

Package ‘bayesics’

February 6, 2026

Title Bayesian Analyses for One- and Two-Sample Inference and Regression Methods

Version 2.0.2

Maintainer Daniel K. Sewell <daniel-sewell@uiowa.edu>

Description Perform fundamental analyses using Bayesian parametric and non-parametric inference (regression, anova, 1 and 2 sample inference, non-parametric tests, etc.). (Practically) no Markov chain Monte Carlo (MCMC) is used; all exact finite sample inference is completed via closed form solutions or else through posterior sampling automated to ensure precision in interval estimate bounds. Diagnostic plots for model assessment, and key inferential quantities (point and interval estimates, probability of direction, region of practical equivalence, and Bayes factors) and model visualizations are provided. Bayes factors are computed either by the Savage Dickey ratio given in Dickey (1971) <[doi:10.1214/aoms/1177693507](https://doi.org/10.1214/aoms/1177693507)> or by Chib's method as given in xxx. Interpretations are from Kass and Raftery (1995) <[doi:10.1080/01621459.1995.10476572](https://doi.org/10.1080/01621459.1995.10476572)>. ROPE bounds are based on discussions in Kruschke (2018) <[doi:10.1177/2515245918771304](https://doi.org/10.1177/2515245918771304)>. Methods for determining the number of posterior samples required are described in Doss et al. (2014) <[doi:10.1214/14-EJS957](https://doi.org/10.1214/14-EJS957)>. Bayesian model averaging is done in part by Feldkircher and Zeugner (2015) <[doi:10.18637/jss.v068.i04](https://doi.org/10.18637/jss.v068.i04)>. Methods for contingency table analysis is described in Gunel et al. (1974) <[doi:10.1093/biomet/61.3.545](https://doi.org/10.1093/biomet/61.3.545)>. Variational Bayes (VB) methods are described in Salimans and Knowles (2013) <[doi:10.1214/13-BA858](https://doi.org/10.1214/13-BA858)>. Mediation analysis uses the framework described in Imai et al. (2010) <[doi:10.1037/a0020761](https://doi.org/10.1037/a0020761)>. The loss-likelihood bootstrap used in the non-parametric regression modeling is described in Lydon et al. (2019) <[doi:10.1093/biomet/asz006](https://doi.org/10.1093/biomet/asz006)>. Non-parametric survival methods are described in Qing et al. (2023) <[doi:10.1002/pst.2256](https://doi.org/10.1002/pst.2256)>. Methods used for the Bayesian Wilcoxon signed-rank analysis is given in Chechile (2018) <[doi:10.1080/03610926.2017.1388402](https://doi.org/10.1080/03610926.2017.1388402)> and for the Bayesian Wilcoxon rank sum analysis in Chechile (2020) <[doi:10.1080/03610926.2018.1549247](https://doi.org/10.1080/03610926.2018.1549247)>. Correlation analysis methods are carried out by Barch and Chechile (2023) <[doi:10.32614/CRAN.package.DFBA](https://doi.org/10.32614/CRAN.package.DFBA)>, and described in Lindley and Phillips (1976) <[doi:10.1080/00031305.1976.10479154](https://doi.org/10.1080/00031305.1976.10479154)> and Chechile and Barch (2021) <[doi:10.1016/j.jmp.2021.1016](https://doi.org/10.1016/j.jmp.2021.1016)>.

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 4.1.0)

RoxygenNote 7.3.3**Suggests** datasets, rstanarm, knitr, splines, testthat (>= 3.0.0)**Imports** tidyverse, dplyr, rlang, janitor, extraDistr, mvtnorm, Matrix, future, future.apply, ggplot2, patchwork, BMS, cluster, DFBA, tibble, survival**Config/testthat.edition** 3**URL** <https://github.com/dksewell/bayesics>**BugReports** <https://github.com/dksewell/bayesics/issues>**NeedsCompilation** no**Author** Daniel K. Sewell [aut, cre, cph] (ORCID:<<https://orcid.org/0000-0002-9238-4026>>),Alan Arakkal [aut] (ORCID: <<https://orcid.org/0000-0002-7001-493X>>)**Repository** CRAN**Date/Publication** 2026-02-06 19:10:02 UTC

Contents

aov_b	3
bayes_factors	6
bma_inference	8
case_control_b	10
chisq_test_b	12
coef	14
cor_test_b	15
credint	18
find_beta_parms	19
find_invgamma_parms	20
get_posterior_draws	21
glm_b	22
heteroscedasticity_test	26
IC	28
lm_b	30
mediate_b	33
negbinom	36
np_glm_b	37
plot	39
poisson_test_b	42
predict.aov_b	44
predict.glm_b	45
predict.lm_b	46
predict.lm_b_bma	47
predict.np_glm_b	49
print	50
prop_test_b	51

sign_test_b	53
summary	55
Surv	56
survfit_b	57
t_test_b	59
vcov	61
wilcoxon_test_b	62

aov_b	<i>Analysis of Variance using Bayesian methods</i>
-------	--

Description

Analysis of Variance using Bayesian methods

Usage

```
aov_b(
  formula,
  data,
  heteroscedastic = TRUE,
  prior_mean_mu,
  prior_mean_nu = 0.001,
  prior_var_shape = 0.001,
  prior_var_rate = 0.001,
  CI_level = 0.95,
  ROPE = 0.1,
  contrasts,
  improper = FALSE,
  seed = 1,
  mc_error = 0.002,
  compute_bayes_factor = TRUE
)
```

Arguments

formula	A formula specifying the model.
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.
heteroscedastic	logical. Set to FALSE to assume all groups have equal variance.
prior_mean_mu	numeric. Hyperparameter for the a priori mean of the group means.
prior_mean_nu	numeric. Hyperparameter which scales the precision of the group means.

<code>prior_var_shape</code>	numeric. Twice the shape parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
<code>prior_var_rate</code>	numeric. Twice the rate parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
<code>CI_level</code>	numeric. Credible interval level.
<code>ROPE</code>	numeric. Used to compute posterior probability that Cohen's D +/- ROPE
<code>contrasts</code>	numeric/matrix. Either vector of length equal to the number of levels in the grouping variable, or else a matrix where each row is a separate contrast, and the number of columns match the number of levels in the grouping variable.
<code>improper</code>	logical. Should we use an improper prior that is proportional to the inverse of the variance?
<code>seed</code>	integer. Always set your seed!!!
<code>mc_error</code>	The number of posterior draws will ensure that with 99% probability the bounds of the credible intervals will be within $\pm \text{mc_error} \times 4s_y$, that is, within $100\text{mc_error}\%$ of the trimmed range of y .
<code>compute_bayes_factor</code>	logical. Computing the BF can be done analytically, but it requires an nxn matrix. If this will require more than 1GB of memory, <code>compute_bayes_factor</code> will automatically be set to FALSE. This setting can be overridden by setting <code>compute_bayes_factor="force"</code> .

Details

MODEL: The likelihood model is given by

$$y_{gi} \stackrel{iid}{\sim} N(\mu_g, \sigma_g^2),$$

(although if `heteroscedastic` is set to FALSE, $\sigma_g^2 = \sigma_h^2 \forall g, h$).

The prior is given by

$$\mu_g | \sigma_g^2 \stackrel{iid}{\sim} N\left(\mu, \frac{\sigma_g^2}{\nu}\right), \sigma_g^2 \stackrel{iid}{\sim} \Gamma^{-1}(a/2, b/2),$$

where μ is set by `prior_mean_mu`, ν is set by `prior_mean_nu`, a is set by `prior_var_shape`, and b is set by `prior_var_rate`.

The posterior is

$$\mu_g | y, \sigma_g^2 \stackrel{iid}{\sim} N\left(\hat{\mu}_g, \frac{\sigma_g^2}{\nu_g}\right), \sigma_g^2 | y \stackrel{iid}{\sim} \Gamma^{-1}(a_g/2, b_g/2),$$

where $\hat{\mu}_g$, ν_g , a_g , and b_g are all returned by `aov_b` in the named element `posterior_parameters`.

ROPE:

If missing, the ROPE bounds will be given under the principle of "half of a small effect size." Using Cohen's D of 0.2 as a small effect size, the ROPE is defined in terms of $-0.1 < \text{Cohen's D} < 0.1$.

Value

Object of class "aov_b" with the following elements:

- summary - tibble giving the summary of the model parameters
- BF_for_different_vs_same_means - Bayes factor in favor of the full model (each group has their own mean) vs. the null model (all groups have the same mean).
- pairwise_summary - tibble giving the summary comparing all factor level means
- contrasts (if provided) - list with named elements L (the contrasts provided by the user) and summary.
- posterior_draws - mcmc object (see coda package) giving the posterior draws
- posterior_parameters -
 - mu_g - the post. means of the group means
 - nu_g - the post. scalars of the precision
 - a_g - (twice) the post. shape of the inv. gamma for the group variances
 - b_g - (twice) the post. rate of the inv. gamma for the group variances.
- hyperparameters -
 - mu - the prior mean of the group means
 - nu - the prior scalar of the precision
 - a - (twice) the prior shape of the inv. gamma for the group variances
 - b - (twice) the prior rate of the inv. gamma for the group variances.
- fitted - Posterior mean of $\mu_g := \mathbb{E}(y_{gi})$
- residuals - Posterior mean of the residuals
- standardized_residuals - Estimated residuals divided by the group standard deviation
- mc_error - absolute errors used to determine number of posterior draws for accurate interval estimation

References

Charles R. Doss, James M. Flegal, Galin L. Jones, Ronald C. Neath "Markov chain Monte Carlo estimation of quantiles," Electronic Journal of Statistics, Electron. J. Statist. 8(2), 2448-2478, (2014)

Examples

```
# Create data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,-1 + 2 * (test_data$x1 %in% c("d","e")) )

# Fit 1-way ANOVA model
fit1 <-
  aov_b(outcome ~ x1,
```

```

    test_data,
    prior_mean_mu = 2,
    prior_mean_nu = 0.5,
    prior_var_shape = 0.01,
    prior_var_rate = 0.01)
fit1
summary(fit1)
plot(fit1)
coef(fit1)
credint(fit1)
credint(fit1,
        CI_level = 0.99)
vcov(fit1)
fit1_predictions <-
  predict(fit1,
          CI_level = 0.99,
          PI_level = 0.9)
AIC(fit1)
BIC(fit1)
DIC(fit1)
WAIC(fit1)

# Implement contrasts
## One contrast
fit2 <-
  aov_b(outcome ~ x1,
        test_data,
        mc_error = 0.01,
        contrasts = c(-1/3,-1/3,-1/3,1/2,1/2))
fit2$contrasts
summary(fit2)
## Multiple contrasts
fit3 <-
  aov_b(outcome ~ x1,
        test_data,
        mc_error = 0.01,
        contrasts = rbind(c(-1/3,-1/3,-1/3,1/2,1/2),
                          c(-1/3,-1/3,-1/3,1,0)))
fit3$contrasts
summary(fit3)

```

bayes_factors	<i>Bayes factors for lm_b, glm_b, and survfit_b</i>
---------------	---

Description

Bayes factors for Bayesian regression objects using the Savage-Dickey ratio

Usage

```
bayes_factors(object, ...)

## S3 method for class 'lm_b'
bayes_factors(object, by = "coefficient", ...)

## S3 method for class 'glm_b'
bayes_factors(object, by = "coefficient", ...)

## S3 method for class 'survfit_b'
bayes_factors(object, object2, ...)
```

Arguments

object	lm_b, glm_b, or survfit_b object
...	Passed to methods.
by	character. Either "coefficient" or "variable". If the former, Bayes factors will be computed for each regression coefficient separately. If the latter, Bayes factors will be computed for each covariate separately.
object2	a second survfit_b object. Not used for other classes.

Details

Bayes factors are given in terms of favoring the two-tailed alternative hypothesis vs. the null hypothesis that the regression coefficient equals zero. Currently implemented for lm_b or glm_b objects. Note that for glm_b objects, if importance sampling was used, the model will be refit using fixed form variational Bayes to get the multivariate posterior density.

Interpretation is taken from Kass and Raftery.

Value

A tibble with Bayes factors and interpretations.

References

James M. Dickey. "The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters." *Ann. Math. Statist.* 42 (1) 204 - 223, February, 1971. <https://doi.org/10.1214/aoms/1177693507>

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. *Journal of the American Statistical Association*, 90(430), 773–795.

Examples

```
# Generate some binomial data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
```

```

x3 = letters[1:5])
test_data$outcome =
  rbinom(N, 1, 1.0 / (1.0 + exp(-(-2 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")) ))))

# Fit a GLM
fit <-
  glm_b(outcome ~ x1 + x2 + x3,
        data = test_data,
        family = binomial(),
        seed = 2025)

# Compute the BF for each coefficient
bayes_factors(fit)

# Compute the BF for each variable
bayes_factors(fit,
              by = "variable")

```

<i>bma_inference</i>	<i>Bayesian model averaging</i>
----------------------	---------------------------------

Description

Estimates and CIs from BMA

Usage

```

bma_inference(
  formula,
  data,
  zellner_g = nrow(data),
  CI_level = 0.95,
  ROPE,
  mcmc_draws = 10000,
  n_models = 500,
  mc_error = 0.001,
  seed = 1,
  ...
)

```

Arguments

<code>formula</code>	A formula specifying the model.
<code>data</code>	Data used in linear regression model
<code>zellner_g</code>	numeric. Positive number giving the value of "g" in Zellner's g prior.

CI_level	Level for credible interval
ROPE	vector of positive values giving ROPE boundaries for each regression coefficient. Optionally, you can not include a ROPE boundary for the intercept. If missing, defaults go to those suggested by Kruschke (2018).
mcmc_draws	Integer. Number of draws passed into bms
n_models	Integer. The number of best models for which information is stored. See bms for more details.
mc_error	The number of posterior draws will ensure that with 99% probability the bounds of the credible intervals will be within $\pm \text{mc_error} \times 4s_y$, that is, within 100mc_error% of the trimmed range of y.
seed	Integer. Always set your seed!!!
...	Other arguments for bms .

Details

`bma_inference` leverages the `bms` function from its eponymous R package, and then uses `lm_b` to obtain inference on the regression coefficients for Bayesian model averaging.

Value

A list with the following elements:

- `summary` Tibble with point and interval estimates
- `lm_b_fits` A list of `lm_b` fits using zellner's g prior for all the top models from [bms](#)
- `hyperparameters` A named list with the user-specified zellner's g value.
- `posterior_draws` matrix of posterior draws of the regression parameters, marginalizing out the model

Examples

```
# Create data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5],
             x4 = rnorm(N),
             x5 = rnorm(N),
             x6 = rnorm(N),
             x7 = rnorm(N),
             x8 = rnorm(N),
             x9 = rnorm(N),
             x10 = rnorm(N))
test_data$outcome =
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")) )

# Fit linear model using Bayesian model averaging
```

```

fit <-
  bma_inference(outcome ~ .,
                 test_data,
                 user.int = FALSE)
summary(fit)
coef(fit)
credint(fit)
plot(fit)

```

case_control_b	<i>Case-Control Analysis</i>
----------------	------------------------------

Description

Bayesian analysis of a case-control study (without covariates).

Usage

```

case_control_b(
  cases,
  controls,
  x,
  large_sample_approx,
  ROPE,
  prior_mean = 0,
  prior_sd = log(10)/1.96,
  plot = TRUE,
  CI_level = 0.95,
  seed = 1,
  mc_error = 0.005
)

```

Arguments

<code>cases</code>	vector of length 2, giving the numbers at risk and not at risk, respectively, for cases
<code>controls</code>	vector of length 2, giving the numbers at risk and not at risk, respectively, for controls
<code>x</code>	2x2 contingency table. The rows should depict the at risk status (first row is at risk, second row is not at risk), and the columns should depict the case control status (first column is case, second column is control).
<code>large_sample_approx</code>	If all cell counts of <code>x</code> are not too low (≥ 5) then use the approximation that the empirical log odds are normally distributed. (See details for more.) If missing, this will be set to TRUE iff all cell counts are greater than or equal to 5.

ROPE	ROPE for odds ratio. Provide either a single value or a vector of length two. If the former, the ROPE will be taken as (1/ROPE,ROPE). If the latter, these will be the bounds of the ROPE.
prior_mean	numeric. The prior mean on the log odds ratio
prior_sd	numeric. The prior sd on the log odds ratio. See details for default values.
plot	logical. Should a plot be shown?
CI_level	The posterior probability to be contained in the credible interval.
seed	integer. Always set your seed!!! (ignored if large_sample_approx = TRUE.)
mc_error	The relative monte carlo error of the quantiles of the CIs. (ignored if large_sample_approx = TRUE.)

Details

If `large_sample_approx = TRUE` (the default if left missing and all cell counts are at least 5), then the likelihood is

$$\log(\hat{\omega}) \sim N\left(\log(\omega), \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}\right),$$

where ω is the odds ratio, $\hat{\omega}$ is the empirical odds ratio, n_{ij} , $i, j = 1, 2$ are the cells of the 2x2 contingency table. The prior on $\log \omega$ is

$$\log \omega \sim N(a, b^2).$$

If the large sample approximation is not used, then inference is made on the odds ratio by instead putting uniform priors on $\Pr(exposure|outcome)$.

Value

(returned invisible) list including the following:

- `data`: data
- `posterior_mean`: posterior mean of the odds ratio (cases vs. controls)
- `CI`: Credible interval
- `Pr_oddsratio_in_ROPE`: Probability the odds ratio (cases vs. controls) is in the ROPE
- `posterior_draws`: posterior draws of the odds ratio (cases vs. controls)
- `or_plot`: odds ratio (cases vs. controls) posterior plot

Examples

```
case_control_b(matrix(c(8,47,1,26),2,2))
```

```
case_control_b(c(8,47),
               c(1,26))
```

chisq_test_b*Test of independence for 2-way contingency tables*

Description

Test of independence for 2-way contingency tables

Usage

```
independence_b(
  x,
  sampling_design = "multinomial",
  ROPE,
  prior = "jeffreys",
  prior_shapes,
  CI_level = 0.95,
  seed = 1,
  mc_error = 0.002
)
```

Arguments

<code>x</code>	Either a table or a matrix of counts
<code>sampling_design</code>	Either "multinomial", "fixed rows", or "fixed columns"
<code>ROPE</code>	vector of positive values giving ROPE boundaries for each regression.
<code>prior</code>	Either "jeffreys" (Dirichlet(1/2)) or "uniform" (Dirichlet(1)). This is ignored if <code>prior_shapes</code> is provided.
<code>prior_shapes</code>	Either a single positive scalar, in which case a symmetric Dirichlet is used, or else a matrix matching the dimensions of <code>x</code> or a vector of length <code>prod(dim(x))</code> .
<code>CI_level</code>	The posterior probability to be contained in the credible interval.
<code>seed</code>	Always set your seed!
<code>mc_error</code>	This is the error in probability from the posterior CDF evaluated at the ROPE bounds. Note that if it is estimated that these probabilities are between 0.11 and 0.89, the more relaxed value of 0.01 is used.

Details

For a 2-way contingency table with R rows and C columns, evaluate the probability that

- the joint probabilities p_{ij} are all within the ROPE of $p_i \times p_j$ for `sampling_design = "multinomial"`
- the probabilities $p_{j|i}$ are all within the ROPE of p_j if `sampling_design = "fixed rows"` or `"fixed columns"`

Value

(returned invisible) A list with the following elements:

- `posterior_shapes`: posterior Dirichlet shape parameters
- `posterior_mean`: posterior mean
- `lower_bound`: lower credible interval bounds
- `upper_bound`: upper credible interval bounds
- `individual_ROPE`: Probability that joint probabilities are in the ROPE around independent probabilities
- `overall_ROPE`: Overall probability of falling in the ROPE (i.e., all probabilities are near the product of the marginal probabilities)
- `prob_pij_less_than_p_i_times_p_j`: (If multinomial sampling design) Probabilities that each joint probability is less than the product of the marginal probabilities
- `prob_p_j_given_i_less_than_p_j`: (If fixed rows or columns sampling design) Probabilities that each conditional probability is less than the marginal probabilities
- `prob_direction`: Probability of direction for the joint or conditional (depending on sampling scheme) probabilities (based on `prob_pij_less_than_p_i_times_p_j` or `prob_p_j_given_i_less_than_p_j`)
- `BF_for_dependence_vs_independence`: Bayes factor testing dependence vs. independence (higher values favor dependence, lower values favor independence)
- `BF_evidence`: Kass and Raftery's interpretation of the level of evidence of the Bayes factor

References

Gunel, Erdogan & Dickey, James (1974). Bayes factors for independence in contingency tables, *Biometrika*, 61(3), Pages 545–557, <https://doi.org/10.1093/biomet/61.3.545>

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. *Journal of the American Statistical Association*, 90(430), 773–795.

Examples

```
# Generate data
set.seed(2025)
N = 500
nR = 5
nC = 3
dep_probs =
  extraDistr::rdirichlet(1, rep(2, nR*nC)) |>
  matrix(nR, nC)

# Multinomial sampling
## Test independence
independence_b(round(N * dep_probs))

## Use other priors
independence_b(round(N * dep_probs),
               prior = "uniform")
independence_b(round(N * dep_probs),
```

```

prior_shapes = 2)
independence_b(round(N * dep_probs),
               prior_shapes = matrix(1:(nR*nC),nR,nC))

# Fixed marginals
independence_b(round(N * dep_probs),
               sampling_design = "rows")
independence_b(round(N * dep_probs),
               sampling_design = "cols")

```

coef	<i>Coefficient extraction for bayesics objects</i>
------	--

Description

Coefficient extraction for bayesics objects

Usage

```

## S3 method for class 'lm_b'
coef(object, ...)

## S3 method for class 'aov_b'
coef(object, ...)

## S3 method for class 'np_glm_b'
coef(object, ...)

## S3 method for class 'glm_b'
coef(object, ...)

## S3 method for class 'lm_b_bma'
coef(object, ...)

```

Arguments

object	bayesics object
...	optional arguments.

Value

vector of coefficients

Examples

```
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,-1 + 2 * (test_data$x1 %in% c("d","e")) )

# Fit 1-way ANOVA model
fit1 <-
  aov_b(outcome ~ x1,
        test_data,
        prior_mean_mu = 2,
        prior_mean_nu = 0.5,
        prior_var_shape = 0.01,
        prior_var_rate = 0.01)
coef(fit1)
```

cor_test_b

Test for Association/Correlation Between Paired Samples via Kendall's tau

Description

Test for Association/Correlation Between Paired Samples via Kendall's tau

Usage

```
cor_test_b(x, ...)

## Default S3 method:
cor_test_b(
  x,
  y,
  tau = 0,
  ROPE,
  prior = "centered",
  prior_shapes,
  CI_level = 0.95,
  plot = TRUE,
  ...
)

## S3 method for class 'formula'
cor_test_b(
  formula,
```

```

  data,
  tau = 0,
  ROPE,
  prior = "centered",
  prior_shapes,
  CI_level = 0.95,
  plot = TRUE,
  ...
)

```

Arguments

x, y	numeric vectors of data values. x and y must have the same length.
...	optional arguments.
tau	If provided, cor_test_b will return the posterior probability that Kendall's tau is less than this value.
ROPE	If a single number, ROPE will be $\tau \pm$ ROPE. If a vector of length 2, these will serve as the ROPE bounds. Defaults to ± 0.05 .
prior	Beta prior used on ϕ (see details). Either "uniform" (Beta(1,1)), "centered" (Beta(2,2)), "positive" (Beta(3.9,2), putting 80% of the prior mass above 0.5), or "negative" (Beta(2,3.9), putting 80% of the prior mass below 0.5).
prior_shapes	Vector of length two, giving the shape parameters for the beta distribution that will act as the prior on ϕ (see details).
CI_level	The posterior probability to be contained in the credible interval.
plot	logical. Should a plot be shown?
formula	ADD description!
data	ADD description!

Details

cor_test_b relies on the robust Kendall's tau, defined to be

$$\tau := \frac{(\#\text{concordant pairs}) - (\#\text{discordant pairs})}{(\#\text{concordant pairs}) + (\#\text{discordant pairs})},$$

where a concordant pair is a pair of points such that if the rank of the x values is higher for the first (second) point of the pair, so too the rank of the y value is higher for the first (second) point of the pair.

The Bayesian approach of Chechile (2020) puts a Beta prior on ϕ , the proportion of concordance, i.e.,

$$\phi := \frac{(\#\text{concordant pairs})}{(\#\text{concordant pairs}) + (\#\text{discordant pairs})}.$$

The relationship between the two, then, is $\tau = 2\phi - 1$, or equivalently $\phi = (\tau + 1)/2$.

For more information, see [dfba_bivariate_concordance](#) and vignette("dfba_bivariate_concordance", package = "DFBA").

Value

(returned invisible) A list with the following:

- `posterior_mean`: posterior mean of Kendall's tau
- `CI`: Credible interval bounds
- `Pr_less_than_tau`: Posterior probability that Kendall's tau is less than provided reference tau
- `Pr_in_ROPE`: Posterior probability that Kendall's tau is in the ROPE
- `prob_plot`: Posterior and prior plot
- `posterior_parameters`: The posterior for Kendall's tau is a location shift and scaled beta distribution to fall over the range -1 to 1, i.e., $0.5 * (\tau + 1.0)$ follows a beta with shape parameters given by `posterior_parameters`.
- `dfba_bivariate_concordance_object`: The underlying object from the DFBA package

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction Using Distribution_Free Statistics. Cambridge: MIT Press.

Chechile, R.A., & Barch, D.H. (2021). A distribution-free, Bayesian goodness-of-fit method for assessing similar scientific prediction equations. *Journal of Mathematical Psychology*. <https://doi.org/10.1016/j.jmp.2021.102614>

Lindley, D. V., & Phillips, L. D. (1976). Inference for a Bernoulli process (a Bayesian view). *The American Statistician*, 30, 112-119.

Barch DH, Chechile RA (2023). DFBA: Distribution-Free Bayesian Analysis. doi:10.32614/CRAN.package.DFBA

Examples

```
# Generate data
set.seed(2025)
N = 50
x = rnorm(N)
y = x + 4 * rnorm(N)

# Test for non-zero correlation
cor_test_b(x,y)

# Input can be in the form of formula and data
cor_test_b(~ asdf + qwer,
           data = data.frame(asdf = x,
                             qwer = y))

# Other priors can be used, also. See help for details.
cor_test_b(x,y,
           prior = "uniform")
cor_test_b(x,y,
           prior = "negative")
cor_test_b(x,y,
           prior = "positive")
cor_test_b(x,y,
```

```
prior_shapes = c(10,10))
```

credint

Credible Intervals for Model Parameters

Description

Computes credible intervals for one or more parameters in a fitted model.

Usage

```
credint(object, ...)

## S3 method for class 'lm_b'
credint(object, CI_level = 0.95, ...)

## S3 method for class 'aov_b'
credint(object, CI_level = 0.95, which = "means", ...)

## S3 method for class 'glm_b'
credint(object, CI_level = 0.95, ...)

## S3 method for class 'np_glm_b'
credint(object, CI_level = 0.95, ...)

## S3 method for class 'lm_b_bma'
credint(object, CI_level = 0.95, ...)
```

Arguments

object	a fitted model object from bayesics
...	Passed to methods.
CI_level	the credible level required
which	character. For aov_b only. Either "means" (for the group means) or "pairwise" (for pairwise difference in means).

Value

Matrix of credible intervals

Examples

```

set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,-1 + 2 * (test_data$x1 %in% c("d","e")) )

# Fit 1-way ANOVA model
fit1 <-
  aov_b(outcome ~ x1,
        test_data,
        prior_mean_mu = 2,
        prior_mean_nu = 0.5,
        prior_var_shape = 0.01,
        prior_var_rate = 0.01)
credint(fit1)

```

find_beta_parms	<i>Find parameters for Beta prior based on prior mean and one quantile</i>
-----------------	--

Description

Find parameters for Beta prior based on prior mean and one quantile

Usage

```

find_beta_parms(
  mean,
  quantile,
  left_tail_prob,
  plot_results = TRUE,
  search_bounds = c(0.001, 100)
)

```

Arguments

mean	numeric between 0 and 1 giving the prior mean
quantile	numeric between 0 and 1 giving the quantile lying at left_tail_prob
left_tail_prob	numeric between 0 and 1 giving the prior probability of theta being less than or equal to quantile
plot_results	logical. Should the resulting inverse gamma distribution be plotted?
search_bounds	bounds with which to search. Sometimes you need to adjust this to get a good solution.

Value

Vector of beta shape parameters

Examples

```
find_beta_parms(2/5, 0.68, 0.9)
2/ (2 + 3)
qbeta(0.9, 2, 3)
```

find_invgamma_parms	<i>Find parameters for Inverse gamma prior based on prior mean and one quantile</i>
----------------------------	---

Description

Find parameters for Inverse gamma prior based on prior mean and one quantile

Usage

```
find_invgamma_parms(
  lower_quantile,
  upper_quantile,
  response_variance,
  lower_R2,
  upper_R2,
  probability,
  plot_results = TRUE
)
```

Arguments

<code>lower_quantile</code>	lower quantile desired
<code>upper_quantile</code>	upper quantile desired
<code>response_variance</code>	variance of the response variable of the regression model
<code>lower_R2, upper_R2</code>	We are a priori probability sure that the coefficient of determination (R^2) falls within these lower and upper bounds.
<code>probability</code>	prior probability to be contained within the lower and upper quantiles
<code>plot_results</code>	logical. Should the resulting inverse gamma distribution be plotted?

Details

Either provide the lower and upper quantiles that contain probability of the inverse gamma distribution, or if this is for linear regression, you can specify that you are a priori probability sure that the coefficient of determination (R^2) falls within the two bounds provided, assuming that the residual variance is $1 - R^2$ times the total variance.

Value

twice the shape and rate of the inverse gamma distribution.

Examples

```
# When aimed at linear regression via coefficient of determination...
hypothetical_s2_y = 2.0
lower_R2 = 0.05
upper_R2 = 0.85
find_invgamma_parms(response_variance = hypothetical_s2_y,
                     lower_R2 = lower_R2,
                     upper_R2 = upper_R2,
                     probability = 0.8)

# More arbitrary task...
find_invgamma_parms(0.3, # hypothetical_s2_y * (1.0 - upper_R2)
                     1.9, #hypothetical_s2_y * (1.0 - lower_R2)
                     probability = 0.8)
```

get_posterior_draws *Get posterior samples from lm_b object*

Description

Get posterior samples from lm_b object

Usage

```
get_posterior_draws(object, n_draws = 10000, seed = 1)
```

Arguments

object	Object of class lm_b
n_draws	integer. Number of posterior draws to obtain.
seed	integer. Always set your seed!!!

Value

matrix of posterior draws

Examples

```
set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
pdraws <-
  get_posterior_draws(fit1)
```

Description

`glm_b` is used to fit linear models. It can be used to carry out regression for gaussian, binomial, and poisson data. Note that if the family is gaussian, this is just a wrapper for `lm_b`.

Usage

```
glm_b(
  formula,
  data,
  family,
  trials,
  prior = c("zellner", "normal", "improper")[1],
  zellner_g,
  prior_beta_mean,
  prior_beta_precision,
  prior_phi_mean = 1,
  ROPE,
  CI_level = 0.95,
  vb_maximum_iterations = 1000,
  algorithm = "VB",
  proposal_df = 5,
  seed = 1,
```

```

  mc_error = 0.01,
  save_memory = FALSE
)

```

Arguments

formula	A formula specifying the model.
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way. However, it is strongly recommended that you use this argument so that other generics for bayesics objects work correctly.
family	A description of the error distribution and link function to be used in the model. See ?glm for more information. Currently implemented families are <code>binomial()</code> , <code>poisson()</code> , <code>negbinom()</code> , and <code>gaussian()</code> (this last acts as a wrapper for <code>lm_b</code>). If missing <code>family</code> , <code>glm_b</code> will try to infer the data type; negative binomial will be used for count data.
trials	Either character naming the variable in <code>data</code> that corresponds to the number of trials in the binomial observations, or else an integer vector giving the number of trials for each observation.
prior	character. One of "zellner", "normal", or "improper", giving the type of prior used on the regression coefficients.
zellner_g	numeric. Positive number giving the value of "g" in Zellner's g prior. Ignored unless <code>prior = "zellner"</code> . Default is the number of observations.
prior_beta_mean	numeric vector of same length as regression coefficients (denoted <code>p</code>). Unless otherwise specified, automatically set to <code>rep(0,p)</code> . Ignored unless <code>prior = "normal"</code> .
prior_beta_precision	$p \times p$ matrix giving a priori precision matrix to be scaled by the residual precision. Ignored unless <code>prior = "normal"</code> .
prior_phi_mean	For negative binomial distributed outcomes, an exponential distribution is used for the prior of the dispersion parameter <code>phi</code> , parameterized such that $\text{Var}(y) = \mu + \frac{\mu^2}{\phi}$, so that the prior on ϕ is $\lambda e^{-\lambda\phi}$, where λ equals $1/\text{prior_phi_mean}$.
ROPE	vector of positive values giving ROPE boundaries for each regression coefficient. Optionally, you can not include a ROPE boundary for the intercept. If missing, defaults go to those suggested by Kruchke (2018).
CI_level	numeric. Credible interval level.
vb_maximum_iterations	if <code>algorithm = "VB"</code> , the number of iterations used in the fixed-form VB algorithm.
algorithm	Either "VB" (default) for fixed-form variational Bayes, "IS" for importance sampling, or "LSA" for large sample approximation.
proposal_df	degrees of freedom used in the multivariate t proposal distribution if <code>algorithm = "IS"</code> .
seed	integer. Always set your seed!!! Not used for <code>algorithm = LSA</code> .

mc_error	If importance sampling is used, the number of posterior draws will ensure that with 99% probability the bounds of the credible intervals will be within \pm mc_error.
save_memory	logical. If TRUE, a more memory efficient approach will be taken at the expense of computataional time (for important sampling only. But if memory is an issue, it's probably because you have a large sample size, in which case the normal approximation sans IS should probably work.)

Value

glm_b() returns an object of class "glm_b", which behaves as a list with the following elements:

- summary - tibble giving results for regression coefficients
- posterior_draws
- ROPE
- hyperparameters - list giving the user input or default hyperparameters used
- fitted - posterior mean of the individuals' means
- residuals - posterior mean of the residuals
- If algorithm = "IS", the following:
 - proposal_draws - draws from the importance sampling proposal distribution (i.e., multivariate t centered at the posterior mode with precision equal to the negative hessian, and degrees of freedom set to the user input proposal_df).
 - importance_sampling_weights - importance sampling weights that match the rows of the returned proposal_draws.
 - effective_sample_size
 - mc_error
- other inputs into glm_b

Importance sampling:

glm_b will, unless use_importance_sampling = FALSE, perform importance sampling. The proposal will use a multivariate t distribution, centered at the posterior mode, with the negative hessian as its precision matrix. Do NOT treat the proposal_draws as posterior draws.

Priors:

If the prior is set to be either "zellner" or "normal", a normal distribution will be used as the prior of β , specifically

$$\beta \sim N(\mu, V)$$

where μ is the prior_beta_mean and V is the prior_beta_precision (not covariance) matrix.

- zellner: glm_b sets $\mu = 0$ and $V = \frac{1}{g} X^\top X$.
- normal: If missing prior_beta_mean, glm_b sets $\mu = 0$, and if missing prior_beta_precision V will be a diagonal matrix. The first element, corresponding to the intercept, will be $(2.5 \times \max \tilde{s}_y, 1)^{-2}$, where \tilde{s}_y is max of 1 and the standard deviation of y . Remaining diagonal elements will equal $(2.5s_y/s_x)^{-2}$, where s_x is the standard deviations of the covariates. This equates to being 95% certain a priori that a change in x by one standard deviation (s_x) would not lead to a change in the linear predictor of more than 5 standard deviations ($5s_y$). This imposes weak regularization that adapts to the scale of the data elements.

ROPE:

If missing, the ROPE bounds will be given under the principle of "half of a small effect size."

- Gaussian. Using Cohen's D of 0.2 as a small effect size, the ROPE is built under the principle that moving the full range of X (i.e., $\pm 2s_x$) will not move the mean of y by more than the overall mean of y minus $0.1s_y$ to the overall mean of y plus $0.1s_y$. The result is a ROPE equal to $|\beta_j| < 0.05s_y/s_x$. If the covariate is binary, then this is simply $|\beta_j| < 0.2s_y$.
- Poisson. FDA guidance suggests a small effect is a rate ratio less than 1.25. We use half this effect: 1.125, and consider ROPE to indicate that a moving the full range of X ($\pm 2s_x$) will not change the rate ratio by more than this amount. Thus the ROPE for the regression coefficient equals $|\beta| < \frac{\log(1.125)}{4s_x}$. For binary covariates, this is simply $|\beta| < \log(1.125)$.

References

Kruschke JK. Rejecting or Accepting Parameter Values in Bayesian Estimation. *Advances in Methods and Practices in Psychological Science*. 2018;1(2):270-280. doi:10.1177/2515245918771304

Tim Salimans. David A. Knowles. "Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression." *Bayesian Anal.* 8 (4) 837 - 882, December 2013. <https://doi.org/10.1214/13-BA858>

Examples

```
# Generate some negative-binomial data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
              x2 = rnorm(N),
              x3 = letters[1:5],
              time = rexp(N))
test_data$outcome =
  rnbinom(N,
          mu = exp(-2 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e"))) * test_data$time,
          size = 0.7)

# Fit using variational Bayes (default)
fit_vb1 <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        seed = 2025)
fit_vb1
summary(fit_vb1,
        CI_level = 0.9)
plot(fit_vb1)
coef(fit_vb1)
credint(fit_vb1,
        CI_level = 0.99)
bayes_factors(fit_vb1,
              by = "v")
preds =
```

```

predict(fit_vb1)

# Try different priors
fit_vb2 <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        seed = 2025,
        prior = "normal")
fit_vb2
fit_vb3 <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        seed = 2025,
        prior = "improper")
fit_vb3

# Use Importance sampling instead of VB
fit_is <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        algorithm = "IS",
        seed = 2025)
summary(fit_is)

# Use large sample approximation instead of VB
fit_lsa <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        algorithm = "LSA",
        seed = 2025)
summary(fit_lsa)

```

heteroscedasticity_test

Test for heteroscedasticity in AOV models

Description

Use Chib's method to compute the Bayes factor to test for heteroscedasticity in analysis of variance models.

Usage

```
heteroscedasticity_test(hetero_model, homo_model)
```

Arguments

hetero_model aov_b object where the heteroscedastic argument has been set to TRUE (the default)
 homo_model aov_b object where the heteroscedastic argument has been set to FALSE

Value

(returned invisible) A tibble with Bayes factors and interpretations.

References

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. *Journal of the American Statistical Association*, 90(430), 773–795.

Examples

```

# Test homoscedastic case
## Generate some data
set.seed(2025)
N = 200
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,-1 + 2 * (test_data$x1 %in% c("d","e")) )

## Fit the anova models
hetero_model =
  aov_b(outcome ~ x1,
        test_data)
homo_model =
  aov_b(outcome ~ x1,
        test_data,
        heteroscedastic = FALSE)

## Perform test for heteroscedasticity using Bayes factors
heteroscedasticity_test(hetero_model,
                        homo_model)

# Test heteroscedastic case
## Generate some data
set.seed(2025)
N = 200
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,
        -1 + 2 * (test_data$x1 %in% c("d","e")),
        sd = 3 - 2 * (test_data$x1 %in% c("d","e")))

## Fit the anova models
hetero_model =

```

```

aov_b(outcome ~ x1,
      test_data)
homo_model =
  aov_b(outcome ~ x1,
        test_data,
        heteroscedastic = FALSE)

## Perform test for heteroscedasticity using Bayes factors
heteroscedasticity_test(hetero_model,
                        homo_model)

```

IC	<i>Compute AIC, BIC, DIC, or WAIC for aov_b or lm_b objects. (Lower is better.)</i>
----	---

Description

Compute AIC, BIC, DIC, or WAIC for aov_b or lm_b objects. (Lower is better.)

Usage

```

DIC(object, ...)

## S3 method for class 'lm_b'
BIC(object, ...)

## S3 method for class 'glm_b'
BIC(object, ...)

## S3 method for class 'aov_b'
BIC(object, ...)

## S3 method for class 'lm_b'
AIC(object, ...)

## S3 method for class 'glm_b'
AIC(object, ...)

## S3 method for class 'aov_b'
AIC(object, ...)

## S3 method for class 'lm_b'
DIC(object, seed = 1, mc_error = 0.01, ...)

## S3 method for class 'glm_b'

```

```

DIC(object, seed = 1, ...)

## S3 method for class 'aov_b'
DIC(object, ...)

## S3 method for class 'lm_b'
WAIC(object, seed = 1, ...)

## S3 method for class 'aov_b'
WAIC(object, ...)

## S3 method for class 'glm_b'
WAIC(object, seed = 1, ...)

```

Arguments

object	aov_b, lm_b, or glm_b object
...	Passed to methods.
seed	integer. Always set your seed!!!
mc_error	The number of posterior draws will ensure that with 99% probability the posterior mean of the deviance for DIC will be within $\pm mc_errorE(deviance)$.

Value

Numeric (or in the case of DIC, a numeric vector)

Examples

```

set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N, -1 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
AIC(fit1)
BIC(fit1)
DIC(fit1)
WAIC(fit1)

```

Description

lm_b is used to fit linear models. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance (although aov_b may provide a more convenient interface for ANOVA.)

Usage

```
lm_b(
  formula,
  data,
  weights,
  prior = c("zellner", "conjugate", "improper")[1],
  zellner_g,
  prior_beta_mean,
  prior_beta_precision,
  prior_var_shape,
  prior_var_rate,
  ROPE,
  CI_level = 0.95
)
```

Arguments

formula	A formula specifying the model.
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way. However, it is strongly recommended that you use this argument so that other generics for bayesics objects work correctly.
weights	an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If non-NULL, it is assumed that the variance of y_i can be written as $Var(y_i) = \sigma^2/w_i$. While the estimands remain the same, the estimation is done by performing unweighted lm_b on $W^{\frac{1}{2}}y$ and $W^{\frac{1}{2}}X$, where W is the diagonal matrix of weights. Note that this then affects the zellner prior.
prior	character. One of "zellner", "conjugate", or "improper", giving the type of prior used on the regression coefficients.
zellner_g	numeric. Positive number giving the value of "g" in Zellner's g prior. Ignored unless prior = "zellner".
prior_beta_mean	numeric vector of same length as regression coefficients (denoted p). Unless otherwise specified, automatically set to rep(0,p). Ignored unless prior = "conjugate".

prior_beta_precision	pxp matrix giving a priori precision matrix to be scaled by the residual precision.
prior_var_shape	numeric. Twice the shape parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
prior_var_rate	numeric. Twice the rate parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
ROPE	vector of positive values giving ROPE boundaries for each regression coefficient. Optionally, you can not include a ROPE boundary for the intercept. If missing, defaults go to those suggested by Kruchke (2018).
CI_level	numeric. Credible interval level.

Details

MODEL:

The likelihood is given by

$$y_i \stackrel{ind}{\sim} N(x_i' \beta, \sigma^2).$$

The prior is given by

$$\beta | \sigma^2 \sim N(\mu, \sigma^2 V^{-1}) \quad \sigma^2 \sim \Gamma^{-1}(a/2, b/2).$$

- For Zellner's g prior, $\frac{1}{g} X' X$.
- The default for the conjugate prior is based on arguments from standardized regression. The default V is set according to the following: "a priori, we are 95% certain that a standard deviation increase in X will not lead to more than a 5 standard deviation in the mean of y ." If we then set the prior on the intercept to be flat, this leads to

$$V^{1/2} = diag(1, s_{x_1}, \dots, s_{x_p})/2.5,$$

where s_y is the standard deviation of y , and s_{x_j} is the standard deviation of the j^{th} covariate.

- Unless **prior_var_shape** AND **prior_var_rate** are provided, the inverse gamma prior on the residual variance will place 50% prior probability that the correlation between the response and the fitted values is between 0.1 and 0.9.
- If **prior = "improper"**, then the prior is

$$\pi(\beta, \sigma^2) \propto \frac{1}{\sigma^2}.$$

ROPE:

If missing, the ROPE bounds will be given under the principle of "half of a small effect size." Using Cohen's D of 0.2 as a small effect size, the ROPE is built under the principle that moving the full range of X (i.e., $\pm 2s_x$) will not move the mean of y by more than the overall mean of y minus $0.1s_y$ to the overall mean of y plus $0.1s_y$. The result is a ROPE equal to $|\beta_j| < 0.05s_y/s_j$. If the covariate is binary, then this is simply $|\beta_j| < 0.2s_y$.

Value

`lm_b()` returns an object of class "lm_b", which behaves as a list with the following elements:

- summary - tibble giving results for regression coefficients
- posterior_parameters - list giving the posterior parameters
- hyperparameters - list giving the user input (or default) hyperparameters used
- fitted - posterior mean of the individuals' means
- residuals - posterior mean of the residuals
- formula, data - input by user

Examples

```
# Generate some data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
              x2 = rnorm(N),
              x3 = letters[1:5])
test_data$outcome =
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")) )

# Find good hyperparameters for the residual variance
s2_hyperparameters =
  find_invgamma_parms(lower_R2 = 0.05,
                       upper_R2 = 0.95,
                       probability = 0.8,
                       response_variance = var(test_data$outcome))
## Check (should equal ~ 0.8)
extraDistr::pinvgamma((1.0 - 0.05) * var(test_data$outcome),
                       0.5 * s2_hyperparameters[1],
                       0.5 * s2_hyperparameters[2]) -
  extraDistr::pinvgamma((1.0 - 0.95) * var(test_data$outcome),
                       0.5 * s2_hyperparameters[1],
                       0.5 * s2_hyperparameters[2])

# Fit the linear model using a conjugate prior
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data,
        prior = "conj",
        prior_var_shape = s2_hyperparameters["shape"],
        prior_var_rate = s2_hyperparameters["rate"])
fit1
summary(fit1,
        CI_level = 0.99)
plot(fit1)
coef(fit1)
credint(fit1,
        CI_level = 0.9)
```

```

bayes_factors(fit1)
bayes_factors(fit1,
              by = "var")
AIC(fit1)
BIC(fit1)
DIC(fit1)
WAIC(fit1)
vcov(fit1)
preds = predict(fit1)

# Try other priors
fit2 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data) # Default is prior = "zellner"
fit3 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data,
        prior = "improper")

```

mediate_b

Mediation using Bayesian methods

Description

Mediation analysis done in the framework of Imai et al. (2010). Currently only applicable to linear models.

Usage

```

mediate_b(
  model_m,
  model_y,
  treat,
  control_value,
  treat_value,
  n_draws = 500,
  ask_before_full_sampling = TRUE,
  CI_level = 0.95,
  seed = 1,
  mc_error = ifelse("glm_b" %in% model_y, 0.01, 0.002),
  batch_size = 500
)

```

Arguments

model_m	a fitted model object of class lm_b for mediator.
model_y	a fitted model object of class lm_b for outcome.
treat	a character string indicating the name of the treatment variable used in the models. NOTE: Treatment variable must be numeric (even if it's 1's and 0's).
control_value	value of the treatment variable used as the control condition. Default is the 1st quintile of the treat variable.
treat_value	value of the treatment variable used as the treatment condition. Default is the 4th quintile of the treat variable.
n_draws	Number of preliminary posterior draws to assess final number of posterior draws required for accurate interval estimation
ask_before_full_sampling	logical. If FALSE, the user will not be asked if they want to complete the full sampling. Defaults to TRUE, as this can be a computationally intensive procedure.
CI_level	numeric. Credible interval level.
seed	integer. Always set your seed!!!
mc_error	positive scalar. The number of posterior samples will, with high probability, estimate the CI bounds up to $\pm mc_error \times sd(y)$.
batch_size	positive integer. Number of posterior draws to be taken at once. Higher values are more computationally intensive, but values which are too high might take up significant memory (allocates on the order of $batch_size \times nrow(model_y\$data)$).

Details

The model is the same as that of Imai et al. (2010):

$$M_i(X) = w_i' \alpha_m + X \beta_m + \epsilon_{m,i}, y_i(X, M(\tilde{X})) = w_i' \alpha_y + X \beta_y + M(\tilde{X}) \gamma + \epsilon_{y,i}, \epsilon_{m,i} \stackrel{iid}{\sim} N(0, \sigma_m^2), \epsilon_{y,i} \stackrel{iid}{\sim} N(0, \sigma_y^2),$$

where $M_i(X)$ is the mediator as a function of the treatment variable X , and w_i are confounder covariates.

Unlike the mediation R package, the estimation in mediate_b is fully Bayesian (as opposed to "quasi-Bayesian").

Value

A list with the following elements:

- **summary** - tibble giving results for causal mediation quantities
- **posterior_draws** (of counterfactual expectations)
- **mc_error** absolute error used, including any rescaling to match the scale of the outcome
- other inputs to mediate_b

References

Imai, Kosuke, et al. “A General Approach to Causal Mediation Analysis.” *Psychological Methods*, vol. 15, no. 4, 2010, pp. 309–34, <https://doi.org/10.1037/a0020761>.

Examples

```

# Simplest case
## Generate some data
set.seed(2025)
N = 500
test_data =
  data.frame(tr = rnorm(N),
             x1 = rnorm(N))
test_data$m =
  rnorm(N, 0.4 * test_data$tr - 0.25 * test_data$x1)
test_data$outcome =
  rnorm(N, -1 + 0.6 * test_data$tr + 1.5 * test_data$m + 0.25 * test_data$x1)

## Fit the mediator and outcome models
m1 =
  lm_b(m ~ tr + x1,
        data = test_data)
m2 =
  lm_b(outcome ~ m + tr + x1,
        data = test_data)
## Estimate the causal mediation quantities
m3 <-
  mediate_b(m1, m2,
            treat = "tr",
            control_value = -2,
            treat_value = 2,
            n_draws = 500,
            mc_error = 0.05,
            ask_before_full_sampling = FALSE)
m3
summary(m3,
        CI_level = 0.9)

# More complicated scenario
## Generate some data
set.seed(2025)
N = 500
test_data =
  data.frame(tr = rep(0:1, N/2),
             x1 = rnorm(N))
test_data$m =
  rnorm(N, 0.4 * test_data$tr - 0.25 * test_data$x1)
test_data$outcome =
  rpois(N, exp(-1 + 0.6 * test_data$tr + 1.5 * test_data$m + 0.25 * test_data$x1))

## Fit the mediator and outcome models
m1 =

```

```

lm_b(m ~ tr + x1,
      data = test_data)
m2 =
  glm_b(outcome ~ m + tr + x1,
        data = test_data,
        family = poisson())

## Estimate the causal mediation quantities
m3 <-
  mediate_b(m1,m2,
            treat = "tr",
            control_value = 0,
            treat_value = 1,
            n_draws = 500,
            mc_error = 0.05,
            ask_before_full_sampling = FALSE)
summary(m3)

```

negbinom

Negative-binomial family

Description

The `negbinom()` is an additional family to be considered alongside others documented under `stats::family`.

Usage

`negbinom()`

Value

an object of class "family". See `stats::family`.

Examples

`negbinom()`

Description

np_glm_b uses general Bayesian inference with loss-likelihood bootstrap. This is, as implemented here, a Bayesian non-parametric linear models inferential engine. Applicable data types are continuous (use family = gaussian()), count (use family = poisson()), or binomial (use family = binomial()).

Usage

```
np_glm_b(
  formula,
  data,
  family,
  loss = "selfinformation",
  loss_gradient,
  trials,
  n_draws,
  ask_before_full_sampling = TRUE,
  CI_level = 0.95,
  ROPE,
  seed = 1,
  mc_error = 0.01
)
```

Arguments

formula	A formula specifying the model.
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way. However, it is strongly recommended that you use this argument so that other generics for bayesics objects work correctly.
family	A description of the error distribution and link function to be used in the model. See ?glm for more information. Currently implemented families are binomial(), poisson(), negbinom(), and gaussian() (this last acts as a wrapper for
loss	Either "selfinformation", or a function that takes in two arguments, the first of which should be the vector of outcomes and the second should be the expected value of y; The outcome of the function should be the loss evaluated for each observation. By default, the self-information loss is used (i.e., the negative log-likelihood). Note: I really do mean the expected value of y, even for binomial (i.e., n*p). If family = negbinom(), then a user-supplied loss function should take three arguments: y, mu, and phi, where phi is the dispersion parameter (i.e., $\text{Var}(y) = \mu + \mu^2/\phi$).
loss_gradient	If loss is a user-defined function (as opposed to "selfinformation"), supplying the gradient to the loss will speed up the algorithm.

trials	Integer vector giving the number of trials for each observation if family = binomial().
n_draws	integer. Number of posterior draws to obtain. If left missing, the large sample approximation will be used.
ask_before_full_sampling	logical. If TRUE, the user will be asked to specify whether they wish to commit to getting the full number of posterior draws to obtain precise credible interval bounds. Defaults to TRUE because the bootstrap is computationally intensive. Also, parallelization via future::plan is highly recommended for full sample.
CI_level	numeric. Credible interval level.
ROPE	vector of positive values giving ROPE boundaries for each regression coefficient. Optionally, you can not include a ROPE boundary for the intercept. If missing, defaults go to those suggested by Kruschke (2018).
seed	integer. Always set your seed!!!
mc_error	If large sample approximation is not used, the number of posterior draws will ensure that with 99% probability the bounds of the credible intervals will be within \pm mc_error.

Details

Consider a population parameter of interest defined in terms of minimizing a loss function ℓ wrt the population distribution:

$$\theta(F_y) := \underset{\theta \in \Theta}{\operatorname{argmax}} \int \ell(\theta, y) dF_y$$

If we use a non-parametric Dirichlet process prior on the distribution of y , F_y , and let the concentration parameter go to zero, we have the Bayesian bootstrap applied to a general Bayesian updating framework dictated by the loss function.

By default, the loss function is the self-information loss, i.e., the negative log likelihood. This then resembles a typical glm_b implementation, but is more robust to model misspecification.

Value

np_glm_b() returns an object of class "np_glm_b", which behaves as a list with the following elements:

- summary - a tibble giving results for regression coefficients.

References

S P Lyddon, C C Holmes, S G Walker, General Bayesian updating and the loss-likelihood bootstrap, Biometrika, Volume 106, Issue 2, June 2019, Pages 465–478, <https://doi.org/10.1093/biomet/asz006>

Examples

```
# Generate some data
set.seed(2025)
N = 500
test_data =
```

```

data.frame(x1 = rnorm(N),
           x2 = rnorm(N),
           x3 = letters[1:5])
test_data$outcome =
  rbinom(N, 1, 1.0 / (1.0 + exp(-(-2 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")) ))))

# Fit the GLM via the (non-parametric) loss-likelihood bootstrap.
fit1 <-
  np_glm_b(outcome ~ x1 + x2 + x3,
            data = test_data,
            family = binomial())
fit1
summary(fit1,
        CI_level = 0.99)
plot(fit1)
coef(fit1)
credint(fit1)
predict(fit1,
        newdata = fit1$data[1,])
vcov(fit1)

```

plot*Plots bayesics objects.*

Description

Plots bayesics objects.

Usage

```

## S3 method for class 'lm_b'
plot(
  x,
  type,
  variable,
  exemplar_covariates,
  combine_pred_cred = TRUE,
  variable_seq_length = 30,
  return_as_list = FALSE,
  CI_level = 0.95,
  PI_level = 0.95,
  backtransformation = function(x) {
    x
  },
  ...
)

```

```
## S3 method for class 'aov_b'
plot(
  x,
  type = c("diagnostics", "cred band", "pred band"),
  combine_pred_cred = TRUE,
  return_as_list = FALSE,
  CI_level = 0.95,
  PI_level = 0.95,
  ...
)

## S3 method for class 'lm_b_bma'
plot(
  x,
  type = c("diagnostics", "cred band", "pred band"),
  variable,
  exemplar_covariates,
  combine_pred_cred = TRUE,
  bayes_pvalues_quantiles = c(0.01, 1:19/20, 0.99),
  variable_seq_length = 30,
  return_as_list = FALSE,
  CI_level = 0.95,
  PI_level = 0.95,
  seed = 1,
  backtransformation = function(x) {
    x
  },
  ...
)

## S3 method for class 'glm_b'
plot(
  x,
  type,
  variable,
  exemplar_covariates,
  combine_pred_cred = TRUE,
  variable_seq_length = 30,
  return_as_list = FALSE,
  CI_level = 0.95,
  PI_level = 0.95,
  seed = 1,
  ...
)

## S3 method for class 'np_glm_b'
plot(
```

```

x,
type,
variable,
exemplar_covariates,
variable_seq_length = 30,
return_as_list = FALSE,
CI_level = 0.95,
seed = 1,
backtransformation = function(x) {
  x
},
...
)

## S3 method for class 'mediate_b'
plot(x, type, return_as_list = FALSE, ...)

## S3 method for class 'survfit_b'
plot(x, n_draws = 10000, seed = 1, CI_level = 0.95, ...)

```

Arguments

x	A bayesics object
type	character. Select any of "diagnostics" ("dx" is also allowed), "pdp" (partial dependence plot), "cred band", and/or "pred band". NOTE: the credible and prediction bands only work for numeric variables. If plotting a mediate_b object, the valid values for type are "diagnostics" (or "dx"), "acme", or "ade".
variable	character. If type = "pdp", which variable should be plotted?
exemplar_covariates	data.frame or tibble with exactly one row. Used to fix other covariates while varying the variable of interest for the plot.
combine_pred_cred	logical. If type includes both "cred band" and "pred band", should the credible band be superimposed on the prediction band or plotted separately?
variable_seq_length	integer. Number of points used to draw pdp.
return_as_list	logical. If TRUE, a list of ggplots will be returned, rather than a single plot produced by the patchwork package.
CI_level	Posterior probability covered by credible interval
PI_level	Posterior probability covered by prediction interval
backtransformation	function. If a transformation of the response variable was used, backtransformation should be the inverse of this transformation function. E.g., if you fit lm_b(log(y) ~ x), then set backtransformation=exp.
...	optional arguments.

```

bayes_pvalues_quantiles
  ADD description!
seed
  ADD description!
n_draws
  integer. Number of posterior draws used for visualization of survival curves.
  Ignored if x is not a survfit_b object.

```

Value

If `return_as_list`=TRUE, a list of requested ggplots.

Examples

```

set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
plot(fit1)

```

poisson_test_b	<i>Poisson tests</i>
----------------	----------------------

Description

Make inference on one or two populations using Poisson distributed count data

Usage

```

poisson_test_b(
  x,
  offset,
  r,
  ROPE,
  prior = "jeffreys",
  prior_shape_rate,
  CI_level = 0.95,
  plot = TRUE,
  seed = 1,
  mc_error = 0.002
)

```

Arguments

x	Number of events. A vector of length one or two.
offset	Time, area, etc. measured in the Poisson process. NOTE: Do not take the log!
r	optional. If provided and inference is being made for a single population, poisson_test_b will return the posterior probability that the population rate is less than this value.
ROPE	ROPE for rate ratio if inference is being made for two populations. Provide either a single value or a vector of length two. If the former, the ROPE will be taken as (1/ROPE,ROPE). If the latter, these will be the bounds of the ROPE.
prior	Either "jeffreys" (Gamma(1/2,0)) or "flat" (Gamma(0.001,0.001)). This is ignored if prior_shape_rate is provided.
prior_shape_rate	Vector of length two, giving the shape and rate parameters for the gamma distribution that will act as the prior on the population rates.
CI_level	The posterior probability to be contained in the credible intervals.
plot	logical. Should a plot be shown?
seed	Always set your seed! (Unused for a single population rate)
mc_error	The number of posterior draws will ensure that with 99% probability the bounds of the credible intervals of λ_1/λ_2 will be within \pm mc_error. (Ignored for a single population rate.)

Details

The likelihood is

$$y \sim Poi(\lambda t),$$

where λ is the rate, and t is the time or area observed and is given by the argument offset.

The prior is given by

$$\lambda \sim \Gamma(a, b),$$

where a and b are given by the argument prior_shape_rate. If prior_shape_rate is missing and prior = "jeffreys", then a Jeffrey's prior will be used, i.e., $\Gamma(0.5, 0)$ (improper), while if prior = "flat", $\Gamma(0.001, 0.001)$ will be used.

Value

(returned invisible) A list with the following:

- x, offset: data and offset(s)
- posterior_mean, posterior_mean_pop1, posterior_mean_pop2: posterior means of the Poisson rates
- CI, CI_pop1, CI_pop2: Credible interval bounds for the rates
- CI_lambda1_over_lambda2: Credible interval bounds for the rate ratio (rate of population 1 over the rate of population 2)
- Pr_less_than_r: (1 sample analysis only) If r was supplied, the posterior probability that the rate is less than r.

- `Pr_rate_ratio_lt_one`: (2 sample analysis only) Posterior probability that the rate ratio is less than 1
- `Pr_rateratio_in_ROPE`: (2 sample analysis only) Posterior probability that the rate ratio is in the ROPE (based on `Pr_rate_ratio_lt_one`)
- `rate_plot`: Posterior and prior plots for the rates
- `posterior_parameters`: Posterior parameters for rates for the gamma posterior distribution

Examples

```
# One sample
poisson_test_b(x = 12)
## You can compute the posterior probability that the rate is less than r
poisson_test_b(x = 12,
                r = 8)

# Two samples
poisson_test_b(x = c(12,20))

# Offsets can be included:
poisson_test_b(x = c(12,20),
                offset = c(10,9))

# Different priors can be used
poisson_test_b(x = c(12,20),
                prior = "flat")
poisson_test_b(x = c(12,20),
                prior_shape_rate = c(20,1.5))
```

predict.aov_b

Predict method for aov_b model fits

Description

Predict method for aov_b model fits

Usage

```
## S3 method for class 'aov_b'
predict(object, CI_level = 0.95, PI_level = 0.95, ...)
```

Arguments

<code>object</code>	Object of class aov_b
<code>CI_level</code>	Posterior probability covered by credible interval
<code>PI_level</code>	Posterior probability covered by prediction interval
...	optional arguments.

Value

tibble with estimate (posterior mean), prediction intervals, and credible intervals for the mean.

Examples

```
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rep(letters[1:5],N/5))
test_data$outcome =
  rnorm(N,-1 + 2 * (test_data$x1 %in% c("d","e")) )

# Fit 1-way ANOVA model
fit1 <-
  aov_b(outcome ~ x1,
        test_data,
        prior_mean_mu = 2,
        prior_mean_nu = 0.5,
        prior_var_shape = 0.01,
        prior_var_rate = 0.01)
predict(fit1)
```

predict.glm_b

Predict method for glm_b model fits

Description

Predict method for glm_b model fits

Usage

```
## S3 method for class 'glm_b'
predict(
  object,
  newdata,
  trials,
  CI_level = 0.95,
  PI_level = 0.95,
  seed = 1,
  n_draws = 5000,
  ...
)
```

Arguments

object	Object of class <code>glm_b</code>
newdata	An optional data.frame in which to look for variables with which to predict.
trials	Integer vector giving the number of trials for each observation if family = <code>binomial()</code> .
CI_level	Posterior probability covered by credible interval
PI_level	Posterior probability covered by prediction interval
seed	integer. Always set your seed!!!
n_draws	integer. Number of posterior draws used for prediction
...	optional arguments.

Value

tibble with estimate (posterior mean), prediction intervals, and credible intervals for the mean.

Examples

```
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
              x2 = rnorm(N),
              x3 = letters[1:5],
              time = rexp(N))
test_data$outcome =
  rnbinom(N,
          mu = exp(-2 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e"))) * test_data$time,
          size = 0.7)

# Fit using variational Bayes (default)
fit_vb1 <-
  glm_b(outcome ~ x1 + x2 + x3 + offset(log(time)),
        data = test_data,
        family = negbinom(),
        seed = 2025)
# Predict
predict(fit_vb1)
```

Description

Predict method for `lm_b` model fits

Usage

```
## S3 method for class 'lm_b'
predict(object, newdata, CI_level = 0.95, PI_level = 0.95, n_draws = 0, ...)
```

Arguments

object	Object of class lm_b
newdata	An optional data.frame in which to look for variables with which to predict.
CI_level	Posterior probability covered by credible interval
PI_level	Posterior probability covered by prediction interval
n_draws	If desired, the number of posterior samples drawn.
...	optional arguments.

Value

tibble with estimate (posterior mean), prediction intervals, and credible intervals for the mean.

Examples

```
set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N, -1 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
predict(fit1)
```

predict.lm_b_bma *Predict method for bma model fits*

Description

Predict method for bma model fits

Usage

```
## S3 method for class 'lm_b_bma'
predict(object, newdata, CI_level = 0.95, PI_level = 0.95, seed = 1, ...)
```

Arguments

object	Object of class bma
newdata	An optional data.frame in which to look for variables with which to predict.
CI_level	Posterior probability covered by credible interval
PI_level	Posterior probability covered by prediction interval
seed	integer. Always set your seed!!!
...	optional arguments.

Value

list.

- newdata tibble with estimate, prediction intervals, and credible intervals for the mean.
- posterior_draws
 - mean_of_ynew draws of $E(y)$, marginalizing out the model
 - posterior draws of ynew

Examples

```
# Create data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
              x2 = rnorm(N),
              x3 = letters[1:5],
              x4 = rnorm(N),
              x5 = rnorm(N),
              x6 = rnorm(N),
              x7 = rnorm(N),
              x8 = rnorm(N),
              x9 = rnorm(N),
              x10 = rnorm(N))
test_data$outcome =
  rnorm(N, -1 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")))

# Fit linear model using Bayesian model averaging
fit <-
  bma_inference(outcome ~ .,
                 test_data,
                 user.int = FALSE)
predict(fit)
```

predict.np_glm_b	<i>Predict method for lm_b model fits</i>
------------------	---

Description

Predict method for lm_b model fits

Usage

```
## S3 method for class 'np_glm_b'
predict(object, newdata, trials, CI_level = 0.95, ...)
```

Arguments

object	Object of class lm_b
newdata	An optional data.frame in which to look for variables with which to predict.
trials	Integer vector giving the number of trials for each observation if family = binomial().
CI_level	numeric. Credible interval level.
...	optional arguments.

Value

tibble with estimate, prediction intervals, and credible intervals for the mean.

Examples

```
# Generate some data
set.seed(2025)
N = 500
test_data =
  data.frame(x1 = rnorm(N),
              x2 = rnorm(N),
              x3 = letters[1:5])
test_data$outcome =
  rbinom(N, 1, 1.0 / (1.0 + exp(-(-2 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")) ))))

# Fit the GLM via the (non-parametric) loss-likelihood bootstrap.
fit1 <-
  np_glm_b(outcome ~ x1 + x2 + x3,
            data = test_data,
            family = binomial())
predict(fit1)
```

<code>print</code>	<i>Print bayesics objects.</i>
--------------------	--------------------------------

Description

Print bayesics objects.

Usage

```
## S3 method for class 'aov_b'
print(x, ...)

## S3 method for class 'lm_b'
print(x, ...)

## S3 method for class 'np_glm_b'
print(x, ...)

## S3 method for class 'lm_b_bma'
print(x, ...)

## S3 method for class 'glm_b'
print(x, ...)

## S3 method for class 'mediate_b'
print(x, ...)

## S3 method for class 'survfit_b'
print(x, ...)
```

Arguments

<code>x</code>	an object used to select a method.
<code>...</code>	optional arguments.

Value

None

Examples

```
set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
```

```

rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")) )
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
print(fit1)

```

prop_test_b*Bayesian test of Equal or Given Proportions*

Description

prop_test_b either makes inference on a single population proportion, or else compares two population proportions. binom_test_b is the same as prop_test_b.

Usage

```

prop_test_b(
  n_successes,
  n_failures,
  n_total,
  p,
  predict_for_n,
  ROPE,
  prior = "jeffreys",
  prior_shapes,
  CI_level = 0.95,
  PI_level = 0.95,
  plot = TRUE,
  seed = 1,
  mc_error = 0.002
)

```

Arguments

n_successes	integer/numeric vector of length 1 (for 1 population) or 2 (for 2 populations) providing the number of "successes"
n_failures	Similar to n_successes, but for failures. Only provide this OR n_total.
n_total	Similar to n_successes, but for total number of trials. Only provide this OR n_failures.
p	optional. If provided and inference is being made for a single population, prop_test_b will return the posterior probability that the population proportion is less than this value.
predict_for_n	Number in a future trial. If missing, prop_test_b will use the observed number of trials.

ROPE	ROPE for odds ratio if inference is being made for two populations. Provide either a single value or a vector of length two. If the former, the ROPE will be taken as (1/ROPE,ROPE). If the latter, these will be the bounds of the ROPE.
prior	Either "jeffreys" (Beta(1/2,1/2)) or "uniform" (Beta(1,1)). This is ignored if prior_shapes is provided.
prior_shapes	Vector of length two, giving the shape parameters for the beta distribution that will act as the prior on the population proportions.
CI_level, PI_level	The posterior probability to be contained in the credible and prediction intervals respectively.
plot	logical. Should a plot be shown?
seed	Always set your seed! (Unused for a single population proportion.)
mc_error	The number of posterior draws will ensure that with 99% probability the bounds of the credible intervals of $p_1 - p_2$ will be within \pm mc_error. (Ignored for a single population proportion.)

Details

The likelihood is given by

$$y \sim \text{Binom}(n, p),$$

and the prior on p is

$$p \sim \text{Beta}(a, b),$$

where a and b are given by the argument prior_shapes. If prior_shapes is missing and prior = "jeffreys", then a Jeffreys prior will be used (Beta(1/2, 1/2)), and if prior = "uniform", then a uniform prior will be used (Beta(1, 1)).

Value

(returned invisible) A list with the following:

- successes, failures: Number of successes and failures
- posterior_mean, posterior_mean_pop1, posterior_mean_pop2: posterior means for the population proportion
- CI, CI_pop1, CI_pop2: Credible interval for the population proportion
- Pr_oddsratio_in_ROPE: (2 sample analysis only) Posterior probability that the odds ratio is in the ROPE
- PI, PI_pop1, PI_pop2: Prediction interval for the number of trials given in predict_for_n
- Pr_less_than_p: (1 sample analysis only) If p was supplied, the posterior probability that the population proportion is less than p
- prop_plot: Prior and posterior plot of population proportion(s)
- posterior_parameters: Posterior beta shape parameters for the population proportion(s)

Examples

```

# Single population
prop_test_b(14,
            19)
# or another way of the same thing;
prop_test_b(14,
            n_total = 14 + 19)

# A null value compared against can be added:
prop_test_b(14,
            19,
            p = 0.5)

# Two populations
prop_test_b(c(14,22),
            c(19,45))
# or equivalently
prop_test_b(c(14,22),
            n_total = c(14,22) + c(19,45))

```

sign_test_b

Paired sign test

Description

Sign test for paired data.

Usage

```

sign_test_b(
  x,
  y,
  p0 = 0.5,
  prior = "jeffreys",
  prior_shapes,
  ROPE,
  CI_level = 0.95,
  plot = TRUE
)

```

Arguments

x	Either numeric vector or binary vector. If the former, $z_i = 1_{[x_i > y_i]}$ if y is supplied, else $z_i = 1_{[x_i > 0]}$. If the latter, then $z_i = x_i$.
y	Optional numeric vector to pair with x.

p0	sign_test_b will return the posterior probability that $p < p0$. Defaults to 0.5, as is most typical in the sign test.
prior	Either "jeffreys" (Beta(1/2,1/2)) or "uniform" (Beta(1,1)). This is ignored if prior_shapes is provided.
prior_shapes	Vector of length two, giving the shape parameters for the beta distribution that will act as the prior on the probability that $z_i = 1$.
ROPE	positive numeric of length 1 or 2. If of length 1, then ROPE is taken to be $p0 \pm \text{ROPE}$. Defaults to ± 0.05 .
CI_level	The posterior probability to be contained in the credible interval for p .
plot	logical. Should a plot be shown?

Details

The sign test looks at $z_i := 1_{[x_i > y_i]}$ rather than trying to model the distribution of (x_i, y_i) . sign_test_b then uses the fact that

$$z_i \stackrel{iid}{\sim} \text{Bernoulli}(p)$$

and then makes inference on p . The prior on p is

$$p \sim \text{Beta}(a, b),$$

where a and b are given by the argument prior_shapes. If prior_shapes is missing and prior = "jeffreys", then a Jeffreys prior will be used (Beta(1/2,1/2)), and if prior = "uniform", then a uniform prior will be used (Beta(1,1)).

Value

(returned invisible) A list with the following:

- posterior_mean: Posterior mean of the median difference
- CI: Credible interval for the median difference
- Pr_less_than_p: Posterior probability that the proportion of differences that are positive is less than the argument p0.
- ROPE_bounds: ROPE bounds for the proportion of differences that are positive
- ROPE: Posterior probability that the proportion of differences which are positive falls in the ROPE
- prop_plot: Prior and posterior plot
- posterior_parameters: Posterior beta shape parameters for the proportion of differences which are positive

Examples

```
# Single population
sign_test_b(x = rnorm(50))

## Change ROPE
sign_test_b(x = rnorm(50),
            ROPE = 0.1)
```

```
## Change the prior
sign_test_b(x = rnorm(50),
             prior = "uniform")
sign_test_b(x = rnorm(50),
             prior_shapes = c(2,2))

## Two populations
sign_test_b(x = rnorm(50,1),
             y = rnorm(50,0))

## Change reference probability
sign_test_b(x = rnorm(50,1),
             y = rnorm(50,0),
             p0 = 0.7)
```

summary

Summary functions for bayesics objects

Description

Summary functions for bayesics objects

Usage

```
## S3 method for class 'lm_b'
summary(object, CI_level = 0.95, ...)

## S3 method for class 'aov_b'
summary(object, CI_level = 0.95, ...)

## S3 method for class 'np_glm_b'
summary(object, CI_level = 0.95, interpretable_scale = TRUE, ...)

## S3 method for class 'lm_b_bma'
summary(object, CI_level = 0.95, ...)

## S3 method for class 'glm_b'
summary(object, CI_level = 0.95, interpretable_scale = TRUE, ...)

## S3 method for class 'mediate_b'
summary(object, CI_level = 0.95, ...)
```

Arguments

object bayesics object

```

CI_level      Posterior probability covered by credible interval
...           optional arguments.
interpretable_scale
              ADD description!

```

Value

tibble with summary values

Examples

```

set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
summary(fit1)

```

Surv

Create a Survival Object

Description

Create a survival object, usually used as a response variable in a model formula. Argument matching is special for this function, see Details under [Surv](#). This is a restricted wrapper around [Surv](#) and currently supports only right-censored data.

Usage

`Surv(...)`

Arguments

... arguments to be passed into `survival::Surv`. Currently, the input must be of the form `Surv(time, event)` for right censored data.

Value

An object of class "Surv".

References

Therneau T (2024). *A Package for Survival Analysis in R*. R package version 3.8-3, <https://CRAN.R-project.org/package=survival>.

Examples

```
set.seed(2025)
N = 300
test_data =
  data.frame(outcome =
    rweibull(N,2,5))
test_data$observed =
  ifelse(test_data$outcome >= 7, 0, 1)
test_data$outcome =
  ifelse(dplyr::near(test_data$observed,1), test_data$outcome, 7)
Surv(test_data$outcome,
  test_data$observed)
```

survfit_b

Create survival curves

Description

Use the semi-parametric piecewise exponential survival model to fit a survival curve to one or more samples

Usage

```
survfit_b(formula, data, prior_shape, prior_rate, max_n_time_bins, n_time_bins)
```

Arguments

formula	Either <code>Surv(time, event) ~ group</code> for multiple groups, or else <code>Surv(time, event) ~ 1</code> to make inference on a single population. The event variable must equal 1 if the event occurred and 0 if right censored. Currently right censoring is the only type of censoring allowed.
data	A data frame in which the variables specified in the formula will be found.
prior_shape	The shape parameter used in the gamma priors for the hazard rates
prior_rate	The rate parameter used in the gamma priors for the hazard rates
max_n_time_bins	integer. Maximum number of time bins, or "pieces", of the hazard function to be evaluated via Bayes factors. Ignored if <code>n_time_bins</code> is provided.
n_time_bins	Number of time bins used for hazard ratio. For a more data-driven approach, leave this argument missing and provide <code>max_n_time_bins</code> .

Details

The approach proposed by Qing et al. (2023) models the survival curve by way of piecewise exponential curves. That is, the hazard function is a piecewise function. The prior on the hazard within each "piece", or equivalently the rate of the exponential distribution, is a conjugate gamma distribution. Unless specified, the prior shape and rate for each piece is the posterior under the assumption that the data follow a single exponential distribution.

Unless prespecified by the user, the number of breaks in the hazard function is determined by Bayes factors, which can be quickly computed analytically.

If more than one population is being compared, then as before Bayes factors will be used to determine the number of breaks in each group's hazard function, and then Bayes factors will be used to compare the hypothesis that each group has a separate survival function vs. the null hypothesis that all groups share the same survival function.

Value

Object of class `survfit_b` with the following:

- `posterior_parameters` An `n_time_binsx2` matrix whose columns provide shapes and rates of the gamma posterior distribution of each of the piecewise hazard rates.
- `intervals` An `n_time_binsx2` matrix whose columns provide the start and endpoints of each time bin. If comparing multiple samples, a list of such matrices will be provided.
- `marginal_likelihood`
- `data`

If comparing multiple samples, each group will have a list of `posterior_parameters` and `intervals`.

References

Qing Y, Thall PF, Yuan Y. A Bayesian piecewise exponential phase II design for monitoring a time-to-event endpoint. *Pharm Stat.* 2023 Jan;22(1):34-44. doi: 10.1002/pst.2256. Epub 2022

Examples

```
# Single population
set.seed(2025)
N = 300
test_data =
  data.frame(outcome =
    rweibull(N,2,5))
test_data$observed =
  ifelse(test_data$outcome >= 7, 0, 1)
test_data$outcome =
  ifelse(dplyr::near(test_data$observed,1), test_data$outcome, 7)
fit1 =
  survfit_b(Surv(test_data$outcome,
                 test_data$observed) ~ 1)
plot(fit1)
```

```

# Multiple populations
set.seed(2025)
N = 300
test_data =
  data.frame(outcome =
    c(rweibull(2*N/3,2,5),
      rweibull(N/3,2,10)),
    x1 = rep(letters[1:3],each = N/3))
test_data$observed =
  ifelse(test_data$outcome >= 9, 0, 1)
test_data$outcome =
  ifelse(dplyr::near(test_data$observed,1), test_data$outcome, 9)
fit2 =
  survfit_b(Surv(outcome,
                  observed) ~ x1,
             data = test_data)
fit2
plot(fit2)

```

t_test_b

t-test

Description

One and two sample t-tests on vectors of data

Usage

```

t_test_b(
  x,
  y,
  mu,
  paired = FALSE,
  data,
  heteroscedastic = TRUE,
  prior_mean_mu,
  prior_mean_nu = 0.001,
  prior_var_shape = 0.001,
  prior_var_rate = 0.001,
  CI_level = 0.95,
  ROPE = 0.1,
  improper = FALSE,
  plot = TRUE,
  seed = 1,
  mc_error = 0.002
)

```

Arguments

<i>x</i>	Either a (non-empty) numeric vector of data values, or a formula of the form outcome ~ grouping variable.
<i>y</i>	an optional (non-empty) numeric vector of data values
<i>mu</i>	optional. If supplied, <i>t_test_b</i> will return the posterior probability that the population mean (ignored in 2 sample inference) is less than this value.
<i>paired</i>	logical. If TRUE, provide both <i>x</i> and <i>y</i> as vectors.
<i>data</i>	logical. Only used if <i>x</i> is a formula.
<i>heteroscedastic</i>	logical. Set to FALSE to assume all groups have equal variance.
<i>prior_mean_mu</i>	numeric. Hyperparameter for the a priori mean of the group means.
<i>prior_mean_nu</i>	numeric. Hyperparameter which scales the precision of the group means.
<i>prior_var_shape</i>	numeric. Twice the shape parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
<i>prior_var_rate</i>	numeric. Twice the rate parameter for the inverse gamma prior on the residual variance(s). I.e., $\sigma^2 \sim IG(\text{prior_var_shape}/2, \text{prior_var_rate}/2)$.
<i>CI_level</i>	numeric. Credible interval level.
<i>ROPE</i>	numeric. Used to compute posterior probability that Cohen's D +/- ROPE
<i>improper</i>	logical. Should we use an improper prior that is proportional to the inverse of the variance?
<i>plot</i>	logical. Should the resulting inverse gamma distribution be plotted?
<i>seed</i>	integer. Always set your seed!!!
<i>mc_error</i>	The number of posterior draws will ensure that with 99% probability the bounds of the credible intervals will be within $\pm \text{mc_error} \times 4s_y$, that is, within 100 $\text{mc_error}\%$ of the trimmed range of <i>y</i> . (Ignored for single population inference.)

Details

A one and two sample t-test is nothing more than a special case of one-way anova. See [aov_b](#) for details.

Value

Either an *aov_b* object, if two samples are being compared, or a list with the following elements:

- Variable
- Post Mean
- Lower (bound of credible interval)
- Upper (bound of credible interval)
- Prob Dir (Probability of Direction)

Examples

```

# Single population
t_test_b(rnorm(50))
# or an alternative input format
t_test_b(outcome ~ 1,
         data = data.frame(outcome = rnorm(50)))

# Two populations
t_test_b(rnorm(50),
         rnorm(15,1))

# or an alternative input format
t_test_b(outcome ~ group_variable,
         data =
             data.frame(outcome = c(rnorm(50),
                                    rnorm(15,1)),
                        group_variable = rep(c("a","b"),
                                             c(50,15))))

```

vcov

Calculate Posterior Variance-Covariance Matrix for a Bayesian Fitted Model Object

Description

Returns the posterior covariance matrix of the main parameters of a fitted bayesics object

Usage

```

## S3 method for class 'aov_b'
vcov(object, ...)

## S3 method for class 'lm_b'
vcov(object, ...)

## S3 method for class 'glm_b'
vcov(object, ...)

## S3 method for class 'np_glm_b'
vcov(object, ...)

```

Arguments

object	a fitted model object from bayesics.
...	Passed to methods.

Value

A matrix of the covariance matrix for the regression coefficients. If the posterior is a multivariate t distribution (or consists of independent t's in the case of heteroscedastic 1-way ANOVA), the degrees of freedom are returned as the df attribute of the matrix. Note that for lm_b and aov_b objects, this function already takes into account the uncertainty around the residual variance.

Examples

```
set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N, -1 + test_data$x1 + 2 * (test_data$x3 %in% c("d", "e")))
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
        data = test_data)
vcov(fit1)
```

wilcoxon_test_b	<i>Bayesian Wilcoxon Rank Sum (aka Mann-Whitney U) and Signed Rank Analyses</i>
-----------------	---

Description

Bayesian Wilcoxon Rank Sum (aka Mann-Whitney U) and Signed Rank Analyses

Usage

```
wilcoxon_test_b(
  x,
  y,
  paired = FALSE,
  p = 0.5,
  ROPE,
  prior = "centered",
  prior_shapes,
  CI_level = 0.95,
  plot = TRUE,
  seed = 1
)
```

Arguments

x	numeric vector of data values. Non-finite (e.g., infinite or missing) values will be omitted.
y	an optional numeric vector of data values: as with x non-finite values will be omitted.
paired	if TRUE and y is supplied, x-y will be the input of the Bayesian Wilcoxon signed rank test.
p	numeric. <ul style="list-style-type: none"> • Signed rank: wilcox_test_b will return the posterior probability that the population proportion of positive values (i.e., $x > y$) is greater than this value. • Rank sum/Mann-Whitney U: wilcox_test_b will return the posterior probability that the Ω_x (see details) is greater than this value.
ROPE	If a single number, ROPE will be $p \pm \text{ROPE}$. If a vector of length 2, these will serve as the ROPE bounds. Defaults to ± 0.05 .
prior	Prior used on the probability that $x > y$. Either "uniform" (Beta(1,1)), or "centered" (Beta(2,2)). This is ignored if prior_shapes is provided.
prior_shapes	Vector of length two, giving the shape parameters for the beta distribution that will act as the prior on the population proportions.
CI_level	The posterior probability to be contained in the credible interval.
plot	logical. Should a plot be shown?
seed	Always set your seed! (Unused for ≥ 20 observations.)

Details

Bayesian Wilcoxon signed rank analysis For a single input vector or paired data, the Bayesian signed rank analysis will be performed. The estimand is the proportion of (differenced) values that are positive. For more information, see [dfba_wilcoxon](#) and vignette("dfba_wilcoxon",package = "DFBA").

Bayesian Wilcoxon rank sum/Mann-Whitney analysis For unpaired x and y inputs, the Bayesian rank sum analysis will be performed. The estimand is $\Omega_x := \lim_{n \rightarrow \infty} \frac{U_x}{U_x + U_y}$, where U_x is the number of pairs (i, j) such that $x_i > y_j$, and vice versa for U_y . That is, it is the population proportion of all untied pairs for which $x > y$. Larger values imply that x is stochastically larger than y . For more information, see [dfba_mann_whitney](#) and vignette("dfba_mann_whitney",package = "DFBA").

Value

(returned invisible) If signed rank analysis is implemented, a list with the following:

- posterior_mean: Posterior mean of the proportion of differences that are positive
- CI: Credible interval of the proportion of differences that are positive
- Pr_less_than_p: Probability proportion of differences that are positive is less than the argument p

- `Pr_in_ROPE`: Probability proportion of differences that are positive is in the ROPE
- `prob_plot`: Prior and posterior plot of differences that are positive
- `posterior_parameters`: Posterior beta shape parameters for the proportion of differences that are positive
- `BF_for_phi_gr_onehalf_vs_phi_less_onehalf`: Bayes factor giving evidence in favor of the proportion of differences that are positive being greater than one half vs. less than one half
- `dfba_wilcoxon_object`: Underlying DFBA object

If rank sum analysis is implemented, a list with the following:

- `posterior_mean`: Posterior mean of Ω_x (see details)
- `CI`: Credible interval for Ω_x
- `Pr_less_than_p`: Posterior probability Ω_x is less than the argument p
- `Pr_in_ROPE`: Probability Ω_x is in the ROPE
- `prob_plot`: Prior and posterior plot of Ω_x
- `posterior_parameters`: Posterior beta shape parameters for Ω_x
- `BF_for_Omegax_gr_onehalf_vs_Omegax_less_onehalf`: Bayes factor in favor of Ω_x being greater than one half vs. less than one half
- `dfba_wilcoxon_object`: Underlying DFBA object

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction to Distribution-Free Methods. Cambridge: MIT Press.

Chechile, R. A. (2018) A Bayesian analysis for the Wilcoxon signed-rank statistic. Communications in Statistics - Theory and Methods, <https://doi.org/10.1080/03610926.2017.1388402>

Chechile, R.A. (2020). A Bayesian analysis for the Mann-Whitney statistic. Communications in Statistics – Theory and Methods 49(3): 670-696. <https://doi.org/10.1080/03610926.2018.1549247>.

Barch DH, Chechile RA (2023). DFBA: Distribution-Free Bayesian Analysis. doi:10.32614/CRAN.package.DFBA

Examples

```
# Signed rank analysis
## Generate data
N = 150
set.seed(2025)
test_data =
  data.frame(x = rbeta(N,2,10),
             y = rbeta(N,5,10))

## input differenced data
wilcoxon_test_b(test_data$x - test_data$y)
## input paired data vectors individually
wilcoxon_test_b(test_data$x,
                test_data$y,
                paired = TRUE)
```

```
## Use different priors
wilcoxon_test_b(test_data$x - test_data$y,
                 prior = "uniform")
wilcoxon_test_b(test_data$x - test_data$y,
                 prior_shapes = c(5,5))

## Change ROPE bounds
wilcoxon_test_b(test_data$x - test_data$y,
                 ROPE = 0.1)

# Rank sum analysis
## Generate data
set.seed(2025)
N = 150
x = rbeta(N,2,10)
y = rbeta(N + 1,5,10)

## Perform analysis
wilcoxon_test_b(x,y)
```

Index

AIC (IC), 28
aov_b, 3, 60

bayes_factors, 6
BIC (IC), 28
binom_test_b (prop_test_b), 51
bma_inference, 8
bms, 9

case_control_b, 10
chisq_test_b, 12
coef, 14
cor_test_b, 15
credint, 18

dfba_bivariate_concordance, 16
dfba_mann_whitney, 63
dfba_wilcoxon, 63
DIC (IC), 28

find_beta_parms, 19
find_invgamma_parms, 20

get_posterior_draws, 21
glm, 23, 37
glm_b, 22

heteroscedasticity_test, 26

IC, 28
independence_b (chisq_test_b), 12

lm_b, 30

mediate_b, 33

negbinom, 36
np_glm_b, 37

plot, 39
poisson_test_b, 42
predict.aov_b, 44

predict.glm_b, 45
predict.lm_b, 46
predict.lm_b_bma, 47
predict.np_glm_b, 49
print, 50
prop_test_b, 51

sign_test_b, 53
summary, 55
Surv, 56, 56
survfit_b, 57

t_test_b, 59

var_test_b (heteroscedasticity_test), 26
vcov, 61

WAIC (IC), 28
wilcoxon_test_b, 62