
1. Organising raw camera trap images in camtrapR

Juergen Niedballa (camtrapr@gmail.com)

2026-02-08

Contents
Introduction 1

Installation . 1
Documentation . 2
Workflow . 2
General sampling situation . 3
Video support (since version 2.0.0) . 3
Nomenclature . 4
ExifTool . 4

Camera trap station information 5
Station / Camera IDs . 5
Column names . 5
Date format . 5
Station-/ Camera-level covariates . 6

Organising raw camera trap images 6
Saving raw images on your hard disk . 7
Shifting date and time of images . 7
Date/Time problems with Reconyx Hyperfire cameras . 8
Renaming images . 9
Writing a copyright tag into image metadata . 10

Introduction
camtrapR provides functions for organising and managing camera trap images and for the preparation of
occupancy and (spatial) capture-recapture analyses. The package handles JPG images and supports video
files.

The five vignettes demonstrate the camtrapR workflow using the sample data set that is included in the
package. Sample data were generated in a camera trapping survey in Sabah, Malaysian Borneo (A. Mohamed
et al. J. Mammal., 94, 82-89; 2013).

camtrapR is compatible with other software for camera trap data management. If you prefer to manage
images and identify species using other software, you can usually do so. For example, Camelot and TRAPPER
can export csv files that can be used as input for camtrapR. To maximize compatibility, camtrapR uses a
simple data structure and standard data types (data frames and matrices) to store information about the
camera trap survey and the detected species and individuals in separate data frames.

Installation
You can install the newest stable version from CRAN via:

1

mailto:camtrapr@gmail.com

install.packages("camtrapR")

Alternatively, you can install the development version with the latest features and bugfixes from GitHub
(requires package remotes):
library(remotes)
install_github("jniedballa/camtrapR")

Afterwards, load camtrapR via:
library(camtrapR)

Documentation
The latest vignettes, function reference and changelog can be found on the camtrapR GitHub pages or the
camtrapR page on CRAN. Source code can be found on GitHub.

Workflow
The camtrapR workflow consists of a series of functions that build upon one another in a logical sequence.
Below is a list of functions grouped by work steps. Detailed information about each function can be found in
the sections below, as well as in the other vignettes and the function help files.

• Organising raw images

1. createStationFolders
2. fixDateTimeOriginal (only if necessary)
3. timeShiftImages (only if necessary)
4. imageRename
5. addCopyrightTag

• Species identification and data extraction

1. checkSpeciesNames
2. createSpeciesFolders
3. checkSpeciesIdentification
4. appendSpeciesNames
5. exifTagNames
6. recordTable

• Data exploration and visualisation (species-level)

1. detectionMaps
2. activityHistogram
3. activityDensity
4. activityRadial
5. activityOverlap
6. surveyReport

• Individual identification and data extraction

1. getSpeciesImages
2. recordTableIndividual

• Preparing input for subsequent analyses

1. cameraOperation
2. detectionHistory (for occupancy analyses)
3. spatialDetectionHistory (for spatial capture-recapture analyses)
4. communityModel (for multi-species occupancy models)

2

https://jniedballa.github.io/camtrapR/
https://CRAN.R-project.org/package=camtrapR
https://github.com/jniedballa/camtrapR

General sampling situation
camtrapR was designed for camera trapping surveys in which an array of camera trap stations (each consisting
of one or more camera traps per station) is operated in a study area. The vignettes will provide a guideline
for how to use camtrapR in different sampling situations.

Video support (since version 2.0.0)
Since version 2.0.0, the functions recordTable and recordTableIndividual support video files. In addition
exifTagNames can read and display video metadata via ExifTool.

Video support allows you to process video files and identify species and individuals using the same workflow as
for images. With minimal effort, you can extract and tabulate these information using the familiar functions
within camtrapR.

Since this is a new feature, please be sure to read the vignette sections on video and the help files of the
relevant functions and check the example code. Also, please test the workflow before working on larger
amounts of data. Unfortunately, I could not include a sample video in the package due to file size constraints,
but I hope you will get the idea. And please, let me know about your experiences working with videos in
camtrapR and possible problems. I would really appreciate the feedback to inmprove and extend video
support.

Video date/time

The main problem in working with videos is the lack of a standardized date/time tag in the metadata. Only
if such a tag is present, camtrapR can successfully extract the video date/time. Not all cameras save date
and time in a suitable format in the metadata, so before conducting a study using videos, please make sure
that your cameras record a suitable (i.e., persistent) date/time tag in the metadata. You can check if there is
a suitable tag available in the video metadata:

1. Use exifTagNames to identify a usable video date/time tag
2. provide the name of the video date/time tag to recordTable

When using exifTagNames, make sure the date/time tag you choose is identical to the date/time shown in
the data field of the video. In the example videos I tests, tags such as “QuickTime:CreateDate” worked well.
The tags “File Creation Date/Time”, “File Modification Date/Time” and “File Access Date/Time” are not
suitable, since they are updated when the video files are moved or copied.

This also means that if there is no suitable date/time tag in the video metadata, camtrapR will not be able
to return information for these videos and will omit them. It really depends on your camera model. So if
you consider using video for your surveys, please first check (with that specific camera model) if there is a
suitable date/time tag in the video metadata. A suitable date/time tag is one that doesn’t change when
the video file is moved, copied or otherwise modified. If a camera fails to record such a tag, camtrapR can’t
return proper date and time, making the videos useless.

digiKam tags & metadata

In digiKam, it is possible to assign tags to videos. Just like images, videos can be tagged with species or
individual IDs, group size, sex, age group or whatever information you are interested in. BUT, in contrast
to JPG images, digiKam cannot write these tags directly into the video metadata. Instead, video tags are
stored in the digiKam database on your hard disk. To access tags assigned to videos, camtrapR has to read
them directly from the digiKam database. This means that in order for camtrapR to read video tags, the
videos need to be included in the digiKam database. Moving or copying the videos to a different location will
strip the tags you assigned.

Users need to provide the filename of the digiKam database and the directory it is in (digiKam > Settings >
configure digiKam > Database; the directory is stated there). In that menu, also ensure you use a SQLite
database (the default). When the digiKam database information are provided to camtrapR, all the tags

3

you assigned to videos in digiKam will be extracted and tabulated just like image tags. See the help files of
recordTable and recordTableIndividual for details.

Nomenclature
To facilitate understanding here is a glossary on how we use specific terms. It is standard camera trapping
nomenclature.

• station: a station is a locality containing one or more camera traps (often a pair of two)
• camera trap: refers to the individual camera unit. One or more (often two) constitute a station
• occasion: a distinct sampling event of 1 or more days
• effort: number of active trapping days per station and occasion

ExifTool
camtrapR relies on the free and open-source software ExifTool written by Phil Harvey to extract metadata
from images. ExifTool is freely available here and runs on Windows, Linux and MacOS. In order to use it,
your system must be able to find the software. On MacOS, Linux and Unix it needs installation and should
afterwards be found by the system without problems. How to set up Exiftool for Windows is detailed below.
General installation instruction can be found here.

ExifTool for Windows

On Windows, ExifTool does not need installation. In order for Windows to be able to find ExifTool, follow
the instructions found here. Be sure to download the stand-alone executable. The download file is a .zip
which you need to unzip, rename the contained “exiftool(-k).exe” file to “exiftool.exe” and place it in, e.g.,
C:/Windows. Windows will be able to find ExifTool if exiftool.exe is placed in a directory that is contained
in the Windows PATH variable (e.g. C:/Windows).
Check which directories are in PATH (output not shown here)
Sys.getenv("PATH")

Check if the system can find Exiftool (if output is empty "", system can't find Exiftool)
Sys.which("exiftool")

exiftool
"C:\\WINDOWS\\exiftool.exe"

If exiftool.exe cannot be placed in a PATH directory (e.g. due to limited user privileges), users can place
exiftool.exe in any directory and then add that directory to PATH temporarily for use in the running R
session using the function addToPath. This is necessary if the directory containing exiftool.exe is not in
PATH by default.
this is a dummy example assuming the directory structure: C:/Path/To/Exiftool/exiftool.exe
exiftool_dir <- "C:/Path/To/Exiftool"
addToPath(exiftool_dir)

Afterwards, Windows (via R) should be able to find ExifTool during the active session.

ExifTool performance

ExifTool is the performance bottleneck of the package functions. It can extract metadata at a rate of about
160 images per second (approx. 10,000 images per minute, measured on a laptop computer running Windows
7, Intel Core i5-2410M / 2.3 GHz, 6 GB RAM). Performance tends to be lower when ExifTool is first called
and increases afterwards; and it decreases in situations with numerous camera trap stations with few images
each (because ExifTool is called separately on every station directory and the associated overhead of loading
ExifTool each time).

4

https://exiftool.org/
https://exiftool.org/install.html
https://exiftool.org/install.html

Camera trap station information
Before looking at how images are handled, let’s first familiarise ourselves with how information about camera
trap stations are stored. Camera trap station information are tabulated in a simple data frame with 1 row
per station (if there was 1 camera per station) or 1 row per camera (if there was more than 1 camera per
station). Information to be stored in this table are: station (and camera) IDs, geographic coordinates, setup
and retrieval dates and possible dates when camera were not operational (because of malfunction, animal
interference, empty batteries, full memory cards etc.). The table can be generated standard spreadsheet
software and loaded into R.
here is a sample camera trap station table
data("camtraps")
camtraps

Station utm_y utm_x Setup_date Retrieval_date Problem1_from Problem1_to
1 StationA 604000 526000 02/04/2009 14/05/2009
2 StationB 606000 523000 03/04/2009 16/05/2009
3 StationC 607050 525000 04/04/2009 17/05/2009 12/05/2009 17/05/2009

Note that the sample data contain only one camera per station. Thus, there is no need to differentiate
between station and camera IDs. If there was more than one camera per station, an additional column for
camera IDs would be needed. Consequently, there would be one row for each camera and thus several rows
per station.

Station / Camera IDs
Station and camera IDs can be any combination of characters and numbers. Please don’t use underscores
though, and more specifically, don’t use double underscores ("__"), as these are used in a number of functions
to separate bits of information (e.g. in file names created by imageRename or row names in cameraOperation).

Column names
Column names in camtrapR are not prescribed, allowing users the freedom to name their data as they wish,
with one exception detailed below. In the sample table, ‘Station’ contains station IDs, ‘utm_y’ and ‘utm_x’
contain the station’s geographic coordinates. ‘Setup_date’ and ‘Retrieval_date’ are the dates the stations
were set up and retrieved from the field. All of these column names can be user-defined.

‘Problem1_from’ and ‘Problem1_to’ are optional columns to specify periods in which cameras/stations
were not operational. If cameras or stations malfunctioned repeatedly, additional pairs of columns such as
‘Problem2_from’ and ‘Problem2_to’ can be added. These column names must follow the given pattern.

Date format
All dates in this table (setup, retrieval and problem columns) should be of data type "character" and can
be formatted in any way that function as.Date can interpret. Since version 1.2, camtrapR also supports
the more flexible and convenient naming conventions of package lubridate, which makes it easier to specify
dates correctly.

camtrapR by default assumes the standard format "YYYY-MM-DD", e.g. "2015-12-31", and we recommend
to use that format (it is also best for sorting by date). In any case, the date format must be consistent
between the various date columns.

Two functions (cameraOperation, surveyReport) utilize these date information and therefore contain
arguments to specify the date format (dateFormat and CTDateFormat, respectively). These arguments are
used to interpret the character string in the table (e.g. "2015-12-31") as a date.

If these arguments contain the character “%” (characteristic of the format argument to strptime), they are
passed to function as.Date as argument format. If they don’t contain character “%”, they are interpreted

5

as orders arguments to the function parse_date_time in the lubridate package.

Details on how to set it correctly can be found in the Details section of the help files of functions as.Date
and strptime or parse_date_time.

Here is some information about date format in base R.

Here is some information about date format in lubridate.

Here are a few examples for December 1st 2015 ("generic" is the abstract representation of your date string
(Y = year, M = month, D = day), "example" is a formatted example and "dateFormat argument" is what
you’d specify in dateFormat and CTDateFormat in either the base R or lubridate naming convention):

generic example
dateFormat argument
(base)

dateFormat argument
(lubridate)

"YYYY-MM-DD" "2015-12-01" "%Y-%m-%d" "ymd"
"YYYY/MM/DD" "2015/12/01" "%Y/%m/%d" "ymd"
"YYYY/MM/DD" "2015/12/1" "%Y/%m/%d" "ymd"
"MM/DD/YY" "12/01/15" "%m/%d/%y" "mdy"
"YYYYMMDD" "20151201" "%Y%m%d" "ymd"
"DD.MM.YY" "1.12.15" "%d.%m.%y" "dmy"
"DD-MMM-YY" "01-Dec-15" "%d-%b-%y" "dmy"

In the sample table (camtraps), we use another date format for demonstration purposes.

Data type of the ID and date columns in the table must be character or factor. Please don’t use data
type Date. You can turn data type Date into character using as.character.

Station-/ Camera-level covariates
If needed, station-/camera-level covariates can be specified in this table, e.g. trail or habitat type, camera
model etc. They can later be used as covariates, e.g. in occupancy models.

Organising raw camera trap images
After collecting images from camera traps, the images are saved into a directory structure like this:

rawImages/stationA

rawImages/stationB

If there was more than 1 camera per station, the station directories must contain camera subdirectories, e.g.

rawImages/stationA/camera1

rawImages/stationA/camera2

If you have more than 1 camera per station but don’t separate the images from different cameras at this
stage, you will not be able to do so at a later point. Later in the workflow, you can decide whether you would
like to keep them separate or merge them (in the function imageRename).

Generally, you should not work on your raw data and instead keep them as a backup. If you rename you
images with imageRename, the whole camtrapR workflow will take place in a copy of the images to prevent
data loss.

Another important point is not to save any other data besides images in image directories. It may interfere
with the operation of the package and ExifTool.

6

https://www.r-bloggers.com/2013/08/date-formats-in-r/
https://lubridate.tidyverse.org/

Saving raw images on your hard disk
The directories for the raw images can be created automatically using the function createStationFolders
and the camera trap station table. As mentioned above, images can either be stored in station directories (if
there was 1 camera per station) or in station/camera directories (if there was >1 camera per station). The
behaviour is controlled by the function argument cameras. It specifies the camera ID column in the camera
trap information table. If it is defined, camera subdirectories will be created within the station directories.

Here is an example in which station directories without camera subdirectories are created.
create a temporary dummy directory for tests
(normally, you'd set up an empty directory in a proper place, e.g. .../myStudy/rawImages)
wd_createStationDir <- file.path(normalizePath(tempdir(), winslash = "/"), "createStationFoldersTest")

create station directories in wd_createStationDir
StationFolderCreate1 <- createStationFolders (inDir = wd_createStationDir,

stations = as.character(camtraps$Station),
createinDir = TRUE)

created 3 directories

StationFolderCreate1

station directory created exists
1 StationA C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/createStationFoldersTest/StationA TRUE TRUE
2 StationB C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/createStationFoldersTest/StationB TRUE TRUE
3 StationC C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/createStationFoldersTest/StationC TRUE TRUE

IMPORTANT: Please note that in this vignette station directories are set up in a temporary directory.
That does not make any sense in real life and is done here solely to demonstrate how the functions works. So
please don’t do this at home! Instead, always work in permanent directories!

Once the directories are created, you can copy over your images from the memory cards.

Shifting date and time of images
There are situations in which the date and time of your images may be incorrect. Imagine you forgot to
set the system time in one of your cameras or reset the time accidentally. Or think of a bug in the camera
software that causes years to be wrong as happened in the cameras of a major manufacturer at the turn of
the year 2015/2016. Another situation in which images times may need a little shift is when users wish to
synchronise the record times between camera pairs.

In any case, systematic offsets of date and time recorded by cameras can be corrected easily. The function
timeShiftImages does just that by utilising the date/time shift module of ExifTool. All you need is a table
containing the time offset in a certain format, i.e.
data(timeShiftTable)
timeShiftTable

Station camera timeshift sign
1 StationA NA 1:0:0 0:0:0 -
2 StationB NA 0:0:0 12:0:0 +

There is a station column with station IDs, camera is NA because there was 1 camera per station only in
our example, timeshift is the amount by which to shift the time of all images at that station, and sign
specifies the direction in which to shift time. Setting sign to + sets image time ahead by the amount specified
in timeshift, - sets image times back. timeshift format is "year:month:day hour:minute:second", i.e. "1:0:0
0:0:0" is a shift of exactly 1 year and "0:0:0 12:10:01" 12 hours and 10 minutes and 1 second. In the above
table, time stampes of images taken at StationA are shifted back by 1 year, and images taken at StationB
are shifted ahead by 12 hours.

7

The function timeShiftImages should be run directly after saving the raw images on the hard disk.
copy sample images to another location (so we don't mess around in the package directory)
wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")
file.copy(from = wd_images_raw, to = normalizePath(tempdir(), winslash = "/") , recursive = TRUE)

[1] TRUE

wd_images_raw_copy <- file.path(normalizePath(tempdir(), winslash = "/"), "raw_images")

timeshift_run <- timeShiftImages(inDir = wd_images_raw_copy,
timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign"

)

C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationA

C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationB

timeshift_run

directory n_directories n_images
1 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationA 1 directories scanned 3 image files updated
2 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationB 1 directories scanned 3 image files updated

ExifTool has now updated the time tag of all images in the directories specified in the timeShiftTable. The
original images are preserved as XYZ.JPG_original files (XYZ being the original file name). By setting
argument undo = TRUE, the orginals are restored and the modified images are deleted. The function will
check if the number of JPG_original files and JPG files in folders is identical. If not, the function will not
work. It does not check for consistency of file names.
timeshift_undo <- timeShiftImages(inDir = wd_images_raw_copy,

timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign",
undo = TRUE

)

timeshift_undo

directory n_images_undo
1 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationA 3
2 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images/StationB 3

Date/Time problems with Reconyx Hyperfire cameras
Some Reconyx Hyperfire cameras (e.g. Hyperfire HC500) don’t store date and time in the standard Exif
format. Consequently, camtrapR cannot read the DateTimeOriginal tag from these images. This can be
fixed easily by using the camtrapR function fixDateTimeOriginal or by following the instructions given by
Mathias Tobler in the CameraBase documentation (page 7).

8

Renaming images
Raw images are copied from the raw image directories into a new location and renamed at the same time. The
renamed file names follow this pattern (depending on whether there was one or more cameras per station):

StationID__Date__Time(X).JPG

StationID__CameraID__Date__Time(X).JPG

Station ID and camera ID are derived from the raw image directory structure created earlier with
createStationFolders Date and time are taken from image Exif metadata (read using ExifTool). (X) is a
numeric identifier that is assigned to all images taken at the same station (and camera, if applicable) within
one minute. This is to avoid identical image names if images were taken in the same second (or in the same
minute, if cameras record time in hours and minutes only).

Again, please be aware that temporary directories are used in the example. Set outDir to a permanent
directory. In addition, images are not actually copied (argument copyImages = FALSE), but copying and
renaming is mererly simulated in out example. So, in real world data, set copyImages = TRUE.
raw image location

wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")
destination for renamed images to be copied to

wd_images_raw_renamed <- file.path(normalizePath(tempdir(), winslash = "/"), "raw_images_renamed")

renaming.table2 <- imageRename(inDir = wd_images_raw,
outDir = wd_images_raw_renamed,
hasCameraFolders = FALSE,
copyImages = FALSE

)

StationA: 3 images |========== | 50%

StationB: 3 images |====================| 100%

here is the information for a few images
head(renaming.table2)

Directory FileName Station Camera DateTimeOriginal DateReadable
1 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationA IMG0001.JPG StationA NA 2009-04-10 05:07:00 TRUE
2 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationA IMG0002.JPG StationA NA 2009-04-21 00:40:00 TRUE
3 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationA IMG0003.JPG StationA NA 2009-04-22 20:19:00 TRUE
4 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationB IMG0001.JPG StationB NA 2009-04-05 00:11:00 TRUE
5 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationB IMG0002.JPG StationB NA 2009-04-05 23:13:00 TRUE
6 C:/Users/Juergen/Documents/GitHub/camtrapR/inst/pictures/raw_images/StationB IMG0003.JPG StationB NA 2009-04-07 00:23:00 TRUE
outDir filename_new fileExistsAlready CopyStatus
1 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationA StationA__2009-04-10__05-07-00(1).JPG FALSE FALSE
2 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationA StationA__2009-04-21__00-40-00(1).JPG FALSE FALSE
3 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationA StationA__2009-04-22__20-19-00(1).JPG FALSE FALSE
4 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationB StationB__2009-04-05__00-11-00(1).JPG FALSE FALSE
5 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationB StationB__2009-04-05__23-13-00(1).JPG FALSE FALSE
6 C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/raw_images_renamed/StationB StationB__2009-04-07__00-23-00(1).JPG FALSE FALSE

So, the first image, "IMG0001.JPG" was renamed to "StationA__2009-04-10__05-07-00(1).JPG". Here is
what the columns mean:

column content
Directory the raw image directory
FileName raw image file name
Station the station the image was taken at

9

column content
Camera the camera ID (here NA because there were no camera subdirectories)
DateTimeOriginalDate and time in R-readable format
DateReadablewhether the date could be read from the metadata or not (TRUE = yes)
outDir the directory the renamed image was copied to
filename_newthe new file name
CopyStatus whether the images was copied successfully (TRUE = yes)

At this point you created a copy of your raw images and renamed them with station ID, date and time.

Writing a copyright tag into image metadata
The function addCopyrightTag can write a copyright tag into image Exif metadata. While this can be useful
when sharing or publishing data, it is not required in the camtrapR workflow. The function will recursively
find all images in inDir and its subdirectories and writes a user-defined text into the Copyright field of the
Exif metadata.

In doing so, Exiftool normally keeps the original images as .JPG_original files. Note that this behaviour will
instantly double the number of images in inDir and the disk space required. If this is not desired, users can
set the function argument keepJPG_original = FALSE (default is TRUE) in order to replace the original files
without creating *.JPG_original files. I recommend to first try this on a copy of a subdataset and to then
check the function output. If there are warnings like "Warning: [minor] Maker notes could not be parsed"
image makernotes may be unreadable afterwards (they are proprietary, undocumented formats). On the
other hand, you may never need these for analysing camera trapping data.
copy sample images to temporary directory (so we don't mess around in the package directory)
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
file.copy(from = wd_images_ID, to = normalizePath(tempdir(), winslash = "/"), recursive = TRUE)

[1] TRUE

wd_images_ID_copy <- file.path(normalizePath(tempdir(), winslash = "/"), "sample_images_species_dir")

define an example copyright tag
copyrightTagToAdd <- "Your Name (Your Organisation)"

write the tag to images
addCopyrightTag(inDir = wd_images_ID_copy,

copyrightTag = copyrightTagToAdd,
askFirst = FALSE) # askFirst = FALSE prevents function from asking user to confirm action (which doesn't work in vignettes)

14 directories scanned 69 image files updated

When we check the outcome with function exifTagNames, we find field “Copyright” in line 27.
exiftagnames_extracted <- exifTagNames(wd_images_ID_copy)

Metadata of:
C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/sample_images_species_dir/StationA/PBE/StationA__2009-04-21__00-40-00(1).JPG

knitr::kable(exiftagnames_extracted, row.names = TRUE)

tag_group tag_name value
1 ExifTool ExifToolVersion 12.09
2 ExifTool Warning Invalid EXIF text encoding for UserComment
3 File FileName StationA__2009-04-21__00-40-00(1).JPG

10

tag_group tag_name value
4 File Directory C:/Users/Juergen/AppData/Local/Temp/RtmpmiQZvg/sample_images_species_dir/StationA/PBE
5 File FileSize 27 kB
6 File FileModifyDate 2026:02:08 17:02:41+08:00
7 File FileAccessDate 2026:02:08 17:02:41+08:00
8 File FileCreateDate 2026:02:08 17:02:39+08:00
9 File FilePermissions rw-rw-rw-
10 File FileType JPEG
11 File FileTypeExtension jpg
12 File MIMEType image/jpeg
13 File ExifByteOrder Little-endian (Intel, II)
14 File ImageWidth 100
15 File ImageHeight 75
16 File EncodingProcess Baseline DCT, Huffman coding
17 File BitsPerSample 8
18 File ColorComponents 3
19 File YCbCrSubSampling YCbCr4:2:2 (2 1)
20 EXIF Make G4
21 EXIF Model CUDDEBACK
22 EXIF XResolution 72
23 EXIF YResolution 72
24 EXIF ResolutionUnit inches
25 EXIF ModifyDate 2009:04:21 00:40:00
26 EXIF YCbCrPositioning Co-sited
27 EXIF Copyright Your Name (Your Organisation)
28 EXIF ExifVersion 0200
29 EXIF DateTimeOriginal 2009:04:21 00:40:00
30 EXIF CreateDate 2009:04:21 00:40:00
31 EXIF ComponentsConfigurationY, Cb, Cr, -
32 EXIF ShutterSpeedValue 1
33 EXIF UserComment 1 ATTEMPT G1H
34 EXIF FlashpixVersion 0100
35 EXIF ColorSpace sRGB
36 EXIF ExifImageWidth 100
37 EXIF ExifImageHeight 75
38 EXIF Compression JPEG (old-style)
39 EXIF ThumbnailOffset 450
40 EXIF ThumbnailLength 25353
41 EXIF ThumbnailImage (Binary data 25353 bytes, use -b option to extract)
42 Composite ImageSize 100x75
43 CompositeMegapixels 0.007
44 Composite ShutterSpeed 1

The copyright tag will henceforth be visible in digiKam and other image management software.

Now that the raw images are organised, the next step is species identification, covered in the next vignette.

11

	Introduction
	Installation
	Documentation
	Workflow
	General sampling situation
	Video support (since version 2.0.0)
	Nomenclature
	ExifTool

	Camera trap station information
	Station / Camera IDs
	Column names
	Date format
	Station-/ Camera-level covariates

	Organising raw camera trap images
	Saving raw images on your hard disk
	Shifting date and time of images
	Date/Time problems with Reconyx Hyperfire cameras
	Renaming images
	Writing a copyright tag into image metadata

