- as.data.frame(ccl4model(times, y, Pm))
lines(out$time, out$CP, lwd = 2)

}

legend("topright", lty = c(NA, 1), pch = c(1, NA), lwd = c(NA, 2),
legend = c("data", "model"))

## ==================================
## An example with tracer injection
## ==================================
## every day, a conc of 2 is added to AI.
## 1. implemented as a data.frame
eventdat <- data.frame(var = rep("AI", 6), time = 1:6 ,

value = rep(1, 6), method = rep("add", 6))

eventdat

print(system.time(
out <-ccl4model(times, y, Pm, events = list(data = eventdat))

))
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plot(out, mfrow = c(3, 4), type = "l", lwd = 2)

# 2. implemented as a function in a DLL!
print(system.time(
out2 <-ccl4model(times, y, Pm, events = list(func = "eventfun", time = 1:6))
))

plot(out2, mfrow=c(3, 4), type = "l", lwd = 2)

checkDLL Check shared library (DLL/.so) of a compiled model.

Description

Check shared library (DLL/.so) of a compiled model and create a list of symbols.

Usage

checkDLL(func, jacfunc, dllname, initfunc, verbose, nout, outnames, JT = 1)

Arguments

func character: name of the derivative function.

jacfunc an R function, that computes the Jacobian of the system of differential equations
∂ẏi/∂yj , or a string giving the name of a function or subroutine in ‘dllname’
that computes the Jacobian.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc.

initfunc the name of the initialisation function (which initialises values of parameters),
as provided in ‘dllname’. See package vignette "compiledCode".

verbose reserved for future extensions.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

JT integer specifying the type of the Jacobian. The default value of 1 must be set
to 2 for solver lsodes if ‘func‘ is specified in a DLL or inline compiled and if a
‘jacfunc‘ is provided.
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Details

The function checkDLL is normally called internally by the solver functions. It can be used to avoid
overhead, when a small compiled model with a low number of integration steps is repeatedly called.
The feature is currently only available for the lsoda solver.

Value

List of class deSolve.symbols with:

ModelInit pointer to the init function of the DLL (class "externalptr").

Func pointer to the derivative function in the DLL (class "externalptr").

JacFunc pointer to the Jacobi function in the DLL (class "externalptr").

Nglobal number of output variables calculated in the compiled function.

Nmtot list of names of derivatives and output variables.

See Also

lsoda

Examples

## Not run:
symbols <- checkDLL(func = "derivs", jacfunc = NULL, dllname = "lorenzc",

initfunc = "initmod", verbose = TRUE, nout = 0,
outnames = NULL, JT = 1)

## End(Not run)

cleanEventTimes Find Nearest Event for Each Time Step and Clean Time Steps to Avoid
Doubles

Description

These functions can be used for checking time steps and events used by ode solver functions. They
are normally called internally within the solvers.

Usage

nearestEvent(times, eventtimes)
cleanEventTimes(times, eventtimes, eps = .Machine$double.eps * 10)
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Arguments

times the vector of output times,

eventtimes a vector with the event times,

eps relative tolerance value below which two numbers are assumed to be numeri-
cally equal.

Details

In floating point arithmetics, problems can occur if values have to be compared for ’equality’ but
are only close to each other and not exactly the same.

The utility functions can be used to add all eventtimes to the output times vector, but without
including times that are very close to an event.

This means that all values of eventtimes are contained but only the subset of times that have no
close neighbors in eventtimes.

These checks are normally performed internally by the integration solvers.

Value

nearestEvent returns a vector with the closest events for each time step and

cleanEventTimes returns a vector with the output times without all those that are ’very close’ to
an event.

Author(s)

Thomas Petzoldt

See Also

events

Examples

events <- sort(c(0, 2, 3, 4 + 1e-10, 5, 7 - 1e-10,
7 + 6e-15, 7.5, 9, 24.9999, 25, 80, 1001, 1e300))

times <- sort(c(0, 1:7, 4.5, 6.75, 7.5, 9.2, 9.0001, 25, 879, 1e3, 1e300+5))

nearest <- nearestEvent(times, events)
data.frame(times=times, nearest = nearest)

## typical usage: include all events in times after removing values that
## are numerically close together, events have priority
times
unique_times <- cleanEventTimes(times, events)
newtimes <- sort(c(unique_times, events))
newtimes
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daspk Solver for Differential Algebraic Equations (DAE)

Description

Solves either:

• a system of ordinary differential equations (ODE) of the form

y′ = f(t, y, ...)

or

• a system of differential algebraic equations (DAE) of the form

F (t, y, y′) = 0

or

• a system of linearly implicit DAES in the form

My′ = f(t, y)

using a combination of backward differentiation formula (BDF) and a direct linear system solution
method (dense or banded).

The R function daspk provides an interface to the FORTRAN DAE solver of the same name, written
by Linda R. Petzold, Peter N. Brown, Alan C. Hindmarsh and Clement W. Ulrich.

The system of DE’s is written as an R function (which may, of course, use .C, .Fortran, .Call,
etc., to call foreign code) or be defined in compiled code that has been dynamically loaded.

Usage

daspk(y, times, func = NULL, parms, nind = c(length(y), 0, 0),
dy = NULL, res = NULL, nalg = 0,
rtol = 1e-6, atol = 1e-6, jacfunc = NULL,
jacres = NULL, jactype = "fullint", mass = NULL, estini = NULL,
verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
hini = 0, ynames = TRUE, maxord = 5, bandup = NULL,
banddown = NULL, maxsteps = 5000, dllname = NULL,
initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL,
forcings=NULL, initforc = NULL, fcontrol=NULL,
events = NULL, lags = NULL, ...)

Arguments

y the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.



16 daspk

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func to be used if the model is an ODE, or a DAE written in linearly implicit form
(M y’ = f(t, y)). func should be an R-function that computes the values of the
derivatives in the ODE system (the model definition) at time t.
func must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func, unless ynames is FALSE. parms is a vector or list
of parameters. ... (optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the specification of the state variables y.
Note that it is not possible to define func as a compiled function in a dynamically
loaded shared library. Use res instead.

parms vector or list of parameters used in func, jacfunc, or res

nind if a DAE system: a three-valued vector with the number of variables of index 1,
2, 3 respectively. The equations must be defined such that the index 1 variables
precede the index 2 variables which in turn precede the index 3 variables. The
sum of the variables of different index should equal N, the total number of vari-
ables. Note that this has been added for consistency with radau. If used, then
the variables are weighed differently than in the original daspk code, i.e. index
2 variables are scaled with 1/h, index 3 variables are scaled with 1/h^2. In some
cases this allows daspk to solve index 2 or index 3 problems.

dy the initial derivatives of the state variables of the DE system. Ignored if an ODE.

res if a DAE system: either an R-function that computes the residual function
F (t, y, y′) of the DAE system (the model defininition) at time t, or a character
string giving the name of a compiled function in a dynamically loaded shared
library.
If res is a user-supplied R-function, it must be defined as: res <- function(t,
y, dy, parms, ...).
Here t is the current time point in the integration, y is the current estimate of the
variables in the ODE system, dy are the corresponding derivatives. If the initial
y or dy have a names attribute, the names will be available inside res, unless
ynames is FALSE. parms is a vector of parameters.
The return value of res should be a list, whose first element is a vector con-
taining the residuals of the DAE system, i.e. δ = F (t, y, y′), and whose next
elements contain output variables that are required at each point in times.
If res is a string, then dllname must give the name of the shared library (without
extension) which must be loaded before daspk() is called (see package vignette
"compiledCode" for more information).

nalg if a DAE system: the number of algebraic equations (equations not involving
derivatives). Algebraic equations should always be the last, i.e. preceeded by
the differential equations.
Only used if estini = 1.
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rtol relative error tolerance, either a scalar or a vector, one value for each y,
atol absolute error tolerance, either a scalar or a vector, one value for each y.
jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-

tial equations. Only used in case the system is an ODE (y′ = f(t, y)), specified
by func. The R calling sequence for jacfunc is identical to that of func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jacres jacres and not jacfunc should be used if the system is specified by the residual
function F (t, y, y′), i.e. jacres is used in conjunction with res.
If jacres is an R-function, the calling sequence for jacres is identical to that of
res, but with extra parameter cj. Thus it should be called as: jacres = func(t,
y, dy, parms, cj, ...). Here t is the current time point in the integration, y is
the current estimate of the variables in the ODE system, y′ are the corresponding
derivatives and cj is a scalar, which is normally proportional to the inverse of the
stepsize. If the initial y or dy have a names attribute, the names will be available
inside jacres, unless ynames is FALSE. parms is a vector of parameters (which
may have a names attribute).
If the Jacobian is a full matrix, jacres should return the matrix dG/dy + cj ·
dG/dy′, where the ith row is the sum of the derivatives of Gi with respect to yj
and the scaled derivatives of Gi with respect to y′j .
If the Jacobian is banded, jacres should return only the nonzero bands of the
Jacobian, rotated rowwise. See details for the calling sequence when jacres is
a string.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by the user.

mass the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as M dy/dt = f(t, y). The mass-matrix M should be of dimension n∗n where
n is the number of y-values.
If mass=NULL then the model is either an ODE or a DAE, specified with res

estini only if a DAE system, and if initial values of y and dy are not consistent (i.e.
F (t, y, dy) ̸= 0), setting estini = 1 or 2, will solve for them. If estini = 1:
dy and the algebraic variables are estimated from y; in this case, the number of
algebraic equations must be given (nalg). If estini = 2: y will be estimated
from dy.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the
integration - see details.

tcrit the FORTRAN routine daspk overshoots its targets (times points in the vector
times), and interpolates values for the desired time points. If there is a time
beyond which integration should not proceed (perhaps because of a singularity),
that should be provided in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!
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hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver

ynames logical, if FALSE, names of state variables are not passed to function func; this
may speed up the simulation especially for large models.

maxord the maximum order to be allowed. Reduce maxord to save storage space ( <= 5)
bandup number of non-zero bands above the diagonal, in case the Jacobian is banded

(and jactype one of "bandint", "bandusr")
banddown number of non-zero bands below the diagonal, in case the Jacobian is banded

(and jactype one of "bandint", "bandusr")
maxsteps maximal number of steps per output interval taken by the solver; will be recal-

culated to be at least 500 and a multiple of 500; if verbose is TRUE the solver
will give a warning if more than 500 steps are taken, but it will continue till
maxsteps steps. (Note this warning was always given in deSolve versions <
1.10.3).

dllname a string giving the name of the shared library (without extension) that contains
all the compiled function or subroutine definitions referred to in res and jacres.
See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by res and jacres.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by res and jacres.

nout only used if ‘dllname’ is specified and the model is defined in compiled code:
the number of output variables calculated in the compiled function res, present
in the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function res, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".
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fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func, jacfunc, res and jacres, allowing this
to be a generic function.

Details

The daspk solver uses the backward differentiation formulas of orders one through five (specified
with maxord) to solve either:

• an ODE system of the form
y′ = f(t, y, ...)

or

• a DAE system of the form
y′ = Mf(t, y, ...)

or

• a DAE system of the form
F (t, y, y′) = 0

. The index of the DAE should be preferable <= 1.

ODEs are specified using argument func, DAEs are specified using argument res.

If a DAE system, Values for y and y’ (argument dy) at the initial time must be given as input.
Ideally, these values should be consistent, that is, if t, y, y’ are the given initial values, they should
satisfy F(t,y,y’) = 0.
However, if consistent values are not known, in many cases daspk can solve for them: when estini
= 1, y’ and algebraic variables (their number specified with nalg) will be estimated, when estini
= 2, y will be estimated.

The form of the Jacobian can be specified by jactype. This is one of:

jactype = "fullint": a full Jacobian, calculated internally by daspk, the default,

jactype = "fullusr": a full Jacobian, specified by user function jacfunc or jacres,

jactype = "bandusr": a banded Jacobian, specified by user function jacfunc or jacres; the size
of the bands specified by bandup and banddown,

jactype = "bandint": a banded Jacobian, calculated by daspk; the size of the bands specified by
bandup and banddown.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc or jacres.

The input parameters rtol, and atol determine the error control performed by the solver. If the
request for precision exceeds the capabilities of the machine, daspk will return an error code. See
lsoda for details.
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When the index of the variables is specified (argument nind), and higher index variables are present,
then the equations are scaled such that equations corresponding to index 2 variables are multiplied
with 1/h, for index 3 they are multiplied with 1/h^2, where h is the time step. This is not in the
standard DASPK code, but has been added for consistency with solver radau. Because of this,
daspk can solve certain index 2 or index 3 problems.

res and jacres may be defined in compiled C or FORTRAN code, as well as in an R-function.
See package vignette "compiledCode" for details. Examples in FORTRAN are in the ‘dynload’
subdirectory of the deSolve package directory.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func or res, plus an additional column (the first) for the time value. There will be one row for each
element in times unless the FORTRAN routine ‘daspk’ returns with an unrecoverable error. If y
has a names attribute, it will be used to label the columns of the output value.

Note

In this version, the Krylov method is not (yet) supported.

From deSolve version 1.10.4 and above, the following changes were made

1. the argument list to daspk now also includes nind, the index of each variable. This is used to
scale the variables, such that daspk in R can also solve certain index 2 or index 3 problems,
which the original Fortran version may not be able to solve.

2. the default of atol was changed from 1e-8 to 1e-6, to be consistent with the other solvers.

3. the multiple warnings from daspk when the number of steps exceed 500 were toggled off
unless verbose is TRUE

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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See Also

• radau for integrating DAEs up to index 3,

• rk,

• rk4 and euler for Runge-Kutta integrators.

• lsoda, lsode, lsodes, lsodar, vode, for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Coupled chemical reactions including an equilibrium
## modeled as (1) an ODE and (2) as a DAE
##
## The model describes three chemical species A,B,D:
## subjected to equilibrium reaction D <- > A + B
## D is produced at a constant rate, prod
## B is consumed at 1s-t order rate, r
## Chemical problem formulation 1: ODE
## =======================================================================

## Dissociation constant
K <- 1

## parameters

https://doi.org/10.1016/0096-3003%2889%2990110-0
https://doi.org/10.1137/0915088
https://netlib.org
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pars <- c(
ka = 1e6, # forward rate
r = 1,
prod = 0.1)

Fun_ODE <- function (t, y, pars)
{

with (as.list(c(y, pars)), {
ra <- ka*D # forward rate
rb <- ka/K *A*B # backward rate

## rates of changes
dD <- -ra + rb + prod
dA <- ra - rb
dB <- ra - rb - r*B
return(list(dy = c(dA, dB, dD),

CONC = A+B+D))
})

}

## =======================================================================
## Chemical problem formulation 2: DAE
## 1. get rid of the fast reactions ra and rb by taking
## linear combinations : dD+dA = prod (res1) and
## dB-dA = -r*B (res2)
## 2. In addition, the equilibrium condition (eq) reads:
## as ra = rb : ka*D = ka/K*A*B = > K*D = A*B
## =======================================================================

Res_DAE <- function (t, y, yprime, pars)
{

with (as.list(c(y, yprime, pars)), {

## residuals of lumped rates of changes
res1 <- -dD - dA + prod
res2 <- -dB + dA - r*B

## and the equilibrium equation
eq <- K*D - A*B

return(list(c(res1, res2, eq),
CONC = A+B+D))

})
}

## =======================================================================
## Chemical problem formulation 3: Mass * Func
## Based on the DAE formulation
## =======================================================================

Mass_FUN <- function (t, y, pars) {
with (as.list(c(y, pars)), {
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## as above, but without the
f1 <- prod
f2 <- - r*B

## and the equilibrium equation
f3 <- K*D - A*B

return(list(c(f1, f2, f3),
CONC = A+B+D))

})
}
Mass <- matrix(nrow = 3, ncol = 3, byrow = TRUE,

data=c(1, 0, 1, # dA + 0 + dB
-1, 1, 0, # -dA + dB +0
0, 0, 0)) # algebraic

times <- seq(0, 100, by = 2)

## Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2*3/K)

## ODE model solved with daspk
ODE <- daspk(y = y, times = times, func = Fun_ODE,

parms = pars, atol = 1e-10, rtol = 1e-10)

## Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

## DAE model solved with daspk
DAE <- daspk(y = y, dy = dy, times = times,

res = Res_DAE, parms = pars, atol = 1e-10, rtol = 1e-10)

MASS<- daspk(y=y, times=times, func = Mass_FUN, parms = pars, mass = Mass)

## ================
## plotting output
## ================

plot(ODE, DAE, xlab = "time", ylab = "conc", type = c("l", "p"),
pch = c(NA, 1))

legend("bottomright", lty = c(1, NA), pch = c(NA, 1),
col = c("black", "red"), legend = c("ODE", "DAE"))

# difference between both implementations:
max(abs(ODE-DAE))

## =======================================================================
## same DAE model, now with the Jacobian
## =======================================================================
jacres_DAE <- function (t, y, yprime, pars, cj)
{
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with (as.list(c(y, yprime, pars)), {
## res1 = -dD - dA + prod

PD[1,1] <- -1*cj # d(res1)/d(A)-cj*d(res1)/d(dA)
PD[1,2] <- 0 # d(res1)/d(B)-cj*d(res1)/d(dB)
PD[1,3] <- -1*cj # d(res1)/d(D)-cj*d(res1)/d(dD)

## res2 = -dB + dA - r*B
PD[2,1] <- 1*cj
PD[2,2] <- -r -1*cj
PD[2,3] <- 0

## eq = K*D - A*B
PD[3,1] <- -B
PD[3,2] <- -A
PD[3,3] <- K
return(PD)

})
}

PD <- matrix(ncol = 3, nrow = 3, 0)

DAE2 <- daspk(y = y, dy = dy, times = times,
res = Res_DAE, jacres = jacres_DAE, jactype = "fullusr",
parms = pars, atol = 1e-10, rtol = 1e-10)

max(abs(DAE-DAE2))

## See \dynload subdirectory for a FORTRAN implementation of this model

## =======================================================================
## The chemical model as a DLL, with production a forcing function
## =======================================================================
times <- seq(0, 100, by = 2)

pars <- c(K = 1, ka = 1e6, r = 1)

## Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = as.double(2*3/pars["K"]))

## Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

# production increases with time
prod <- matrix(ncol = 2,

data = c(seq(0, 100, by = 10), 0.1*(1+runif(11)*1)))

ODE_dll <- daspk(y = y, dy = dy, times = times, res = "chemres",
dllname = "deSolve", initfunc = "initparms",
initforc = "initforcs", parms = pars, forcings = prod,
atol = 1e-10, rtol = 1e-10, nout = 2,
outnames = c("CONC","Prod"))

plot(ODE_dll, which = c("Prod", "D"), xlab = "time",
ylab = c("/day", "conc"), main = c("production rate","D"))
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dede General Solver for Delay Differential Equations.

Description

Function dede is a general solver for delay differential equations, i.e. equations where the derivative
depends on past values of the state variables or their derivatives.

Usage

dede(y, times, func=NULL, parms,
method = c( "lsoda", "lsode", "lsodes", "lsodar", "vode",

"daspk", "bdf", "adams", "impAdams", "radau"), control = NULL, ...)

Arguments

y the initial (state) values for the DE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

func an R-function that computes the values of the derivatives in the ODE system
(the model definition) at time t.
func must be defined as: func <- function(t, y, parms, ...). t is the cur-
rent time point in the integration, y is the current estimate of the variables in
the DE system. If the initial values y has a names attribute, the names will be
available inside func. parms is a vector or list of parameters; ... (optional) are
any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times.The derivatives must be
specified in the same order as the state variables y.
If method "daspk" is used, then func can be NULL, in which case res should be
used.

parms parameters passed to func.

method the integrator to use, either a string ("lsoda", "lsode", "lsodes", "lsodar",
"vode", "daspk", "bdf", "adams", "impAdams", "radau") or a function that
performs the integration. The default integrator used is lsoda.

control a list that can supply (1) the size of the history array, as control$mxhist; the
default is 1e4 and (2) how to interpolate, as control$interpol, where 1 is
hermitian interpolation, 2 is variable order interpolation, using the Nordsieck
history array. Only for the two Adams methods is the second option recom-
mended.

... additional arguments passed to the integrator.
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Details

Functions lagvalue and lagderiv are to be used with dede as they provide access to past (lagged)
values of state variables and derivatives. The number of past values that are to be stored in a history
matrix, can be specified in control$mxhist. The default value (if unspecified) is 1e4.

Cubic Hermite interpolation is used by default to obtain an accurate interpolant at the requested
lagged time. For methods adams, impAdams, a more accurate interpolation method can be triggered
by setting control$interpol = 2.

dede does not deal explicitly with propagated derivative discontinuities, but relies on the integrator
to control the stepsize in the region of a discontinuity.

dede does not include methods to deal with delays that are smaller than the stepsize, although in
some cases it may be possible to solve such models.

For these reasons, it can only solve rather simple delay differential equations.

When used together with integrator lsodar, or lsode, dde can simultaneously locate a root, and
trigger an event. See last example.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

lagvalue, lagderiv,for how to specify lagged variables and derivatives.

Examples

## =============================================================================
## A simple delay differential equation
## dy(t) = -y(t-1) ; y(t<0)=1
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {

if (t < 1)
dy <- -1

else
dy <- - lagvalue(t - 1)

list(c(dy))
}
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##-----------------------------
## initial values and times
##-----------------------------
yinit <- 1
times <- seq(0, 30, 0.1)

##-----------------------------
## solve the model
##-----------------------------
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)

##-----------------------------
## display, plot results
##-----------------------------
plot(yout, type = "l", lwd = 2, main = "dy/dt = -y(t-1)")

## =============================================================================
## The infectuous disease model of Hairer; two lags.
## example 4 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t,y,parms) {

if (t < 1)
lag1 <- 0.1

else
lag1 <- lagvalue(t - 1,2)

if (t < 10)
lag10 <- 0.1

else
lag10 <- lagvalue(t - 10,2)

dy1 <- -y[1] * lag1 + lag10
dy2 <- y[1] * lag1 - y[2]
dy3 <- y[2] - lag10
list(c(dy1, dy2, dy3))

}

##-----------------------------
## initial values and times
##-----------------------------
yinit <- c(5, 0.1, 1)
times <- seq(0, 40, by = 0.1)

##-----------------------------
## solve the model
##-----------------------------
system.time(

yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)
)
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##-----------------------------
## display, plot results
##-----------------------------
matplot(yout[,1], yout[,-1], type = "l", lwd = 2, lty = 1,

main = "Infectuous disease - Hairer")

## =============================================================================
## time lags + EVENTS triggered by a root function
## The two-wheeled suitcase model
## example 8 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {

if (t < tau)
lag <- 0

else
lag <- lagvalue(t - tau)

dy1 <- y[2]
dy2 <- -sign(y[1]) * gam * cos(y[1]) +

sin(y[1]) - bet * lag[1] + A * sin(omega * t + mu)
list(c(dy1, dy2))

}

## root and event function
root <- function(t,y,parms) ifelse(t>0, return(y), return(1))
event <- function(t,y,parms) return(c(y[1], y[2]*0.931))

gam = 0.248; bet = 1; tau = 0.1; A = 0.75
omega = 1.37; mu = asin(gam/A)

##-----------------------------
## initial values and times
##-----------------------------
yinit <- c(y = 0, dy = 0)
times <- seq(0, 12, len = 1000)

##-----------------------------
## solve the model
##-----------------------------
## Note: use a solver that supports both root finding and events,
## e.g. lsodar, lsode, lsoda, adams, bdf
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL,

method = "lsodar", rootfun = root, events = list(func = event, root = TRUE))

##-----------------------------
## display, plot results
##-----------------------------
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plot(yout, which = 1, type = "l", lwd = 2, main = "suitcase model", mfrow = c(1,2))
plot(yout[,2], yout[,3], xlab = "y", ylab = "dy", type = "l", lwd = 2)

diagnostics Print Diagnostic Characteristics of Solvers

Description

Prints several diagnostics of the simulation to the screen, e.g. number of steps taken, the last step
size, ...

Usage

diagnostics(obj, ...)
## Default S3 method:
diagnostics(obj, ...)

Arguments

obj is an output data structure produced by one of the solver routines.

... optional arguments allowing to extend diagnostics as a generic function.

Details

Detailed information obout the success of a simulation is printed, if a diagnostics function exists
for a specific solver routine. A warning is printed, if no class-specific diagnostics exists.

Please consult the class-specific help page for details.

See Also

diagnostics.deSolve for diagnostics of differential equaton solvers.

diagnostics.deSolve Print Diagnostic Characteristics of ODE and DAE Solvers

Description

Prints several diagnostics of the simulation to the screen, e.g. number of steps taken, the last step
size, ...

Usage

## S3 method for class 'deSolve'
diagnostics(obj, Full = FALSE, ...)
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Arguments

obj is the output matrix as produced by one of the integration routines.

Full when TRUE then all messages will be printed, including the ones that are not
relevant for the solver. If FALSE, then only the relevant messages will be printed.

... optional arguments allowing to extend diagnostics as a generic function.

Details

When the integration output is saved as a data.frame, then the required attributes are lost and
method diagnostics will not work anymore.

Value

The integer and real vector with diagnostic values; for function lsodar also the root information.

See tables 2 and 3 in vignette("deSolve") for what these vectors contain.

Note: the number of function evaluations are *without* the extra calls performed to generate the
ordinary output variables (if present).

Examples

## The famous Lorenz equations: chaos in the earth's atmosphere
## Lorenz 1963. J. Atmos. Sci. 20, 130-141.

chaos <- function(t, state, parameters) {
with(as.list(c(state)), {

dx <- -8/3 * x + y * z
dy <- -10 * (y - z)
dz <- -x * y + 28 * y - z

list(c(dx, dy, dz))
})

}

state <- c(x = 1, y = 1, z = 1)
times <- seq(0, 50, 0.01)
out <- vode(state, times, chaos, 0)
pairs(out, pch = ".")
diagnostics(out)

DLLfunc Evaluates a Derivative Function Represented in a DLL

Description

Calls a function, defined in a compiled language as a DLL
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Usage

DLLfunc(func, times, y, parms, dllname,
initfunc = dllname, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings = NULL, initforc = NULL,
fcontrol = NULL)

Arguments

func the name of the function in the dynamically loaded shared library,
times first value = the time at which the function needs to be evaluated,
y the values of the dependent variables for which the function needs to be evalu-

ated,
parms the parameters that are passed to the initialiser function,
dllname a string giving the name of the shared library (without extension) that contains

the compiled function or subroutine definitions referred to in func,
initfunc if not NULL, the name of the initialisation function (which initialises values of

parameters), as provided in ‘dllname’. See details.
rpar a vector with double precision values passed to the DLL-function func and

jacfunc present in the DLL, via argument rpar,
ipar a vector with integer values passed to the dll-function func and jacfunc present

in the DLL, via function argument ipar,
nout the number of output variables.
outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables

calculated in the compiled function func, present in the shared library.
forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,

each present as a two-columned matrix, with (time, value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See package vignette
"compiledCode".

Details

This function is meant to help developing FORTRAN or C models that are to be used to solve
ordinary differential equations (ODE) in packages deSolve and/or rootSolve.

Value

a list containing:

dy the rate of change estimated by the function,
var the ordinary output variables of the function.
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Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

ode for a general interface to most of the ODE solvers

Examples

## ==========================================================================
## ex. 1
## ccl4model
## ==========================================================================
## Parameter values and initial conditions
## see example(ccl4model) for a more comprehensive implementation

Parms <- c(0.182, 4.0, 4.0, 0.08, 0.04, 0.74, 0.05, 0.15, 0.32,
16.17, 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671,
0.4027255, 1000, 0.02, 1.0, 3.8)

yini <- c(AI = 21, AAM = 0, AT = 0, AF = 0, AL = 0, CLT = 0, AM = 0)

## the rate of change
DLLfunc(y = yini, dllname = "deSolve", func = "derivsccl4",

initfunc = "initccl4", parms = Parms, times = 1,
nout = 3, outnames = c("DOSE", "MASS", "CP") )

## ==========================================================================
## ex. 2
## SCOC model
## ==========================================================================

## Forcing function "data"
Flux <- matrix(ncol = 2, byrow = TRUE, data = c(1, 0.654, 2, 0.167))
parms <- c(k = 0.01)
Yini <- 60

DLLfunc(y=Yini, times=1, func = "scocder",
parms = parms, dllname = "deSolve",
initforc = "scocforc", forcings = Flux,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation","Depo"))

## correct value = dy = flux - k * y = 0.654 - 0.01 * 60

DLLfunc(y = Yini, times = 2, func = "scocder",
parms = parms, dllname = "deSolve",
initforc = "scocforc", forcings = Flux,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation", "Depo"))
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DLLres Evaluates a Residual Derivative Function Represented in a DLL

Description

Calls a residual function, F (t, y, y′) of a DAE system (differential algebraic equations) defined in a
compiled language as a DLL.

To be used for testing the implementation of DAE problems in compiled code

Usage

DLLres(res, times, y, dy, parms, dllname,
initfunc = dllname, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings = NULL, initforc = NULL,
fcontrol = NULL)

Arguments

res the name of the function in the dynamically loaded shared library,

times first value = the time at which the function needs to be evaluated,

y the values of the dependent variables for which the function needs to be evalu-
ated,

dy the derivative of the values of the dependent variables for which the function
needs to be evaluated,

parms the parameters that are passed to the initialiser function,

dllname a string giving the name of the shared library (without extension) that contains
the compiled function or subroutine definitions referred to in func,

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See details,

rpar a vector with double precision values passed to the DLL-function func and
jacfunc present in the DLL, via argument rpar,

ipar a vector with integer values passed to the DLL-function func and jacfunc
present in the DLL, via function argument ipar,

nout the number of output variables.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
package vignette "compiledCode".
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fcontrol A list of control parameters for the forcing functions. See package vignette
"compiledCode".

Details

This function is meant to help developing FORTRAN or C models that are to be used to solve
differential algebraic equations (DAE) in package deSolve.

Value

a list containing:

res the residual of derivative estimated by the function

var the ordinary output variables of the function

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

daspk to solve DAE problems

Examples

## =========================================================================
## Residuals from the daspk chemical model, production a forcing function
## =========================================================================
## Parameter values and initial conditions
## see example(daspk) for a more comprehensive implementation

pars <- c(K = 1, ka = 1e6, r = 1)

## Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2 * 3/pars["K"])

## Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

## production increases with time
prod <- matrix(ncol = 2,

data = c(seq(0, 100, by = 10), seq(0.1, 0.5, len = 11)))

DLLres(y = y, dy = dy, times = 5, res = "chemres",
dllname = "deSolve", initfunc = "initparms",
initforc = "initforcs", parms = pars, forcings = prod,
nout = 2, outnames = c("CONC", "Prod"))
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events Implementing Events and Roots in Differential Equation Models.

Description

An event occurs when the value of a state variable is suddenly changed, e.g. because a value is
added, subtracted, or multiplied. The integration routines cannot deal easily with such state variable
changes. Typically these events occur only at specific times. In deSolve, events can be imposed by
means of an input data.frame, that specifies at which time and how a certain state variable is altered,
or via an event function.

Roots occur when a root function becomes zero. By default when a root is found, the simulation
either stops (no event), or triggers an event.

Details

The events are specified by means of argument events passed to the integration routines.

events should be a list that contains one of the following:

func: an R-function or the name of a function in compiled code that specifies the event,

data: a data.frame that specifies the state variables, times, values and types of the events. Note
that the event times must also be part of the integration output times, else the event will not
take place. As from version 1.9.1, this is checked by the solver, and a warning message is
produced if event times are missing in times; see also cleanEventTimes for utility functions
to check and solve such issues.

time: when events are specified by an event function: the times at which the events take place.
Note that these event times must also be part of the integration output times exactly, else the
event would not take place. As from version 1.9.1 this is checked by the solver, and an error
message produced if event times are missing in times; see also cleanEventTimes for utility
functions to check and solve such issues.

root: when events are specified by a function and triggered by a root, this logical should be set
equal to TRUE

terminalroot: when events are triggered by a root, the default is that the simulation continues
after the event is executed. In terminalroot, we can specify which roots should terminate
the simulation.

maxroot: when root = TRUE, the maximal number of times at with a root is found and that are
kept; defaults to 100. If the number of roots > maxroot, then only the first maxroot will be
outputted.

ties: if events, as specified by a data.frame are "ordered", set to "ordered", the default is "no-
tordered". This will save some computational time.

In case the events are specified by means of an R function (argument events$func), it must be
defined as: function(t, y, parms, ...). t is the current time point in the integration, y is the
current estimate of the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside events$func. parms is a vector or list of parameters; ... (optional)
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are any other arguments passed to the function via the call to the integration method. The event
function should return the y-values (some of which modified), as a vector.

If events$func is a string, this indicates that the events are specified by a function in compiled
code. This function has as arguments, the number of state variables, the time, and the state variable
vector. See package vignette "compiledCode" for more details.

In case events are specified by an R-function, this requires either: input of the time of the events,
a vector as defined in events$time OR the specification of a root function. In the latter case, the
model must be solved with an integration routine with root-finding capability

The root function itself should be specified with argument rootfunc. In this case, the integrator is
informed that the simulation it to be continued after a root is found by setting events$root equal
to TRUE.

If the events are specified by a data frame (argument events$data), this should contain the fol-
lowing columns (and in that order):

var: the state variable name or number that is affected by the event

time: the time at which the event is to take place; the solvers will check if the time is embraced by
the simulation time

value: the value, magnitude of the event

method: which event is to take place; should be one of ("replace", "add", "multiply"); also allowed
is to specify the number (1 = replace, 2 = add, 3 = multiply)

For instance, the following line

"v1" 10 2 "add"

will cause the value 2 to be added to a state variable, called "v1" at time = 10.

From deSolve version 1.9.1 the following routines have root-finding capability: lsoda, lsode,
lsodes, and radau. For the first 3 integration methods, the root finding algorithm is based on the
algorithm in solver LSODAR, and is implemented in FORTRAN. For radau, the root solving al-
gorithm is written in C-code, and it works slightly different. Thus, some problems involving roots
may be more efficiently solved with either lsoda, lsode, or lsodes, while other problems are more
efficiently solved with radau.

If a root function is defined, but not an event function, then by default the solver will stop at a root.
If this is not desirable, e.g. because we want to record the position of many roots, then a dummy
"event" function can be defined which returns the values of the state variables - unaltered.

If roots and events are combined, and roots are found, then the output will have attribute troot
which will contain the times at which a root was found (and the event trigerred). There will be at
most events$maxroot such values. The default is 100.

See two last examples; also see example of ccl4model.

Author(s)

Karline Soetaert

See Also

forcings, for how to implement forcing functions.

lsodar, for more examples of roots
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Examples

## =============================================================================
## 1. EVENTS in a data.frame
## =============================================================================

## derivative function: derivatives set to 0
derivs <- function(t, var, parms) {

list(dvar = rep(0, 2))
}

yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)

eventdat <- data.frame(var = c("v1", "v2", "v2", "v1"),
time = c(1, 1, 5, 9) ,
value = c(1, 2, 3, 4),
method = c("add", "mult", "rep", "add"))

eventdat

out <- vode(func = derivs, y = yini, times = times, parms = NULL,
events = list(data = eventdat))

plot(out)

##
eventdat <- data.frame(var = c(rep("v1", 10), rep("v2", 10)),

time = c(1:10, 1:10),
value = runif(20),
method = rep("add", 20))

eventdat

out <- ode(func = derivs, y = yini, times = times, parms = NULL,
events = list(data = eventdat))

plot(out)

## =============================================================================
## 2. EVENTS in a function
## =============================================================================

## derivative function: rate of change v1 = 0, v2 reduced at first-order rate
derivs <- function(t, var, parms) {

list(c(0, -0.5 * var[2]))
}

# events: add 1 to v1, multiply v2 with random number
eventfun <- function(t, y, parms){

with (as.list(y),{
v1 <- v1 + 1
v2 <- 5 * runif(1)
return(c(v1, v2))

})
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}

yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)

out <- ode(func = derivs, y = yini, times = times, parms = NULL,
events = list(func = eventfun, time = c(1:9, 2.2, 2.4)) )

plot(out, type = "l")

## =============================================================================
## 3. EVENTS triggered by a root function
## =============================================================================

## derivative: simple first-order decay
derivs <- function(t, y, pars) {

return(list(-0.1 * y))
}

## event triggered if state variable = 0.5
rootfun <- function (t, y, pars) {

return(y - 0.5)
}

## sets state variable = 1
eventfun <- function(t, y, pars) {

return(y = 1)
}

yini <- 2
times <- seq(0, 100, 0.1)

## uses ode to solve; root = TRUE specifies that the event is
## triggered by a root.
out <- ode(times = times, y = yini, func = derivs, parms = NULL,

events = list(func = eventfun, root = TRUE),
rootfun = rootfun)

plot(out, type = "l")

## time of the root:
troot <- attributes(out)$troot
points(troot, rep(0.5, length(troot)))

## =============================================================================
## 4. More ROOT examples: Rotation function
## =============================================================================
Rotate <- function(t, x, p )

list(c( x[2],
-x[1] ))

## Root = when second state variable = 0
rootfun <- function(t, x, p) x[2]
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## "event" returns state variables unchanged
eventfun <- function(t, x, p) x
times <- seq(from = 0, to = 15, by = 0.1)

## 1. No event: stops at first root
out1 <- ode(func = Rotate, y = c(5, 5), parms = 0,

times = times, rootfun = rootfun)
tail(out1)

## 2. Continues till end of times and records the roots
out <- ode(func = Rotate, y = c(5, 5), parms = 0,

times = times, rootfun = rootfun,
events = list(func = eventfun, root = TRUE) )

plot(out)
troot <- attributes(out)$troot # time of roots
points(troot,rep(0, length (troot)))

## Multiple roots: either one of the state variables = 0
root2 <- function(t, x, p) x

out2 <- ode(func = Rotate, y = c(5, 5), parms = 0,
times = times, rootfun = root2,
events = list(func = eventfun, root = TRUE) )

plot(out2, which = 2)
troot <- attributes(out2)$troot
indroot <- attributes(out2)$indroot # which root was found
points(troot, rep(0, length (troot)), col = indroot, pch = 18, cex = 2)

## Multiple roots and stop at first time root 1.
out3 <- ode(func = Rotate, y = c(5, 5), parms = 0,

times = times, rootfun = root2,
events = list(func = eventfun, root = TRUE, terminalroot = 1))

## =============================================================================
## 5. Stop at 5th root - only works with radau.
## =============================================================================
Rotate <- function(t, x, p )

list(c( x[2],
-x[1],
0 ))

## Root = when second state variable = 0
root3 <- function(t, x, p) c(x[2], x[3] - 5)
event3 <- function (t, x, p) c(x[1:2], x[3]+1)
times <- seq(0, 15, 0.1)
out3 <- ode(func = Rotate, y = c(x1 = 5, x2 = 5, nroot = 0),

parms = 0, method = "radau",
times = times, rootfun = root3,
events = list(func = event3, root = TRUE, terminalroot = 2))
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plot(out3)
attributes(out3)[c("troot", "nroot", "indroot")]

## =============================================================================
## 6 Event in R-code, model function in compiled code - based on vode example
## =============================================================================

times <- 1:365
Flux <- cbind(times, sin(pi*times/365)^2) # forcing function

# run without events
out <- ode(y = c(C = 1), times, func = "scocder", parms = c(k=0.01),

dllname = "deSolve", initforc = "scocforc", forcings = Flux,
initfunc = "scocpar", nout = 2, outnames = c("Mineralisation", "Depo"))

# Event halves the concentration
EventMin <- function(t, y , p) y/2

out2 <- ode(y = c(C = 1), times, func = "scocder", parms = c(k=0.01),
dllname = "deSolve", initforc = "scocforc", forcings = Flux,
initfunc = "scocpar", nout = 2, outnames = c("Mineralisation", "Depo"),
events = list (func = EventMin, time = c(50.1, 200, 210.5)))

plot(out, out2)

forcings Passing Forcing Functions to Models Written in R or Compiled Code.

Description

A forcing function is an external variable that is essential to the model, but not explicitly mod-
eled. Rather, it is imposed as a time-series. Thus, if a model uses forcing variables, their value at
each time point needs to be estimated by interpolation of a data series.

Details

The forcing functions are imposed as a data series, that contains the values of the forcings at
specified times.

Models may be defined in compiled C or FORTRAN code, as well as in R.

If the model is defined in R code, it is most efficient to:

1. define a function that performs the linear interpolation, using R’s approxfun. It is generally
recommended to use rule = 2, such as to allow extrapolation outside of the time interval, especially
when using the Livermore solvers, as these may exceed the last time point.

2. call this function within the model’s derivative function, to interpolate at the current timestep.

See first example.
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If the models are defined in compiled C or FORTRAN code, it is possible to use deSolves forcing
function update algorithm. This is the compiled-code equivalent of approxfun or approx.

In this case:
1. the forcing function data series is provided by means of argument forcings,

2. initforc is the name of the forcing function initialisation function, as provided in ‘dllname’,
while

3. fcontrol is a list used to finetune how the forcing update should be performed.

The fcontrol argument is a list that can supply any of the following components (conform the
definitions in the approxfun function):

method specifies the interpolation method to be used. Choices are "linear" or "constant",

rule an integer describing how interpolation is to take place outside the interval [min(times),
max(times)]. If rule is 1 then an error will be triggered and the calculation will stop if times
extends the interval of the forcing function data set. If it is 2, the default, the value at the
closest data extreme is used, a warning will be printed if verbose is TRUE,
Note that the default differs from the approx default.

f For method = "constant" a number between 0 and 1 inclusive, indicating a compromise be-
tween left- and right-continuous step functions. If y0 and y1 are the values to the left and right
of the point then the value is y0 * (1 - f) + y1 * f so that f = 0 is right-continuous and f = 1
is left-continuous,

ties Handling of tied times values. Either a function with a single vector argument returning a
single number result or the string "ordered".
Note that the default is "ordered", hence the existence of ties will NOT be investigated; in
the C code this will mean that -if ties exist, the first value will be used; if the dataset is not
ordered, then nonsense will be produced.
Alternative values for ties are mean, min etc

The defaults are:

fcontrol = list(method = "linear", rule = 2, f = 0, ties = "ordered")

Note that only ONE specification is allowed, even if there is more than one forcing function data
set.

More information about models defined in compiled code is in the package vignette ("compiled-
Code").

Note

How to write compiled code is described in package vignette "compiledCode", which should be
referred to for details.

This vignette also contains examples on how to pass forcing functions.

Author(s)

Karline Soetaert,

Thomas Petzoldt,

R. Woodrow Setzer
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See Also

approx or approxfun, the R function,

events for how to implement events.

Examples

## =============================================================================
## FORCING FUNCTION: The sediment oxygen consumption example - R-code:
## =============================================================================

## Forcing function data
Flux <- matrix(ncol=2,byrow=TRUE,data=c(

1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73,0.277, 83,0.186,
93,0.140,103, 0.255, 113, 0.231,123, 0.309,133,1.127,143,1.923,
153,1.091,163,1.001, 173, 1.691,183, 1.404,194,1.226,204,0.767,
214, 0.893,224,0.737, 234,0.772,244, 0.726,254,0.624,264,0.439,
274,0.168,284 ,0.280, 294,0.202,304, 0.193,315,0.286,325,0.599,
335, 1.889,345, 0.996,355,0.681,365,1.135))

parms <- c(k=0.01)

times <- 1:365

## the model
sediment <- function( t, O2, k)

list (c(Depo(t) - k * O2), depo = Depo(t))

# the forcing functions; rule = 2 avoids NaNs in interpolation
Depo <- approxfun(x = Flux[,1], y = Flux[,2], method = "linear", rule = 2)

Out <- ode(times = times, func = sediment, y = c(O2 = 63), parms = parms)

## same forcing functions, now constant interpolation
Depo <- approxfun(x = Flux[,1], y = Flux[,2], method = "constant",

f = 0.5, rule = 2)

Out2 <- ode(times = times, func = sediment, y = c(O2 = 63), parms = parms)

mf <- par(mfrow = c(2, 1))
plot (Out, which = "depo", type = "l", lwd = 2, mfrow = NULL)
lines(Out2[,"time"], Out2[,"depo"], col = "red", lwd = 2)

plot (Out, which = "O2", type = "l", lwd = 2, mfrow = NULL)
lines(Out2[,"time"], Out2[,"O2"], col = "red", lwd = 2)

## =============================================================================
## SCOC is the same model, as implemented in FORTRAN
## =============================================================================

out<- SCOC(times, parms = parms, Flux = Flux)

plot(out[,"time"], out[,"Depo"], type = "l", col = "red")
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lines(out[,"time"], out[,"Mineralisation"], col = "blue")

## Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")

out2 <- SCOC(times, parms = parms, Flux = Flux, fcontrol = fcontrol)

plot(out2[,"time"], out2[,"Depo"], type = "l", col = "red")
lines(out2[,"time"], out2[,"Mineralisation"], col = "blue")

## Not run:
## =============================================================================
## show examples (see respective help pages for details)
## =============================================================================

example(aquaphy)

## show package vignette with tutorial about how to use compiled models
## + source code of the vignette
## + directory with C and FORTRAN sources
vignette("compiledCode")
edit(vignette("compiledCode"))
browseURL(paste(system.file(package = "deSolve"), "/doc", sep = ""))

## End(Not run)

lsoda Solver for Ordinary Differential Equations (ODE), Switching Auto-
matically Between Stiff and Non-stiff Methods

Description

Solving initial value problems for stiff or non-stiff systems of first-order ordinary differential equa-
tions (ODEs).

The R function lsoda provides an interface to the FORTRAN ODE solver of the same name, written
by Linda R. Petzold and Alan C. Hindmarsh.

The system of ODE’s is written as an R function (which may, of course, use .C, .Fortran, .Call,
etc., to call foreign code) or be defined in compiled code that has been dynamically loaded. A vector
of parameters is passed to the ODEs, so the solver may be used as part of a modeling package for
ODEs, or for parameter estimation using any appropriate modeling tool for non-linear models in R
such as optim, nls, nlm or nlme

lsoda differs from the other integrators (except lsodar) in that it switches automatically between
stiff and nonstiff methods. This means that the user does not have to determine whether the problem
is stiff or not, and the solver will automatically choose the appropriate method. It always starts with
the nonstiff method.
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Usage

lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
verbose = FALSE, nroot = 0, tcrit = NULL,
hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
maxsteps = 5000, dllname = NULL, initfunc = dllname,
initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings = NULL, initforc = NULL,
fcontrol = NULL, events = NULL, lags = NULL,...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times times at which explicit estimates for y are desired. The first value in times must
be the initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library, or a list of symbols
returned by checkDLL.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsoda() is called. See package
vignette "compiledCode" for more details.
func can also be a list of symbols returned by checkDLL to avoid overhead from
repeated internal calls to this function. It is an experimental feature for spe-
cial situations, when a small compiled model with a low number of integration
steps is repeatedly called. It is currently only available for the lsoda solver, see
example.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function, that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine in
‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more
about this option).
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In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

rootfunc if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought. When rootfunc is provided, then lsodar will be called.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - see details.

nroot only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

tcrit if not NULL, then lsoda cannot integrate past tcrit. The FORTRAN routine
lsoda overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical, if FALSE: names of state variables are not passed to function func; this
may speed up the simulation especially for large models.

maxordn the maximum order to be allowed in case the method is non-stiff. Should be <=
12. Reduce maxord to save storage space.

maxords the maximum order to be allowed in case the method is stiff. Should be <= 5.
Reduce maxord to save storage space.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.
banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.
maxsteps maximal number of steps per output interval taken by the solver.
dllname a string giving the name of the shared library (without extension) that con-

tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".
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initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code. See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

All the hard work is done by the FORTRAN subroutine lsoda, whose documentation should be
consulted for details (it is included as comments in the source file ‘src/opkdmain.f’). The imple-
mentation is based on the 12 November 2003 version of lsoda, from Netlib.

lsoda switches automatically between stiff and nonstiff methods. This means that the user does not
have to determine whether the problem is stiff or not, and the solver will automatically choose the
appropriate method. It always starts with the nonstiff method.

The form of the Jacobian can be specified by jactype which can take the following values:

"fullint" a full Jacobian, calculated internally by lsoda, the default,
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"fullusr" a full Jacobian, specified by user function jacfunc,

"bandusr" a banded Jacobian, specified by user function jacfunc the size of the bands specified
by bandup and banddown,

"bandint" banded Jacobian, calculated by lsoda; the size of the bands specified by bandup and
banddown.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

The following description of error control is adapted from the documentation of the lsoda source
code (input arguments rtol and atol, above):

The input parameters rtol, and atol determine the error control performed by the solver. The
solver will control the vector e of estimated local errors in y, according to an inequality of the form
max-norm of ( e/ewt ) ≤ 1, where ewt is a vector of positive error weights. The values of rtol and
atol should all be non-negative. The form of ewt is:

rtol× abs(y) + atol

where multiplication of two vectors is element-by-element.

If the request for precision exceeds the capabilities of the machine, the FORTRAN subroutine lsoda
will return an error code; under some circumstances, the R function lsoda will attempt a reasonable
reduction of precision in order to get an answer. It will write a warning if it does so.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘lsoda’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Note

The ‘demo’ directory contains some examples of using gnls to estimate parameters in a dynamic
model.

Author(s)

R. Woodrow Setzer <setzer.woodrow@epa.gov>
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See Also

• rk, rkMethod, rk4 and euler for Runge-Kutta integrators.

• lsode, which can also find a root

• lsodes, lsodar, vode, daspk for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example 1:
## A simple resource limited Lotka-Volterra-Model
##
## Note:
## 1. parameter and state variable names made
## accessible via "with" function
## 2. function sigimp accessible through lexical scoping
## (see also ode and rk examples)
## =======================================================================

SPCmod <- function(t, x, parms) {
with(as.list(c(parms, x)), {

import <- sigimp(t)
dS <- import - b*S*P + g*C #substrate
dP <- c*S*P - d*C*P #producer
dC <- e*P*C - f*C #consumer
res <- c(dS, dP, dC)
list(res)

})
}

## Parameters
parms <- c(b = 0.0, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

## vector of timesteps
times <- seq(0, 100, length = 101)

https://doi.org/10.1137/0904010
https://netlib.org
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## external signal with rectangle impulse
signal <- as.data.frame(list(times = times,

import = rep(0,length(times))))

signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2

sigimp <- approxfun(signal$times, signal$import, rule = 2)

## Start values for steady state
y <- xstart <- c(S = 1, P = 1, C = 1)

## Solving
out <- lsoda(xstart, times, SPCmod, parms)

## Plotting
mf <- par("mfrow")
plot(out, main = c("substrate", "producer", "consumer"))
plot(out[,"P"], out[,"C"], type = "l", xlab = "producer", ylab = "consumer")
par(mfrow = mf)

## =======================================================================
## Example 2:
## from lsoda source code
## =======================================================================

## names makes this easier to read, but may slow down execution.
parms <- c(k1 = 0.04, k2 = 1e4, k3 = 3e7)
my.atol <- c(1e-6, 1e-10, 1e-6)
times <- c(0,4 * 10^(-1:10))

lsexamp <- function(t, y, p) {
yd1 <- -p["k1"] * y[1] + p["k2"] * y[2]*y[3]
yd3 <- p["k3"] * y[2]^2
list(c(yd1, -yd1-yd3, yd3), c(massbalance = sum(y)))

}

exampjac <- function(t, y, p) {
matrix(c(-p["k1"], p["k1"], 0,

p["k2"]*y[3],
- p["k2"]*y[3] - 2*p["k3"]*y[2],

2*p["k3"]*y[2],

p["k2"]*y[2], -p["k2"]*y[2], 0
), 3, 3)

}

## measure speed (here and below)
system.time(

out <- lsoda(c(1, 0, 0), times, lsexamp, parms, rtol = 1e-4,
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atol = my.atol, hmax = Inf)
)
out

## This is what the authors of lsoda got for the example:

## the output of this program (on a cdc-7600 in single precision)
## is as follows..
##
## at t = 4.0000e-01 y = 9.851712e-01 3.386380e-05 1.479493e-02
## at t = 4.0000e+00 y = 9.055333e-01 2.240655e-05 9.444430e-02
## at t = 4.0000e+01 y = 7.158403e-01 9.186334e-06 2.841505e-01
## at t = 4.0000e+02 y = 4.505250e-01 3.222964e-06 5.494717e-01
## at t = 4.0000e+03 y = 1.831975e-01 8.941774e-07 8.168016e-01
## at t = 4.0000e+04 y = 3.898730e-02 1.621940e-07 9.610125e-01
## at t = 4.0000e+05 y = 4.936363e-03 1.984221e-08 9.950636e-01
## at t = 4.0000e+06 y = 5.161831e-04 2.065786e-09 9.994838e-01
## at t = 4.0000e+07 y = 5.179817e-05 2.072032e-10 9.999482e-01
## at t = 4.0000e+08 y = 5.283401e-06 2.113371e-11 9.999947e-01
## at t = 4.0000e+09 y = 4.659031e-07 1.863613e-12 9.999995e-01
## at t = 4.0000e+10 y = 1.404280e-08 5.617126e-14 1.000000e+00

## Using the analytic Jacobian speeds up execution a little :

system.time(
outJ <- lsoda(c(1, 0, 0), times, lsexamp, parms, rtol = 1e-4,

atol = my.atol, jacfunc = exampjac, jactype = "fullusr", hmax = Inf)
)

all.equal(as.data.frame(out), as.data.frame(outJ)) # TRUE
diagnostics(out)
diagnostics(outJ) # shows what lsoda did internally

lsodar Solver for Ordinary Differential Equations (ODE), Switching Auto-
matically Between Stiff and Non-stiff Methods and With Root Finding

Description

Solving initial value problems for stiff or non-stiff systems of first-order ordinary differential equa-
tions (ODEs) and including root-finding.

The R function lsodar provides an interface to the FORTRAN ODE solver of the same name,
written by Alan C. Hindmarsh and Linda R. Petzold.

The system of ODE’s is written as an R function or be defined in compiled code that has been
dynamically loaded. - see description of lsoda for details.

lsodar differs from lsode in two respects.

• It switches automatically between stiff and nonstiff methods (similar as lsoda).
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• It finds the root of at least one of a set of constraint functions g(i) of the independent and
dependent variables.

Two uses of lsodar are:

• To stop the simulation when a certain condition is met

• To trigger events, i.e. sudden changes in one of the state variables when a certain condition is
met.

when a particular condition is met.

Usage

lsodar(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0,
hmax = NULL, hini = 0, ynames = TRUE, maxordn = 12,
maxords = 5, bandup = NULL, banddown = NULL, maxsteps = 5000,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings=NULL,
initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times times at which explicit estimates for y are desired. The first value in times must
be the initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsodar() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.
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jacfunc if not NULL, an R function, that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine in
‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more
about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

rootfunc if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought.

verbose a logical value that, when TRUE, will print the diagnostiscs of the integration
- see details.

nroot only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

tcrit if not NULL, then lsodar cannot integrate past tcrit. The FORTRAN routine
lsodar overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical, if FALSE: names of state variables are not passed to function func; this
may speed up the simulation especially for large models.

maxordn the maximum order to be allowed in case the method is non-stiff. Should be <=
12. Reduce maxord to save storage space.

maxords the maximum order to be allowed in case the method is stiff. Should be <= 5.
Reduce maxord to save storage space.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.
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banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps maximal number of steps per output interval taken by the solver.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine lsodar, whose documentation should be consulted
for details (it is included as comments in the source file ‘src/opkdmain.f’). The implementation
is based on the November, 2003 version of lsodar, from Netlib.
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lsodar switches automatically between stiff and nonstiff methods (similar as lsoda). This means
that the user does not have to determine whether the problem is stiff or not, and the solver will
automatically choose the appropriate method. It always starts with the nonstiff method.

lsodar can find the root of at least one of a set of constraint functions rootfunc of the independent
and dependent variables. It then returns the solution at the root if that occurs sooner than the
specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function rootfun due to roundoff and integration error,
lsodar may return false roots, or return the same root at two or more nearly equal values of time.

The form of the Jacobian can be specified by jactype which can take the following values:

jactype = "fullint": a full Jacobian, calculated internally by lsodar, the default,

jactype = "fullusr": a full Jacobian, specified by user function jacfunc,

jactype = "bandusr": a banded Jacobian, specified by user function jacfunc; the size of the
bands specified by bandup and banddown,

jactype = "bandint": banded Jacobian, calculated by lsodar; the size of the bands specified by
bandup and banddown.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

The input parameters rtol, and atol determine the error control performed by the solver. See
lsoda for details.

The output will have the attribute iroot, if a root was found iroot is a vector, its length equal to the
number of constraint functions it will have a value of 1 for the constraint function whose root that
has been found and 0 otherwise.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns
as elements in y plus the number of "global" values returned in the next elements of the return
from func, plus and additional column for the time value. There will be a row for each element in
times unless the FORTRAN routine ‘lsodar’ returns with an unrecoverable error. If y has a names
attribute, it will be used to label the columns of the output value.

If a root has been found, the output will have the attribute iroot, an integer indicating which root
has been found.
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See Also

• roots for more examples on roots and events

• rk, rkMethod, rk4 and euler for Runge-Kutta integrators.

• lsoda, lsode, lsodes, vode, daspk for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example 1:
## from lsodar source code
## =======================================================================

Fun <- function (t, y, parms) {
ydot <- vector(len = 3)
ydot[1] <- -.04*y[1] + 1.e4*y[2]*y[3]
ydot[3] <- 3.e7*y[2]*y[2]
ydot[2] <- -ydot[1] - ydot[3]
return(list(ydot, ytot = sum(y)))

}

rootFun <- function (t, y, parms) {
yroot <- vector(len = 2)
yroot[1] <- y[1] - 1.e-4
yroot[2] <- y[3] - 1.e-2
return(yroot)

}

https://doi.org/10.1137/0904010
https://doi.org/10.1137/0904010
https://netlib.org
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y <- c(1, 0, 0)
times <- c(0, 0.4*10^(0:8))

out <- lsodar(y = y, times = times, fun = Fun, rootfun = rootFun,
rtol = 1e-4, atol = c(1e-6, 1e-10, 1e-6), parms = NULL)

print(paste("root is found for eqn", which(attributes(out)$iroot == 1)))
print(out[nrow(out),])

diagnostics(out)

## =======================================================================
## Example 2:
## using lsodar to estimate steady-state conditions
## =======================================================================

## Bacteria (Bac) are growing on a substrate (Sub)
model <- function(t, state, pars) {

with (as.list(c(state, pars)), {
## substrate uptake death respiration
dBact <- gmax*eff*Sub/(Sub+ks)*Bact - dB*Bact - rB*Bact
dSub <- -gmax *Sub/(Sub+ks)*Bact + dB*Bact + input

return(list(c(dBact,dSub)))
})

}

## root is the condition where sum of |rates of change|
## is very small

rootfun <- function (t, state, pars) {
dstate <- unlist(model(t, state, pars)) # rate of change vector
return(sum(abs(dstate)) - 1e-10)

}

pars <- list(Bini = 0.1, Sini = 100, gmax = 0.5, eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01, input = 0.1)

tout <- c(0, 1e10)
state <- c(Bact = pars$Bini, Sub = pars$Sini)
out <- lsodar(state, tout, model, pars, rootfun = rootfun)
print(out)

## =======================================================================
## Example 3:
## using lsodar to trigger an event
## =======================================================================

## a state variable is decaying at a first-order rate.
## when it reaches the value 0.1, a random amount is added.

derivfun <- function (t,y,parms)
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list (-0.05 * y)

rootfun <- function (t,y,parms)
return(y - 0.1)

eventfun <- function(t,y,parms)
return(y + runif(1))

yini <- 0.8
times <- 0:200

out <- lsodar(func=derivfun, y = yini, times=times,
rootfunc = rootfun, events = list(func=eventfun, root = TRUE))

plot(out, type = "l", lwd = 2, main = "lsodar with event")

lsode Solver for Ordinary Differential Equations (ODE)

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE)
in the form:

dy/dt = f(t, y)

.

The R function lsode provides an interface to the FORTRAN ODE solver of the same name, written
by Alan C. Hindmarsh and Andrew H. Sherman.

It combines parts of the code lsodar and can thus find the root of at least one of a set of constraint
functions g(i) of the independent and dependent variables. This can be used to stop the simulation
or to trigger events, i.e. a sudden change in one of the state variables.

The system of ODE’s is written as an R function or be defined in compiled code that has been
dynamically loaded.

In contrast to lsoda, the user has to specify whether or not the problem is stiff and choose the
appropriate solution method.

lsode is very similar to vode, but uses a fixed-step-interpolate method rather than the variable-
coefficient method in vode. In addition, in vode it is possible to choose whether or not a copy of
the Jacobian is saved for reuse in the corrector iteration algorithm; In lsode, a copy is not kept.

Usage

lsode(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", mf = NULL, rootfunc = NULL,
verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0, hmax = NULL,
hini = 0, ynames = TRUE, maxord = NULL, bandup = NULL, banddown = NULL,
maxsteps = 5000, dllname = NULL, initfunc = dllname,
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initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings=NULL, initforc = NULL,
fcontrol=NULL, events=NULL, lags = NULL,...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsode() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine in
‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more
about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user; overruled
if mfis not NULL.

mf the "method flag" passed to function lsode - overrules jactype - provides more
options than jactype - see details.
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rootfunc if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the
integration - see details.

nroot only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

tcrit if not NULL, then lsode cannot integrate past tcrit. The FORTRAN routine
lsode overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

maxord the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit
Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord
to save storage space.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps maximal number of steps per output interval taken by the solver.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.
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nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine lsode, whose documentation should be consulted
for details (it is included as comments in the source file ‘src/opkdmain.f’). The implementation
is based on the November, 2003 version of lsode, from Netlib.

Before using the integrator lsode, the user has to decide whether or not the problem is stiff.

If the problem is nonstiff, use method flag mf = 10, which selects a nonstiff (Adams) method, no
Jacobian used.
If the problem is stiff, there are four standard choices which can be specified with jactype or mf.

The options for jactype are

jactype = "fullint" a full Jacobian, calculated internally by lsode, corresponds to mf = 22,

jactype = "fullusr" a full Jacobian, specified by user function jacfunc, corresponds to mf = 21,

jactype = "bandusr" a banded Jacobian, specified by user function jacfunc; the size of the bands
specified by bandup and banddown, corresponds to mf = 24,

jactype = "bandint" a banded Jacobian, calculated by lsode; the size of the bands specified by
bandup and banddown, corresponds to mf = 25.

More options are available when specifying mf directly.
The legal values of mf are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25.
mf is a positive two-digit integer, mf = (10*METH + MITER), where
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METH indicates the basic linear multistep method: METH = 1 means the implicit Adams method.
METH = 2 means the method based on backward differentiation formulas (BDF-s).

MITER indicates the corrector iteration method: MITER = 0 means functional iteration (no Jaco-
bian matrix is involved). MITER = 1 means chord iteration with a user-supplied full (NEQ by
NEQ) Jacobian. MITER = 2 means chord iteration with an internally generated (difference
quotient) full Jacobian (using NEQ extra calls to func per df/dy value). MITER = 3 means
chord iteration with an internally generated diagonal Jacobian approximation (using 1 extra
call to func per df/dy evaluation). MITER = 4 means chord iteration with a user-supplied
banded Jacobian. MITER = 5 means chord iteration with an internally generated banded Ja-
cobian (using ML+MU+1 extra calls to func per df/dy evaluation).

If MITER = 1 or 4, the user must supply a subroutine jacfunc.

Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver. See
lsoda for details.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.

lsode can find the root of at least one of a set of constraint functions rootfunc of the independent
and dependent variables. It then returns the solution at the root if that occurs sooner than the
specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function rootfun due to roundoff and integration error,
lsode may return false roots, or return the same root at two or more nearly equal values of time.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘lsode’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Alan C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE Solvers," in Scientific Com-
puting, R. S. Stepleman, et al., Eds. (North-Holland, Amsterdam, 1983), pp. 55-64.
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See Also

• rk,

• rk4 and euler for Runge-Kutta integrators.

• lsoda, lsodes, lsodar, vode, daspk for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example 1:
## Various ways to solve the same model.
## =======================================================================

## the model, 5 state variables
f1 <- function (t, y, parms) {

ydot <- vector(len = 5)

ydot[1] <- 0.1*y[1] -0.2*y[2]
ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
ydot[5] <- -0.3*y[4] +0.1*y[5]

return(list(ydot))
}

## the Jacobian, written as a full matrix
fulljac <- function (t, y, parms) {

jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
data = c(0.1, -0.2, 0 , 0 , 0 ,

-0.3, 0.1, -0.2, 0 , 0 ,
0 , -0.3, 0.1, -0.2, 0 ,
0 , 0 , -0.3, 0.1, -0.2,
0 , 0 , 0 , -0.3, 0.1))

return(jac)
}

## the Jacobian, written in banded form
bandjac <- function (t, y, parms) {

jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
data = c( 0 , -0.2, -0.2, -0.2, -0.2,

0.1, 0.1, 0.1, 0.1, 0.1,
-0.3, -0.3, -0.3, -0.3, 0))

return(jac)
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}

## initial conditions and output times
yini <- 1:5
times <- 1:20

## default: stiff method, internally generated, full Jacobian
out <- lsode(yini, times, f1, parms = 0, jactype = "fullint")

## stiff method, user-generated full Jacobian
out2 <- lsode(yini, times, f1, parms = 0, jactype = "fullusr",

jacfunc = fulljac)

## stiff method, internally-generated banded Jacobian
## one nonzero band above (up) and below(down) the diagonal
out3 <- lsode(yini, times, f1, parms = 0, jactype = "bandint",

bandup = 1, banddown = 1)

## stiff method, user-generated banded Jacobian
out4 <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",

jacfunc = bandjac, bandup = 1, banddown = 1)

## non-stiff method
out5 <- lsode(yini, times, f1, parms = 0, mf = 10)

## =======================================================================
## Example 2:
## diffusion on a 2-D grid
## partially specified Jacobian
## =======================================================================

diffusion2D <- function(t, Y, par) {
y <- matrix(nrow = n, ncol = n, data = Y)
dY <- r*y # production

## diffusion in X-direction; boundaries = 0-concentration
Flux <- -Dx * rbind(y[1,],(y[2:n,]-y[1:(n-1),]),-y[n,])/dx
dY <- dY - (Flux[2:(n+1),]-Flux[1:n,])/dx

## diffusion in Y-direction
Flux <- -Dy * cbind(y[,1],(y[,2:n]-y[,1:(n-1)]),-y[,n])/dy
dY <- dY - (Flux[,2:(n+1)]-Flux[,1:n])/dy

return(list(as.vector(dY)))
}

## parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.025 # production rate
times <- c(0, 1)

n <- 50
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y <- matrix(nrow = n, ncol = n, 0)

pa <- par(ask = FALSE)

## initial condition
for (i in 1:n) {

for (j in 1:n) {
dst <- (i - n/2)^2 + (j - n/2)^2
y[i, j] <- max(0, 1 - 1/(n*n) * (dst - n)^2)

}
}
filled.contour(y, color.palette = terrain.colors)

## =======================================================================
## jacfunc need not be estimated exactly
## a crude approximation, with a smaller bandwidth will do.
## Here the half-bandwidth 1 is used, whereas the true
## half-bandwidths are equal to n.
## This corresponds to ignoring the y-direction coupling in the ODEs.
## =======================================================================

print(system.time(
for (i in 1:20) {

out <- lsode(func = diffusion2D, y = as.vector(y), times = times,
parms = NULL, jactype = "bandint", bandup = 1, banddown = 1)

filled.contour(matrix(nrow = n, ncol = n, out[2,-1]), zlim = c(0,1),
color.palette = terrain.colors, main = i)

y <- out[2, -1]
}

))
par(ask = pa)

lsodes Solver for Ordinary Differential Equations (ODE) With Sparse Jaco-
bian

Description

Solves the initial value problem for stiff systems of ordinary differential equations (ODE) in the
form:

dy/dt = f(t, y)

and where the Jacobian matrix df/dy has an arbitrary sparse structure.

The R function lsodes provides an interface to the FORTRAN ODE solver of the same name,
written by Alan C. Hindmarsh and Andrew H. Sherman.

The system of ODE’s is written as an R function or be defined in compiled code that has been
dynamically loaded.
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Usage

lsodes(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacvec = NULL, sparsetype = "sparseint", nnz = NULL,
inz = NULL, rootfunc = NULL,
verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0,
hmax = NULL, hini = 0, ynames = TRUE, maxord = NULL,
maxsteps = 5000, lrw = NULL, liw = NULL, dllname = NULL,
initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL, forcings=NULL,
initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL,
...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsodes() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacvec if not NULL, an R function that computes a column of the Jacobian of the system
of differential equations ∂ẏi/∂yj , or a string giving the name of a function or
subroutine in ‘dllname’ that computes the column of the Jacobian (see vignette
"compiledCode" for more about this option).
The R calling sequence for jacvec is identical to that of func, but with extra
parameter j, denoting the column number. Thus, jacvec should be called as:
jacvec = func(t, y, j, parms) and jacvec should return a vector containing
column j of the Jacobian, i.e. its i-th value is ∂ẏi/∂yj . If this function is absent,
lsodes will generate the Jacobian by differences.
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sparsetype the sparsity structure of the Jacobian, one of "sparseint" or "sparseusr", "sparse-
jan", ..., The sparsity can be estimated internally by lsodes (first option) or given
by the user (last two). See details.

nnz the number of nonzero elements in the sparse Jacobian (if this is unknown, use
an estimate).

inz if sparsetype equal to "sparseusr", a two-columned matrix with the (row, col-
umn) indices to the nonzero elements in the sparse Jacobian. If sparsetype =
"sparsejan", a vector with the elements ian followed by he elements jan as used
in the lsodes code. See details. In all other cases, ignored.

rootfunc if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - see details.

nroot only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

tcrit if not NULL, then lsodes cannot integrate past tcrit. The FORTRAN routine
lsodes overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

maxord the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit
Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord
to save storage space.

maxsteps maximal number of steps per output interval taken by the solver.

lrw the length of the real work array rwork; due to the sparsicity, this cannot be read-
ily predicted. If NULL, a guess will be made, and if not sufficient, lsodes will
return with a message indicating the size of rwork actually required. Therefore,
some experimentation may be necessary to estimate the value of lrw.
For instance, if you get the error:
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DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value

liw the length of the integer work array iwork; due to the sparsicity, this cannot be
readily predicted. If NULL, a guess will be made, and if not sufficient, lsodes
will return with a message indicating the size of iwork actually required. There-
fore, some experimentation may be necessary to estimate the value of liw.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code. See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.
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Details

The work is done by the FORTRAN subroutine lsodes, whose documentation should be consulted
for details (it is included as comments in the source file ‘src/opkdmain.f’). The implementation
is based on the November, 2003 version of lsodes, from Netlib.
lsodes is applied for stiff problems, where the Jacobian has a sparse structure.
There are several choices depending on whether jacvec is specified and depending on the setting
of sparsetype.
If function jacvec is present, then it should return the j-th column of the Jacobian matrix.
There are also several choices for the sparsity specification, selected by argument sparsetype.

• sparsetype = "sparseint". The sparsity is estimated by the solver, based on numerical
differences. In this case, it is advisable to provide an estimate of the number of non-zero
elements in the Jacobian (nnz). This value can be approximate; upon return the number of
nonzero elements actually required will be known (1st element of attribute dims). In this case,
inz need not be specified.

• sparsetype = "sparseusr". The sparsity is determined by the user. In this case, inz should
be a matrix, containing indices (row, column) to the nonzero elements in the Jacobian matrix.
The number of nonzeros nnz will be set equal to the number of rows in inz.

• sparsetype = "sparsejan". The sparsity is also determined by the user. In this case, inz
should be a vector, containting the ian and jan elements of the sparse storage format, as
used in the sparse solver. Elements of ian should be the first n+1 elements of this vector, and
contain the starting locations in jan of columns 1.. n. jan contains the row indices of the
nonzero locations of the Jacobian, reading in columnwise order. The number of nonzeros nnz
will be set equal to the length of inz - (n+1).

• sparsetype = "1D", "2D", "3D". The sparsity is estimated by the solver, based on numerical
differences. Assumes finite differences in a 1D, 2D or 3D regular grid - used by functions
ode.1D, ode.2D, ode.3D. Similar are "2Dmap", and "3Dmap", which also include a mapping
variable (passed in nnz).

The input parameters rtol, and atol determine the error control performed by the solver. See
lsoda for details.
The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.
See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.
Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.
More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.
Examples in both C and FORTRAN are in the ‘doc/examples/dynload’ subdirectory of the deSolve
package directory.
lsodes can find the root of at least one of a set of constraint functions rootfunc of the independent
and dependent variables. It then returns the solution at the root if that occurs sooner than the
specified stop condition, and otherwise returns the solution according the specified stop condition.
Caution: Because of numerical errors in the function rootfun due to roundoff and integration error,
lsodes may return false roots, or return the same root at two or more nearly equal values of time.
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Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns
as elements in y plus the number of "global" values returned in the next elements of the return
from func, plus and additional column for the time value. There will be a row for each element in
times unless the FORTRAN routine ‘lsodes’ returns with an unrecoverable error. If y has a names
attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in Scientific Comput-
ing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale Sparse Matrix Package: I.
The Symmetric Codes, Int. J. Num. Meth. Eng., 18 (1982), pp. 1145-1151.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale Sparse Matrix Package: II.
The Nonsymmetric Codes, Research Report No. 114, Dept. of Computer Sciences, Yale University,
1977.

See Also

• rk,

• rk4 and euler for Runge-Kutta integrators.

• lsoda, lsode, lsodar, vode, daspk for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## Various ways to solve the same model.

## =======================================================================
## The example from lsodes source code
## A chemical model
## =======================================================================

n <- 12
y <- rep(1, n)
dy <- rep(0, n)

times <- c(0, 0.1*(10^(0:4)))
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rtol <- 1.0e-4
atol <- 1.0e-6

parms <- c(rk1 = 0.1, rk2 = 10.0, rk3 = 50.0, rk4 = 2.5, rk5 = 0.1,
rk6 = 10.0, rk7 = 50.0, rk8 = 2.5, rk9 = 50.0, rk10 = 5.0,
rk11 = 50.0, rk12 = 50.0,rk13 = 50.0, rk14 = 30.0,
rk15 = 100.0,rk16 = 2.5, rk17 = 100.0,rk18 = 2.5,
rk19 = 50.0, rk20 = 50.0)

#
chemistry <- function (time, Y, pars) {

with (as.list(pars), {
dy[1] <- -rk1 *Y[1]
dy[2] <- rk1 *Y[1] + rk11*rk14*Y[4] + rk19*rk14*Y[5] -

rk3 *Y[2]*Y[3] - rk15*Y[2]*Y[12] - rk2*Y[2]
dy[3] <- rk2 *Y[2] - rk5 *Y[3] - rk3*Y[2]*Y[3] -

rk7*Y[10]*Y[3] + rk11*rk14*Y[4] + rk12*rk14*Y[6]
dy[4] <- rk3 *Y[2]*Y[3] - rk11*rk14*Y[4] - rk4*Y[4]
dy[5] <- rk15*Y[2]*Y[12] - rk19*rk14*Y[5] - rk16*Y[5]
dy[6] <- rk7 *Y[10]*Y[3] - rk12*rk14*Y[6] - rk8*Y[6]
dy[7] <- rk17*Y[10]*Y[12] - rk20*rk14*Y[7] - rk18*Y[7]
dy[8] <- rk9 *Y[10] - rk13*rk14*Y[8] - rk10*Y[8]
dy[9] <- rk4 *Y[4] + rk16*Y[5] + rk8*Y[6] +

rk18*Y[7]
dy[10] <- rk5 *Y[3] + rk12*rk14*Y[6] + rk20*rk14*Y[7] +

rk13*rk14*Y[8] - rk7 *Y[10]*Y[3] - rk17*Y[10]*Y[12] -
rk6 *Y[10] - rk9*Y[10]

dy[11] <- rk10*Y[8]
dy[12] <- rk6 *Y[10] + rk19*rk14*Y[5] + rk20*rk14*Y[7] -

rk15*Y[2]*Y[12] - rk17*Y[10]*Y[12]
return(list(dy))

})
}

## =======================================================================
## application 1. lsodes estimates the structure of the Jacobian
## and calculates the Jacobian by differences
## =======================================================================
out <- lsodes(func = chemistry, y = y, parms = parms, times = times,

atol = atol, rtol = rtol, verbose = TRUE)

## =======================================================================
## application 2. the structure of the Jacobian is input
## lsodes calculates the Jacobian by differences
## this is not so efficient...
## =======================================================================

## elements of Jacobian that are not zero
nonzero <- matrix(nc = 2, byrow = TRUE, data = c(

1, 1, 2, 1, # influence of sp1 on rate of change of others
2, 2, 3, 2, 4, 2, 5, 2, 12, 2,
2, 3, 3, 3, 4, 3, 6, 3, 10, 3,
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2, 4, 3, 4, 4, 4, 9, 4, # d (dyi)/dy4
2, 5, 5, 5, 9, 5, 12, 5,
3, 6, 6, 6, 9, 6, 10, 6,
7, 7, 9, 7, 10, 7, 12, 7,
8, 8, 10, 8, 11, 8,
3,10, 6,10, 7,10, 8,10, 10,10, 12,10,
2,12, 5,12, 7,12, 10,12, 12,12)

)

## when run, the default length of rwork is too small
## lsodes will tell the length actually needed
# out2 <- lsodes(func = chemistry, y = y, parms = parms, times = times,
# inz = nonzero, atol = atol,rtol = rtol) #gives warning
out2 <- lsodes(func = chemistry, y = y, parms = parms, times = times,

sparsetype = "sparseusr", inz = nonzero,
atol = atol, rtol = rtol, verbose = TRUE, lrw = 353)

## =======================================================================
## application 3. lsodes estimates the structure of the Jacobian
## the Jacobian (vector) function is input
## =======================================================================
chemjac <- function (time, Y, j, pars) {

with (as.list(pars), {
PDJ <- rep(0,n)

if (j == 1){
PDJ[1] <- -rk1
PDJ[2] <- rk1

} else if (j == 2) {
PDJ[2] <- -rk3*Y[3] - rk15*Y[12] - rk2
PDJ[3] <- rk2 - rk3*Y[3]
PDJ[4] <- rk3*Y[3]
PDJ[5] <- rk15*Y[12]
PDJ[12] <- -rk15*Y[12]

} else if (j == 3) {
PDJ[2] <- -rk3*Y[2]
PDJ[3] <- -rk5 - rk3*Y[2] - rk7*Y[10]
PDJ[4] <- rk3*Y[2]
PDJ[6] <- rk7*Y[10]
PDJ[10] <- rk5 - rk7*Y[10]

} else if (j == 4) {
PDJ[2] <- rk11*rk14
PDJ[3] <- rk11*rk14
PDJ[4] <- -rk11*rk14 - rk4
PDJ[9] <- rk4

} else if (j == 5) {
PDJ[2] <- rk19*rk14
PDJ[5] <- -rk19*rk14 - rk16
PDJ[9] <- rk16
PDJ[12] <- rk19*rk14

} else if (j == 6) {
PDJ[3] <- rk12*rk14
PDJ[6] <- -rk12*rk14 - rk8
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PDJ[9] <- rk8
PDJ[10] <- rk12*rk14

} else if (j == 7) {
PDJ[7] <- -rk20*rk14 - rk18
PDJ[9] <- rk18
PDJ[10] <- rk20*rk14
PDJ[12] <- rk20*rk14

} else if (j == 8) {
PDJ[8] <- -rk13*rk14 - rk10
PDJ[10] <- rk13*rk14
PDJ[11] <- rk10

} else if (j == 10) {
PDJ[3] <- -rk7*Y[3]
PDJ[6] <- rk7*Y[3]
PDJ[7] <- rk17*Y[12]
PDJ[8] <- rk9
PDJ[10] <- -rk7*Y[3] - rk17*Y[12] - rk6 - rk9
PDJ[12] <- rk6 - rk17*Y[12]

} else if (j == 12) {
PDJ[2] <- -rk15*Y[2]
PDJ[5] <- rk15*Y[2]
PDJ[7] <- rk17*Y[10]
PDJ[10] <- -rk17*Y[10]
PDJ[12] <- -rk15*Y[2] - rk17*Y[10]

}
return(PDJ)

})
}

out3 <- lsodes(func = chemistry, y = y, parms = parms, times = times,
jacvec = chemjac, atol = atol, rtol = rtol)

## =======================================================================
## application 4. The structure of the Jacobian (nonzero elements) AND
## the Jacobian (vector) function is input
## =======================================================================
out4 <- lsodes(func = chemistry, y = y, parms = parms, times = times,

lrw = 351, sparsetype = "sparseusr", inz = nonzero,
jacvec = chemjac, atol = atol, rtol = rtol,
verbose = TRUE)

# The sparsejan variant
# note: errors in inz may cause R to break, so this is not without danger...
# out5 <- lsodes(func = chemistry, y = y, parms = parms, times = times,
# jacvec = chemjac, atol = atol, rtol = rtol, sparsetype = "sparsejan",
# inz = c(1,3,8,13,17,21,25,29,32,32,38,38,43, # ian
# 1,2, 2,3,4,5,12, 2,3,4,6,10, 2,3,4,9, 2,5,9,12, 3,6,9,10, # jan
# 7,9,10,12, 8,10,11, 3,6,7,8,10,12, 2,5,7,10,12), lrw = 343)

ode General Solver for Ordinary Differential Equations
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Description

Solves a system of ordinary differential equations; a wrapper around the implemented ODE solvers

Usage

ode(y, times, func, parms,
method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",

"euler", "rk4", "ode23", "ode45", "radau",
"bdf", "bdf_d", "adams", "impAdams", "impAdams_d", "iteration"), ...)

## S3 method for class 'deSolve'
print(x, ...)
## S3 method for class 'deSolve'
summary(object, select = NULL, which = select,

subset = NULL, ...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before ode is called. See package vignette
"compiledCode" for more details.

parms parameters passed to func.

method the integrator to use, either a function that performs integration, or a list of
class rkMethod, or a string ("lsoda", "lsode", "lsodes","lsodar","vode",
"daspk", "euler", "rk4", "ode23", "ode45", "radau", "bdf", "bdf_d", "adams",
"impAdams" or "impAdams_d" ,"iteration"). Options "bdf", "bdf_d", "adams",
"impAdams" or "impAdams_d" are the backward differentiation formula, the
BDF with diagonal representation of the Jacobian, the (explicit) Adams and the
implicit Adams method, and the implicit Adams method with diagonal repre-
sentation of the Jacobian respectively (see details). The default integrator used
is lsoda.
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Method "iteration" is special in that here the function func should return the
new value of the state variables rather than the rate of change. This can be used
for individual based models, for difference equations, or in those cases where
the integration is performed within func). See last example.

x an object of class deSolve, as returned by the integrators, and to be printed or
to be subsetted.

object an object of class deSolve, as returned by the integrators, and whose summary
is to be calculated. In contrast to R’s default, this returns a data.frame. It returns
one summary column for a multi-dimensional variable.

which the name(s) or the index to the variables whose summary should be estimated.
Default = all variables.

select which variable/columns to be selected.

subset logical expression indicating elements or rows to keep when calculating a summary:
missing values are taken as FALSE

... additional arguments passed to the integrator or to the methods.

Details

This is simply a wrapper around the various ode solvers.

See package vignette for information about specifying the model in compiled code.

See the selected integrator for the additional options.

The default integrator used is lsoda.

The option method = "bdf" provdes a handle to the backward differentiation formula (it is equal to
using method = "lsode"). It is best suited to solve stiff (systems of) equations.

The option method = "bdf_d" selects the backward differentiation formula that uses Jacobi-Newton
iteration (neglecting the off-diagonal elements of the Jacobian (it is equal to using method = "lsode",
mf = 23). It is best suited to solve stiff (systems of) equations.

method = "adams" triggers the Adams method that uses functional iteration (no Jacobian used);
(equal to method = "lsode", mf = 10. It is often the best choice for solving non-stiff (systems of)
equations. Note: when functional iteration is used, the method is often said to be explicit, although
it is in fact implicit.

method = "impAdams" selects the implicit Adams method that uses Newton- Raphson iteration
(equal to method = "lsode", mf = 12.

method = "impAdams_d" selects the implicit Adams method that uses Jacobi- Newton iteration, i.e.
neglecting all off-diagonal elements (equal to method = "lsode", mf = 13.

For very stiff systems, method = "daspk" may outperform method = "bdf".

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.
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Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• plot.deSolve for plotting the outputs,

• dede general solver for delay differential equations

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• aquaphy, ccl4model, where ode is used,

• lsoda, lsode, lsodes, lsodar, vode, daspk, radau,

• rk, rkMethod for additional Runge-Kutta methods,

• forcings and events,

• diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example1: Predator-Prey Lotka-Volterra model (with logistic prey)
## =======================================================================

LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
})

}

pars <- c(rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 10) # mmol/m3, carrying capacity

yini <- c(Prey = 1, Predator = 2)
times <- seq(0, 200, by = 1)
out <- ode(yini, times, LVmod, pars)
summary(out)

## Default plot method
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plot(out)

## User specified plotting
matplot(out[ , 1], out[ , 2:3], type = "l", xlab = "time", ylab = "Conc",

main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator"), col = 1:2, lty = 1:2)

## =======================================================================
## Example2: Substrate-Producer-Consumer Lotka-Volterra model
## =======================================================================

## Note:
## Function sigimp passed as an argument (input) to model
## (see also lsoda and rk examples)

SPCmod <- function(t, x, parms, input) {
with(as.list(c(parms, x)), {
import <- input(t)
dS <- import - b*S*P + g*C # substrate
dP <- c*S*P - d*C*P # producer
dC <- e*P*C - f*C # consumer
res <- c(dS, dP, dC)
list(res)

})
}

## The parameters
parms <- c(b = 0.001, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

## vector of timesteps
times <- seq(0, 200, length = 101)

## external signal with rectangle impulse
signal <- data.frame(times = times,

import = rep(0, length(times)))

signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2

sigimp <- approxfun(signal$times, signal$import, rule = 2)

## Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)

## Solve model
out <- ode(y = xstart, times = times,

func = SPCmod, parms = parms, input = sigimp)

## Default plot method
plot(out)

## User specified plotting
mf <- par(mfrow = c(1, 2))
matplot(out[,1], out[,2:4], type = "l", xlab = "time", ylab = "state")
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legend("topright", col = 1:3, lty = 1:3, legend = c("S", "P", "C"))
plot(out[,"P"], out[,"C"], type = "l", lwd = 2, xlab = "producer",

ylab = "consumer")
par(mfrow = mf)

## =======================================================================
## Example3: Discrete time model - using method = "iteration"
## The host-parasitoid model from Soetaert and Herman, 2009,
## Springer - p. 284.
## =======================================================================

Parasite <- function(t, y, ks) {
P <- y[1]
H <- y[2]
f <- A * P / (ks + H)
Pnew <- H * (1 - exp(-f))
Hnew <- H * exp(rH * (1 - H) - f)

list (c(Pnew, Hnew))
}
rH <- 2.82 # rate of increase
A <- 100 # attack rate
ks <- 15 # half-saturation density

out <- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = ks,
method = "iteration")

out2<- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = 25,
method = "iteration")

out3<- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = 35,
method = "iteration")

## Plot all 3 scenarios in one figure
plot(out, out2, out3, lty = 1, lwd = 2)

## Same like "out", but *output* every two steps
## hini = 1 ensures that the same *internal* timestep of 1 is used
outb <- ode(func = Parasite, y = c(P = 0.5, H = 0.5),

times = seq(0, 50, 2), hini = 1, parms = ks,
method = "iteration")

plot(out, outb, type = c("l", "p"))

## Not run:
## =======================================================================
## Example4: Playing with the Jacobian options - see e.g. lsoda help page
##
## IMPORTANT: The following example is temporarily broken because of
## incompatibility with R 3.0 on some systems.
## A fix is on the way.
## =======================================================================

## a stiff equation, exponential decay, run 500 times
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stiff <- function(t, y, p) { # y and r are a 500-valued vector
list(- r * y)

}

N <- 500
r <- runif(N, 15, 20)
yini <- runif(N, 1, 40)

times <- 0:10

## Using the default
print(system.time(

out <- ode(y = yini, parms = NULL, times = times, func = stiff)
))
# diagnostics(out) shows that the method used = bdf (2), so it it stiff

## Specify that the Jacobian is banded, with nonzero values on the
## diagonal, i.e. the bandwidth up and down = 0

print(system.time(
out2 <- ode(y = yini, parms = NULL, times = times, func = stiff,

jactype = "bandint", bandup = 0, banddown = 0)
))

## Now we also specify the Jacobian function

jacob <- function(t, y, p) -r

print(system.time(
out3 <- ode(y = yini, parms = NULL, times = times, func = stiff,

jacfunc = jacob, jactype = "bandusr",
bandup = 0, banddown = 0)

))
## The larger the value of N, the larger the time gain...

## End(Not run)

ode.1D Solver For Multicomponent 1-D Ordinary Differential Equations

Description

Solves a system of ordinary differential equations resulting from 1-Dimensional partial differential
equations that have been converted to ODEs by numerical differencing.

Usage

ode.1D(y, times, func, parms, nspec = NULL, dimens = NULL,
method= c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
"euler", "rk4", "ode23", "ode45", "radau", "bdf", "adams", "impAdams",
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"iteration"),
names = NULL, bandwidth = 1, restructure = FALSE, ...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,
...). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a character string then integrator lsodes will be used. See details.

parms parameters passed to func.

nspec the number of species (components) in the model. If NULL, then dimens should
be specified.

dimens the number of boxes in the model. If NULL, then nspec should be specified.

method the integrator. Use "vode", "lsode", "lsoda", "lsodar", "daspk", or "lsodes"
if the model is very stiff; "impAdams" or "radau" may be best suited for mildly
stiff problems; "euler", "rk4", "ode23", "ode45", "adams" are most effi-
cient for non-stiff problems. Also allowed is to pass an integrator function.
Use one of the other Runge-Kutta methods via rkMethod. For instance, method
= rkMethod("ode45ck") will trigger the Cash-Karp method of order 4(5).
Method "iteration" is special in that here the function func should return the
new value of the state variables rather than the rate of change. This can be used
for individual based models, for difference equations, or in those cases where
the integration is performed within func)

names the names of the components; used for plotting.

bandwidth the number of adjacent boxes over which transport occurs. Normally equal to 1
(box i only interacts with box i-1, and i+1). Values larger than 1 will not work
with method = "lsodes". Ignored if the method is explicit.

restructure whether or not the Jacobian should be restructured. Only used if the method
is an integrator function. Should be TRUE if the method is implicit, FALSE if
explicit.

... additional arguments passed to the integrator.
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Details

This is the method of choice for multi-species 1-dimensional models, that are only subjected to
transport between adjacent layers.

More specifically, this method is to be used if the state variables are arranged per species:

A[1], A[2], A[3],.... B[1], B[2], B[3],.... (for species A, B))

Two methods are implemented.

• The default method rearranges the state variables as A[1], B[1], ... A[2], B[2], ... A[3], B[3],
.... This reformulation leads to a banded Jacobian with (upper and lower) half bandwidth =
number of species.
Then the selected integrator solves the banded problem.

• The second method uses lsodes. Based on the dimension of the problem, the method first
calculates the sparsity pattern of the Jacobian, under the assumption that transport is only
occurring between adjacent layers. Then lsodes is called to solve the problem.
As lsodes is used to integrate, it may be necessary to specify the length of the real work array,
lrw.
Although a reasonable guess of lrw is made, it is possible that this will be too low. In this case,
ode.1D will return with an error message telling the size of the work array actually needed. In
the second try then, set lrw equal to this number.
For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value

If the model is specified in compiled code (in a DLL), then option 2, based on lsodes is the only
solution method.

For single-species 1-D models, you may also use ode.band.

See the selected integrator for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements.
The first element of istate returns the conditions under which the last call to the integrator returned.
Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the
screen. See the help for the selected integrator for details.

Note

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can
check whether the input makes sense (i.e. if nspec * dimens == length(y)).
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Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,

• ode.band for integrating models with a banded Jacobian

• ode.2D for integrating 2-D models

• ode.3D for integrating 3-D models

• lsodes,lsode, lsoda, lsodar,vode for the integration options.

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## example 1
## a predator and its prey diffusing on a flat surface
## in concentric circles
## 1-D model with using cylindrical coordinates
## Lotka-Volterra type biology
## =======================================================================

## ================
## Model equations
## ================

lvmod <- function (time, state, parms, N, rr, ri, dr, dri) {
with (as.list(parms), {

PREY <- state[1:N]
PRED <- state[(N+1):(2*N)]

## Fluxes due to diffusion
## at internal and external boundaries: zero gradient
FluxPrey <- -Da * diff(c(PREY[1], PREY, PREY[N]))/dri
FluxPred <- -Da * diff(c(PRED[1], PRED, PRED[N]))/dri

## Biology: Lotka-Volterra model
Ingestion <- rIng * PREY * PRED
GrowthPrey <- rGrow * PREY * (1-PREY/cap)
MortPredator <- rMort * PRED

## Rate of change = Flux gradient + Biology
dPREY <- -diff(ri * FluxPrey)/rr/dr +

GrowthPrey - Ingestion
dPRED <- -diff(ri * FluxPred)/rr/dr +

Ingestion * assEff - MortPredator

return (list(c(dPREY, dPRED)))
})

}
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## ==================
## Model application
## ==================

## model parameters:

R <- 20 # total radius of surface, m
N <- 100 # 100 concentric circles
dr <- R/N # thickness of each layer
r <- seq(dr/2,by = dr,len = N) # distance of center to mid-layer
ri <- seq(0,by = dr,len = N+1) # distance to layer interface
dri <- dr # dispersion distances

parms <- c(Da = 0.05, # m2/d, dispersion coefficient
rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of pred
assEff = 0.5, # -, assimilation efficiency
cap = 10) # density, carrying capacity

## Initial conditions: both present in central circle (box 1) only
state <- rep(0, 2 * N)
state[1] <- state[N + 1] <- 10

## RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals

## the model is solved by the two implemented methods:
## 1. Default: banded reformulation
print(system.time(

out <- ode.1D(y = state, times = times, func = lvmod, parms = parms,
nspec = 2, names = c("PREY", "PRED"),
N = N, rr = r, ri = ri, dr = dr, dri = dri)

))

## 2. Using sparse method
print(system.time(

out2 <- ode.1D(y = state, times = times, func = lvmod, parms = parms,
nspec = 2, names = c("PREY","PRED"),
N = N, rr = r, ri = ri, dr = dr, dri = dri,
method = "lsodes")

))

## ================
## Plotting output
## ================
# the data in 'out' consist of: 1st col times, 2-N+1: the prey
# N+2:2*N+1: predators

PREY <- out[, 2:(N + 1)]

filled.contour(x = times, y = r, PREY, color = topo.colors,
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xlab = "time, days", ylab = "Distance, m",
main = "Prey density")

# similar:
image(out, which = "PREY", grid = r, xlab = "time, days",

legend = TRUE, ylab = "Distance, m", main = "Prey density")

image(out2, grid = r)

# summaries of 1-D variables
summary(out)

# 1-D plots:
matplot.1D(out, type = "l", subset = time == 10)
matplot.1D(out, type = "l", subset = time > 10 & time < 20)

## =======================================================================
## Example 2.
## Biochemical Oxygen Demand (BOD) and oxygen (O2) dynamics
## in a river
## =======================================================================

## ================
## Model equations
## ================
O2BOD <- function(t, state, pars) {

BOD <- state[1:N]
O2 <- state[(N+1):(2*N)]

## BOD dynamics
FluxBOD <- v * c(BOD_0, BOD) # fluxes due to water transport
FluxO2 <- v * c(O2_0, O2)

BODrate <- r * BOD # 1-st order consumption

## rate of change = flux gradient - consumption + reaeration (O2)
dBOD <- -diff(FluxBOD)/dx - BODrate
dO2 <- -diff(FluxO2)/dx - BODrate + p * (O2sat-O2)

return(list(c(dBOD = dBOD, dO2 = dO2)))
}

## ==================
## Model application
## ==================
## parameters
dx <- 25 # grid size of 25 meters
v <- 1e3 # velocity, m/day
x <- seq(dx/2, 5000, by = dx) # m, distance from river
N <- length(x)
r <- 0.05 # /day, first-order decay of BOD
p <- 0.5 # /day, air-sea exchange rate
O2sat <- 300 # mmol/m3 saturated oxygen conc
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O2_0 <- 200 # mmol/m3 riverine oxygen conc
BOD_0 <- 1000 # mmol/m3 riverine BOD concentration

## initial conditions:
state <- c(rep(200, N), rep(200, N))
times <- seq(0, 20, by = 0.1)

## running the model
## step 1 : model spinup
out <- ode.1D(y = state, times, O2BOD, parms = NULL,

nspec = 2, names = c("BOD", "O2"))

## ================
## Plotting output
## ================
## select oxygen (first column of out:time, then BOD, then O2
O2 <- out[, (N + 2):(2 * N + 1)]
color = topo.colors

filled.contour(x = times, y = x, O2, color = color, nlevels = 50,
xlab = "time, days", ylab = "Distance from river, m",
main = "Oxygen")

## or quicker plotting:
image(out, grid = x, xlab = "time, days", ylab = "Distance from river, m")

ode.2D Solver for 2-Dimensional Ordinary Differential Equations

Description

Solves a system of ordinary differential equations resulting from 2-Dimensional partial differential
equations that have been converted to ODEs by numerical differencing.

Usage

ode.2D(y, times, func, parms, nspec = NULL, dimens,
method= c("lsodes", "euler", "rk4", "ode23", "ode45", "adams", "iteration"),
names = NULL, cyclicBnd = NULL, ...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.
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func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,
...). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.

parms parameters passed to func.

nspec the number of species (components) in the model.

dimens 2-valued vector with the number of boxes in two dimensions in the model.

cyclicBnd if not NULL then a number or a 2-valued vector with the dimensions where a
cyclic boundary is used - 1: x-dimension, 2: y-dimension; see details.

names the names of the components; used for plotting.

method the integrator. Use "lsodes" if the model is very stiff; "impAdams" may be
best suited for mildly stiff problems; "euler", "rk4", "ode23", "ode45",
"adams" are most efficient for non-stiff problems. Also allowed is to pass an
integrator function. Use one of the other Runge-Kutta methods via rkMethod.
For instance, method = rkMethod("ode45ck") will trigger the Cash-Karp method
of order 4(5).
If "lsodes" is used, then also the size of the work array should be specified
(lrw) (see lsodes).
Method "iteration" is special in that here the function func should return the
new value of the state variables rather than the rate of change. This can be used
for individual based models, for difference equations, or in those cases where
the integration is performed within func)

... additional arguments passed to lsodes.

Details

This is the method of choice for 2-dimensional models, that are only subjected to transport between
adjacent layers.

Based on the dimension of the problem, and if lsodes is used as the integrator, the method first
calculates the sparsity pattern of the Jacobian, under the assumption that transport is only occurring
between adjacent layers. Then lsodes is called to solve the problem.

If the model is not stiff, then it is more efficient to use one of the explicit integration routines

In some cases, a cyclic boundary condition exists. This is when the first boxes in x-or y-direction
interact with the last boxes. In this case, there will be extra non-zero fringes in the Jacobian which
need to be taken into account. The occurrence of cyclic boundaries can be toggled on by specifying
argument cyclicBnd. For innstance, cyclicBnd = 1 indicates that a cyclic boundary is required
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only for the x-direction, whereas cyclicBnd = c(1,2) imposes a cyclic boundary for both x- and
y-direction. The default is no cyclic boundaries.

If lsodes is used to integrate, it will probably be necessary to specify the length of the real work
array, lrw.

Although a reasonable guess of lrw is made, it is likely that this will be too low. In this case, ode.2D
will return with an error message telling the size of the work array actually needed. In the second
try then, set lrw equal to this number.

For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value.

See lsodes for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements.
The first element of istate returns the conditions under which the last call to the integrator returned.
Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the
screen. See the help for the selected integrator for details.

Note

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can
check whether the input makes sense (as nspec * dimens[1] * dimens[2] == length(y)).

Do not use this method for problems that are not 2D!

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,

• ode.band for integrating models with a banded Jacobian

• ode.1D for integrating 1-D models

• ode.3D for integrating 3-D models

• lsodes for the integration options.

diagnostics to print diagnostic messages.
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Examples

## =======================================================================
## A Lotka-Volterra predator-prey model with predator and prey
## dispersing in 2 dimensions
## =======================================================================

## ==================
## Model definitions
## ==================

lvmod2D <- function (time, state, pars, N, Da, dx) {
NN <- N*N
Prey <- matrix(nrow = N, ncol = N,state[1:NN])
Pred <- matrix(nrow = N, ncol = N,state[(NN+1):(2*NN)])

with (as.list(pars), {
## Biology
dPrey <- rGrow * Prey * (1- Prey/K) - rIng * Prey * Pred
dPred <- rIng * Prey * Pred*assEff - rMort * Pred

zero <- rep(0, N)

## 1. Fluxes in x-direction; zero fluxes near boundaries
FluxPrey <- -Da * rbind(zero,(Prey[2:N,] - Prey[1:(N-1),]), zero)/dx
FluxPred <- -Da * rbind(zero,(Pred[2:N,] - Pred[1:(N-1),]), zero)/dx

## Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[2:(N+1),] - FluxPrey[1:N,])/dx
dPred <- dPred - (FluxPred[2:(N+1),] - FluxPred[1:N,])/dx

## 2. Fluxes in y-direction; zero fluxes near boundaries
FluxPrey <- -Da * cbind(zero,(Prey[,2:N] - Prey[,1:(N-1)]), zero)/dx
FluxPred <- -Da * cbind(zero,(Pred[,2:N] - Pred[,1:(N-1)]), zero)/dx

## Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[,2:(N+1)] - FluxPrey[,1:N])/dx
dPred <- dPred - (FluxPred[,2:(N+1)] - FluxPred[,1:N])/dx

return(list(c(as.vector(dPrey), as.vector(dPred))))
})

}

## ===================
## Model applications
## ===================

pars <- c(rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 5 ) # mmol/m3, carrying capacity
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R <- 20 # total length of surface, m
N <- 50 # number of boxes in one direction
dx <- R/N # thickness of each layer
Da <- 0.05 # m2/d, dispersion coefficient

NN <- N*N # total number of boxes

## initial conditions
yini <- rep(0, 2*N*N)
cc <- c((NN/2):(NN/2+1)+N/2, (NN/2):(NN/2+1)-N/2)
yini[cc] <- yini[NN+cc] <- 1

## solve model (5000 state variables... use Cash-Karp Runge-Kutta method
times <- seq(0, 50, by = 1)
out <- ode.2D(y = yini, times = times, func = lvmod2D, parms = pars,

dimens = c(N, N), names = c("Prey", "Pred"),
N = N, dx = dx, Da = Da, method = rkMethod("rk45ck"))

diagnostics(out)
summary(out)

# Mean of prey concentration at each time step
Prey <- subset(out, select = "Prey", arr = TRUE)
dim(Prey)
MeanPrey <- apply(Prey, MARGIN = 3, FUN = mean)
plot(times, MeanPrey)

## Not run:
## plot results
Col <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",

"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))

for (i in seq(1, length(times), by = 1))
image(Prey[ , ,i],
col = Col(100), xlab = , zlim = range(out[,2:(NN+1)]))

## similar, plotting both and adding a margin text with times:
image(out, xlab = "x", ylab = "y", mtext = paste("time = ", times))

## End(Not run)

select <- c(1, 40)
image(out, xlab = "x", ylab = "y", mtext = "Lotka-Volterra in 2-D",

subset = select, mfrow = c(2,2), legend = TRUE)

# plot prey and pred at t = 10; first use subset to select data
prey10 <- matrix (nrow = N, ncol = N,

data = subset(out, select = "Prey", subset = (time == 10)))
pred10 <- matrix (nrow = N, ncol = N,

data = subset(out, select = "Pred", subset = (time == 10)))
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mf <- par(mfrow = c(1, 2))
image(prey10)
image(pred10)
par (mfrow = mf)

# same, using deSolve's image:
image(out, subset = (time == 10))

## =======================================================================
## An example with a cyclic boundary condition.
## Diffusion in 2-D; extra flux on 2 boundaries,
## cyclic boundary in y
## =======================================================================

diffusion2D <- function(t, Y, par) {
y <- matrix(nrow = nx, ncol = ny, data = Y) # vector to 2-D matrix
dY <- -r * y # consumption
BNDx <- rep(1, nx) # boundary concentration
BNDy <- rep(1, ny) # boundary concentration

## diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,] - BNDy, (y[2:nx,] - y[1:(nx-1),]), BNDy - y[nx,])/dx
dY <- dY - (Flux[2:(nx+1),] - Flux[1:nx,])/dx

## diffusion in Y-direction
Flux <- -Dy * cbind(y[,1] - BNDx, (y[,2:ny]-y[,1:(ny-1)]), BNDx - y[,ny])/dy
dY <- dY - (Flux[,2:(ny+1)] - Flux[,1:ny])/dy

## extra flux on two sides
dY[,1] <- dY[,1] + 10
dY[1,] <- dY[1,] + 10

## and exchange between sides on y-direction
dY[,ny] <- dY[,ny] + (y[,1] - y[,ny]) * 10
return(list(as.vector(dY)))

}

## parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.05 # consumption rate

nx <- 50
ny <- 100
y <- matrix(nrow = nx, ncol = ny, 1)

## model most efficiently solved with lsodes - need to specify lrw

print(system.time(
ST3 <- ode.2D(y, times = 1:100, func = diffusion2D, parms = NULL,

dimens = c(nx, ny), verbose = TRUE, names = "Y",
lrw = 400000, atol = 1e-10, rtol = 1e-10, cyclicBnd = 2)
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))

# summary of 2-D variable
summary(ST3)

# plot output at t = 10
t10 <- matrix (nrow = nx, ncol = ny,

data = subset(ST3, select = "Y", subset = (time == 10)))

persp(t10, theta = 30, border = NA, phi = 70,
col = "lightblue", shade = 0.5, box = FALSE)

# image plot, using deSolve's image function
image(ST3, subset = time == 10, method = "persp",

theta = 30, border = NA, phi = 70, main = "",
col = "lightblue", shade = 0.5, box = FALSE)

## Not run:
zlim <- range(ST3[, -1])
for (i in 2:nrow(ST3)) {

y <- matrix(nrow = nx, ncol = ny, data = ST3[i, -1])
filled.contour(y, zlim = zlim, main = i)

}

# same
image(ST3, method = "filled.contour")

## End(Not run)

ode.3D Solver for 3-Dimensional Ordinary Differential Equations

Description

Solves a system of ordinary differential equations resulting from 3-Dimensional partial differential
equations that have been converted to ODEs by numerical differencing.

Usage

ode.3D(y, times, func, parms, nspec = NULL, dimens,
method = c("lsodes", "euler", "rk4", "ode23", "ode45", "adams", "iteration"),
names = NULL, cyclicBnd = NULL, ...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.
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func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,
...). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.

parms parameters passed to func.

nspec the number of species (components) in the model.

dimens 3-valued vector with the number of boxes in three dimensions in the model.

names the names of the components; used for plotting.

cyclicBnd if not NULL then a number or a 3-valued vector with the dimensions where a
cyclic boundary is used - 1: x-dimension, 2: y-dimension; 3: z-dimension.

method the integrator. Use "lsodes" if the model is very stiff; "impAdams" may be
best suited for mildly stiff problems; "euler", "rk4", "ode23", "ode45",
"adams" are most efficient for non-stiff problems. Also allowed is to pass an
integrator function. Use one of the other Runge-Kutta methods via rkMethod.
For instance, method = rkMethod("ode45ck") will trigger the Cash-Karp method
of order 4(5).
Method "iteration" is special in that here the function func should return the
new value of the state variables rather than the rate of change. This can be used
for individual based models, for difference equations, or in those cases where
the integration is performed within func)

... additional arguments passed to lsodes.

Details

This is the method of choice for 3-dimensional models, that are only subjected to transport between
adjacent layers.

Based on the dimension of the problem, the method first calculates the sparsity pattern of the Jaco-
bian, under the assumption that transport is only occurring between adjacent layers. Then lsodes
is called to solve the problem.

As lsodes is used to integrate, it will probably be necessary to specify the length of the real work
array, lrw.

Although a reasonable guess of lrw is made, it is likely that this will be too low.

In this case, ode.2D will return with an error message telling the size of the work array actually
needed. In the second try then, set lrw equal to this number.

For instance, if you get the error:
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DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value.

See lsodes for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements.
The first element of istate returns the conditions under which the last call to the integrator returned.
Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the
screen. See the help for the selected integrator for details.

Note

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can
check whether the input makes sense (as nspec*dimens[1]*dimens[2]*dimens[3] == length(y)).

Do not use this method for problems that are not 3D!

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,

• ode.band for integrating models with a banded Jacobian

• ode.1D for integrating 1-D models

• ode.2D for integrating 2-D models

• lsodes for the integration options.

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Diffusion in 3-D; imposed boundary conditions
## =======================================================================
diffusion3D <- function(t, Y, par) {

## function to bind two matrices to an array
mbind <- function (Mat1, Array, Mat2, along = 1) {

dimens <- dim(Array) + c(0, 0, 2)
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if (along == 3)
array(dim = dimens, data = c(Mat1, Array, Mat2))

else if (along == 1)
aperm(array(dim = dimens,

data=c(Mat1, aperm(Array, c(3, 2, 1)), Mat2)), c(3, 2, 1))
else if (along == 2)

aperm(array(dim = dimens,
data = c(Mat1, aperm(Array, c(1, 3, 2)), Mat2)), c(1, 3, 2))

}

yy <- array(dim=c(n, n, n), data = Y) # vector to 3-D array
dY <- -r*yy # consumption
BND <- matrix(nrow = n, ncol = n, data = 1) # boundary concentration

## diffusion in x-direction
## new array including boundary concentrations in X-direction
BNDx <- mbind(BND, yy, BND, along = 1)
## diffusive Flux
Flux <- -Dx * (BNDx[2:(n+2),,] - BNDx[1:(n+1),,])/dx
## rate of change = - flux gradient
dY[] <- dY[] - (Flux[2:(n+1),,] - Flux[1:n,,])/dx

## diffusion in y-direction
BNDy <- mbind(BND, yy, BND, along = 2)
Flux <- -Dy * (BNDy[,2:(n+2),] - BNDy[,1:(n+1),])/dy
dY[] <- dY[] - (Flux[,2:(n+1),] - Flux[,1:n,])/dy

## diffusion in z-direction
BNDz <- mbind(BND, yy, BND, along = 3)
Flux <- -Dz * (BNDz[,,2:(n+2)] - BNDz[,,1:(n+1)])/dz
dY[] <- dY[] - (Flux[,,2:(n+1)] - Flux[,,1:n])/dz

return(list(as.vector(dY)))
}

## parameters
dy <- dx <- dz <-1 # grid size
Dy <- Dx <- Dz <-1 # diffusion coeff, X- and Y-direction
r <- 0.025 # consumption rate

n <- 10
y <- array(dim=c(n,n,n),data=10.)

## use lsodes, the default (for n>20, Runge-Kutta more efficient)
print(system.time(

RES <- ode.3D(y, func = diffusion3D, parms = NULL, dimens = c(n, n, n),
times = 1:20, lrw = 120000, atol = 1e-10,
rtol = 1e-10, verbose = TRUE)

))

y <- array(dim = c(n, n, n), data = RES[nrow(RES), -1])
filled.contour(y[, , n/2], color.palette = terrain.colors)
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summary(RES)

## Not run:
for (i in 2:nrow(RES)) {

y <- array(dim=c(n,n,n),data=RES[i,-1])
filled.contour(y[,,n/2],main=i,color.palette=terrain.colors)

}

## End(Not run)

ode.band Solver for Ordinary Differential Equations; Assumes a Banded Jaco-
bian

Description

Solves a system of ordinary differential equations.

Assumes a banded Jacobian matrix, but does not rearrange the state variables (in contrast to ode.1D).
Suitable for 1-D models that include transport only between adjacent layers and that model only one
species.

Usage

ode.band(y, times, func, parms, nspec = NULL, dimens = NULL,
bandup = nspec, banddown = nspec, method = "lsode", names = NULL,
...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,
...). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times.The derivatives must be
specified in the same order as the state variables y.

parms parameters passed to func.
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nspec the number of *species* (components) in the model.

dimens the number of boxes in the model. If NULL, then nspec should be specified.

bandup the number of nonzero bands above the Jacobian diagonal.

banddown the number of nonzero bands below the Jacobian diagonal.

method the integrator to use, one of "vode", "lsode", "lsoda", "lsodar", "radau".

names the names of the components; used for plotting.

... additional arguments passed to the integrator.

Details

This is the method of choice for single-species 1-D reactive transport models.

For multi-species 1-D models, this method can only be used if the state variables are arranged per
box, per species (e.g. A[1], B[1], A[2], B[2], A[3], B[3], ... for species A, B). By default, the model
function will have the species arranged as A[1], A[2], A[3], ... B[1], B[2], B[3], ... in this case, use
ode.1D.

See the selected integrator for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
func, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

The output will have the attributes istate and rstate, two vectors with several elements. See the
help for the selected integrator for details. the first element of istate returns the conditions under
which the last call to the integrator returned. Normal is istate = 2. If verbose = TRUE, the settings
of istate and rstate will be written to the screen.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,

• ode.1D for integrating 1-D models

• ode.2D for integrating 2-D models

• ode.3D for integrating 3-D models

• lsode, lsoda, lsodar, vode for the integration options.

diagnostics to print diagnostic messages.
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Examples

## =======================================================================
## The Aphid model from Soetaert and Herman, 2009.
## A practical guide to ecological modelling.
## Using R as a simulation platform. Springer.
## =======================================================================

## 1-D diffusion model

## ================
## Model equations
## ================
Aphid <- function(t, APHIDS, parameters) {

deltax <- c (0.5*delx, rep(delx, numboxes-1), 0.5*delx)
Flux <- -D*diff(c(0, APHIDS, 0))/deltax
dAPHIDS <- -diff(Flux)/delx + APHIDS*r

list(dAPHIDS) # the output
}

## ==================
## Model application
## ==================

## the model parameters:
D <- 0.3 # m2/day diffusion rate
r <- 0.01 # /day net growth rate
delx <- 1 # m thickness of boxes
numboxes <- 60

## distance of boxes on plant, m, 1 m intervals
Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

## Initial conditions, ind/m2
## aphids present only on two central boxes
APHIDS <- rep(0, times = numboxes)
APHIDS[30:31] <- 1
state <- c(APHIDS = APHIDS) # initialise state variables

## RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals
out <- ode.band(state, times, Aphid, parms = 0,

nspec = 1, names = "Aphid")

## ================
## Plotting output
## ================
image(out, grid = Distance, method = "filled.contour",

xlab = "time, days", ylab = "Distance on plant, m",
main = "Aphid density on a row of plants")

matplot.1D(out, grid = Distance, type = "l",
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subset = time %in% seq(0, 200, by = 10))

# add an observed dataset to 1-D plot (make sure to use correct name):
data <- cbind(dist = c(0,10, 20, 30, 40, 50, 60),

Aphid = c(0,0.1,0.25,0.5,0.25,0.1,0))

matplot.1D(out, grid = Distance, type = "l",
subset = time %in% seq(0, 200, by = 10),
obs = data, obspar = list(pch = 18, cex = 2, col="red"))

## Not run:
plot.1D(out, grid = Distance, type = "l")

## End(Not run)

plot.deSolve Plot, Image and Histogram Method for deSolve Objects

Description

Plot the output of numeric integration routines.

Usage

## S3 method for class 'deSolve'
plot(x, ..., select = NULL, which = select, ask = NULL,

obs = NULL, obspar = list(), subset = NULL)
## S3 method for class 'deSolve'
hist(x, select = 1:(ncol(x)-1), which = select, ask = NULL,

subset = NULL, ...)
## S3 method for class 'deSolve'
image(x, select = NULL, which = select, ask = NULL,

add.contour = FALSE, grid = NULL,
method = "image", legend = FALSE, subset = NULL, ...)

## S3 method for class 'deSolve'
subset(x, subset = NULL, select = NULL,

which = select, arr = FALSE, ...)

plot.1D (x, ..., select = NULL, which = select, ask = NULL,
obs = NULL, obspar = list(), grid = NULL,
xyswap = FALSE, delay = 0, vertical = FALSE, subset = NULL)

matplot.0D(x, ..., select = NULL, which = select,
obs = NULL, obspar = list(), subset = NULL,
legend = list(x = "topright"))

matplot.1D(x, select = NULL, which = select, ask = NULL,
obs = NULL, obspar = list(), grid = NULL,
xyswap = FALSE, vertical = FALSE, subset = NULL, ...)
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Arguments

x an object of class deSolve, as returned by the integrators, and to be plotted.
For plot.deSolve, it is allowed to pass several objects of class deSolve after x
(unnamed) - see second example.

which the name(s) or the index to the variables that should be plotted or selected. De-
fault = all variables, except time. For use with matplot.0D and matplot.1D,
which or select can be a list, with vectors, each referring to a separate y-axis.

select which variable/columns to be selected. This is added for consistency with the
R-function subset.

subset either a logical expression indicating elements or rows to keep in select, or
a vector of integers denoting the indices of the elements over which to loop.
Missing values are taken as FALSE

ask logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask) and dev.interactive.

add.contour if TRUE, will add contours to the image plot.

method the name of the plotting method to use, one of "image", "filled.contour", "persp",
"contour".

grid only for image plots and for plot.1D: the 1-D grid as a vector (for output gen-
erated with ode.1D), or the x- and y-grid, as a list (for output generated with
ode.2D).

xyswap if TRUE, then x-and y-values are swapped and the y-axis is from top to bottom.
Useful for drawing vertical profiles.

vertical if TRUE, then 1. x-and y-values are swapped, the y-axis is from top to bottom,
the x-axis is on top, margin 3 and the main title gets the value of the x-axis.
Useful for drawing vertical profiles; see example 2.

delay adds a delay (in milliseconds) between consecutive plots of plot.1D to enable
animations.

obs a data.frame or matrix with "observed data" that will be added as points
to the plots. obs can also be a list with multiple data.frames and/or matrices
containing observed data.
By default the first column of an observed data set should contain the time-
variable. The other columns contain the observed values and they should have
names that are known in x.
If the first column of obs consists of factors or characters (strings), then it is
assumed that the data are presented in long (database) format, where the first
three columns contain (name, time, value).
If obs is not NULL and which is NULL, then the variables, common to both obs
and x will be plotted.

obspar additional graphics arguments passed to points, for plotting the observed data.
If obs is a list containing multiple observed data sets, then the graphics argu-
ments can be a vector or a list (e.g. for xlim, ylim), specifying each data set
separately.
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legend if TRUE, a color legend will be drawn on the right of each image. For use with
matplot.0D and matplot.1D: a list with arguments passed to R-function leg-
end.

arr if TRUE, and the output is from a 2-D or 3-D model, an array will be returned
with dimension = c(dimension of selected variable, nrow(x)). When arr=TRUE
then only one variable can be selected. When the output is from a 0-D or 1-D
model, then this argument is ignored.

... additional arguments.
The graphical arguments are passed to plot.default, image or hist
For plot.deSolve, and plot.1D, the dots may contain other objects of class
deSolve, as returned by the integrators, and to be plotted on the same graphs as
x - see second example. In this case, x and and these other objects should be
compatible, i.e. the column names should be the same.
For plot.deSolve, the arguments after . . . must be matched exactly.

Details

The number of panels per page is automatically determined up to 3 x 3 (par(mfrow = c(3, 3))).
This default can be overwritten by specifying user-defined settings for mfrow or mfcol. Set mfrow
equal to NULL to avoid the plotting function to change user-defined mfrow or mfcol settings.

Other graphical parameters can be passed as well. Parameters are vectorized, either according
to the number of plots (xlab, ylab, main, sub, xlim, ylim, log, asp, ann, axes, frame.plot,
panel.first, panel.last, cex.lab, cex.axis, cex.main) or according to the number of lines
within one plot (other parameters e.g. col, lty, lwd etc.) so it is possible to assign specific axis
labels to individual plots, resp. different plotting style. Plotting parameter ylim, or xlim can also
be a list to assign different axis limits to individual plots.

Similarly, the graphical parameters for observed data, as passed by obspar can be vectorized, ac-
cording to the number of observed data sets.

Image plots will only work for 1-D and 2-D variables, as solved with ode.1D and ode.2D. In the
first case, an image with times as x- and the grid as y-axis will be created. In the second case, an
x-y plot will be created, for all times. Unless ask = FALSE, the user will be asked to confirm page
changes. Via argument mtext, it is possible to label each page in case of 2D output.

For images, it is possible to pass an argument method which can take the values "image" (default),
"filled.contour", "contour" or "persp", in order to use the respective plotting method.

plot and matplot.0D will always have times on the x-axis. For problems solved with ode.1D, it
may be more useful to use plot.1D or matplot.1D which will plot how spatial variables change
with time. These plots will have the grid on the x-axis.

Value

Function subset called with arr = FALSE will return a matrix with up to as many rows as selected
by subset and as many columns as selected variables.

When arr = TRUE then an array will be outputted with dimensions equal to the dimension of the
selected variable, augmented with the number of rows selected by subset. This means that the last
dimension points to times.

Function subset also has an attribute that contains the times selected.
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See Also

deSolve, ode, print.deSolve,

hist image matplot, plot.default for the underlying functions from package graphics,

ode.2D, for an example of using subset with arr = TRUE.

Examples

## =======================================================================
## Example 1. A Predator-Prey model with 4 species in matrix formulation
## =======================================================================

LVmatrix <- function(t, n, parms) {
with(parms, {
dn <- r * n + n * (A %*% n)
return(list(c(dn)))

})
}
parms <- list(

r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
A = matrix(c(0.0, 0.0, -0.2, 0.01, # prey 1

0.0, 0.0, 0.02, -0.1, # prey 2
0.2, 0.02, 0.0, 0.0, # predator 1; prefers prey 1
0.01, 0.1, 0.0, 0.0), # predator 2; prefers prey 2
nrow = 4, ncol = 4, byrow=TRUE)

)
times <- seq(from = 0, to = 500, by = 0.1)
y <- c(prey1 = 1, prey2 = 1, pred1 = 2, pred2 = 2)

out <- ode(y, times, LVmatrix, parms)

## Basic line plot
plot(out, type = "l")

## User-specified axis labels
plot(out, type = "l", ylab = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),

xlab = "Time (d)", main = "Time Series")

## Set user-defined mfrow
pm <- par (mfrow = c(2, 2))

## "mfrow=NULL" keeps user-defined mfrow
plot(out, which = c("prey1", "pred2"), mfrow = NULL, type = "l", lwd = 2)

plot(out[,"prey1"], out[,"pred1"], xlab="prey1",
ylab = "pred1", type = "l", lwd = 2)

plot(out[,"prey2"], out[,"pred2"], xlab = "prey2",
ylab = "pred2", type = "l",lwd = 2)

## restore graphics parameters
par ("mfrow" = pm)



plot.deSolve 101

## Plot all in one figure, using matplot
matplot.0D(out, lwd = 2)

## Split y-variables in two groups
matplot.0D(out, which = list(c(1,3), c(2,4)),

lty = c(1,2,1,2), col=c(4,4,5,5),
ylab = c("prey1,pred1", "prey2,pred2"))

## =======================================================================
## Example 2. Add second and third output, and observations
## =======================================================================

# New runs with different parameter settings
parms2 <- parms
parms2$r[1] <- 0.2
out2 <- ode(y, times, LVmatrix, parms2)

# New runs with different parameter settings
parms3 <- parms
parms3$r[1] <- 0.05
out3 <- ode(y, times, LVmatrix, parms3)

# plot all three outputs
plot(out, out2, out3, type = "l",

ylab = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),
xlab = "Time (d)", main = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),
col = c("red", "blue", "darkred"))

## 'observed' data
obs <- as.data.frame(out[out[,1] %in% seq(10, 500, by = 30), ])

plot(out, which = "prey1", type = "l", obs = obs,
obspar = list(pch = 18, cex = 2))

plot(out, type = "l", obs = obs, col = "red")

matplot.0D(out, which = c("prey1", "pred1"), type = "l", obs = obs)

## second set of 'observed' data and two outputs
obs2 <- as.data.frame(out2[out2[,1] %in% seq(10, 500, by = 50), ])

## manual xlim, log
plot(out, out2, type = "l", obs = list(obs, obs2), col = c("red", "blue"),

obspar = list(pch = 18:19, cex = 2, col = c("red", "blue")),
log = c("y", ""), which = c("prey1", "prey1"),
xlim = list(c(100, 500), c(0, 400)))

## data in 'long' format
OBS <- data.frame(name = c(rep("prey1", 3), rep("prey2", 2)),

time = c(10, 100, 250, 10, 400),
value = c(0.05, 0.04, 0.7, 0.5, 1))

OBS
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plot(out, obs = OBS, obspar = c(pch = 18, cex = 2))

# a subset only:
plot(out, subset = prey1 < 0.5, type = "p")

# Simple histogram
hist(out, col = "darkblue", breaks = 50)

hist(out, col = "darkblue", breaks = 50, subset = prey1<1 & prey2 < 1)

# different parameters per plot
hist(out, col = c("darkblue", "red", "orange", "black"),

breaks = c(10,50))

## =======================================================================
## The Aphid model from Soetaert and Herman, 2009.
## A practical guide to ecological modelling.
## Using R as a simulation platform. Springer.
## =======================================================================

## 1-D diffusion model

## ================
## Model equations
## ================
Aphid <- function(t, APHIDS, parameters) {

deltax <- c (0.5*delx, rep(delx, numboxes - 1), 0.5*delx)
Flux <- -D * diff(c(0, APHIDS, 0))/deltax
dAPHIDS <- -diff(Flux)/delx + APHIDS * r
list(dAPHIDS, Flux = Flux)

}

## ==================
## Model application
## ==================

## the model parameters:
D <- 0.3 # m2/day diffusion rate
r <- 0.01 # /day net growth rate
delx <- 1 # m thickness of boxes
numboxes <- 60

## distance of boxes on plant, m, 1 m intervals
Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

## Initial conditions, ind/m2
## aphids present only on two central boxes
APHIDS <- rep(0, times = numboxes)
APHIDS[30:31] <- 1
state <- c(APHIDS = APHIDS) # initialise state variables

## RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals



radau 103

out <- ode.1D(state, times, Aphid, parms = 0, nspec = 1, names = "Aphid")

image(out, grid = Distance, main = "Aphid model", ylab = "distance, m",
legend = TRUE)

## restricting time
image(out, grid = Distance, main = "Aphid model", ylab = "distance, m",

legend = TRUE, subset = time < 100)

image(out, grid = Distance, main = "Aphid model", ylab = "distance, m",
method = "persp", border = NA, theta = 30)

FluxAphid <- subset(out, select = "Flux", subset = time < 50)

matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1)

matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1,
subset = time < 50)

matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1,
subset = time %in% seq(0, 200, by = 10), col = "grey")

## Not run:
plot(out, ask = FALSE, mfrow = c(1, 1))
plot.1D(out, ask = FALSE, type = "l", lwd = 2, xyswap = TRUE)

## End(Not run)

## see help file for ode.2D for images of 2D variables

radau Implicit Runge-Kutta RADAU IIA

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE)
in the form:

dy/dt = f(t, y)

or linearly implicit differential algebraic equations in the form:

Mdy/dt = f(t, y)

.

The R function radau provides an interface to the Fortran solver RADAU5, written by Ernst Hairer
and G. Wanner, which implements the 3-stage RADAU IIA method. It implements the implicit
Runge-Kutta method of order 5 with step size control and continuous output. The system of ODEs
or DAEs is written as an R function or can be defined in compiled code that has been dynamically
loaded.
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Usage

radau(y, times, func, parms, nind = c(length(y), 0, 0),
rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint",
mass = NULL, massup = NULL, massdown = NULL, rootfunc = NULL,
verbose = FALSE, nroot = 0, hmax = NULL, hini = 0, ynames = TRUE,
bandup = NULL, banddown = NULL, maxsteps = 5000,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL,
events=NULL, lags = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or the right-hand side of the equation

Mdy/dt = f(t, y)

if a DAE. (if mass is supplied then the problem is assumed a DAE).
func can also be a character string giving the name of a compiled function in a
dynamically loaded shared library.
If func is an R-function, it must be defined as:
func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the
variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before radau() is called. See deSolve
package vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

nind if a DAE system: a three-valued vector with the number of variables of index 1,
2, 3 respectively. The equations must be defined such that the index 1 variables
precede the index 2 variables which in turn precede the index 3 variables. The
sum of the variables of different index should equal N, the total number of vari-
ables. This has implications on the scaling of the variables, i.e. index 2 variables
are scaled by 1/h, index 3 variables are scaled by 1/h^2.

rtol relative error tolerance, either a scalar or an array as long as y. See details.
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atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine
in ‘dllname’ that computes the Jacobian (see vignette "compiledCode" from
package deSolve, for more about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See example.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

mass the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as M dy/dt = f(t, y). If the mass-matrix M is full, it should be of dimension
n2 where n is the number of y-values; if banded the number of rows should
be less than n, and the mass-matrix is stored diagonal-wise with element (i, j)
stored in mass(i - j + mumas + 1, j).
If mass = NULL then the model is an ODE (default)

massup number of non-zero bands above the diagonal of the mass matrix, in case it is
banded.

massdown number of non-zero bands below the diagonal of the mass matrix, in case it is
banded.

rootfunc if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - see details.

nroot only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is set equal to 1e-6.
Usually 1e-3 to 1e-5 is good for stiff equations

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.
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maxsteps average maximal number of steps per output interval taken by the solver. This
argument is defined such as to ensure compatibility with the Livermore-solvers.
RADAU only accepts the maximal number of steps for the entire integration,
and this is calculated as length(times) * maxsteps.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the DLL - you have to perform this
check in the code - See vignette "compiledCode" from package deSolve.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time, value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine RADAU5, whose documentation should be consulted
for details. The implementation is based on the Fortran 77 version from January 18, 2002.
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There are four standard choices for the Jacobian which can be specified with jactype.

The options for jactype are

jactype = "fullint" a full Jacobian, calculated internally by the solver.

jactype = "fullusr" a full Jacobian, specified by user function jacfunc.

jactype = "bandusr" a banded Jacobian, specified by user function jacfunc; the size of the bands
specified by bandup and banddown.

jactype = "bandint" a banded Jacobian, calculated by radau; the size of the bands specified by
bandup and banddown.

Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver, which
roughly keeps the local error of y(i) below rtol(i) ∗ abs(y(i)) + atol(i).

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will be written to the screen at the end of the integration.

See vignette("deSolve") from the deSolve package for an explanation of each element in the vectors
containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in forcings (from package deSolve).

radau can find the root of at least one of a set of constraint functions rootfunc of the independent
and dependent variables. It then returns the solution at the root if that occurs sooner than the
specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function rootfun due to roundoff and integration error,
radau may return false roots, or return the same root at two or more nearly equal values of time.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

Author(s)

Karline Soetaert

References

E. Hairer and G. Wanner, 1996. Solving Ordinary Differential Equations II. Stiff and Differential-
algebraic problems. Springer series in computational mathematics 14, Springer-Verlag, second
edition.
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See Also

• ode for a general interface to most of the ODE solvers ,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• daspk for integrating DAE models up to index 1

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example 1: ODE
## Various ways to solve the same model.
## =======================================================================

## the model, 5 state variables
f1 <- function (t, y, parms) {

ydot <- vector(len = 5)

ydot[1] <- 0.1*y[1] -0.2*y[2]
ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
ydot[5] <- -0.3*y[4] +0.1*y[5]

return(list(ydot))
}

## the Jacobian, written as a full matrix
fulljac <- function (t, y, parms) {

jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
data = c(0.1, -0.2, 0 , 0 , 0 ,

-0.3, 0.1, -0.2, 0 , 0 ,
0 , -0.3, 0.1, -0.2, 0 ,
0 , 0 , -0.3, 0.1, -0.2,
0 , 0 , 0 , -0.3, 0.1))

return(jac)
}

## the Jacobian, written in banded form
bandjac <- function (t, y, parms) {

jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
data = c( 0 , -0.2, -0.2, -0.2, -0.2,

0.1, 0.1, 0.1, 0.1, 0.1,
-0.3, -0.3, -0.3, -0.3, 0))

return(jac)
}

## initial conditions and output times
yini <- 1:5



radau 109

times <- 1:20

## default: stiff method, internally generated, full Jacobian
out <- radau(yini, times, f1, parms = 0)
plot(out)

## stiff method, user-generated full Jacobian
out2 <- radau(yini, times, f1, parms = 0, jactype = "fullusr",

jacfunc = fulljac)

## stiff method, internally-generated banded Jacobian
## one nonzero band above (up) and below(down) the diagonal
out3 <- radau(yini, times, f1, parms = 0, jactype = "bandint",

bandup = 1, banddown = 1)

## stiff method, user-generated banded Jacobian
out4 <- radau(yini, times, f1, parms = 0, jactype = "bandusr",

jacfunc = bandjac, bandup = 1, banddown = 1)

## =======================================================================
## Example 2: ODE
## stiff problem from chemical kinetics
## =======================================================================
Chemistry <- function (t, y, p) {

dy1 <- -.04*y[1] + 1.e4*y[2]*y[3]
dy2 <- .04*y[1] - 1.e4*y[2]*y[3] - 3.e7*y[2]^2
dy3 <- 3.e7*y[2]^2
list(c(dy1, dy2, dy3))

}

times <- 10^(seq(0, 10, by = 0.1))
yini <- c(y1 = 1.0, y2 = 0, y3 = 0)

out <- radau(func = Chemistry, times = times, y = yini, parms = NULL)
plot(out, log = "x", type = "l", lwd = 2)

## =============================================================================
## Example 3: DAE
## Car axis problem, index 3 DAE, 8 differential, 2 algebraic equations
## from
## F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers,
## release 2.4. Department
## of Mathematics, University of Bari and INdAM, Research Unit of Bari,
## February 2008.
## Available from https://archimede.uniba.it/~testset/
## =============================================================================

## Problem is written as M*y' = f(t,y,p).
## caraxisfun implements the right-hand side:

caraxisfun <- function(t, y, parms) {
with(as.list(y), {
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yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)

dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g

dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))
})

}

eps <- 0.01; M <- 10; k <- M * eps^2/2;
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)

# the mass matrix
Mass <- diag(nrow = 10, 1)
Mass[5,5] <- Mass[6,6] <- Mass[7,7] <- Mass[8,8] <- M * eps * eps/2
Mass[9,9] <- Mass[10,10] <- 0
Mass

# index of the variables: 4 of index 1, 4 of index 2, 2 of index 3
index <- c(4, 4, 2)

times <- seq(0, 3, by = 0.01)
out <- radau(y = yini, mass = Mass, times = times, func = caraxisfun,

parms = NULL, nind = index)

plot(out, which = 1:4, type = "l", lwd = 2)

rk Explicit One-Step Solvers for Ordinary Differential Equations (ODE)

Description

Solving initial value problems for non-stiff systems of first-order ordinary differential equations
(ODEs).
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The R function rk is a top-level function that provides interfaces to a collection of common explicit
one-step solvers of the Runge-Kutta family with fixed or variable time steps.

The system of ODE’s is written as an R function (which may, of course, use .C, .Fortran, .Call,
etc., to call foreign code) or be defined in compiled code that has been dynamically loaded. A vector
of parameters is passed to the ODEs, so the solver may be used as part of a modeling package for
ODEs, or for parameter estimation using any appropriate modeling tool for non-linear models in R
such as optim, nls, nlm or nlme

Usage

rk(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
hini = hmax, ynames = TRUE, method = rkMethod("rk45dp7", ... ),
maxsteps = 5000, dllname = NULL, initfunc = dllname,
initpar = parms, rpar = NULL, ipar = NULL,
nout = 0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, events = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times times at which explicit estimates for y are desired. The first value in times must
be the initial time.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before rk is called. See package vignette
"compiledCode" for more details.

parms vector or list of parameters used in func.

rtol relative error tolerance, either a scalar or an array as long as y. Only applicable
to methods with variable time step, see details.

atol absolute error tolerance, either a scalar or an array as long as y. Only applicable
to methods with variable time step, see details.

tcrit if not NULL, then rk cannot integrate past tcrit. This parameter is for compati-
bility with other solvers.
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verbose a logical value that, when TRUE, triggers more verbose output from the ODE
solver.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the maximum of hini and the largest difference in times, to avoid
that the simulation possibly ignores short-term events. If 0, no maximal size is
specified. Note that hmin and hmax are ignored by fixed step methods like "rk4"
or "euler".

hini initial step size to be attempted; if 0, the initial step size is determined automat-
ically by solvers with flexible time step. For fixed step methods, setting hini =
0 forces internal time steps identically to external time steps provided by times.
Similarly, internal time steps of non-interpolating solvers cannot be bigger than
external time steps specified in times.

ynames if FALSE: names of state variables are not passed to function func ; this may
speed up the simulation especially for large models.

method the integrator to use. This can either be a string constant naming one of the
pre-defined methods or a call to function rkMethod specifying a user-defined
method. The most common methods are the fixed-step methods "euler", sec-
ond and fourth-order Runge Kutta ("rk2", "rk4"), or the variable step meth-
ods Bogacki-Shampine "rk23bs", Runge-Kutta-Fehlberg "rk34f", the fifth-
order Cash-Karp method "rk45ck" or the fifth-order Dormand-Prince method
with seven stages "rk45dp7". As a suggestion, one may use "rk23bs" (alias
"ode23") for simple problems and "rk45dp7" (alias "ode45") for rough prob-
lems.

maxsteps average maximal number of steps per output interval taken by the solver. This
argument is defined such as to ensure compatibility with the Livermore-solvers.
rk only accepts the maximal number of steps for the entire integration. It is
calculated as max(length(times) * maxsteps, max(diff(times)/hini + 1).

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
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the number of output variables calculated in the dll - you have to perform this
check in the code. See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information. Not also that if
events are specified, then polynomial interpolation is switched off and integra-
tion takes place from one external time step to the next, with an internal step
size less than or equal the difference of two adjacent points of times.

... additional arguments passed to func allowing this to be a generic function.

Details

Function rk is a generalized implementation that can be used to evaluate different solvers of the
Runge-Kutta family of explicit ODE solvers. A pre-defined set of common method parameters is in
function rkMethod which also allows to supply user-defined Butcher tables.

The input parameters rtol, and atol determine the error control performed by the solver. The
solver will control the vector of estimated local errors in y, according to an inequality of the form
max-norm of ( e/ewt ) ≤ 1, where ewt is a vector of positive error weights. The values of rtol and
atol should all be non-negative. The form of ewt is:

rtol× abs(y) + atol

where multiplication of two vectors is element-by-element.

Models can be defined in R as a user-supplied R-function, that must be called as: yprime =
func(t, y, parms). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system.

The return value of func should be a list, whose first element is a vector containing the derivatives
of y with respect to time, and whose second element contains output variables that are required at
each point in time. Examples are given below.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
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unless the integration routine returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

Note

Arguments rpar and ipar are provided for compatibility with lsoda.

Starting with version 1.8 implicit Runge-Kutta methods are also supported by this general rk inter-
face, however their implementation is still experimental. Instead of this you may consider radau
for a specific full implementation of an implicit Runge-Kutta method.

Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

References

Butcher, J. C. (1987) The numerical analysis of ordinary differential equations, Runge-Kutta and
general linear methods, Wiley, Chichester and New York.

Engeln-Muellges, G. and Reutter, F. (1996) Numerik Algorithmen: Entscheidungshilfe zur Auswahl
und Nutzung. VDI Verlag, Duesseldorf.

Hindmarsh, Alan C. (1983) ODEPACK, A Systematized Collection of ODE Solvers; in p.55–64 of
Stepleman, R.W. et al.[ed.] (1983) Scientific Computing, North-Holland, Amsterdam.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007) Numerical Recipes in
C. Cambridge University Press.

See Also

For most practical cases, solvers of the Livermore family (i.e. the ODEPACK solvers, see below)
are superior. Some of them are also suitable for stiff ODEs, differential algebraic equations (DAEs),
or partial differential equations (PDEs).

• rkMethod for a list of available Runge-Kutta parameter sets,

• rk4 and euler for special versions without interpolation (and less overhead),

• lsoda, lsode, lsodes, lsodar, vode, daspk for solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• diagnostics to print diagnostic messages.
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Examples

## =======================================================================
## Example: Resource-producer-consumer Lotka-Volterra model
## =======================================================================

## Notes:
## - Parameters are a list, names accessible via "with" function
## - Function sigimp passed as an argument (input) to model
## (see also ode and lsoda examples)

SPCmod <- function(t, x, parms, input) {
with(as.list(c(parms, x)), {
import <- input(t)
dS <- import - b*S*P + g*C # substrate
dP <- c*S*P - d*C*P # producer
dC <- e*P*C - f*C # consumer
res <- c(dS, dP, dC)
list(res)

})
}

## The parameters
parms <- c(b = 0.001, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

## vector of timesteps
times <- seq(0, 200, length = 101)

## external signal with rectangle impulse
signal <- data.frame(times = times,

import = rep(0, length(times)))

signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2

sigimp <- approxfun(signal$times, signal$import, rule = 2)

## Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)

## Euler method
out1 <- rk(xstart, times, SPCmod, parms, hini = 0.1,

input = sigimp, method = "euler")

## classical Runge-Kutta 4th order
out2 <- rk(xstart, times, SPCmod, parms, hini = 1,

input = sigimp, method = "rk4")

## Dormand-Prince method of order 5(4)
out3 <- rk(xstart, times, SPCmod, parms, hmax = 1,

input = sigimp, method = "rk45dp7")

mf <- par("mfrow")
## deSolve plot method for comparing scenarios
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plot(out1, out2, out3, which = c("S", "P", "C"),
main = c ("Substrate", "Producer", "Consumer"),
col =c("black", "red", "green"),
lty = c("solid", "dotted", "dotted"), lwd = c(1, 2, 1))

## user-specified plot function
plot (out1[,"P"], out1[,"C"], type = "l", xlab = "Producer", ylab = "Consumer")
lines(out2[,"P"], out2[,"C"], col = "red", lty = "dotted", lwd = 2)
lines(out3[,"P"], out3[,"C"], col = "green", lty = "dotted")

legend("center", legend = c("euler", "rk4", "rk45dp7"),
lty = c(1, 3, 3), lwd = c(1, 2, 1),
col = c("black", "red", "green"))

par(mfrow = mf)

rk4 Solve System of ODE (Ordinary Differential Equation)s by Euler’s
Method or Classical Runge-Kutta 4th Order Integration.

Description

Solving initial value problems for systems of first-order ordinary differential equations (ODEs)
using Euler’s method or the classical Runge-Kutta 4th order integration.

Usage

euler(y, times, func, parms, verbose = FALSE, ynames = TRUE,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

rk4(y, times, func, parms, verbose = FALSE, ynames = TRUE,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

euler.1D(y, times, func, parms, nspec = NULL, dimens = NULL,
names = NULL, verbose = FALSE, ynames = TRUE,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times times at which explicit estimates for y are desired. The first value in times must
be the initial time.
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func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before rk4 is called. See package vignette
"compiledCode" for more details.

parms vector or list of parameters used in func.

nspec for 1D models only: the number of species (components) in the model. If NULL,
then dimens should be specified.

dimens for 1D models only: the number of boxes in the model. If NULL, then nspec
should be specified.

names for 1D models only: the names of the components; used for plotting.

verbose a logical value that, when TRUE, triggers more verbose output from the ODE
solver.

ynames if FALSE: names of state variables are not passed to function func ; this may
speed up the simulation especially for large models.

dllname a string giving the name of the shared library (without extension) that contains
all the compiled function or subroutine definitions refered to in func. See pack-
age vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode",

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the DLL: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the DLL-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the DLL - you have to perform this
check in the code. See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library.
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forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time, value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

... additional arguments passed to func allowing this to be a generic function.

Details

rk4 and euler are special versions of the two fixed step solvers with less overhead and less func-
tionality (e.g. no interpolation and no events) compared to the generic Runge-Kutta codes called by
ode resp. rk.

If you need different internal and external time steps or want to use events, please use: rk(y,
times, func, parms, method = "rk4") or rk(y, times, func, parms, method = "euler").

See help pages of rk and rkMethod for details.

Function euler.1D essentially calls function euler but contains additional code to support plotting
of 1D models, see ode.1D and plot.1D for details.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the integration routine returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

Note

For most practical cases, solvers with flexible timestep (e.g. rk(method = "ode45") and especially
solvers of the Livermore family (ODEPACK, e.g. lsoda) are superior.

Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

See Also

• rkMethod for a list of available Runge-Kutta parameter sets,

• rk for the more general Runge-Code,

• lsoda, lsode, lsodes, lsodar, vode, daspk for solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,
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• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• dede for integrating models with delay differential equations,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## Example: Analytical and numerical solutions of logistic growth
## =======================================================================

## the derivative of the logistic
logist <- function(t, x, parms) {

with(as.list(parms), {
dx <- r * x[1] * (1 - x[1]/K)
list(dx)

})
}

time <- 0:100
N0 <- 0.1; r <- 0.5; K <- 100
parms <- c(r = r, K = K)
x <- c(N = N0)

## analytical solution
plot(time, K/(1 + (K/N0-1) * exp(-r*time)), ylim = c(0, 120),

type = "l", col = "red", lwd = 2)

## reasonable numerical solution with rk4
time <- seq(0, 100, 2)
out <- as.data.frame(rk4(x, time, logist, parms))
points(out$time, out$N, pch = 16, col = "blue", cex = 0.5)

## same time step with euler, systematic under-estimation
time <- seq(0, 100, 2)
out <- as.data.frame(euler(x, time, logist, parms))
points(out$time, out$N, pch = 1)

## unstable result
time <- seq(0, 100, 4)
out <- as.data.frame(euler(x, time, logist, parms))
points(out$time, out$N, pch = 8, cex = 0.5)

## method with automatic time step
out <- as.data.frame(lsoda(x, time, logist, parms))
points(out$time, out$N, pch = 1, col = "green")

legend("bottomright",
c("analytical","rk4, h=2", "euler, h=2",
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"euler, h=4", "lsoda"),
lty = c(1, NA, NA, NA, NA), lwd = c(2, 1, 1, 1, 1),
pch = c(NA, 16, 1, 8, 1),
col = c("red", "blue", "black", "black", "green"))

rkMethod Collection of Parameter Sets (Butcher Arrays) for the Runge-Kutta
Family of ODE Solvers

Description

This function returns a list specifying coefficients and properties of ODE solver methods from the
Runge-Kutta family.

Usage

rkMethod(method = NULL, ...)

Arguments

method a string constant naming one of the pre-defined methods of the Runge-Kutta
family of solvers. The most common methods are the fixed-step methods "euler",
"rk2", "rk4" or the variable step methods "rk23bs" (alias "ode23"), "rk45dp7"
(alias "ode45") or "rk78f".

... specification of a user-defined solver, see Value and example below.

Details

This function supplies method settings for rk or ode. If called without arguments, the names of all
currently implemented solvers of the Runge-Kutta family are returned.

The following comparison gives an idea how the algorithms of deSolve are related to similar algo-
rithms of other simulation languages:

rkMethod | Description
"euler" | Euler’s Method
"rk2" | 2nd order Runge-Kutta, fixed time step (Heun’s method)
"rk4" | classical 4th order Runge-Kutta, fixed time step
"rk23" | Runge-Kutta, order 2(3); Octave: ode23
"rk23bs", "ode23" | Bogacki-Shampine, order 2(3); Matlab: ode23
"rk34f" | Runge-Kutta-Fehlberg, order 3(4)
"rk45ck" | Runge-Kutta Cash-Karp, order 4(5)
"rk45f" | Runge-Kutta-Fehlberg, order 4(5); Octave: ode45, pair=1
"rk45e" | Runge-Kutta-England, order 4(5)
"rk45dp6" | Dormand-Prince, order 4(5), local order 6
"rk45dp7", "ode45" | Dormand-Prince 4(5), local order 7

| (also known as dopri5; MATLAB: ode45; Octave: ode45, pair=0)
"rk78f" | Runge-Kutta-Fehlberg, order 7(8)
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"rk78dp" | Dormand-Prince, order 7(8)

Note that this table is based on the Runge-Kutta coefficients only, but the algorithms differ also in
their implementation, in their stepsize adaption strategy and interpolation methods.

The table reflects the state at time of writing and it is of course possible that implementations
change.

Methods "rk45dp7" (alias "ode45") and "rk45ck" contain specific and efficient built-in interpola-
tion schemes (dense output).

As an alternative, Neville-Aitken polynomials can be used to interpolate between time steps. This is
available for all RK methods and may be useful to speed up computation if no dense-output formula
is available. Note however, that this can introduce considerable local error; it is disabled by default
(see nknots below).

Value

A list with the following elements:

ID name of the method (character)
varstep boolean value specifying if the method allows for variable time step (TRUE) or

not (FALSE).
FSAL (first same as last) optional boolean value specifying if the method allows re-use

of the last function evaluation (TRUE) or not (FALSE or NULL).
A coefficient matrix of the method. As link{rk} supports only explicit methods,

this matrix must be lower triangular. A must be a vector for fixed step methods
where only the subdiagonal values are different from zero.

b1 coefficients of the lower order Runge-Kutta pair.
b2 coefficients of the higher order Runge-Kutta pair (optional, for embedded meth-

ods that allow variable time step).
c coefficients for calculating the intermediate time steps.
d optional coefficients for built-in polynomial interpolation of the outputs from in-

ternal steps (dense output), currently only available for method rk45dp7 (Dormand-
Prince).

densetype optional integer value specifying the dense output formula; currently only densetype
= 1 for rk45dp7 (Dormand-Prince) and densetype = 2 for rk45ck (Cash-Karp)
are supported. Undefined values (e.g., densetype = NULL) disable dense output.

stage number of function evaluations needed (corresponds to number of rows in A).
Qerr global error order of the method, important for automatic time-step adjustment.
nknots integer value specifying the order of interpolation polynomials for methods

without dense output. If nknots < 2 (the default) then internal interpolation
is switched off and integration is performed step by step between external time
steps.
If nknots is between 3 and 8, Neville-Aitken polynomials are used, which need
at least nknots + 1 internal time steps. Interpolation may speed up integration
but can lead to local errors higher than the tolerance, especially if external and
internal time steps are very different.
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alpha optional tuning parameter for stepsize adjustment. If alpha is omitted, it is set
to 1/Qerr − 0.75beta. The default value is 1/Qerr (for beta = 0).

beta optional tuning parameter for stepsize adjustment. Typical values are 0 (default)
or 0.4/Qerr.

Note

• Adaptive stepsize Runge-Kuttas are preferred if the solution contains parts when the states
change fast, and parts when not much happens. They will take small steps over bumpy ground
and long steps over uninteresting terrain.

• As a suggestion, one may use "rk23" (alias "ode23") for simple problems and "rk45dp7"
(alias "ode45") for rough problems. The default solver is "rk45dp7" (alias "ode45"), because
of its relatively high order (4), re-use of the last intermediate steps (FSAL = first same as last)
and built-in polynomial interpolation (dense output).

• Solver "rk23bs", that supports also FSAL, may be useful for slightly stiff systems if demands
on precision are relatively low.

• Another good choice, assuring medium accuracy, is the Cash-Karp Runge-Kutta method,
"rk45ck".

• Classical "rk4" is traditionally used in cases where an adequate stepsize is known a-priori or
if external forcing data are provided for fixed time steps only and frequent interpolation of
external data needs to be avoided.

• Method "rk45dp7" (alias "ode45") contains an efficient built-in interpolation scheme (dense
output) based on intermediate function evaluations.

Starting with version 1.8 implicit Runge-Kutta (irk) methods are also supported by the general
rk interface, however their implementation is still experimental. Instead of this you may consider
radau for a specific full implementation of an implicit Runge-Kutta method.

Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

References

Bogacki, P. and Shampine L.F. (1989) A 3(2) pair of Runge-Kutta formulas, Appl. Math. Lett. 2,
1–9.

Butcher, J. C. (1987) The numerical analysis of ordinary differential equations, Runge-Kutta and
general linear methods, Wiley, Chichester and New York.

Cash, J. R. and Karp A. H., 1990. A variable order Runge-Kutta method for initial value problems
with rapidly varying right-hand sides, ACM Transactions on Mathematical Software 16, 201–222.
doi:10.1145/79505.79507

Dormand, J. R. and Prince, P. J. (1980) A family of embedded Runge-Kutta formulae, J. Comput.
Appl. Math. 6(1), 19–26.

Engeln-Muellges, G. and Reutter, F. (1996) Numerik Algorithmen: Entscheidungshilfe zur Auswahl
und Nutzung. VDI Verlag, Duesseldorf.

Fehlberg, E. (1967) Klassische Runge-Kutta-Formeln fuenfter and siebenter Ordnung mit Schrittweiten-
Kontrolle, Computing (Arch. Elektron. Rechnen) 4, 93–106.

https://doi.org/10.1145/79505.79507
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Kutta, W. (1901) Beitrag zur naeherungsweisen Integration totaler Differentialgleichungen, Z. Math.
Phys. 46, 435–453.

Octave-Forge - Extra Packages for GNU Octave, Package OdePkg. https://octave.sourceforge.
io

Prince, P. J. and Dormand, J. R. (1981) High order embedded Runge-Kutta formulae, J. Comput.
Appl. Math. 7(1), 67–75. doi:10.1016/0771050X(81)900103

Runge, C. (1895) Ueber die numerische Aufloesung von Differentialgleichungen, Math. Ann. 46,
167–178.

MATLAB (R) is a registed property of The Mathworks Inc.

See Also

rk, ode

Examples

rkMethod() # returns the names of all available methods
rkMethod("rk45dp7") # parameters of the Dormand-Prince 5(4) method
rkMethod("ode45") # an alias for the same method

func <- function(t, x, parms) {
with(as.list(c(parms, x)),{
dP <- a * P - b * C * P
dC <- b * P * C - c * C
res <- c(dP, dC)
list(res)

})
}
times <- seq(0, 200, length = 101)
parms <- c(a = 0.1, b = 0.1, c = 0.1)
x <- c(P = 2, C = 1)

## rk using ode45 as the default method
out <- rk(x, times, func, parms)

## all methods can be called also from 'ode' by using rkMethod
out <- ode(x, times, func, parms, method = rkMethod("rk4"))

## 'ode' has aliases for the most common RK methods
out <- ode(x, times, func, parms, method = "ode45")

##===========================================================================
## Comparison of local error from different interpolation methods
##===========================================================================

## lsoda with lower tolerances (1e-10) used as reference
o0 <- ode(x, times, func, parms, method = "lsoda", atol = 1e-10, rtol = 1e-10)

## rk45dp7 with hmax = 10 > delta_t = 2
o1 <- ode(x, times, func, parms, method = rkMethod("rk45dp7"), hmax = 10)

https://octave.sourceforge.io
https://octave.sourceforge.io
https://doi.org/10.1016/0771-050X%2881%2990010-3


124 SCOC

## disable dense-output interpolation
## and use only Neville-Aitken polynomials instead
o2 <- ode(x, times, func, parms,

method = rkMethod("rk45dp7", densetype = NULL, nknots = 5), hmax = 10)

## stop and go: disable interpolation completely
## and integrate explicitly between external time steps
o3 <- ode(x, times, func, parms,

method = rkMethod("rk45dp7", densetype = NULL, nknots = 0, hmax=10))

## compare different interpolation methods with lsoda
mf <- par("mfrow" = c(4, 1))
matplot(o1[,1], o1[,-1], type = "l", xlab = "Time", main = "State Variables",

ylab = "P, C")
matplot(o0[,1], o0[,-1] - o1[,-1], type = "l", xlab = "Time", ylab = "Diff.",

main="Difference between lsoda and ode45 with dense output")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,-1] - o2[,-1], type = "l", xlab = "Time", ylab = "Diff.",

main="Difference between lsoda and ode45 with Neville-Aitken")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,-1] - o3[,-1], type = "l", xlab = "Time", ylab = "Diff.",

main="Difference between lsoda and ode45 in 'stop and go' mode")
abline(h = 0, col = "grey")
par(mf)

##===========================================================================
## rkMethod allows to define user-specified Runge-Kutta methods
##===========================================================================
out <- ode(x, times, func, parms,

method = rkMethod(ID = "midpoint",
varstep = FALSE,
A = c(0, 1/2),
b1 = c(0, 1),
c = c(0, 1/2),
stage = 2,
Qerr = 1

)
)

plot(out)

## compare method diagnostics
times <- seq(0, 200, length = 10)
o1 <- ode(x, times, func, parms, method = rkMethod("rk45ck"))
o2 <- ode(x, times, func, parms, method = rkMethod("rk78dp"))
diagnostics(o1)
diagnostics(o2)

SCOC A Sediment Model of Oxygen Consumption
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Description

A model that describes oxygen consumption in a marine sediment.

One state variable:

• sedimentary organic carbon,

Organic carbon settles on the sediment surface (forcing function Flux) and decays at a constant rate.

The equation is simple:

dC

dt
= Flux− kC

This model is written in FORTRAN.

Usage

SCOC(times, y = NULL, parms, Flux, ...)

Arguments

times time sequence for which output is wanted; the first value of times must be the
initial time,

y the initial value of the state variable; if NULL it will be estimated based on Flux
and parms,

parms the model parameter, k,

Flux a data set with the organic carbon deposition rates,

... any other parameters passed to the integrator ode (which solves the model).

Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code.

The source can be found in the ‘doc/examples/dynload’ subdirectory of the package.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Soetaert, K. and P.M.J. Herman, 2009. A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer, 372 pp.

See Also

ccl4model, the CCl4 inhalation model.

aquaphy, the algal growth model.
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Examples

## Forcing function data
Flux <- matrix(ncol = 2, byrow = TRUE, data = c(

1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73,0.277, 83,0.186,
93,0.140,103, 0.255, 113, 0.231,123, 0.309,133,1.127,143,1.923,
153,1.091,163,1.001, 173, 1.691,183, 1.404,194,1.226,204,0.767,
214, 0.893,224,0.737, 234,0.772,244, 0.726,254,0.624,264,0.439,
274,0.168,284 ,0.280, 294,0.202,304, 0.193,315,0.286,325,0.599,
335, 1.889,345, 0.996,355,0.681,365,1.135))

parms <- c(k = 0.01)

times <- 1:365
out <- SCOC(times, parms = parms, Flux = Flux)

plot(out[,"time"], out[,"Depo"], type = "l", col = "red")
lines(out[,"time"], out[,"Mineralisation"], col = "blue")

## Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")

out2 <- SCOC(times, parms = parms, Flux = Flux, fcontrol = fcontrol)

plot(out2[,"time"], out2[,"Depo"], type = "l",col = "red")
lines(out2[,"time"], out2[,"Mineralisation"], col = "blue")

timelags Time Lagged Values of State Variables and Derivatives.

Description

Functions lagvalue and lagderiv provide access to past (lagged) values of state variables and
derivatives.

They are to be used with function dede, to solve delay differential equations.

Usage

lagvalue(t, nr)
lagderiv(t, nr)

Arguments

t the time for which the lagged value is wanted; this should be no larger than the
current simulation time and no smaller than the initial simulation time.

nr the number of the lagged value; if NULL then all state variables or derivatives are
returned.
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Details

The lagvalue and lagderiv can only be called during the integration, the lagged time should not
be smaller than the initial simulation time, nor should it be larger than the current simulation time.

Cubic Hermite interpolation is used to obtain an accurate interpolant at the requested lagged time.

Value

a scalar (or vector) with the lagged value(s).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

dede, for how to implement delay differential equations.

Examples

## =============================================================================
## exercise 6 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
##
## two lag values
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {

History <- function(t) c(cos(t), sin(t))
if (t < 1)

lag1 <- History(t - 1)[1]
else

lag1 <- lagvalue(t - 1)[1] # returns a vector; select first element

if (t < 2)
lag2 <- History(t - 2)[2]

else
lag2 <- lagvalue(t - 2,2) # faster than lagvalue(t - 2)[2]

dy1 <- lag1 * lag2
dy2 <- -y[1] * lag2

list(c(dy1, dy2), lag1 = lag1, lag2 = lag2)
}

##-----------------------------
## parameters
##-----------------------------
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r <- 3.5; m <- 19

##-----------------------------
## initial values and times
##-----------------------------

yinit <- c(y1 = 0, y2 = 0)
times <- seq(0, 20, by = 0.01)

##-----------------------------
## solve the model
##-----------------------------

yout <- dede(y = yinit, times = times, func = derivs,
parms = NULL, atol = 1e-9)

##-----------------------------
## plot results
##-----------------------------

plot(yout, type = "l", lwd = 2)

## =============================================================================
## The predator-prey model with time lags, from Hale
## problem 1 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
##
## a vector with lag valuess
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
predprey <- function(t, y, parms) {

tlag <- t - 1
if (tlag < 0)
ylag <- c(80, 30)

else
ylag <- lagvalue(tlag) # returns a vector

dy1 <- a * y[1] * (1 - y[1]/m) + b * y[1] * y[2]
dy2 <- c * y[2] + d * ylag[1] * ylag[2]
list(c(dy1, dy2))

}

##-----------------------------
## parameters
##-----------------------------

a <- 0.25; b <- -0.01; c <- -1 ; d <- 0.01; m <- 200

##-----------------------------
## initial values and times
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##-----------------------------

yinit <- c(y1 = 80, y2 = 30)
times <- seq(0, 100, by = 0.01)

#-----------------------------
# solve the model
#-----------------------------

yout <- dede(y = yinit, times = times, func = predprey, parms = NULL)

##-----------------------------
## display, plot results
##-----------------------------

plot(yout, type = "l", lwd = 2, main = "Predator-prey model", mfrow = c(2, 2))
plot(yout[,2], yout[,3], xlab = "y1", ylab = "y2", type = "l", lwd = 2)

diagnostics(yout)

## =============================================================================
##
## A neutral delay differential equation (lagged derivative)
## y't = -y'(t-1), y(t) t < 0 = 1/t
##
## =============================================================================

##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {

tlag <- t - 1
if (tlag < 0)
dylag <- -1

else
dylag <- lagderiv(tlag)

list(c(dy = -dylag), dylag = dylag)
}

##-----------------------------
## initial values and times
##-----------------------------

yinit <- 0
times <- seq(0, 4, 0.001)

##-----------------------------
## solve the model
##-----------------------------

yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)
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##-----------------------------
## display, plot results
##-----------------------------

plot(yout, type = "l", lwd = 2)

vode Solver for Ordinary Differential Equations (ODE)

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE)
in the form:

dy/dt = f(t, y)

The R function vode provides an interface to the FORTRAN ODE solver of the same name, written
by Peter N. Brown, Alan C. Hindmarsh and George D. Byrne.

The system of ODE’s is written as an R function or be defined in compiled code that has been
dynamically loaded.

In contrast to lsoda, the user has to specify whether or not the problem is stiff and choose the
appropriate solution method.

vode is very similar to lsode, but uses a variable-coefficient method rather than the fixed-step-
interpolate methods in lsode. In addition, in vode it is possible to choose whether or not a copy of
the Jacobian is saved for reuse in the corrector iteration algorithm; In lsode, a copy is not kept.

Usage

vode(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", mf = NULL, verbose = FALSE,
tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
maxord = NULL, bandup = NULL, banddown = NULL, maxsteps = 5000,
dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL, forcings=NULL,
initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL,...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
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If func is an R-function, it must be defined as: func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before vode() is called. See package vi-
gnette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine in
‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more
about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ∂ẏ/∂y, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user; overruled
if mf is not NULL.

mf the "method flag" passed to function vode - overrules jactype - provides more
options than jactype - see details.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the
integration - see details.

tcrit if not NULL, then vode cannot integrate past tcrit. The FORTRAN routine
dvode overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.
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hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical; if FALSE: names of state variables are not passed to function func ; this
may speed up the simulation especially for multi-D models.

maxord the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit
Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord
to save storage space.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps maximal number of steps per output interval taken by the solver.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. forcings or package vi-
gnette "compiledCode"

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.
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... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

Before using the integrator vode, the user has to decide whether or not the problem is stiff.

If the problem is nonstiff, use method flag mf = 10, which selects a nonstiff (Adams) method, no
Jacobian used.

If the problem is stiff, there are four standard choices which can be specified with jactype or mf.

The options for jactype are

jac = "fullint": a full Jacobian, calculated internally by vode, corresponds to mf = 22,

jac = "fullusr": a full Jacobian, specified by user function jacfunc, corresponds to mf = 21,

jac = "bandusr": a banded Jacobian, specified by user function jacfunc; the size of the bands
specified by bandup and banddown, corresponds to mf = 24,

jac = "bandint": a banded Jacobian, calculated by vode; the size of the bands specified by bandup
and banddown, corresponds to mf = 25.

More options are available when specifying mf directly.

The legal values of mf are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, -11, -12, -14, -15, -21, -22,
-24, -25.

mf is a signed two-digit integer, mf = JSV*(10*METH + MITER), where

JSV = SIGN(mf) indicates the Jacobian-saving strategy: JSV = 1 means a copy of the Jacobian is
saved for reuse in the corrector iteration algorithm. JSV = -1 means a copy of the Jacobian is
not saved.

METH indicates the basic linear multistep method: METH = 1 means the implicit Adams method.
METH = 2 means the method based on backward differentiation formulas (BDF-s).

MITER indicates the corrector iteration method: MITER = 0 means functional iteration (no Jaco-
bian matrix is involved).
MITER = 1 means chord iteration with a user-supplied full (NEQ by NEQ) Jacobian.
MITER = 2 means chord iteration with an internally generated (difference quotient) full Jaco-
bian (using NEQ extra calls to func per df/dy value).
MITER = 3 means chord iteration with an internally generated diagonal Jacobian approxima-
tion (using 1 extra call to func per df/dy evaluation).
MITER = 4 means chord iteration with a user-supplied banded Jacobian.
MITER = 5 means chord iteration with an internally generated banded Jacobian (using ML+MU+1
extra calls to func per df/dy evaluation).

If MITER = 1 or 4, the user must supply a subroutine jacfunc.

The example for integrator lsode demonstrates how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver. If the
request for precision exceeds the capabilities of the machine, vode will return an error code. See
lsoda for details.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.
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See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘vode’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Note

From version 1.10.4, the default of atol was changed from 1e-8 to 1e-6, to be consistent with the
other solvers.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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See Also

• rk,

• rk4 and euler for Runge-Kutta integrators.

• lsoda, lsode, lsodes, lsodar, daspk for other solvers of the Livermore family,

• ode for a general interface to most of the ODE solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

## =======================================================================
## ex. 1
## The famous Lorenz equations: chaos in the earth's atmosphere
## Lorenz 1963. J. Atmos. Sci. 20, 130-141.
## =======================================================================

chaos <- function(t, state, parameters) {
with(as.list(c(state)), {

dx <- -8/3 * x + y * z
dy <- -10 * (y - z)
dz <- -x * y + 28 * y - z

list(c(dx, dy, dz))
})

}

state <- c(x = 1, y = 1, z = 1)
times <- seq(0, 100, 0.01)

out <- vode(state, times, chaos, 0)

plot(out, type = "l") # all versus time
plot(out[,"x"], out[,"y"], type = "l", main = "Lorenz butterfly",

xlab = "x", ylab = "y")

## =======================================================================
## ex. 2
## SCOC model, in FORTRAN - to see the FORTRAN code:
## browseURL(paste(system.file(package="deSolve"),
## "/doc/examples/dynload/scoc.f",sep=""))
## example from Soetaert and Herman, 2009, chapter 3. (simplified)
## =======================================================================

## Forcing function data



136 zvode

Flux <- matrix(ncol = 2, byrow = TRUE, data = c(
1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73, 0.277, 83, 0.186,
93, 0.140,103, 0.255, 113, 0.231,123, 0.309,133, 1.127,143, 1.923,
153,1.091,163, 1.001, 173, 1.691,183, 1.404,194, 1.226,204, 0.767,
214,0.893,224, 0.737, 234, 0.772,244, 0.726,254, 0.624,264, 0.439,
274,0.168,284, 0.280, 294, 0.202,304, 0.193,315, 0.286,325, 0.599,
335,1.889,345, 0.996, 355, 0.681,365, 1.135))

parms <- c(k = 0.01)

meanDepo <- mean(approx(Flux[,1], Flux[,2], xout = seq(1, 365, by = 1))$y)

Yini <- c(y = as.double(meanDepo/parms))

times <- 1:365
out <- vode(Yini, times, func = "scocder",

parms = parms, dllname = "deSolve",
initforc = "scocforc", forcings = Flux,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation", "Depo"))

matplot(out[,1], out[,c("Depo", "Mineralisation")],
type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

## Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")

out2 <- vode(Yini, times, func = "scocder",
parms = parms, dllname = "deSolve",
initforc = "scocforc", forcings = Flux, fcontrol = fcontrol,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation", "Depo"))

matplot(out2[,1], out2[,c("Depo", "Mineralisation")],
type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

## Constant interpolation of forcing function - middle of interval
fcontrol <- list(method = "constant", f = 0.5)

out3 <- vode(Yini, times, func = "scocder",
parms = parms, dllname = "deSolve",
initforc = "scocforc", forcings = Flux, fcontrol = fcontrol,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation", "Depo"))

matplot(out3[,1], out3[,c("Depo", "Mineralisation")],
type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

plot(out, out2, out3)

zvode Solver for Ordinary Differential Equations (ODE) for COMPLEX
variables
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Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE)
in the form:

dy/dt = f(t, y)

where dy and y are complex variables.

The R function zvode provides an interface to the FORTRAN ODE solver of the same name, written
by Peter N. Brown, Alan C. Hindmarsh and George D. Byrne.

Usage

zvode(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
jacfunc = NULL, jactype = "fullint", mf = NULL, verbose = FALSE,
tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
maxord = NULL, bandup = NULL, banddown = NULL, maxsteps = 5000,
dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix. y has to be complex

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <- function(t, y, parms,
...). t is the current time point in the integration, y is the current estimate of
the variables in the ODE system. If the initial values y has a names attribute, the
names will be available inside func. parms is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables y. They should be complex
numbers.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before zvode() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.
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jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-
tial equations ∂ẏi/∂yj , or a string giving the name of a function or subroutine in
‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more
about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix ḋy/dy, where the
ith row contains the derivative of dyi/dt with respect to yj , or a vector contain-
ing the matrix elements by columns (the way R and FORTRAN store matrices).
Its elements should be complex numbers.
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user; overruled
if mf is not NULL.

mf the "method flag" passed to function zvode - overrules jactype - provides more
options than jactype - see details.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the
integration - see details.

tcrit if not NULL, then zvode cannot integrate past tcrit. The FORTRAN routine
dvode overshoots its targets (times points in the vector times), and interpolates
values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided
in tcrit.

hmin an optional minimum value of the integration stepsize. In special situations this
parameter may speed up computations with the cost of precision. Don’t use
hmin if you don’t know why!

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is determined by the
solver.

ynames logical; if FALSE: names of state variables are not passed to function func ; this
may speed up the simulation especially for multi-D models.

maxord the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit
Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord
to save storage space.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps maximal number of steps per output interval taken by the solver.

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See package vignette "compiledCode".
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initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the DLL-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the DLL - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. forcings or package vi-
gnette "compiledCode"

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

see vode, the double precision version, for details.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns
as elements in y plus the number of "global" values returned in the next elements of the return
from func, plus and additional column for the time value. There will be a row for each element in
times unless the FORTRAN routine ‘zvode’ returns with an unrecoverable error. If y has a names
attribute, it will be used to label the columns of the output value.

Note

From version 1.10.4, the default of atol was changed from 1e-8 to 1e-6, to be consistent with the
other solvers.
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The following text is adapted from the zvode.f source code:

When using zvode for a stiff system, it should only be used for the case in which the function f is
analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial
derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way zvode solves
the dense or banded linear systems that arise in the stiff case. For a complex stiff ODE system in
which f is not analytic, zvode is likely to have convergence failures, and for this problem one should
instead use ode on the equivalent real system (in the real and imaginary parts of y).
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See Also

vode for the double precision version

Examples

## =======================================================================
## Example 1 - very simple example
## df/dt = 1i*f, where 1i is the imaginary unit
## The initial value is f(0) = 1 = 1+0i
## =======================================================================

ZODE <- function(Time, f, Pars) {
df <- 1i*f
return(list(df))

}

https://doi.org/10.1137/0910062
https://doi.org/10.1145/355626.355636
https://doi.org/10.1145/355900.355903
https://doi.org/10.1145/355900.355903
https://netlib.org
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pars <- NULL
yini <- c(f = 1+0i)
times <- seq(0, 2*pi, length = 100)
out <- zvode(func = ZODE, y = yini, parms = pars, times = times,

atol = 1e-10, rtol = 1e-10)

# The analytical solution to this ODE is the exp-function:
# f(t) = exp(1i*t)
# = cos(t)+1i*sin(t) (due to Euler's equation)

analytical.solution <- exp(1i * times)

## compare numerical and analytical solution
tail(cbind(out[,2], analytical.solution))

## =======================================================================
## Example 2 - example in "zvode.f",
## df/dt = 1i*f (same as above ODE)
## dg/dt = -1i*g*g*f (an additional ODE depending on f)
##
## Initial values are
## g(0) = 1/2.1 and
## z(0) = 1
## =======================================================================

ZODE2<-function(Time,State,Pars) {
with(as.list(State), {
df <- 1i * f
dg <- -1i * g*g * f
return(list(c(df, dg)))

})
}

yini <- c(f = 1 + 0i, g = 1/2.1 + 0i)
times <- seq(0, 2*pi, length = 100)
out <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,

atol = 1e-10, rtol = 1e-10)

## The analytical solution is
## f(t) = exp(1i*t) (same as above)
## g(t) = 1/(f(t) + 1.1)

analytical <- cbind(f = exp(1i * times), g = 1/(exp(1i * times) + 1.1))

## compare numerical solution and the two analytical ones:
tail(cbind(out[,2], analytical[,1]))
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