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bayesBisurvreg Population-averaged accelerated failure time model for bivariate, pos-
sibly doubly-interval-censored data. The error distribution is ex-
pressed as a penalized bivariate normal mixture with high number of
components (bivariate G-spline).

Description

A function to estimate a regression model with bivariate (possibly right-, left-, interval- or doubly-
interval-censored) data. In the case of doubly interval censoring, different regression models can be
specified for the onset and event times.
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The error density of the regression model is specified as a mixture of Bayesian G-splines (normal
densities with equidistant means and constant variance matrices). This function performs an MCMC
sampling from the posterior distribution of unknown quantities.

For details, see Komárek (2006) and Komárek and Lesaffre (2006).

We explain first in more detail a model without doubly censoring. Let Ti,l, i = 1, . . . , N, l = 1, 2
be event times for ith cluster and the first and the second unit. The following regression model is
assumed:

log(Ti,l) = β′xi,l + εi,l, i = 1, . . . , N, l = 1, 2

where β is unknown regression parameter vector and xi,l is a vector of covariates. The bivariate
error terms εi = (εi,1, εi,2)

′, i = 1, . . . , N are assumed to be i.i.d. with a bivariate density
gε(e1, e2). This density is expressed as a mixture of Bayesian G-splines (normal densities with
equidistant means and constant variance matrices). We distinguish two, theoretically equivalent,
specifications.

Specification 1

(ε1, ε2)
′ ∼

K1∑
j1=−K1

K2∑
j2=−K2

wj1,j2N2(µ(j1,j2), diag(σ2
1 , σ

2
2))

where σ2
1 , σ

2
2 are unknown basis variances and µ(j1,j2) = (µ1,j1 , µ2,j2)

′ is an equidistant
grid of knots symmetric around the unknown point (γ1, γ2)′ and related to the unknown
basis variances through the relationship

µ1,j1 = γ1 + j1δ1σ1, j1 = −K1, . . . ,K1,

µ2,j2 = γ2 + j2δ2σ2, j2 = −K2, . . . ,K2,

where δ1, δ2 are fixed constants, e.g. δ1 = δ2 = 2/3 (which has a justification of being close
to cubic B-splines).

Specification 2
(ε1, ε2)

′ ∼ (α1, α2)
′ + S (V1, V2)

′

where (α1, α2)
′ is an unknown intercept term and S is a diagonal matrix with τ1 and τ2 on a diagonal,

i.e. τ1, τ2 are unknown scale parameters. (V1, V2)
′) is then standardized bivariate error term

which is distributed according to the bivariate normal mixture, i.e.

(V1, V2)
′ ∼

K1∑
j1=−K1

K2∑
j2=−K2

wj1,j2N2(µ(j1,j2), diag(σ2
1 , σ

2
2))

where µ(j1,j2) = (µ1,j1 , µ2,j2)
′ is an equidistant grid of fixed knots (means), usually symmet-

ric about the fixed point (γ1, γ2)′ = (0, 0)′ and σ2
1 , σ

2
2 are fixed basis variances. Reasonable

values for the numbers of grid points K1 and K2 are K1 = K2 = 15 with the distance
between the two knots equal to δ = 0.3 and for the basis variances σ2

1σ
2
2 = 0.22.

Personally, I found Specification 2 performing better. In the paper Komárek and Lesaffre (2006)
only Specification 2 is described.
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The mixture weights wj1,j2 , j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 are not estimated directly.
To avoid the constraints 0 < wj1,j2 < 1 and

∑K1

j1=−K1

∑K2

j2=−K2
wj1,j2 = 1 transformed weights

aj1,j2 , j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 related to the original weights by the logistic
transformation:

aj1,j2 =
exp(wj1,j2)∑

m1

∑
m2

exp(wm1,m2
)

are estimated instead.

A Bayesian model is set up for all unknown parameters. For more details I refer to Komárek and
Lesaffre (2006) and to Komárek (2006).

If there are doubly-censored data the model of the same type as above can be specified for both the
onset time and the time-to-event.

Usage

bayesBisurvreg(formula, formula2, data = parent.frame(),
na.action = na.fail, onlyX = FALSE,
nsimul = list(niter = 10, nthin = 1, nburn = 0, nwrite = 10),
prior, prior.beta, init = list(iter = 0),
mcmc.par = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1),
prior2, prior.beta2, init2,
mcmc.par2 = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1),
store = list(a = FALSE, a2 = FALSE, y = FALSE, y2 = FALSE,

r = FALSE, r2 = FALSE),
dir)

Arguments

formula model formula for the regression. In the case of doubly-censored data, this is
the model formula for the onset time. Data are assumed to be sorted accord-
ing to subjects and within subjects according to the types of the events that
determine the bivariate survival distribution, i.e. the response vector must be
t1,1, t1,2, t2,1, t2,2, t3,1, t3,2, . . . , tn,1, tn,2. The rows of the design matrix with
covariates must be sorted analogically.
The left-hand side of the formula must be an object created using Surv.

formula2 model formula for the regression of the time-to-event in the case of doubly-
censored data. Ignored otherwise. The same remark as for formula concerning
the sort order applies here.

data optional data frame in which to interpret the variables occuring in the formulas.

na.action the user is discouraged from changing the default value na.fail.

onlyX if TRUE no MCMC sampling is performed and only the design matrix (matri-
ces) are returned. This can be useful to set up correctly priors for regression
parameters in the presence of factor covariates.

nsimul a list giving the number of iterations of the MCMC and other parameters of the
simulation.
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niter total number of sampled values after discarding thinned ones, burn-up
included;

nthin thinning interval;
nburn number of sampled values in a burn-up period after discarding thinned

values. This value should be smaller than niter. If not, nburn is set to
niter - 1. It can be set to zero;

nwrite an interval at which information about the number of performed itera-
tions is print on the screen and during the burn-up period an interval with
which the sampled values are writen to files;

prior a list specifying the prior distribution of the G-spline defining the distribution of
the error term in the regression model given by formula. See prior argument
of bayesHistogram function for more detail. In this list also ‘Specification’ as
described above is specified.

prior.beta prior specification for the regression parameters, in the case of doubly censored
data for the regression parameters of the onset time. I.e. it is related to formula.
This should be a list with the following components:

mean.prior a vector specifying a prior mean for each beta parameter in the
model.

var.prior a vector specifying a prior variance for each beta parameter.

It is recommended to run the function bayesBisurvreg first with its argument
onlyX set to TRUE to find out how the betas are sorted. They must correspond to
a design matrix X taken from formula.

init an optional list with initial values for the MCMC related to the model given by
formula. The list can have the following components:

iter the number of the iteration to which the initial values correspond, usually
zero.

beta a vector of initial values for the regression parameters. It must be sorted
in the same way as are the columns in the design matrix. Use onlyX=TRUE
if you do not know how the columns in the design matrix are created.

a a matrix of size (2K1 +1)× (2K2 +1) with the initial values of transformed
mixture weights.

lambda initial values for the Markov random fields precision parameters. Ac-
cording to the chosen prior for the transformed mixture weights, this is
either a number or a vector of length 2.

gamma a vector of length 2 of initial values for the middle knots γ1, γ2 in each
dimension.
If ‘Specification’ is 2, this value will not be changed by the MCMC and it
is recommended (for easier interpretation of the results) to set init$gamma
to zero for all dimensions (default behavior).
If ‘Specification’ is 1 init$gamma should be approximately equal to the
mean value of the residuals in each margin.

sigma a vector of length 2 of initial values of the basis standard deviations
σ1, σ2.
If ‘Specification’ is 2 this value will not be changed by the MCMC and it
is recommended to set it approximately equal to the range of standardized
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data (let say 4 + 4) divided by the number of knots in each margin and
multiplied by something like 2/3.
If ‘Specification’ is 1 this should be approximately equal to the range of
the residuals divided by the number of knots in each margin and multiplied
again by something like 2/3.

intercept a vector of length 2 of initial values of the intercept terms α1, α2.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to zero for both dimensions.

scale a vector of length 2 of initial values of the scale parameters τ1, τ2.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to one for both dimensions.

y a matrix with 2 columns and N rows with initial values of log-event-times for
each cluster in rows.

r a matrix with 2 columns and N rows with initial component labels for each
bivariate residual in rows. All values in the first column must be between
−K1and K1 and all values in the second column must be between −K2 and
K2. See argument init of the function bayesHistogram for more details.

mcmc.par a list specifying how some of the G-spline parameters related to formula are to
be updated. The list can have the following components (all of them have their
default values):
type.update.a G-spline transformed weights a can be updated using one of the

following algorithms:
slice slice sampler of Neal (2003)
ars.quantile adaptive rejection sampling of Gilks and Wild (1992) with

starting abscissae being quantiles of the envelop at the previous itera-
tion

ars.mode adaptive rejection sampling of Gilks and Wild (1992) with start-
ing abscissae being the mode plus/minus 3 times estimated standard
deviation of the full conditional distribution

Default is slice.
k.overrelax.a if type.update.a == "slice" some updates are overrelaxed. Then

every k.overrelax.ath iteration is not overrelaxed. Default is k.overrelax.a
= 1, i.e. no overrelaxation

k.overrelax.sigma G-spline basis standard deviations are updated using the
slice sampler of Neal (2003). At the same time, overrelaxation can be
used. Then every k.overrelax.sigma th update is not overrelaxed. Default is
k.overrelax.sigma = 1, i.e. no overrelaxation

k.overrelax.scale G-spline scales are updated using the slice sampler of Neal
(2003). At the same time, overrelaxation can be used. Then every k.overrelax.scale
th update is not overrelaxed. Default is k.overrelax.scale = 1, i.e. no
overrelaxation

prior2 a list specifying the prior distribution of the G-spline defining the distribution of
the error term in the regression model given by formula2. See prior argument
of bayesHistogram function for more detail.

prior.beta2 prior specification for the regression parameters of time-to-event in the case of
doubly censored data (related to formula2). This should be a list with the same
structure as prior.beta.
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init2 an optional list with initial values for the MCMC related to the model given by
formula2. The list has the same structure as init.

mcmc.par2 a list specifying how some of the G-spline parameters related to formula2 are
to be updated. The list has the same structure as mcmc.par.

store a list of logical values specifying which chains that are not stored by default are
to be stored. The list can have the following components.

a if TRUE then all the transformed mixture weights ak1, k2 , k1 = −K1, . . . ,K1,
k2 = −K2, . . . ,K2, related to the G-spline of formula are stored.

a2 if TRUE and there are doubly-censored data then all the transformed mixture
weights ak1, k2

, k1 = −K1, . . . ,K1, k2 = −K2, . . . ,K2, related to the
G-spline of formula2 are stored.

y if TRUE then augmented log-event times for all observations related to the
formula are stored.

y2 if TRUE then augmented log-event times for all observations related to formula2
are stored.

r if TRUE then labels of mixture components for residuals related to formula
are stored.

r2 if TRUE then labels of mixture components for residuals related to formula2
are stored.

dir a string that specifies a directory where all sampled values are to be stored.

Value

A list of class bayesBisurvreg containing an information concerning the initial values and prior
choices.

Files created

Additionally, the following files with sampled values are stored in a directory specified by dir
argument of this function (some of them are created only on request, see store parameter of this
function).

Headers are written to all files created by default and to files asked by the user via the argument
store. During the burn-in, only every nsimul$nwrite value is written. After the burn-in, all
sampled values are written in files created by default and to files asked by the user via the argument
store. In the files for which the corresponding store component is FALSE, every nsimul$nwrite
value is written during the whole MCMC (this might be useful to restart the MCMC from some
specific point).

The following files are created:

iteration.sim one column labeled iteration with indeces of MCMC iterations to which the stored
sampled values correspond.

mixmoment.sim columns labeled k, Mean.1, Mean.2, D.1.1, D.2.1, D.2.2, where
k = number of mixture components that had probability numerically higher than zero;
Mean.1 = E(εi,1);
Mean.2 = E(εi,2);
D.1.1 = var(εi,1);
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D.2.1 = cov(εi,1, εi,2);
D.2.2 = var(εi,2);
all related to the distribution of the error term from the model given by formula.

mixmoment_2.sim in the case of doubly-censored data, the same structure as mixmoment.sim,
however related to the model given by formula2.

mweight.sim sampled mixture weights wk1, k2
of mixture components that had probabilities nu-

merically higher than zero. Related to the model given by formula.

mweight_2.sim in the case of doubly-censored data, the same structure as mweight.sim, however
related to the model given by formula2.

mmean.sim indeces k1, k2, k1 ∈ {−K1, . . . ,K1}, k2 ∈ {−K2, . . . ,K2} of mixture compo-
nents that had probabilities numerically higher than zero. It corresponds to the weights in
mweight.sim. Related to the model given by formula.

mmean_2.sim in the case of doubly-censored data, the same structure as mmean.sim, however
related to the model given by formula2.

gspline.sim characteristics of the sampled G-spline (distribution of (εi,1, εi,2)
′) related to the

model given by formula. This file together with mixmoment.sim, mweight.sim and mmean.sim
can be used to reconstruct the G-spline in each MCMC iteration.
The file has columns labeled gamma1, gamma2, sigma1, sigma2, delta1, delta2, intercept1,
intercept2, scale1, scale2. The meaning of the values in these columns is the following:
gamma1 = the middle knot γ1 in the first dimension. If ‘Specification’ is 2, this column
usually contains zeros;
gamma2 = the middle knot γ2 in the second dimension. If ‘Specification’ is 2, this column
usually contains zeros;
sigma1 = basis standard deviation σ1 of the G-spline in the first dimension. This column
contains a fixed value if ‘Specification’ is 2;
sigma2 = basis standard deviation σ2 of the G-spline in the second dimension. This column
contains a fixed value if ‘Specification’ is 2;
delta1 = distance delta1 between the two knots of the G-spline in the first dimension. This
column contains a fixed value if ‘Specification’ is 2;
delta2 = distance δ2 between the two knots of the G-spline in the second dimension. This
column contains a fixed value if ‘Specification’ is 2;
intercept1 = the intercept term α1 of the G-spline in the first dimension. If ‘Specification’ is
1, this column usually contains zeros;
intercept2 = the intercept term α2 of the G-spline in the second dimension. If ‘Specification’
is 1, this column usually contains zeros;
scale1 = the scale parameter τ1 of the G-spline in the first dimension. If ‘Specification’ is 1,
this column usually contains ones;
scale2 = the scale parameter τ2 of the G-spline in the second dimension. ‘Specification’ is 1,
this column usually contains ones.

gspline_2.sim in the case of doubly-censored data, the same structure as gspline.sim, however
related to the model given by formula2.

mlogweight.sim fully created only if store$a = TRUE. The file contains the transformed weights
ak1, k2

, k1 = −K1, . . . ,K1, k2 = −K2, . . . ,K2 of all mixture components, i.e. also of
components that had numerically zero probabilities. This file is related to the model given by
formula.
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mlogweight_2.sim fully created only if store$a2 = TRUE and in the case of doubly-censored data,
the same structure as mlogweight.sim, however related to the model given by formula2.

r.sim fully created only if store$r = TRUE. The file contains the labels of the mixture components
into which the residuals are intrinsically assigned. Instead of double indeces (k1, k2), values
from 1 to (2K1 + 1) × (2K2 + 1) are stored here. Function vecr2matr can be used to
transform it back to double indeces.

r_2.sim fully created only if store$r2 = TRUE and in the case of doubly-censored data, the same
structure as r.sim, however related to the model given by formula2.

lambda.sim either one column labeled lambda or two columns labeled lambda1 and lambda2.
These are the values of the smoothing parameter(s) λ (hyperparameters of the prior distribu-
tion of the transformed mixture weights ak1, k2

). This file is related to the model given by
formula.

lambda_2.sim in the case of doubly-censored data, the same structure as lambda.sim, however
related to the model given by formula2.

beta.sim sampled values of the regression parameters β related to the model given by formula.
The columns are labeled according to the colnames of the design matrix.

beta_2.sim in the case of doubly-censored data, the same structure as beta.sim, however related
to the model given by formula2.

Y.sim fully created only if store$y = TRUE. It contains sampled (augmented) log-event times for
all observations in the data set.

Y_2.sim fully created only if store$y2 = TRUE and in the case of doubly-censored data, the same
structure as Y.sim, however related to the model given by formula2.

logposter.sim columns labeled loglik, penalty or penalty1 and penalty2, logprw. This file is
related to the model given by formula. The columns have the following meaning.

loglik = −N
{
log(2π) + log(σ1) + log(σ2)

}
− 0.5

∑N
i=1

{
(σ2

1 τ
2
1 )

−1 (yi,1 − x′
i,1β − α1 −

τ1µ1, ri,1)
2 + (σ2

2 τ
2
2 )

−1 (yi,2 − x′
i,2β − α2 − τ2µ2, ri,2)

2
}

where yi,l denotes (augmented) (i,l)th true log-event time. In other words, loglik is equal to

the conditional log-density
∑N

i=1 log
{
p
(
(yi,1, yi,2)

∣∣ ri, β, G-spline
)}

;

penalty1: If prior$neighbor.system = "uniCAR": the penalty term for the first dimension
not multiplied by lambda1;
penalty2: If prior$neighbor.system = "uniCAR": the penalty term for the second dimen-
sion not multiplied by lambda2;
penalty: If prior$neighbor.system is different from "uniCAR": the penalty term not mul-
tiplied by lambda;
logprw =−2N log

{∑
k1

∑
k2

ak1, k2

}
+
∑

k1

∑
k2

Nk1, k2 ak1, k2 , where Nk1, k2 is the num-
ber of residuals assigned intrinsincally to the (k1, k2)th mixture component.

In other words, logprw is equal to the conditional log-density
∑N

i=1 log
{
p(ri | G-spline weights)

}
.

logposter_2.sim in the case of doubly-censored data, the same structure as lambda.sim, however
related to the model given by formula2.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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Examples

## See the description of R commands for
## the population averaged AFT model
## with the Signal Tandmobiel data,
## analysis described in Komarek and Lesaffre (2006),
##
## R commands available in the documentation
## directory of this package as
## - see ex-tandmobPA.R and
## https://www2.karlin.mff.cuni.cz/ komarek/software/bayesSurv/ex-tandmobPA.pdf
##

bayesDensity Summary for the density estimate based on the mixture Bayesian AFT
model.

Description

Function to summarize the results obtained using bayessurvreg1 function.

Compute the conditional (given the number of mixture components) and unconditional estimate
of the density function based on the values sampled using the reversible jumps MCMC (MCMC
average evaluated in a grid of values).

Give also the values of each sampled density evaluated at that grid (returned as the attribute of the
resulting object). Methods for printing and plotting are also provided.

Usage

bayesDensity(dir, stgrid, centgrid, grid, n.grid = 100,
skip = 0, by = 1, last.iter,
standard = TRUE, center = TRUE, unstandard = TRUE)
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Arguments

dir directory where to search for files ‘mixmoment.sim’, ‘mweight.sim’, mmean.sim’,
‘mvariance.sim’ with the McMC sample.

stgrid grid of values at which the sampled standardized densities are to be evaluated.
If missing, the grid is automatically computed.

centgrid grid of values at which the sampled centered (but not scaled) densities are to be
evaluated. If missing. the grid is automatically computed.

grid grid of values at which the sampled densities are to be evaluated. If missing,
the grid is guessed from the first 20 sampled mixtures as the sequence starting
with the minimal sampled mixture mean minus 3 standard deviations of the ap-
propriate mixture component, ending with the maximal sampled mixture mean
plus 3 standard deviations of the appropriate mixture component, of the length
given by n.grid.

n.grid the length of the grid if grid = NULL.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.

standard if TRUE then also standardized (zero mean, unit variance) sampled densities are
evaluated.

center if TRUE then also centered (zero mean) sampled densities are evaluated.

unstandard of TRUE then also original (unstandardized) sampled densities are evaluated.

Value

An object of class bayesDensity is returned. This object is a list and has potentially three compo-
nents: standard, center and unstandard. Each of these three components is a data.frame with
as many rows as number of grid points at which the density was evaluated and with columns called
‘grid’, ‘unconditional’ and ‘k = 1’, . . . , ‘k = k.max’ giving a predictive errr density, either averaged
over all sampled ks (unconditional) or averaged over a psecific number of mixture components.

Additionally, the object of class bayesDensity has three attributes:

sample.size a vector of length 1 + kmax giving the frequency of each k in the sample.

moments a data.frame with columns called ‘intercept’ and ‘scale’ giving the mean and
variance of the sampled mixture at each iteration of the McMC.

k a data.frame with one column called ‘k’ giving number of mixture components
at each iteration.

There exist methods to print and plot objects of the class bayesDensity.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
Wetenschappen.

Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated
interval-censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549–
569.

Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2007),
##
## R commands available
## in the documentation
## directory of this package
## - ex-cgd.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-cgd.pdf
##
## - ex-tandmobMixture.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobMixture.pdf
##

bayesGspline Summary for the density estimate based on the model with Bayesian
G-splines.

Description

Compute the estimate of the density function based on the values sampled using the MCMC (MCMC
average evaluated in a grid of values) in a model where density is specified as a Bayesian G-spline.

This function serves to summarize the MCMC chains related to the distributional parts of the con-
sidered models obtained using the functions: bayesHistogram, bayesBisurvreg, bayessurvreg2,
bayessurvreg3.

If asked, this function returns also the values of the G-spline evaluated in a grid at each iteration of
MCMC.

Usage

bayesGspline(dir, extens="", extens.adjust="_b",
grid1, grid2, skip = 0, by = 1, last.iter, nwrite,
only.aver = TRUE, standard = FALSE, version = 0)
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Arguments

dir directory where to search for files (‘mixmoment.sim’, ‘mweight.sim’, ‘mmean.sim’,
‘gspline.sim’) with the MCMC sample.

extens an extension used to distinguish different sampled G-splines if more G-splines
were used in one simulation (e.g. with doubly-censored data or in the model
where both the error term and the random intercept were defined as the G-
splines). According to which bayes*survreg* function was used, specify the
argument extens in the following way.

bayesHistogram: always extens = ""

bayesBisurvreg: • to compute the bivariate distribution of the error term for
the onset time: extens = "";

• to compute the bivariate distribution of the error term for the event time
if there was doubly-censoring: extens = "_2";

bayessurvreg2: • to compute the distribution of the error term for the onset
time: extens = "";

• to compute the distribution of the error term for the event time if there
was doubly-censoring: extens = "_2";

bayessurvreg3: • to compute the distribution of the error term for the onset
time: extens = "";

• to compute the distribution of the error term for the event time if there
was doubly-censoring: extens = "_2";

• to compute the distribution of the random intercept for the onset time:
extens = "_b";

• to compute the distribution of the random intercept term for the event
time if there was doubly-censoring: extens = "_b2";

extens.adjust this argument is applicable for the situation when the MCMC chains were cre-
ated using the function bayessurvreg3, and when both the distribution of the
error term and the random intercept was specified as the G-spline.
In that case the location of the error term and the random intercept are separately
not identifiable. Only the location of the sum ε + b can be estimated. For
this reason, the function bayesGspline always centers the distribution of the
random intercept to have a zero mean and adds its original mean to the mean of
the distribution of the error term.
Argument extens.adjust is used to match correctly the files containing the
G-spline of the random intercept corresponding to the particular error term.
The following values of extens.adjust should be used in the following situa-
tions:

• if there are no doubly-censored data or if we are computing the distribution
of the error term/random intercept from the model for the onset time then

extens.adjust = "_b"

• if there are doubly-censored data and we are computing the distribution of
the error term/random intercept from the model for the event time then
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extens.adjust = "_b2"

grid1 grid of values from the first dimension at which the sampled densities are to be
evaluated.

grid2 grid of values from the second dimension (if the G-spline was bivariate) at which
the sampled densities are to be evaluated. This item is missing if the G-spline
is univariate.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.

nwrite frequency with which is the user informed about the progress of computation
(every nwriteth iteration count of iterations change).

only.aver TRUE/FALSE, if TRUE only MCMC average is returned otherwise also values of
the G-spline at each iteration are returned (which might ask for quite lots of
memory).

standard TRUE/FALSE, if TRUE, each G-spline is standardized to have zero mean and unit
variance. Only applicable if version = 30 or 31, otherwise standard is always
set to FALSE.

version this argument indicates by which bayes*survreg* function the chains used by
bayesGspline were created. Use the following:

bayesHistogram: version = 0;
bayesBisurvreg: version = 0;
bayessurvreg2: version = 0;
bayessurvreg3: version = 30 or 31.

Use version = 30 if you want to compute the density of the error term.
Use version = 31 if you want to compute the density of the random inter-
cept.
Use version = 32 if you want to compute the density of the error term in
the model with doubly-interval-censored data and bivariate normal distribu-
tion for random intercepts in the onset and time-to-event parts of the model
OR if you have just interval-censored data and a simple AFT model without
random effects and you want to compute the density of the error term of
the model.

Value

An object of class bayesGspline is returned. This object is a list with components grid, average
for the univariate G-spline and components grid1, grid2, average for the bivariate G-spline.

grid this is a grid of values (vector) at which the McMC average of the G-spline was
computed.

average these are McMC averages of the G-spline (vector) evaluated in grid.

grid1 this is a grid of values (vector) for the first dimension at which the McMC aver-
age of the G-spline was computed.



bayesGspline 15

grid2 this is a grid of values (vector) for the second dimension at which the McMC
average of the G-spline was computed.

average this is a matrix length(grid1) times length(grid2) with McMC averages of
the G-spline evaluated in

x1 = ( grid1 . . . grid1 )

and

( grid2 )
x2 = ( . . . )

( grid2 )

There exists a method to plot objects of the class bayesGspline.

Attributes

Additionally, the object of class bayesGspline has the following attributes:

sample.size a length of the McMC sample used to compute the McMC average.

sample G-spline evaluated in a grid of values. This attribute is present only if only.aver = FALSE.
For a univariate G-spline this is a matrix with sample.size columns and length(grid1) rows.
For a bivariate G-spline this is a matrix with sample.size columns and length(grid1)*length(grid2)
rows.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
Wetenschappen.

Komárek, A. and Lesaffre, E. (2006). Bayesian semi-parametric accelerated failurew time model
for paired doubly interval-censored data. Statistical Modelling, 6, 3–22.

Komárek, A. and Lesaffre, E. (2008). Bayesian accelerated failure time model with multivariate
doubly-interval-censored data and flexible distributional assumptions. Journal of the American
Statistical Association, 103, 523–533.

Komárek, A., Lesaffre, E., and Legrand, C. (2007). Baseline and treatment effect heterogeneity for
survival times between centers using a random effects accelerated failure time model with flexible
error distribution. Statistics in Medicine, 26, 5457–5472.



16 bayesHistogram

Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2006),
## Komarek and Lesaffre (2008),
## Komarek, Lesaffre, and Legrand (2007).
##
## R commands available
## in the documentation
## directory of this package
## - ex-tandmobPA.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobPA.pdf
## - ex-tandmobCS.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobCS.pdf
## - ex-eortc.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-eortc.pdf
##

bayesHistogram Smoothing of a uni- or bivariate histogram using Bayesian G-splines

Description

A function to estimate a density of a uni- or bivariate (possibly censored) sample. The density is
specified as a mixture of Bayesian G-splines (normal densities with equidistant means and equal
variances). This function performs an MCMC sampling from the posterior distribution of unknown
quantities in the density specification. Other method functions are available to visualize resulting
density estimate.

This function served as a basis for further developed bayesBisurvreg, bayessurvreg2 and bayessurvreg3
functions. However, in contrast to these functions, bayesHistogram does not allow for doubly cen-
soring.

Bivariate case:
Let Yi,l, i = 1, . . . , N, l = 1, 2 be observations for the ith cluster and the first and the second
unit (dimension). The bivariate observations Yi = (Yi,1, Yi,2)

′, i = 1, . . . , N are assumed to be
i.i.d. with a~bivariate density gy(y1, y2). This density is expressed as a~mixture of Bayesian G-
splines (normal densities with equidistant means and constant variance matrices). We distinguish
two, theoretically equivalent, specifications.

Specification 1

(Y1, Y2)
′ ∼

K1∑
j1=−K1

K2∑
j2=−K2

wj1,j2N2(µ(j1,j2), diag(σ2
1 , σ

2
2))

where σ2
1 , σ

2
2 are unknown basis variances and µ(j1,j2) = (µ1,j1 , µ2,j2)

′ is an~equidistant
grid of knots symmetric around the unknown point (γ1, γ2)′ and related to the unknown
basis variances through the relationship

µ1,j1 = γ1 + j1δ1σ1, j1 = −K1, . . . ,K1,
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µ2,j2 = γ2 + j2δ2σ2, j2 = −K2, . . . ,K2,

where δ1, δ2 are fixed constants, e.g. δ1 = δ2 = 2/3 (which has a~justification of being close
to cubic B-splines).

Specification 2
(Y1, Y2)

′ ∼ (α1, α2)
′ + S (Y1, Y2)

′

where (α1, α2)
′ is an unknown intercept term and S is a diagonal matrix with τ1 and τ2 on a diagonal,

i.e. τ1, τ2 are unknown scale parameters. (V1, V2)
′ is then standardized observational vector

which is distributed according to the bivariate normal mixture, i.e.

(V1, V2)
′ ∼

K1∑
j1=−K1

K2∑
j2=−K2

wj1,j2N2(µ(j1,j2), diag(σ2
1 , σ

2
2))

where µ(j1,j2) = (µ1,j1 , µ2,j2)
′ is an~equidistant grid of fixed knots (means), usually sym-

metric about the fixed point (γ1, γ2)′ = (0, 0)′ and σ2
1 , σ

2
2 are fixed basis variances. Reason-

able values for the numbers of grid points K1 and K2 are K1 = K2 = 15 with the distance
between the two knots equal to δ = 0.3 and for the basis variances σ2

1σ
2
2 = 0.22.

Univariate case:
It is a~direct simplification of the bivariate case.

Usage

bayesHistogram(y1, y2,
nsimul = list(niter = 10, nthin = 1, nburn = 0, nwrite = 10),
prior, init = list(iter = 0),
mcmc.par = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1),
store = list(a = FALSE, y = FALSE, r = FALSE),
dir)

Arguments

y1 response for the first dimension in the form of a survival object created using
Surv.

y2 response for the second dimension in the form of a survival object created using
Surv. If the response is one-dimensional this item is missing.

nsimul a list giving the number of iterations of the MCMC and other parameters of the
simulation.

niter total number of sampled values after discarding thinned ones, burn-up
included;

nthin thinning interval;
nburn number of sampled values in a burn-up period after discarding thinned

values. This value should be smaller than niter. If not, nburn is set to
niter - 1. It can be set to zero;

nwrite an interval at which information about the number of performed itera-
tions is print on the screen and during the burn-up period an interval with
which the sampled values are writen to files;
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prior a list that identifies prior hyperparameters and prior choices. See the paper
Komárek and Lesaffre (2008) and the PhD. thesis Komárek (2006) for more
details.
Some prior parameters can be guessed by the function itself. If you want to do
so, set such parameters to NULL. Set to NULL also the parameters that are not
needed in your model.
specification a~number giving which specification of the model is used. It can

be one of the following numbers:
1 with this specification positions of the middle knots γ1, . . . , γq, where q

is dimension of the G-spline and basis standard deviations σ0,1, . . . , σ0,q

are estimated. At the same time the G-spline intercepts α1, . . . , αq and
the G-spline scale parameters s1, . . . , sq are assumed to be fixed (usu-
ally, intercepts to zero and scales to 1). The user can specified the fixed
quantities in the init parameter of this function

2 with this specification, G-spline intercepts α1, . . . , αq and the G-spline
scale parameters s1, . . . , sq are estimated at the same time positions of
the middle knots γ1, . . . , γq and basis standard deviations σ0,1, . . . , σ0,q

are assumed to be fixed (usually, middle knots to zero ans basis stan-
dard deviations to some smaller number like 0.2) The user can specified
the fixed quantities in the init parameter of this function

K specification of the number of knots in each dimension, i.e. K is a vector of
length equal to the dimension of the data q and Kj , j = 1, . . . , q determines
that the subscript kj of the knots runs over −Kj , . . . , 0, . . . ,Kj . A value
Kj = 0 is valid as well. There are only some restriction on the minimal
value of Kj with respect to the choice of the neighbor system and possi-
bly the order of the conditional autoregression in the prior of transformed
weights (see below).

izero subscript k1 . . . kq of the knot whose transformed weight ak1...kq
will con-

stantly be equal to zero. This is here for identifiability. To avoid numerical
problems it is highly recommended to set izero=rep(0, q). izero[j]
should be taken from the set −Kj , . . . ,Kj .

neighbor.system identification of the neighboring system for the Markov ran-
dom field prior of transformed mixture weights ak1 k2 . This can be sub-
string of one of the following strings:
uniCAR “univariate conditional autoregression”: a~prior based on squared

differences of given order m (see argument order) in each row and
column.
For univariate smoothing:

p(a) ∝ exp
{
−λ

2

K∑
k=−K+m

(
∆mak

)2}
,

where ∆m denotes the difference operator of order m, i.e. ∆1ak =
ak − ak−1 and ∆mak = ∆m−1ak −∆m−1ak−1, m ≥ 2.
For bivariate smoothing:

p(a) ∝ exp
{
−λ1

2

K1∑
k1=−K1

K2∑
k2=−K2+m

(
∆m

1 ak1,k2

)2−λ2

2

K2∑
k2=−K2

K1∑
k1=−K1+m

(
∆m

2 ak1,k2

)2}
,
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where ∆m
l denotes the difference operator of order m acting in the lth

margin, e.g.

∆2
1 = ak1,k2

− 2ak1,k2−1 + ak1,k2−2.

The precision parameters λ1 and λ2 might be forced to be equal (see
argument equal.lambda.)

eight.neighbors this prior is based on eight nearest neighbors (i.e. ex-
cept on edges, each full conditional depends only on eight nearest
neighbors) and local quadratic smoothing. It applies only in the case of
bivariate smoothing. The prior is then defined as

p(a) ∝ exp
{
−λ

2

K1−1∑
k1=−K1

K2−1∑
k2=−K2

(
∆ak1,k2

)2}
,

where

∆ak1,k2 = ak1,k2 − ak1+1,k2 − ak1,k2+1 + ak1+1,k2+1.

twelve.neighbors !!! THIS FEATURE HAS NOT BEEN IMPLEMENTED
YET. !!!

order order of the conditional autoregression if neighbor.system = uniCAR.
Implemented are 1, 2, 3. If order = 0 and neighbor.system = uniCAR then
mixture weights are assumed to be fixed and equal to their initial values
specified by the init parameter (see below). Note that the numbers Kj ,
j = 1, . . . , q must be all equal to or higher than order.

equal.lambda TRUE/FALSE applicable in the case when a density of bivari-
ate observations is estimated and neighbor.system = uniCAR. It speci-
fies whether there is only one common Markov random field precision pa-
rameter λ for all margins (dimensions) or whether each margin (dimen-
sion) has its own precision parameter λ. For all other neighbor systems is
equal.lambda automatically TRUE.

prior.lambda specification of the prior distributions for the Markov random
field precision parameter(s) λ (when equal.lambda = TRUE) or λ1, . . . , λq

(when equal.lambda = TRUE). This is a vector of substring of one of the
following strings (one substring for each margin if equal.lambda = FALSE,
otherwise just one substring):
fixed the λ parameter is then assumed to be fixed and equal to its initial

values given by init (see below).
gamma a particular λ parameter has a priori gamma distribution with shape

gj and rate (inverse scale) hj where j = 1 if equal.lambda=TRUE and
j = 1, . . . , q if equal.lambda=TRUE. Shape and rate parameters are
specified by shape.lambda, rate.lambda (see below).

sduniform a particular 1/
√
λ parameter (i.e.a standard deviation of the

Markov random field) has a priori a uniform distribution on the in-
terval (0, Sj) where j = 1 if equal.lambda=TRUE and j = 1, . . . , q if
equal.lambda=TRUE. Upper limit of intervals is specified by rate.lambda
(see below).
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prior.gamma specification of the prior distribution for a reference knot (inter-
cept) γ in each dimension. This is a vector of substrings of one of the
following strings (one substring for each margin):
fixed the γ parameter is then assumed to be fixed and equal to its initial

values given by init (see below).
normal the γ parameter has a priori a normal distribution with mean and

variance given by mean.gamma and var.gamma.
prior.sigma specification of the prior distribution for basis standard deviations

of the G-spline in each dimension. This is a vector of substrings of one of
the following strings (one substring for each margin):
fixed the σ parameter is then assumed to be fixed and equal to its initial

values given by init (see below).
gamma a particular σ−2 parameter has a priori gamma distribution with

shape ζj and rate (inverse scale) ηj where j = 1, . . . , q. Shape and rate
parameters are specified by shape.sigma, rate.sigma (see below).

sduniform a particular σ parameter has a priori a uniform distribution on
the interval (0, Sj). Upper limit of intervals is specified by rate.sigma
(see below).

prior.intercept specification of the prior distribution for the intercept terms
α1, . . . , αq (2nd specification) in each dimension. This is a vector of sub-
strings of one of the following strings (one substring for each margin):
fixed the intercept parameter is then assumed to be fixed and equal to its

initial values given by init (see below).
normal the intercept parameter has a priori a normal distribution with mean

and variance given by mean.intercept and var.intercept.
prior.scale specification of the prior distribution for the scale parameter (2nd

specification) of the G-spline in each dimension This is a vector of sub-
strings of one of the following strings (one substring for each margin):
fixed the scale parameter is then assumed to be fixed and equal to its

initial values given by init (see below).
gamma a particular scale−2 parameter has a priori gamma distribution with

shape ζj and rate (inverse scale) ηj where j = 1, . . . , q. Shape and rate
parameters are specified by shape.scale, rate.scale (see below).

sduniform a particular scale parameter has a priori a uniform distribu-
tion on the interval (0, Sj). Upper limit of intervals is specified by
rate.scale (see below).

c4delta values of c1, . . . , cq which serve to compute the distance δj between
two consecutive knots in each dimension. The knot µj k, j = 1, . . . , q,
k = −Kj , . . . ,Kj is defined as µj k = γj + k δj with δj = cj σj .

mean.gamma these are means for the normal prior distribution of middle knots
γ1, . . . , γq in each dimension if this prior is normal. For fixed γ an appro-
priate element of the vector mean.gamma may be whatever.

var.gamma these are variances for the normal prior distribution of middle knots
γ1, . . . , γq in each dimension if this prior is normal. For fixed γ an appro-
priate element of the vector var.gamma may be whatever.
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shape.lambda these are shape parameters for the gamma prior (if used) of
Markov random field precision parameters λ1, . . . , λq (if equal.lambda
= FALSE) or λ1 (if equal.lambda = TRUE).

rate.lambda these are rate parameters for the gamma prior (if prior.lambda =
gamma) of Markov random field precision parameters λ1, . . . , λq (if equal.lambda
= FALSE) or λ1 (if equal.lambda = TRUE) or upper limits of the uniform
prior (if prior.lambda = sduniform) of Markov random field standard de-
viation parameters λ−1/2

1 , . . . , λ
−1/2
q (if equal.lambda = FALSE) or λ−1/2

1

(if equal.lambda = TRUE).
shape.sigma these are shape parameters for the gamma prior (if used) of basis

inverse variances σ−2
1 , . . . , σ−2

q .
rate.sigma these are rate parameters for the gamma prior (if prior.sigma

= gamma) of basis inverse variances σ−2
1 , . . . , σ−2

q or upper limits of the
uniform prior (if prior.sigma = sduniform) of basis standard deviations
σ1, . . . , σq .

mean.intercept these are means for the normal prior distribution of the G-
spline intercepts (2nd specification) α1, . . . , αq in each dimension if this
prior is normal. For fixed α an appropriate element of the vector mean.intercept
may be whatever.

var.intercept these are variances for the normal prior distribution of the G-
spline intercepts α1, . . . , αq in each dimension if this prior is normal. For
fixed α an appropriate element of the vector var.alpha may be whatever.

shape.scale these are shape parameters for the gamma prior (if used) of the
G-spline scale parameter (2nd specification) scale−2

1 , . . . , scale−2
q .

rate.scale these are rate parameters for the gamma prior (if prior.scale =
gamma) of the G-spline inverse variances scale−2

1 , . . . , scale−2
q or upper

limits of the uniform prior (if prior.scale = sduniform) of the G-spline
scale scale1, . . . , scaleq .

init a list of the initial values to start the McMC. Set to NULL such parameters that
you want the program should itself sample for you or parameters that are not
needed in your model.

iter the number of the iteration to which the initial values correspond, usually
zero.

a vector/matrix of initial transformed mixture weights ak1 , k1 = −K1, . . . ,K1

if univariate density is estimated; ak1 k2
, k1 = −K1, . . . ,K1, k2 = −K2, . . . ,K2,

if bivariate density is estimated. This initial value can be guessed by the
function itself.

lambda initial values for Markov random field precision parameter(s) λ (if
equal.lambda = TRUE), λ1, . . . , λq (if equal.lambda = FALSE.)

gamma initial values for the middle knots in each dimension.
If prior$specification = 2 it is recommended (for easier interpretation
of the results) to set init$gamma to zero for all dimensions.
If prior$specification = 1 init$gamma should be approximately equal
to the mean value of the data in each margin.

sigma initial values for basis standard deviations in each dimension.
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If prior$specification = 2 this should be approximately equal to the
range of standardized data (let say 4 + 4) divided by the number of knots in
each margin and multiplied by something like 2/3.
If prior$specification = 1 this should be approximately equal to the
range of your data divided by the number of knots in each margin and mul-
tiplied again by something like 2/3.

intercept initial values for the intercept term in each dimension.
Note that if prior$specification = 1 this initial value is always changed
to zero for all dimensions.

scale initial values for the G-spline scale parameter in each dimension.
Note that if prior$specification = 1 this initial value is always changed
to one for all dimensions.

y initial values for (possibly unobserved censored) observations. This should be
either a vector of length equal to the sample size if the response is univariate
or a matrix with as many rows as is the sample size and two columns if the
response is bivariate. Be aware that init$y must be consistent with data
supplied. This initial can be guessed by the function itself. Possible missing
values in init$y tells the function to guess the initial value.

r initial values for labels of components to which the (augmented) observations
belong. This initial can be guessed by the function itself. This should be
either a vector of length equal to the sample size if the response is univariate
or a matrix with as many rows as is the sample size and two columns if the
response is bivariate. Values in the first column of this matrix should be be-
tween -prior$K[1] and prior$K[1], values in the second column of this
matrix between -prior$K[2] and prior$K[2], e.g. when init$r[i,1:2]
= c(-3, 6) it means that the ith observation is initially assigned to the com-
ponent with the mean µ = (µ1, µ2)

′ where

µ1 = µ1,−3 = γ1 − 3 c1σ1

and
µ2 = µ2, 6 = γ2 + 6 c2σ2.

mcmc.par a list specifying further details of the McMC simulation. There are default val-
ues implemented for all components of this list.

type.update.a it specifies the McMC method to update transformed mixture
weights a. It is a~substring of one of the following strings:
slice slice sampler of Neal (2003) is used (default choice);
ars.quantile adaptive rejection sampling of Gilks and Wild (1992) is used

with starting abscissae equal to 15%, 50% and 85% quantiles of a~piecewise
exponential approximation to the full conditional from the previous it-
eration;

ars.mode adaptive rejection sampling of Gilks and Wild (1992) is used
with starting abscissae equal to the mode and plus/minus twice approx-
imate standard deviation of the full conditional distribution

k.overrelax.a this specifies a frequency of overrelaxed updates of transformed
mixture weights a when slice sampler is used. Every kth value is sampled
in a usual way (without overrelaxation). If you do not want overrelaxation
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at all, set k.overrelax.a to 1 (default choice). Note that overrelaxation
can be only done with the slice sampler (and not with adaptive rejection
sampling).

k.overrelax.sigma a vector of length equal to the dimension of the G-spline
specifying a frequency of overrelaxed updates of basis G-spline variances.
If you do not want overrelaxation at all, set all components of k.overrelax.sigma
to 1 (default choice).

k.overrelax.scale a vector of length equal to the dimension of the G-spline
specifying a frequency of overrelaxed updates of the G-spline scale param-
eters (2nd specification). If you do not want overrelaxation at all, set all
components of k.overrelax.scale to 1 (default choice).

store a~list of logical values specifying which chains that are not stored by default are
to be stored. The list can have the following components.

a if TRUE then all the transformed mixture weights ak1, k2
, k1 = −K1, . . . ,K1,

k2 = −K2, . . . ,K2, related to the G-spline are stored.
y if TRUE then augmented log-event times for all observations are stored.
r if TRUE then labels of mixture components for residuals are stored.

dir a string that specifies a directory where all sampled values are to be stored.

Value

A list of class bayesHistogram containing an information concerning the initial values and prior
choices.

Files created

Additionally, the following files with sampled values are stored in a directory specified by dir
argument of this function (some of them are created only on request, see store parameter of this
function).

Headers are written to all files created by default and to files asked by the user via the argument
store. All sampled values are written in files created by default and to files asked by the user
via the argument store. In the files for which the corresponding store component is FALSE, every
nsimul$nwrite value is written during the whole MCMC (this might be useful to restart the MCMC
from some specific point).

The following files are created:

iteration.sim one column labeled iteration with indeces of MCMC iterations to which the stored
sampled values correspond.

mixmoment.sim columns labeled k, Mean.1, Mean.2, D.1.1, D.2.1, D.2.2 in the bivariate case
and columns labeled k, Mean.1, D.1.1 in the univariate case, where
k = number of mixture components that had probability numerically higher than zero;
Mean.1 = E(Yi,1);
Mean.2 = E(Yi,2);
D.1.1 = var(Yi,1);
D.2.1 = cov(Yi,1, Yi,2);
D.2.2 = var(Yi,2).
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mweight.sim sampled mixture weights wk1, k2 of mixture components that had probabilities nu-
merically higher than zero.

mmean.sim indeces k1, k2, k1 ∈ {−K1, . . . ,K1}, k2 ∈ {−K2, . . . ,K2} of mixture compo-
nents that had probabilities numerically higher than zero. It corresponds to the weights in
mweight.sim.

gspline.sim characteristics of the sampled G-spline (distribution of (Yi,1, Yi,2)
′). This file together

with mixmoment.sim, mweight.sim and mmean.sim can be used to reconstruct the G-spline
in each MCMC iteration.
The file has columns labeled gamma1, gamma2, sigma1, sigma2, delta1, delta2, intercept1,
intercept2, scale1, scale2. The meaning of the values in these columns is the following:
gamma1 = the middle knot γ1 in the first dimension. If ‘Specification’ is 2, this column
usually contains zeros;
gamma2 = the middle knot γ2 in the second dimension. If ‘Specification’ is 2, this column
usually contains zeros;
sigma1 = basis standard deviation σ1 of the G-spline in the first dimension. This column
contains a~fixed value if ‘Specification’ is 2;
sigma2 = basis standard deviation σ2 of the G-spline in the second dimension. This column
contains a~fixed value if ‘Specification’ is 2;
delta1 = distance delta1 between the two knots of the G-spline in the first dimension. This
column contains a~fixed value if ‘Specification’ is 2;
delta2 = distance δ2 between the two knots of the G-spline in the second dimension. This
column contains a~fixed value if ‘Specification’ is 2;
intercept1 = the intercept term α1 of the G-spline in the first dimension. If ‘Specification’ is
1, this column usually contains zeros;
intercept2 = the intercept term α2 of the G-spline in the second dimension. If ‘Specification’
is 1, this column usually contains zeros;
scale1 = the scale parameter τ1 of the G-spline in the first dimension. If ‘Specification’ is 1,
this column usually contains ones;
scale2 = the scale parameter τ2 of the G-spline in the second dimension. ‘Specification’ is 1,
this column usually contains ones.

mlogweight.sim fully created only if store$a = TRUE. The file contains the transformed weights
ak1, k2 , k1 = −K1, . . . ,K1, k2 = −K2, . . . ,K2 of all mixture components, i.e. also of
components that had numerically zero probabilities.

r.sim fully created only if store$r = TRUE. The file contains the labels of the mixture components
into which the observations are intrinsically assigned. Instead of double indeces (k1, k2),
values from 1 to (2K1 + 1) × (2K2 + 1) are stored here. Function vecr2matr can be used
to transform it back to double indeces.

lambda.sim either one column labeled lambda or two columns labeled lambda1 and lambda2.
These are the values of the smoothing parameter(s) λ (hyperparameters of the prior distribu-
tion of the transformed mixture weights ak1, k2

).

Y.sim fully created only if store$y = TRUE. It contains sampled (augmented) log-event times for
all observations in the data set.

logposter.sim columns labeled loglik, penalty or penalty1 and penalty2, logprw. The columns
have the following meaning (the formulas apply for the bivariate case).
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loglik =−N
{
log(2π)+log(σ1)+log(σ2)

}
−0.5

∑N
i=1

{
(σ2

1 τ
2
1 )

−1 (yi,1−α1−τ1µ1, ri,1)
2+

(σ2
2 τ

2
2 )

−1 (yi,2 − α2 − τ2µ2, ri,2)
2
}

where yi,l denotes (augmented) (i,l)th true log-event time. In other words, loglik is equal to

the conditional log-density
∑N

i=1 log
{
p
(
(yi,1, yi,2)

∣∣ ri, G-spline
)}

;

penalty1: If prior$neighbor.system = "uniCAR": the penalty term for the first dimension
not multiplied by lambda1;
penalty2: If prior$neighbor.system = "uniCAR": the penalty term for the second dimen-
sion not multiplied by lambda2;
penalty: If prior$neighbor.system is different from "uniCAR": the penalty term not mul-
tiplied by lambda;
logprw =−2N log

{∑
k1

∑
k2

ak1, k2

}
+
∑

k1

∑
k2

Nk1, k2
ak1, k2

, where Nk1, k2
is the num-

ber of observations assigned intrinsincally to the (k1, k2)th mixture component.

In other words, logprw is equal to the conditional log-density
∑N

i=1 log
{
p(ri | G-spline weights)

}
.
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bayessurvreg1 A Bayesian survival regression with an error distribution expressed as
a~normal mixture with unknown number of components

Description

A function to sample from the posterior distribution for a survival regression model

log(Ti,l) = βTxi,l + bTi zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni,

where distribution of εi,l is specified as a normal mixture with unknown number of components as
in Richardson and Green (1997) and random effect bi is normally distributed.
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See Komárek (2006) or Komárek and Lesaffre (2007) for more detailed description of prior as-
sumptions.

Sampled values are stored on a disk to be further worked out by e.g. coda or boa.

Usage

bayessurvreg1(formula, random,
data = parent.frame(), subset,
na.action = na.fail,
x = FALSE, y = FALSE, onlyX = FALSE,
nsimul = list(niter = 10, nthin = 1, nburn = 0,

nnoadapt = 0, nwrite = 10),
prior = list(kmax = 5, k.prior = "poisson", poisson.k = 3,

dirichlet.w = 1,
mean.mu = NULL, var.mu = NULL,
shape.invsig2 = 1.5,
shape.hyper.invsig2 = 0.8, rate.hyper.invsig2 = NULL,
pi.split = NULL, pi.birth = NULL,
Eb0.depend.mix = FALSE),

prior.beta, prior.b, prop.revjump,
init = list(iter = 0, mixture = NULL, beta = NULL,

b = NULL, D = NULL,
y = NULL, r = NULL, otherp = NULL, u = NULL),

store = list(y = TRUE, r = TRUE, b = TRUE, u = TRUE,
MHb = FALSE, regresres = FALSE),

dir,
toler.chol = 1e-10, toler.qr = 1e-10, ...)

Arguments

formula model formula for the ‘fixed’ part of the model, i.e. the part that specifies βTxi,l.
See survreg for further details. Intercept is implicitely included in the model by
estimation of the error distribution. As a consequence -1 in the model formula
does not have any effect on the model.
The left-hand side of the formula must be an~objecy created using Surv.
If random is used then the formula must contain an identification of clusters
in the form cluster(id), where id is a name of the variable that determines
clusters, e.g.

Surv(time, event)~gender + cluster(id).

random formula for the ‘random’ part of the model, i.e. the part that specifies bTi zi,l. If
omitted, no random part is included in the model. E.g. to specify the model with
a random intercept, say random=~1. All effects mentioned in random should also
be mentioned on the right-hand side of formula.
When some random effects are included the random intercept is added by de-
fault. It can be removed using e.g. random=~-1 + gender.

data optional data frame in which to interpret the variables occuring in the formulas.
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subset subset of the observations to be used in the fit.

na.action function to be used to handle any NAs in the data. The user is discouraged to
change a default value na.fail.

x if TRUE then the X matrix is returned. This matrix contain all columns appearing
in both formula and random parameters.

y if TRUE then the y matrix (of log-survival times) is returned.

onlyX if TRUE, no McMC is performed. The function returns only a design matrix of
your model (intercept excluded). It might be useful to set up correctly a param-
eter for a block update of β (regression parameters related to the fixed effects)
and γ (means of the random effects, random intercept excluded) parameters in
the model if Metropolis-Hastings is to be used instead of default Gibbs.

nsimul a list giving the number of iterations of the McMC and other parameters of the
simulation.

niter total number of sampled values after discarding thinned ones, burn-up
included.

nthin thinning interval.
nburn number of sampled values in a burn-up period after discarding thinned

values. This value should be smaller than niter. If not, nburn is set to
niter - 1. It can be set to zero.

nnoadapt applicable if some blocks of parameters are updated using an adap-
tive Metropolis algorithm. This is a number of sampled values that are
generated using an initial and fixed proposal covariance matrix. It should
be smaller or equal to nburn. If not, nnoadapt is set to nburn.

nwrite an interval at which sampled values are written to files.

prior a list that identifies prior hyperparameters and prior choices. See accompanying
paper for more details. Some prior parameters can be guessed by the function
itself. If you want to do so, set such parameters to NULL. Set to NULL also the
parameters that are not needed in your model.

kmax value of kmax, upper limit for the number of mixture components. Its
high values like 100 will usually correspond to ∞.

k.prior a string specifying the prior distribution of k, number of mixture com-
ponents. Valid are either “poisson”, “uniform”, or “fixed”. When “fixed” is
given then the number of mixture components is not sampled.

poisson.k prior hyperparameter λ for the number of mixture components $k$
if Poisson prior for this parameter is used.

dirichlet.w prior hyperparameter δ for the Dirichlet distribution of mixture weights
w1, . . . , wk.

mean.mu prior hyperparameter ξ for the mean of the normal prior for mixture
means µ1, . . . , µk.

var.mu prior hyperparameter κ for the variance of the normal prior for mixture
means µ1, . . . , µk.

shape.invsig2 prior hyperparameter ζ for the shape of the inverse-gamma dis-
tribution for the mixture variances σ2

1 , . . . , σ
2
k.
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shape.hyper.invsig2 prior hyperparameter (shape) g for the gamma distribution
of the parameter η. Remember, η is a scale parameter of the inverse-gamma
distribution for the mixture variances σ2

1 , . . . , σ
2
k.

rate.hyper.invsig2 prior hyperparameter (rate) h for the gamma distribution of
the parameter η. Remember, η is a scale parameter of the inverse-gamma
distribution for the mixture variances σ2

1 , . . . , σ
2
k.

pi.split probabilities of a split move within the reversible jump McMC. It must
be a vector of length equal to kmax with the first component equal to 1 and
the last component equal to 0. If NULL 2nd to (k-1)th components are set to
0.5.

pi.birth probabilities of a birth move within the reversible jump McMC. It must
be a vector of length equal to kmax with the first component equal to 1 and
the last component equal to 0. If NULL 2nd to (k-1)th components are set to
0.5.

Eb0.depend.mix this will normally be FALSE. Setting this option to TRUE served
for some experiments during the development of this function. In princi-
ple, when this is set to TRUE and the random intercept is included in the
model then it is assumed that the mean of the random intercept is not zero
but

∑k
j=1 wjµj , i.e. the mean of the random intercept depends on mixture.

However, this did not werk too well.

prior.beta a list defining the blocks of β parameters (both fixed effects and means of ran-
dom effects, except the random intercept) that are to be updated together (in a
block), a description of how they are updated and a specification of priors. The
list is assumed to have the following components.

mean.prior a vector specifying a prior mean for each β parameter in the model.
var.prior a vector specifying a prior variance for each β parameter. It is recom-

mended to run the function bayessurvreg1 first with its argument onlyX
set to TRUE to find out how the βs are sorted. They must correspond to a
design matrix X.

blocks a list with the following components.
ind.block a list with vectors with indeces of columns of the design ma-

trix X defining the effect of βs in the block. If not specified, all β
parameters corresponding to fixed effects are updated in one block and
remaining β parameters (means of random effects) in the second block
using the Gibbs move.

cov.prop a list with vectors with a lower triangle of the covariance ma-
trix which is used in the normal proposal (use a command lower.tri
with diag = TRUE to get a lower triangle from a matrix) when one of
the Metopolis-like algorithms is used for a given block. This matrix
is used at each iteration if the given block is updated using a stan-
dard random-walk Metropolis-Hastings step. If the block is updated
using an adaptive Metropolis step this matrix is used only at start. If
not specified and Metropolis-like algorith is required a diagonal matrix
with prior variances for corresponding β on a diagonal is used. It is
set to a vector of zeros of appropriate length when the Gibbs move is
required for a given block.
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type.upd a character vector specifying the type of the update that will be used
for each block. Valid are substrings of either "gibbs" or "adaptive.metropolis"
or "random.walk.metropolis". Default is "gibbs" for all blocks.

mean.sampled a vector of means of up to now sampled values. This component
is useful when the adaptive Metropolis algorithm is used and we do not start
from the beginning (e.g. already several iterations of McMC have already
been performed). Otherwise, this component does not have to be filled.

eps.AM a vector with ϵ from the adaptive Metropolis algorithm for each block.
sd.AM a vector specifying sd, d = 1, . . . , D numbers from the adaptive Metropo-

lis algorithm for each dimension. This vector must be of length equal at
least to the length of the longest block. Defaults values are 1

d2.4
2 where d

denotes a length of the block.
weight.unif a vector specifying the weight of the uniform component in the

proposal for each block. If not specified, it is equal to 0.5 for all parameters.
half.range.unif a vector of same length as the number of columns in the de-

sign matrix X specifying the half range of the uniform component of the
proposal.

prior.b a list defining the way in which the random effects are to be updated and the
specification of priors for random effects related parameters. The list is assumed
to have following components.

prior.D a string defining the prior distribution for the covariance matrix of ran-
dom effects D. It can be either “inv.wishart” or “sduniform”.
inv.wishart in that case is assumed that the prior distribution of the matrix

D is Inverse-Wishart with degrees of freedom equal to τ and a scale
matrix equal to S. When D is a matrix q × q a prior expectation of
D is equal to (τ − q − 1)−1S if τ > q + 1. For q − 1 < τ ≤
q + 1 a prior expectation is not finite. Degrees of freedom parameter
τ does not have to be an integer. It has to only satisfy a condition
τ > q − 1. prior.b$df.D gives a prior degrees of freedom parameter
τ and prior.b$scale.D determines the scale matrix D. This is also
the default choice.

sduniform this can be used only when the random effect is univariate.
Then the matrix D is just a scalar and the prior of

√
D (standard de-

viation of the univariate random effect) is assumed to be uniform on
interval (0, S). The upper limit S is given by prior.b$scale.D.

df.D degrees of freedom parameter τ in the case that the prior of the matrix D
is inverse-Wishart.

scale.D a lower triangle of the scale matrix S in the case that the prior of the
matrix D is inverse-Wishart or the upper limit S of the uniform distribution
in the case that

√
D ∼ Unif(0, S).

type.upd a character vector specifying the type of the update. Valid are sub-
strings of either "random.walk.metropolis" or "gibbs". Default is "gibbs".
In contrast to β parameters, all random effects are updated using the same
type of the move. If "random.walk.metropolis" is used, random effects may
be divided into blocks in which they are updated. With "gibbs", there is
only one block defined for all random effects. which are updated in one
step using its full conditional distribution.
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blocks a list with the following components. This is set to NULL if type.upd
= "gibbs".
ind.block a list with vectors with indeces of random effects defining the

block. Random intercept has always an index 1, remaining random
effects have subsequent indeces according to their appearance in the
design matrix X.

cov.prop a list with vectors with a lower triangle of the covariance matrix
which is used in the normal proposal (use a command lower.tri with
diag = TRUE to get a lower triangle from a matrix) for a given block
when

type.upd = "random.walk.metropolis".

weight.unif a vector specifying the weight of the uniform component in the
proposal for each block when

type.upd = "random.walk.metropolis".

If not specified, it is equal to 0.5 for all parameters. It is set to NULL if
type.upd = "gibbs".

half.range.unif a vector of same length as the number of random effects speci-
fying the half range of the uniform component of the proposal when type.upd
= "random.walk.metropolis". It is set to NULL if type.upd = "gibbs".

prop.revjump a list of values defining in which way the reversible jumps will be performed.

algorithm a string defining the algorithm used to generate canonical proposal
vectors u = (u3k+1, . . . , u3kmax

)′ where u3k+1, u3k+2, u3k+3 are directly
used when a jump to a space of higher dimension is proposed. These
canonical proposal vectors are further transformed to give desired param-
eters (mixture component’s weight, mean and variance). Valid values of
prop.revjump$algorithm are substrings of "basic", "independent.av", "cor-
related.av". "basic" means that both components of vectors u and vectors
u in time are generated independently from a standard uniform distribu-
tion. This corresponds to a basic reversible jumps McMC algorithm of
Green (1995). Other two methods implement an auxiliary variable method
of Brooks et al. (2003). The first one an independent auxiliary variable
method where vectors u may be correlated in time however their compo-
nents are independent and the second one the correlated auxiliary method
where vectors u are correlated in time and also their components may be
correlated. In both cases components of vectors u follow marginally a stan-
dard uniform distribution. A moody ring method of Brooks et al. (2003) is
used to generate u vectors.

moody.ring parameters for the moody ring when algorithm is either "inde-
pendent.av" or "correlated.av". This is a two component vector with both
components taking values between 0 and 0.5 defining the strength of a cor-
relation in time and between the components of u vectors. This vector is
ignored when algorithm = "basic". The first component of this vector de-
termines dependence between u vectors in time (ε in Brooks et al. (2003)),
the second component determines dependence between components of u
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vectors (δ in Brooks et al. (2003)). The second compoenent is ignored
when algorithm = "independent.av". Note that both ε and δ do not have
a meaning of correlation. They determine a range of additional uniform dis-
tributions. So that their values equal to 0 mean perfect correlation and their
values equal to 0.5 mean independence. I.e. "correlated.av" with δ = 0.5
is same as "independent.av" and "correlated.av" with δ = 0.5, ε = 0.5 is
same as "basic".

transform.split.combine a description of how the canonical variables u are to
be transformed to give new values of mixture component’s weight, mean
and variance when a split move is proposed. Possible values are sub-
strings of "richardson.green", "brooks" and "identity". In all cases, the
(0, 1) canonical variables u are transformed to (0, 1) variates v that are
than used to compute new values of mixture component’s weight, mean
and variance using a method of moments matching described in Richardson
and Green (1997). When "identity", no further transformation is performed,
when "richardson.green", u vectors are transformed such that the compo-
nents of resulting v vectors follow independently beta distributions with pa-
rameters given further by p = prop.revjump$transform.split.combine.parms
such that in the triplet of v’s used in a particular split move, v1 ∼ beta(p1, p2), v2 ∼
beta(p3, p4), v3 ∼ beta(p5, p6). When "brooks" v2 is further transformed
by |2v2 − 1|. Default values of

prop.revjump$transform.split.combine$parms

is c(2, 2, 2, 2, 1, 1).
transform.split.combine.parms see above.
transform.birth.death a description of how the canonical variables u are to be

transformed to give new values of mixture component’s weight, mean and
variance when a birth move is proposed. At this moment only one value is
possible: "richardson.green" implementing the proposal as in Richardson
and Green (1997).

init a list of the initial values to start the McMC. Set to NULL such parameters that
you want the program should itself sample for you or parameters that are not
needed in your model.

iter index of the iteration to which initial values correspond, usually zero.
mixture initial mixture for the error random variable ε. It must a vector of

length 1 + 3*kmax, where mixture[1] gives initial number of mixture of
components k, mixture[2:(k+1)] gives initial mixture weights, mixture[(2+kmax):(2+kmax+k-1)]
gives initial mixture means, mixture[(2+2*kmax):(2+2*kmax+k-1)] gives
initial mixture variances. Remaining components of this vector are ignored.

beta initial values of regression parameters in the same order as columns of the
design matrix X. Call the function bayessurvreg1 with onlyX = TRUE to
see how the columns are sorted. Remember, beta in this function contains
both fixed effects β and means of random effect γ in the notation of the ac-
companying paper except the mean of the random intercept which is always
zero.
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b initial values of random effects bi for each cluster. This must a matrix of size
q × N or a vector of length q ∗ N , where q is a number of random effects
and N number of clusters, one column per cluster.

D initial value for the covariance matrix of random effects D. Only its lower tri-
angle must be given in a vector, e.g. c(d[1,1], d[2,1], d[3,1], d[2,2],
d[3,2], d[3,3]) for a matrix 3× 3.

y initial values of true log-event times. This must be a vector of length
∑N

i=1 ni.

r initial values of component labels ri,l. This must be a vector of length
∑N

i=1 ni.
otherp initial values for other parameters. At this moment, only a value of the

parameter η is given here.
u initial canonical proposal vector of length 3kmax. When initial number of

compoents given by init$mixture[1] is k, effectively only last 3kmax −
3∗k components of the initial u vector are used. Further, when prop.revjump$algorithm
= "correlated.av", the first component of init$u (init$u[1]) contains
an initial mood parameter (C0 in Brooks et al. (2003)) for the moody ring.

store a list that defines which sampled values besides regression parameters β, means
of random effects γ (both stored in a file called beta.sim), a covariance ma-
trix of random effects D (stored in a file D.sim), the mixture (stored in file
mixmoment.sim, mweight.sim, mmean.sim, mvariance.sim), values of other
parameters - η (stored in a file otherp.sim), values of log-likelihoods (stored
in a file loglik.sim), information concerning the performance of the reversible
jump McMC and acceptance of regression parameters (stored in a file MHinfo.sim),
iteration indeces (stored in a file iteration.sim) are to be stored. The list
store has the following components.

y if TRUE sampled true log-event times are stored.
r if TRUE sampled component labels are stored.
b if TRUE sampled values of random effects bi are stored.
u if TRUE sampled values of canonical proposal vectors for the reversible jump

McMC are stored.
MHb if TRUE information concerning the performance of the Metropolis-Hastings

algorithm for the update of random effects (if used instead of a dafault
Gibbs) is stored.

regresres if TRUE sampled values of regression residuals at each iteration are
stored. The regression residual is defined as resi,l = log(ti,l) − βTxi,l −
bTi zi,l.

In the case that either store$y, or store$r, or store$b, or store$u are FALSE,
only the last values of either y, or r, or b, or u at the time of writting of remaining
quantities are stored in appropriate files (without headers) to be possibly used
by bayessurvreg1.files2init function.

dir a string that specifies a directory where all sampled values are to be stored.

toler.chol tolerance for the Cholesky decomposition.

toler.qr tolerance for the QR decomposition.

... who knows?
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Value

A list of class bayessurvreg containing an information concerning the initial values and prior
choices.

Files created

Additionally, the following files with sampled values are stored in a directory specified by dir
parameter of this function (some of them are created only on request, see store parameter of this
function).

iteration.sim one column labeled iteration with indeces of McMC iterations to which the stored
sampled values correspond.

loglik.sim two columns labeled loglik and randomloglik.

loglik =

N∑
i=1

ni∑
l=1

[{
log

( 1√
2πσ2

ri,l

)
−

(yi,l − βTxi,l − bTi zi,l − µri,l)
2

2σ2
ri,l

}]
,

where yi,l denotes (sampled) (i,l)th true log-event time, bi sampled value of the random effect
vector for the ith cluster, β sampled value of the regression parameter β and k,wj , µj , σ

2
j , j =

1, . . . , k sampled mixture at each iteration.

randomloglik =

N∑
i=1

log
(
g(bi)

)
,

where g denotes a density of (multivariate) normal distribution N(γ,D), where γ is a sampled
value of the mean of random effect vector and D is a sampled value of the covariance matrix
of the random effects at each iteration.

mixmoment.sim three columns labeled k, Intercept and Scale. These are the number of mixture
components, mean and standard deviation of the sampled error distribution (mixture) at each
iteration.

mweight.sim each row contains mixture weights w1, . . . , wk at each iteration. From the header of
this file, maximal number of mixture components specified in the prior can be derived.

mmean.sim each row contains mixture means µ1, . . . , µk at each iteration. From the header of this
file, maximal number of mixture components specified in the prior can be derived.

mvariance.sim each row contains mixture variances σ2
1 , . . . , σ

2
k at each iteration. From the header

of this file, maximal number of mixture components specified in the prior can be derived.
beta.sim columns labeled according to name of the design matrix. These are sampled values of

regression parameters β and means of random effects γ (except the mean of the random inter-
cept which is zero).

b.sim columns labeled nameb[1].id[1], ...,nameb[q].id[1], ..., nameb[1].id[N], ..., nameb[q].id[N],
where q is a dimension of the random effect vector bi and N number of clusters. nameb is re-
placed by appropriate column name from the design matrix and id is replaced by identificator
of the clusters. This gives sampled values of the random effects for each cluster.

D.sim columns labeled det, D.s.t, s = 1,..., q, t = s,...,q, where q is dimension of the ran-
dom effect vector bi. Column det gives a determinant of the covariance matrix D of the
random effects at each iteration, remaining columns give a lower triangle of this matrix at
each iteration.
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Y.sim columns labeled Y[m] where m goes from 1 to
∑N

i=1 ni. This gives sampled log-event times
for each observation in the dataset at each iteration.

r.sim columns labeled r[m] where m goes from 1 to
∑N

i=1 ni. This gives sampled mixture labels
for each observation in the dataset at each iteration.

otherp.sim Currently only one column labeled eta that gives sampled values of the hyperparame-
ter η.

MHinfo.sim this gives the information concerning the performance of reversible jump algorithm
and a sampler of regression parameters β and means of random effects γ. It has columns

accept.spl.comb relative frequency of accepted split-combine moves up to that iteration.
split relative frequency of proposed split moves up to that iteration.
accept.birth.death relative frequency of accepted birth-death moves up to that iteration.
birth relative frequency of proposed birth moves up to that iteration.
beta.block.m with m going from 1 to number of defined blocks of beta parameters. This

gives a relative frequency of accepted proposals for each block up to that iteration. When
Gibbs move is used, these should be columns of ones.

MHbinfo.sim this gives the information concerning the performance of a sampler for random ef-
fects (relative frequency of accepted values for each cluster and each block of random effects
updated together). When Gibbs move is used only ones are seen in this file.

u.sim Sampled values of canonical proposal variables for reversible jump algorithm are stored here.
This file is useful only when trying to restart the simulation from some specific point.

regresres.sim columns labeled res[m] where m goes from 1 to
∑N

i=1 ni This stores so called re-
gression residuals for each observation at each iteration. This residual is defined as

resi,l = yi,l − βTxi,l − bizi,l, i = 1 . . . , N, l = 1, . . . , ni,

where yi,l is a (sampled) log-event time at each iteration.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2007).
##
## R commands available
## in the documentation
## directory of this package as
## - ex-cgd.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-cgd.pdf
##
## - ex-tandmobMixture.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobMixture.pdf
##

bayessurvreg1.files2init

Read the initial values for the Bayesian survival regression model to
the list.

Description

This function creates the list of initial values as required by the init argument of the function
bayessurvreg1. The initials are taken from the files that are of the form of the files where the
simulated values from the McMC run performed by the function bayessurvreg1 are stored. The
files are assumed to have the following names: "iteration.sim", "mixmoment.sim", "mweight.sim",
"mmean.sim", "mvariance.sim", "beta.sim", "b.sim", "Y.sim", "r.sim", "D.sim", "otherp.sim", "u.sim".
Some of these files may be missing. In that case, the corresponding initial is filled by NULL.

Usage

bayessurvreg1.files2init(dir = getwd(), row, kmax)

Arguments

dir string giving the directory where it will be searched for the files with initial
values.

row the row (possible header does not count) from the files with the values that will
be considered to give the initial values. By default, it is the last row from the
files.

kmax maximal number of mixture components. This must be given only if header ==
FALSE.

Value

A list with components called "iter", "mixture", "beta", "b", "D", "y", "r", "otherp", "u" in the form
as required by the argument init of the function bayessurvreg1.
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Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

bayessurvreg2 Cluster-specific accelerated failure time model for multivariate, possi-
bly doubly-interval-censored data. The error distribution is expressed
as a penalized univariate normal mixture with high number of com-
ponents (G-spline). The distribution of the vector of random effects is
multivariate normal.

Description

A function to estimate a regression model with possibly clustered (possibly right, left, interval or
doubly-interval censored) data. In the case of doubly-interval censoring, different regression models
can be specified for the onset and event times.

(Multivariate) random effects, normally distributed and acting as in the linear mixed model, nor-
mally distributed, can be included to adjust for clusters.

The error density of the regression model is specified as a mixture of Bayesian G-splines (nor-
mal densities with equidistant means and constant variances). This function performs an MCMC
sampling from the posterior distribution of unknown quantities.

For details, see Komárek (2006), and Komárek, Lesaffre and Legrand (2007).

We explain first in more detail a model without doubly censoring. Let Ti,l, i = 1, . . . , N, l =
1, . . . , ni be event times for ith cluster and the units within that cluster The following regression
model is assumed:

log(Ti,l) = β′xi,l + b′izi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni

where β is unknown regression parameter vector, xi,l is a vector of covariates. bi is a (multivariate)
cluster-specific random effect vector and zi,l is a vector of covariates for random effects.

The random effect vectors bi, i = 1, . . . , N are assumed to be i.i.d. with a (multivariate) normal
distribution with the mean βb and a covariance matrix D. Hierarchical centring (see Gelfand, Sahu,
Carlin, 1995) is used. I.e. βb expresses the average effect of the covariates included in zi,l. Note
that covariates included in zi,l may not be included in the covariate vector xi,l. The covariance
matrix D is assigned an inverse Wishart prior distribution in the next level of hierarchy.

The error terms εi,l, i = 1, . . . , N, l = 1, . . . , ni are assumed to be i.i.d. with a univariate density
gε(e). This density is expressed as a mixture of Bayesian G-splines (normal densities with equidis-
tant means and constant variances). We distinguish two, theoretically equivalent, specifications.

Specification 1

ε ∼
K∑

j=−K

wjN(µj , σ
2)

where σ2 is the unknown basis variance and µj , j = −K, . . . ,K is an equidistant grid
of knots symmetric around the unknown point γ and related to the unknown basis variance
through the relationship

µj = γ + jδσ, j = −K, . . . ,K,
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where δ is fixed constants, e.g. δ = 2/3 (which has a justification of being close to cubic
B-splines).

Specification 2
ε ∼ α+ τ V

where α is an unknown intercept term and τ is an unknown scale parameter. V is then
standardized error term which is distributed according to the univariate normal mixture, i.e.

V ∼
K∑

j=−K

wjN(µj , σ
2)

where µj , j = −K, . . . ,K is an equidistant grid of fixed knots (means), usually symmetric
about the fixed point γ = 0 and σ2 is fixed basis variance. Reasonable values for the numbers
of grid points K is K = 15 with the distance between the two knots equal to δ = 0.3 and for
the basis variance σ2 = 0.22.

Personally, I found Specification 2 performing better. In the paper Komárek, Lesaffre and Legrand
(2007) only Specification 2 is described.

The mixture weights wj , j = −K, . . . ,K are not estimated directly. To avoid the constraints
0 < wj < 1 and

∑K
j=−K wj = 1 transformed weights aj , j = −K, . . . ,K related to the original

weights by the logistic transformation:

aj =
exp(wj)∑
m exp(wm)

are estimated instead.

A Bayesian model is set up for all unknown parameters. For more details I refer to Komárek (2006)
and to Komárek, Lesafre, and Legrand (2007).

If there are doubly-censored data the model of the same type as above can be specified for both the
onset time and the time-to-event.

Usage

bayessurvreg2(formula, random, formula2, random2,
data = parent.frame(),
na.action = na.fail, onlyX = FALSE,
nsimul = list(niter = 10, nthin = 1, nburn = 0, nwrite = 10),
prior, prior.beta, prior.b, init = list(iter = 0),
mcmc.par = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1),
prior2, prior.beta2, prior.b2, init2,
mcmc.par2 = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1),
store = list(a = FALSE, a2 = FALSE, y = FALSE, y2 = FALSE,

r = FALSE, r2 = FALSE, b = FALSE, b2 = FALSE),
dir)
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Arguments

formula model formula for the regression. In the case of doubly-censored data, this is
the model formula for the onset time.
The left-hand side of the formula must be an object created using Surv.
In the formula all covariates appearing both in the vector xi,l and zi,l must be
mentioned. Intercept is implicitely included in the model by the estimation of
the error distribution. As a consequence -1 in the model formula does not have
any effect on the model specification.
If random is used then the formula must contain an identification of clusters
in the form cluster(id), where id is a name of the variable that determines
clusters, e.g.

Surv(time, event) gender + cluster(id).

random formula for the ‘random’ part of the model, i.e. the part that specifies the covari-
ates zi,l. In the case of doubly-censored data, this is the random formula for the
onset time.
If omitted, no random part is included in the model. E.g. to specify the model
with a random intercept, say random= 1. All effects mentioned in random should
also be mentioned on the right-hand side of formula.
When some random effects are included the random intercept is added by de-
fault. It can be removed using e.g. random= -1 + gender.

formula2 model formula for the regression of the time-to-event in the case of doubly-
censored data. Ignored otherwise. The same structure as for formula applies
here.

random2 specification of the ‘random’ part of the model for time-to-event in the case of
doubly-censored data. Ignored otherwise. The same structure as for random
applies here.

data optional data frame in which to interpret the variables occuring in the formula,
formula2, random, random2 statements.

na.action the user is discouraged from changing the default value na.fail.

onlyX if TRUE no MCMC sampling is performed and only the design matrix (matri-
ces) are returned. This can be useful to set up correctly priors for regression
parameters in the presence of factor covariates.

nsimul a list giving the number of iterations of the MCMC and other parameters of the
simulation.

niter total number of sampled values after discarding thinned ones, burn-up
included;

nthin thinning interval;
nburn number of sampled values in a burn-up period after discarding thinned

values. This value should be smaller than niter. If not, nburn is set to
niter - 1. It can be set to zero;

nwrite an interval at which information about the number of performed itera-
tions is print on the screen and during the burn-up period an interval with
which the sampled values are writen to files;



bayessurvreg2 39

prior a list specifying the prior distribution of the G-spline defining the distribution
of the error term in the regression model given by formula and random. See
prior argument of bayesHistogram function for more detail. In this list also
‘Specification’ as described above is specified.
The item prior$neighbor.system can only be equal to uniCAR here.

prior.b a list defining the way in which the random effects involved in formula and
random are to be updated and the specification of priors for parameters related
to these random effects. The list is assumed to have the following components.

prior.D a string defining the prior distribution for the covariance matrix of ran-
dom effects D. It can be either “inv.wishart” or “sduniform”.
inv.wishart in that case is assumed that the prior distribution of the matrix

D is Inverse-Wishart with degrees of freedom equal to τ and a scale
matrix equal to S. When D is a matrix q × q a prior expectation of
D is equal to (τ − q − 1)−1S if τ > q + 1. For q − 1 < τ ≤
q + 1 a prior expectation is not finite. Degrees of freedom parameter
τ does not have to be an integer. It has to only satisfy a condition
τ > q−1. prior.b$df.D gives a prior degrees of freedom parameter τ
and prior.b$scale.D determines the scale matrix D. Inverse-Wishart
is also the default choice.

sduniform this can be used only when the random effect is univariate (e.g.
only random intercept in the model). Then the matrix D is just a scalar
and the prior of

√
D (standard deviation of the univariate random ef-

fect) is assumed to be uniform on interval (0, S). The upper limit S is
given by prior.b$scale.D.

df.D degrees of freedom parameter τ in the case that the prior of the matrix D
is inverse-Wishart.

scale.D a lower triangle of the scale matrix S in the case that the prior of the
matrix D is inverse-Wishart or the upper limit S of the uniform distribution
in the case that

√
D ∼ Unif(0, S).

prior.beta prior specification for the regression parameters, in the case of doubly-censored
data for the regression parameters of the onset time, i.e. it is related to formula
and random. Note that the beta vector contains both the fixed effects β and the
means of the random effects (except the random intercept) βb.
This should be a list with the following components:

mean.prior a vector specifying a prior mean for each beta parameter in the
model.

var.prior a vector specifying a prior variance for each beta parameter.

It is recommended to run the function bayessurvreg2 first with its argument
onlyX set to TRUE to find out how the betas are sorted. They must correspond to
a design matrix X taken from formula.

init an optional list with initial values for the MCMC related to the model given by
formula and random. The list can have the following components:

iter the number of the iteration to which the initial values correspond, usually
zero.
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beta a vector of initial values for the regression parameters (both the fixed ef-
fects and means of the random effects). It must be sorted in the same way
as are the columns in the design matrix. Use onlyX=TRUE if you do not
know how the columns in the design matrix are created.

a a vector of length 2K + 1 with the initial values of transformed mixture
weights.

lambda initial values for the Markov random fields precision parameter.
gamma an initial values for the middle knot γ.

If ‘Specification’ is 2, this value will not be changed by the MCMC and it
is recommended (for easier interpretation of the results) to set init$gamma
to zero (default behavior).
If ‘Specification’ is 1 init$gamma should be approximately equal to the
mean value of the residuals.

sigma an initial values of the basis standard deviation σ.
If ‘Specification’ is 2, this value will not be changed by the MCMC and it is
recommended to set it approximately equal to the range of standardized data
(let say 4 + 4) divided by the number of knots and multiplied by something
like 2/3.
If ‘Specification’ is 1 this should be approximately equal to the range of the
residuals divided by the number of knots (2K +1) and multiplied again by
something like 2/3.

intercept an initial values of the intercept term α.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to zero.

scale an initial value of the scale parameter τ .
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to one.

D initial value for the covariance matrix of random effects D. Only its lower tri-
angle must be given in a vector, e.g. c(d[1,1], d[2,1], d[3,1], d[2,2],
d[3,2], d[3,3]) for a matrix 3× 3.

b a vector or matrix of the initial values of random effects bi, i = 1, . . . , N for
each cluster. The matrix should be of size q ×N , where q is the number of
random effects. I.e. each column of the matrix contains the initial values
for one cluster.

y a vector of length
∑N

i=1 ni with initial values of log-event-times.

r a vector of length
∑N

i=1 ni with initial component labels for each residual.
All values must be between −K and K. See argument init of the function
bayesHistogram for more details.

mcmc.par a list specifying how some of the G-spline parameters related to the distribution
of the error term from formula are to be updated. See bayesBisurvreg for
more details.
In contrast to bayesBisurvreg function argument mcmc.par$type.update.a
can also be equal to "block" in which case all a coefficients are updated in 1
block using the Metropolis-Hastings algorithm.

prior2 a list specifying the prior distribution of the G-spline defining the distribution
of the error term in the regression model given by formula2 and random2. See
prior argument of bayesHistogram function for more detail.
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prior.b2 prior specification for the parameters related to the random effects from formula2
and random2. This should be a list with the same structure as prior.b.

prior.beta2 prior specification for the regression parameters of time-to-event in the case of
doubly censored data (related to formula2 and random2). This should be a list
with the same structure as prior.beta.

init2 an optional list with initial values for the MCMC related to the model given by
formula2 and random2. The list has the same structure as init.

mcmc.par2 a list specifying how some of the G-spline parameters related to formula2 are
to be updated. The list has the same structure as mcmc.par.

store a list of logical values specifying which chains that are not stored by default are
to be stored. The list can have the following components.

a if TRUE then all the transformed mixture weights ak, k = −K, . . . ,K, related
to the G-spline (error distribution) of formula are stored.

a2 if TRUE and there are doubly-censored data then all the transformed mixture
weights ak, k = −K, . . . ,K, related to the G-spline (error distribution) of
formula2 are stored.

y if TRUE then augmented log-event times for all observations related to the
formula are stored.

y2 if TRUE then augmented log-event times for all observations related to formula2
are stored.

r if TRUE then labels of mixture components for residuals related to formula
are stored.

r2 if TRUE then labels of mixture components for residuals related to formula2
are stored.

b if TRUE then the sampled values of the random effects related to formula and
random are stored.

b2 if TRUE then the sampled values of the random effects related to formula2
and random2 are stored.

dir a string that specifies a directory where all sampled values are to be stored.

Value

A list of class bayessurvreg2 containing an information concerning the initial values and prior
choices.

Files created

Additionally, the following files with sampled values are stored in a directory specified by dir
argument of this function (some of them are created only on request, see store parameter of this
function).

Headers are written to all files created by default and to files asked by the user via the argument
store. During the burn-in, only every nsimul$nwrite value is written. After the burn-in, all
sampled values are written in files created by default and to files asked by the user via the argument
store. In the files for which the corresponding store component is FALSE, every nsimul$nwrite
value is written during the whole MCMC (this might be useful to restart the MCMC from some
specific point).
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The following files are created:

iteration.sim one column labeled iteration with indeces of MCMC iterations to which the stored
sampled values correspond.

mixmoment.sim columns labeled k, Mean.1, D.1.1, where
k = number of mixture components that had probability numerically higher than zero;
Mean.1 = E(εi,l);
D.1.1 = var(εi,l);
all related to the distribution of the error term from the model given by formula.

mixmoment_2.sim in the case of doubly-censored data, the same structure as mixmoment.sim,
however related to the model given by formula2.

mweight.sim sampled mixture weights wk of mixture components that had probabilities numeri-
cally higher than zero. Related to the model given by formula.

mweight_2.sim in the case of doubly-censored data, the same structure as mweight.sim, however
related to the model given by formula2.

mmean.sim indeces k, k ∈ {−K, . . . ,K} of mixture components that had probabilities numeri-
cally higher than zero. It corresponds to the weights in mweight.sim. Related to the model
given by formula.

mmean_2.sim in the case of doubly-censored data, the same structure as mmean.sim, however
related to the model given by formula2.

gspline.sim characteristics of the sampled G-spline (distribution of εi,l) related to the model given
by formula. This file together with mixmoment.sim, mweight.sim and mmean.sim can be
used to reconstruct the G-spline in each MCMC iteration.
The file has columns labeled gamma1, sigma1, delta1, intercept1, scale1, The meaning of
the values in these columns is the following:
gamma1 = the middle knot γ If ‘Specification’ is 2, this column usually contains zeros;
sigma1 = basis standard deviation σ of the G-spline. This column contains a fixed value if
‘Specification’ is 2;
delta1 = distance delta between the two knots of the G-spline. This column contains a fixed
value if ‘Specification’ is 2;
intercept1 = the intercept term α of the G-spline. If ‘Specification’ is 1, this column usually
contains zeros;
scale1 = the scale parameter τ of the G-spline. If ‘Specification’ is 1, this column usually
contains ones;

gspline_2.sim in the case of doubly-censored data, the same structure as gspline.sim, however
related to the model given by formula2.

mlogweight.sim fully created only if store$a = TRUE. The file contains the transformed weights
ak, k = −K, . . . ,K of all mixture components, i.e. also of components that had numerically
zero probabilities. This file is related to the error distribution of the model given by formula.

mlogweight_2.sim fully created only if store$a2 = TRUE and in the case of doubly-censored data,
the same structure as mlogweight.sim, however related to the error distribution of the model
given by formula2.

r.sim fully created only if store$r = TRUE. The file contains the labels of the mixture compo-
nents into which the residuals are intrinsically assigned. Instead of indeces on the scale
{−K, . . . ,K} values from 1 to (2K + 1) are stored here. Function vecr2matr can be used
to transform it back to indices from −K to K.



bayessurvreg2 43

r_2.sim fully created only if store$r2 = TRUE and in the case of doubly-censored data, the same
structure as r.sim, however related to the model given by formula2.

lambda.sim one column labeled lambda. These are the values of the smoothing parameterλ (hy-
perparameters of the prior distribution of the transformed mixture weights ak). This file is
related to the model given by formula.

lambda_2.sim in the case of doubly-censored data, the same structure as lambda.sim, however
related to the model given by formula2.

beta.sim sampled values of the regression parameters, both the fixed effects β and means of the
random effects βb (except the random intercept which has always the mean equal to zero).
This file is related to the model given by formula. The columns are labeled according to the
colnames of the design matrix.

beta_2.sim in the case of doubly-censored data, the same structure as beta.sim, however related
to the model given by formula2.

D.sim sampled values of the covariance matrix D of the random effects. The file has 1+0.5 q (q+1)
columns (q is the dimension of the random effect vector bi). The first column labeled det
contains the determinant of the sampled matrix, additional columns labeled D.1.1, D.2.1,
. . . , D.q.1, . . .D.q.q contain the lower triangle of the sampled matrix. This file is related to
the model specified by formula and random.

D_2.sim in the case of doubly-censored data, the same structure as D.sim, however related to the
model given by formula2 and random2.

b.sim fully created only if store$b = TRUE. It contains sampled values of random effects for all
clusters in the data set. The file has q×N columns sorted as b1,1, . . . , b1,q, . . . , bN,1, . . . , bN,q.
This file is related to the model given by formula and random.

b_2.sim fully created only if store$b2 = TRUE and in the case of doubly-censored data, the same
structure as b.sim, however related to the model given by formula2 and random2.

Y.sim fully created only if store$y = TRUE. It contains sampled (augmented) log-event times for
all observations in the data set.

Y_2.sim fully created only if store$y2 = TRUE and in the case of doubly-censored data, the same
structure as Y.sim, however related to the model given by formula2.

logposter.sim columns labeled loglik, penalty, and logprw. This file is related to the model
given by formula. The columns have the following meaning.

loglik = −(
∑N

i=1 ni)
{
log(

√
2π) + log(σ)

}
− 0.5

∑N
i=1

∑ni

l=1

{
(σ2 τ2)−1 (yi,l − x′

i,lβ −

z′i,lbi − α− τµri,l)
2
}

where yi,l denotes (augmented) (i,l)th true log-event time.
In other words, loglik is equal to the conditional log-density

N∑
i=1

ni∑
l=1

log
{
p
(
yi,l

∣∣ ri,l, β, bi, G-spline
)}

;

penalty: the penalty term

−1

2

∑
k

(
∆ ak

)2

(not multiplied by λ);
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logprw = −2 (
∑

i ni) log
{∑

k ak
}
+

∑
k Nk ak, where Nk is the number of residuals as-

signed intrinsincally to the kth mixture component.
In other words, logprw is equal to the conditional log-density

∑N
i=1

∑ni

l=1 log
{
p(ri,l | G-spline weights)

}
.

logposter_2.sim in the case of doubly-censored data, the same structure as logposter.sim, how-
ever related to the model given by formula2.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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Examples

## See the description of R commands for
## the model with EORTC data,
## analysis described in Komarek, Lesaffre and Legrand (2007).
##
## R commands available in the documentation
## directory of this package
## as ex-eortc.R and
## https://www2.karlin.mff.cuni.cz/ komarek/software/bayesSurv/ex-eortc.pdf
##

bayessurvreg3 Cluster-specific accelerated failure time model for multivariate, pos-
sibly doubly-interval-censored data with flexibly specified random ef-
fects and/or error distribution.

Description

A function to estimate a regression model with possibly clustered (possibly right, left, interval or
doubly-interval censored) data. In the case of doubly-interval censoring, different regression models
can be specified for the onset and event times.

A univariate random effect (random intercept) with the distribution expressed as a penalized normal
mixture can be included in the model to adjust for clusters.
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The error density of the regression model is specified as a mixture of Bayesian G-splines (nor-
mal densities with equidistant means and constant variances). This function performs an MCMC
sampling from the posterior distribution of unknown quantities.

For details, see Komárek (2006) and Komárek and Lesaffre (2008).

SUPPLEMENTED IN 06/2013: Interval-censored times might be subject to misclassification. In
case of doubly-interval-censored data, the event time might be subject to misclassification. For
details, see García-Zattera, Jara and Komárek (2016).

We explain first in more detail a model without doubly censoring. Let Ti,l, i = 1, . . . , N, l =
1, . . . , ni be event times for ith cluster and the units within that cluster The following regression
model is assumed:

log(Ti,l) = β′xi,l + bi + εi,l, i = 1, . . . , N, l = 1, . . . , ni

where β is unknown regression parameter vector, xi,l is a vector of covariates. bi is a cluster-specific
random effect (random intercept).

The random effects bi, i = 1, . . . , N are assumed to be i.i.d. with a univariate density gb(b). The
error terms εi,l, i = 1, . . . , N, l = 1, . . . , ni are assumed to be i.i.d. with a univariate density gε(e).

Densities gb and gε are both expressed as a mixture of Bayesian G-splines (normal densities with
equidistant means and constant variances). We distinguish two, theoretically equivalent, specifica-
tions.

In the following, the density for ε is explicitely described. The density for b is obtained in an
analogous manner.

Specification 1

ε ∼
K∑

j=−K

wjN(µj , σ
2)

where σ2 is the unknown basis variance and µj , j = −K, . . . ,K is an equidistant grid
of knots symmetric around the unknown point γ and related to the unknown basis variance
through the relationship

µj = γ + jδσ, j = −K, . . . ,K,

where δ is fixed constants, e.g. δ = 2/3 (which has a justification of being close to cubic
B-splines).

Specification 2
ε ∼ α+ τ V

where α is an unknown intercept term and τ is an unknown scale parameter. V is then
standardized error term which is distributed according to the univariate normal mixture, i.e.

V ∼
K∑

j=−K

wjN(µj , σ
2)

where µj , j = −K, . . . ,K is an equidistant grid of fixed knots (means), usually symmetric
about the fixed point γ = 0 and σ2 is fixed basis variance. Reasonable values for the numbers
of grid points K is K = 15 with the distance between the two knots equal to δ = 0.3 and for
the basis variance σ2 = 0.22.
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Personally, I found Specification 2 performing better. In the paper Komárek and Lesaffre (2008)
only Specification 2 is described.

The mixture weights wj , j = −K, . . . ,K are not estimated directly. To avoid the constraints
0 < wj < 1 and

∑K
j=−K wj = 1 transformed weights aj , j = −K, . . . ,K related to the original

weights by the logistic transformation:

aj =
exp(wj)∑
m exp(wm)

are estimated instead.

A Bayesian model is set up for all unknown parameters. For more details I refer to Komárek and
Lesaffre (2008).

If there are doubly-censored data the model of the same type as above can be specified for both the
onset time and the time-to-event.

In the case one wishes to link the random intercept of the onset model and the random intercept of
the time-to-event model, there are the following possibilities.

Bivariate normal distribution
It is assumed that the pair of random intercepts from the onset and time-to-event part of the model
are normally distributed with zero mean and an unknown covariance matrix D.

A priori, the inverse covariance matrix D−1 is addumed to follow a Wishart distribution.

Unknown correlation between the basis G-splines
Each pair of basis G-splines describing the distribution of the random intercept in the onset part
and the time-to-event part of the model is assumed to be correlated with an unknown correlation
coefficient ϱ. Note that this is just an experiment and is no more further supported.

Prior distribution on ϱ is assumed to be uniform. In the MCMC, the Fisher Z transform of the ϱ
given by

Z = −1

2
log

(1− ϱ

1 + ϱ

)
= atanh(ϱ)

is sampled. Its prior is derived from the uniform prior Unif(−1, 1) put on ϱ.

The Fisher Z transform is updated using the Metropolis-Hastings alhorithm. The proposal distri-
bution is given either by a normal approximation obtained using the Taylor expansion of the full
conditional distribution or by a Langevin proposal (see Robert and Casella, 2004, p. 318).

Usage

bayessurvreg3(formula, random, formula2, random2,
data = parent.frame(),
classification,
classParam = list(Model = c("Examiner", "Factor:Examiner"),

a.sens = 1, b.sens = 1, a.spec = 1, b.spec = 1,
init.sens = NULL, init.spec = NULL),

na.action = na.fail, onlyX = FALSE,
nsimul = list(niter = 10, nthin = 1, nburn = 0, nwrite = 10),
prior, prior.beta, prior.b, init = list(iter = 0),
mcmc.par = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1,
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type.update.a.b = "slice", k.overrelax.a.b = 1,
k.overrelax.sigma.b = 1, k.overrelax.scale.b = 1),

prior2, prior.beta2, prior.b2, init2,
mcmc.par2 = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1,
type.update.a.b = "slice", k.overrelax.a.b = 1,
k.overrelax.sigma.b = 1, k.overrelax.scale.b = 1),

priorinit.Nb,
rho = list(type.update = "fixed.zero", init=0, sigmaL=0.1),
store = list(a = FALSE, a2 = FALSE, y = FALSE, y2 = FALSE,

r = FALSE, r2 = FALSE, b = FALSE, b2 = FALSE,
a.b = FALSE, a.b2 = FALSE, r.b = FALSE, r.b2 = FALSE),

dir)

bayessurvreg3Para(formula, random, formula2, random2,
data = parent.frame(),
classification,
classParam = list(Model = c("Examiner", "Factor:Examiner"),

a.sens = 1, b.sens = 1, a.spec = 1, b.spec = 1,
init.sens = NULL, init.spec = NULL),

na.action = na.fail, onlyX = FALSE,
nsimul = list(niter = 10, nthin = 1, nburn = 0, nwrite = 10),
prior, prior.beta, prior.b, init = list(iter = 0),
mcmc.par = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1,
type.update.a.b = "slice", k.overrelax.a.b = 1,
k.overrelax.sigma.b = 1, k.overrelax.scale.b = 1),

prior2, prior.beta2, prior.b2, init2,
mcmc.par2 = list(type.update.a = "slice", k.overrelax.a = 1,

k.overrelax.sigma = 1, k.overrelax.scale = 1,
type.update.a.b = "slice", k.overrelax.a.b = 1,
k.overrelax.sigma.b = 1, k.overrelax.scale.b = 1),

priorinit.Nb,
rho = list(type.update = "fixed.zero", init=0, sigmaL=0.1),
store = list(a = FALSE, a2 = FALSE, y = FALSE, y2 = FALSE,

r = FALSE, r2 = FALSE, b = FALSE, b2 = FALSE,
a.b = FALSE, a.b2 = FALSE, r.b = FALSE, r.b2 = FALSE),

dir)

Arguments

formula model formula for the regression. In the case of doubly-censored data, this is
the model formula for the onset time.
The left-hand side of the formula must be an object created using Surv.
Intercept is implicitely included in the model by the estimation of the error dis-
tribution. As a consequence -1 in the model formula does not have any effect
on the model specification.
If random is used then the formula must contain an identification of clusters
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in the form cluster(id), where id is a name of the variable that determines
clusters, e.g.

Surv(time, event) gender + cluster(id).

random formula for the ‘random’ part of the model. In the case of doubly-censored data,
this is the random formula for the onset time. With this version of the function
only

random = 1

is allowed. If omitted, no random part is included in the model.

formula2 model formula for the regression of the time-to-event in the case of doubly-
censored data. Ignored otherwise. The same structure as for formula applies
here.

random2 specification of the ‘random’ part of the model for time-to-event in the case of
doubly-censored data. Ignored otherwise. The same structure as for random
applies here.

data optional data frame in which to interpret the variables occuring in the formula,
formula2, random, random2 statements.

classification data.frame with the information for a model which considers misclassifica-
tion of the event times. It is assumed to have the following columns where the
position of columns is important, not their names:

1. idUnit: variable which determines the rows of classification matrix
pertaining to one unit in formula/formula2 data. Number of unique
idUnit values must be the same as in formula/formula2 data, classification
matrix must be sorted in the same order as formula/formula2 data and
having all rows pertaining to one unit in its consecutive rows.

2. Time: variable with the examination times. It is assumed that the Times are
sorted in an increasing order for each idUnit.

3. Examiner: variable which determines the examiner who performed evalu-
ation at a specific visit. Number of unique Examiner values determines the
number of examiners.

4. Status: 0/1 variable giving the event status according to examiner, 0 = no
event, 1 = event.

5. Factor: possible factor (e.g., tooth in our dental application which may
influence the misclassification). Numeric or character variables are con-
verted to a factor. This column is obligatory only if classModel is “Fac-
tor:Examiner”.

Possible additional columns are ignored.
If missing, no misclassification is considered.

classParam a list with additional parameters for the misclassification model. It is ignored
if there is no classification argument specified.
The following components of the list classParam are expected.
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Model a character string which specifies the model considered. It can be 1.
“Examiner”: sensitivity and specificity depend only on Examiner, 2. “Fac-
tor:Examiner”: sensitivity and specificity is for each examiner generally
different for different levels of a factor Factor.

a.sens parameter ‘a’ (shape1) of the beta prior distributions for sensitivities.
b.sens parameter ‘b’ (shape2) of the beta prior distributions for sensitivities.
a.spec parameter ‘a’ (shape1) of the beta prior distributions for specificities.
b.spec parameter ‘b’ (shape2) of the beta prior distributions for specificities.
init.sens a vector or matrix with initial values of sensitivities. A vector is ex-

pected if Model is “Examiner” in which case each component of the vec-
tor corresponds to each examiner. A matrix is expected if Model is “Fac-
tor:Examiner” in which case rows of the matrix correspond to the values of
Factor and columns to examiners.
If not given then the initial sensitivities are sampled from a uniform distri-
bution on (0.8, 0.9).

init.spec a vector or matrix with initial values of specificities. The structure is
the same as for init.sens.

na.action the user is discouraged from changing the default value na.fail.

onlyX if TRUE no MCMC sampling is performed and only the design matrix (matri-
ces) are returned. This can be useful to set up correctly priors for regression
parameters in the presence of factor covariates.

nsimul a list giving the number of iterations of the MCMC and other parameters of the
simulation.

niter total number of sampled values after discarding thinned ones, burn-up
included;

nthin thinning interval;
nburn number of sampled values in a burn-up period after discarding thinned

values. This value should be smaller than niter. If not, nburn is set to
niter - 1. It can be set to zero;

nwrite an interval at which information about the number of performed itera-
tions is print on the screen and during the burn-up period an interval with
which the sampled values are writen to files;

prior a list specifying the prior distribution of the G-spline defining the distribution
of the error term in the regression model given by formula and random. See
prior argument of bayesHistogram function for more detail. In this list also
‘Specification’ as described above is specified.
The item prior$neighbor.system can only be equal to uniCAR here.

prior.b a list specifying the prior distribution of the G-spline defining the distribution
of the random intercept in the regression model given by formula and random.
See prior argument of bayesHistogram function for more detail. In this list
also ‘Specification’ as described above is specified.
It is ignored if the argument priorinit.Nb is given.
The item prior.b$neighbor.system can only be equal to uniCAR here.
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prior.beta prior specification for the regression parameters, in the case of doubly-censored
data for the regression parameters of the onset time, i.e. it is related to formula
and random.
This should be a list with the following components:

mean.prior a vector specifying a prior mean for each beta parameter in the
model.

var.prior a vector specifying a prior variance for each beta parameter.

It is recommended to run the function bayessurvreg3 first with its argument
onlyX set to TRUE to find out how the betas are sorted. They must correspond to
a design matrix X taken from formula.

init an optional list with initial values for the MCMC related to the model given by
formula and random. The list can have the following components:

iter the number of the iteration to which the initial values correspond, usually
zero.

beta a vector of initial values for the regression parameters. It must be sorted
in the same way as are the columns in the design matrix. Use onlyX=TRUE
if you do not know how the columns in the design matrix are created.

a a vector of length 2K + 1 with the initial values of transformed mixture
weights for the G-spline defining the distribution of the error term ε.

lambda initial values for the Markov random fields precision parameter for the
G-spline defining the distribution of the error term ε.

gamma an initial values for the middle knot γ for the G-spline defining the
distribution of the error term ε.
If ‘Specification’ is 2, this value will not be changed by the MCMC and it
is recommended (for easier interpretation of the results) to set init$gamma
to zero (default behavior).
If ‘Specification’ is 1 init$gamma should be approximately equal to the
mean value of the residuals.

sigma an initial values of the basis standard deviation σ for the G-spline defin-
ing the distribution of the error term ε.
If ‘Specification’ is 2, this value will not be changed by the MCMC and it is
recommended to set it approximately equal to the range of standardized data
(let say 4 + 4) divided by the number of knots and multiplied by something
like 2/3.
If ‘Specification’ is 1 this should be approximately equal to the range of the
residuals divided by the number of knots (2K +1) and multiplied again by
something like 2/3.

intercept an initial values of the intercept term α for the G-spline defining the
distribution of the error term ε.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to zero.

scale an initial value of the scale parameter τ for the G-spline defining the dis-
tribution of the error term ε.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to one.
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a.b a vector of length 2K + 1 with the initial values of transformed mixture
weights for the G-spline defining the distribution of the random intercept b.

lambda.b initial values for the Markov random fields precision parameter for
the G-spline defining the distribution of the random intercept b.

gamma.b an initial values for the middle knot γ for the G-spline defining the
distribution of the random intercept b.
Due to identifiability reasons, this value is always changed to zero and is
for neither ‘Specification’ updated by the MCMC.

sigma.b an initial values of the basis standard deviation σ for the G-spline
defining the distribution of the random intercept b.
If ‘Specification’ is 2, this value will not be changed by the MCMC and it is
recommended to set it approximately equal to the range of standardized data
(let say 4 + 4) divided by the number of knots and multiplied by something
like 2/3.
If ‘Specification’ is 1 this should be approximately equal to the range of the
residuals divided by the number of knots (2K +1) and multiplied again by
something like 2/3.

intercept.b an initial values of the intercept term α for the G-spline defining
the distribution of the random intercept b.
Due to identifiability reasons, this value is always changed to zero and is
for neither ‘Specification’ updated by the MCMC.

scale.b an initial value of the scale parameter τ for the G-spline defining the
distribution of the random intercept b.
If ‘Specification’ is 1 this value is not changed by the MCMC and the initial
value is always changed to one.

b a vector of length N of the initial values of random effects bi, i = 1, . . . , N
for each cluster.

y a vector of length
∑N

i=1 ni with initial values of log-event-times.
r a vector of length

∑N
i=1 ni with initial component labels for each residual.

All values must be between −K and K. See argument init of the function
bayesHistogram for more details.

r.b a vector of length N with initial component labels for each random intercept.
All values must be between −K and K. See argument init of the function
bayesHistogram for more details.

mcmc.par a list specifying how some of the G-spline parameters related to the distribution
of the error term and of the random intercept from formula and random are to
be updated. See bayesBisurvreg for more details.
Compared to the mcmc.par argument of the function bayesBisurvreg addi-
tional components related to the G-spline for the random intercept can be present,
namely

type.update.a.b
k.overrelax.a.b
k.overrelax.sigma.b
k.overrelax.scale.b

In contrast to bayesBisurvreg function arguments mcmc.par$type.update.a
and mcmc.par$type.update.a.b can also be equal to "block" in which case
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all a coefficients are updated in 1 block using the Metropolis-Hastings algo-
rithm.

prior2 a list specifying the prior distribution of the G-spline defining the distribution
of the error term in the regression model given by formula2 and random2. See
prior argument of bayesHistogram function for more detail.

prior.b2 prior specification for the parameters related to the random effects from formula2
and random2. This should be a list with the same structure as prior.b.
It is ignored if the argument priorinit.Nb is given.

prior.beta2 prior specification for the regression parameters of time-to-event in the case of
doubly censored data (related to formula2 and random2). This should be a list
with the same structure as prior.beta.

init2 an optional list with initial values for the MCMC related to the model given by
formula2 and random2. The list has the same structure as init.

mcmc.par2 a list specifying how some of the G-spline parameters related to formula2 and
random2 are to be updated. The list has the same structure as mcmc.par.

priorinit.Nb a list specifying the prior of the random intercepts in the case of the AFT model
with doubly-interval-censored data and onset, time-to-event random intercepts
following bivariate normal distribution.
The list should have the following components.

init.D initial value for the covariance matrix of the onset random intercept and
time-to-event random intercept.
It can be specified either as a vector of length 3 giving the lower triangle of
the matrix or as a matrix 2 x 2.

df.Di degrees of freedom ν for the Wishart prior of the matrix D−1.
Note that it must be higher than 1.

scale.Di scale matrix S for the Wishart prior of the matrix D−1.
It can be specified either as a vector of length 3 giving the lower triangle of
the matrix or as a matrix 2 x 2.
Note that a priori

E(D−1.) = νS

rho a list specifying possible correlation between the onset random intercept and the
time-to-event random intercept in the experimental version of the model. If not
given correlation is fixed to 0.
It is ignored if the argument priorinit.Nb is given. Ordinary users should not
care about this argument.
The list can have the following components.

type.update character specifying how the Fisher Z transform of the correlation
coefficient is updated. Possible values are:
"fixed.zero": correlation coefficient is fixed to 0 and it is not updated.
"normal.around.mode": at each iteration of MCMC, 1 Newton-Raphson
step from the current point Z of the full conditional distribution is per-
formed, normal approximation is formed by Taylor expansion and new
point Z is sampled from that normal approximation.
Note that this proposal does not work too well if the current point Z lies in
the area of low posterior mass. The reason is that even 1 Newton-Raphson
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step usually leads to the area of high posterior probability mass and the
proposal is “too ambisious”.
"langevin". at each iteration of MCMC, new point Z is sampled using
the Langevin algorithm. A scale parameter (see below) must cerefully be
chosen for this algorithm to ensure that the acceptance rate is about 50–60%
(Robert, Casella, 2004, p. 319).

store a list of logical values specifying which chains that are not stored by default are
to be stored. The list can have the following components.

a if TRUE then all the transformed mixture weights ak, k = −K, . . . ,K, related
to the G-spline defining the error distribution of formula are stored.

a.b if TRUE then all the transformed mixture weights ak, k = −K, . . . ,K, re-
lated to the G-spline defining the distribution of the random intercept from
formula and random are stored.

a2 if TRUE and there are doubly-censored data then all the transformed mixture
weights ak, k = −K, . . . ,K, related to the G-spline defining the error
distribution of formula2 are stored.

a.b2 if TRUE then all the transformed mixture weights ak, k = −K, . . . ,K,
related to the G-spline defining the distribution of the random intercept from
formula2 and random2 are stored.

y if TRUE then augmented log-event times for all observations related to the
formula are stored.

y2 if TRUE then augmented log-event times for all observations related to formula2
are stored.

r if TRUE then labels of mixture components for residuals related to formula
are stored.

r.b if TRUE then labels of mixture components for random intercepts related to
formula and random are stored.

r2 if TRUE then labels of mixture components for residuals related to formula2
are stored.

r.b2 if TRUE then labels of mixture components for random intercepts related to
formula2 and random2 are stored.

b if TRUE then the sampled values of the random interceptss related to formula
and random are stored.

b2 if TRUE then the sampled values of the random interceptss related to formula2
and random2 are stored.

dir a string that specifies a directory where all sampled values are to be stored.

Value

A list of class bayessurvreg3 containing an information concerning the initial values and prior
choices.

Files created

Additionally, the following files with sampled values are stored in a directory specified by dir
argument of this function (some of them are created only on request, see store parameter of this
function).
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Headers are written to all files created by default and to files asked by the user via the argument
store. During the burn-in, only every nsimul$nwrite value is written. After the burn-in, all
sampled values are written in files created by default and to files asked by the user via the argument
store. In the files for which the corresponding store component is FALSE, every nsimul$nwrite
value is written during the whole MCMC (this might be useful to restart the MCMC from some
specific point).

The following files are created:

iteration.sim one column labeled iteration with indeces of MCMC iterations to which the stored
sampled values correspond.

mixmoment.sim this file is related to the density of the error term from the model given by
formula.
Columns labeled k, Mean.1, D.1.1, where
k = number of mixture components that had probability numerically higher than zero;
Mean.1 = E(εi,l);
D.1.1 = var(εi,l).

mixmoment_b.sim this file is related to the density of the random intercept from the model given
by formula and random.
The same structure as mixmoment.sim.

mixmoment_2.sim in the case of doubly-censored data. This file is related to the density of the
error term from the model given by formula2.
The same structure as mixmoment.sim.

mixmoment_b2.sim in the case of doubly-censored data. This file is related to the density of the
random intercept from the model given by formula2 and random2.
The same structure as mixmoment.sim.

mweight.sim this file is related to the density of the error term from the model given by formula.
Sampled mixture weights wk of mixture components that had probabilities numerically higher
than zero.

mweight_b.sim this file is related to the density of the random intercept from the model given by
formula and random.
The same structure as mweight.sim.

mweight_2.sim in the case of doubly-censored data. This file is related to the density of the error
term from the model given by formula2.
The same structure as mweight.sim.

mweight_b2.sim in the case of doubly-censored data. This file is related to the density of the
random intercept from the model given by formula2 and random2.
The same structure as mweight.sim.

mmean.sim this file is related to the density of the error term from the model given by formula.
Indeces k, k ∈ {−K, . . . ,K} of mixture components that had probabilities numerically
higher than zero. It corresponds to the weights in mweight.sim.

mmean_b.sim this file is related to the density of the random intercept from the model given by
formula and random.
The same structure as mmean.sim.
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mmean_2.sim in the case of doubly-censored data. This file is related to the density of the error
term from the model given by formula2.
The same structure as mmean.sim.

mmean_b2.sim in the case of doubly-censored data. This file is related to the density of the random
intercept from the model given by formula2 and random2.
The same structure as mmean.sim.

gspline.sim this file is related to the density of the error term from the model given by formula.
Characteristics of the sampled G-spline. This file together with mixmoment.sim, mweight.sim
and mmean.sim can be used to reconstruct the G-spline in each MCMC iteration.
The file has columns labeled gamma1, sigma1, delta1, intercept1, scale1, The meaning of
the values in these columns is the following:
gamma1 = the middle knot γ If ‘Specification’ is 2, this column usually contains zeros;
sigma1 = basis standard deviation σ of the G-spline. This column contains a fixed value if
‘Specification’ is 2;
delta1 = distance delta between the two knots of the G-spline. This column contains a fixed
value if ‘Specification’ is 2;
intercept1 = the intercept term α of the G-spline. If ‘Specification’ is 1, this column usually
contains zeros;
scale1 = the scale parameter τ of the G-spline. If ‘Specification’ is 1, this column usually
contains ones;

gspline_b.sim this file is related to the density of the random intercept from the model given by
formula and random.
The same structure as gspline.sim.

gspline_2.sim in the case of doubly-censored data. This file is related to the density of the error
term from the model given by formula2.
The same structure as gspline.sim.

gspline_b2.sim in the case of doubly-censored data. This file is related to the density of the random
intercept from the model given by formula2 and random2.
The same structure as gspline.sim.

mlogweight.sim this file is related to the density of the error term from the model given by formula.
Fully created only if store$a = TRUE. The file contains the transformed weights ak, k =
−K, . . . ,K of all mixture components, i.e. also of components that had numerically zero
probabilities.

mlogweight_b.sim this file is related to the density of the random intercept from the model given
by formula and random.
Fully created only if store$a.b = TRUE.
The same structure as mlogweight.sim.

mlogweight_2.sim in the case of doubly-censored data. This file is related to the density of the
error term from the model given by formula2.
Fully created only if store$a2 = TRUE.
The same structure as mlogweight.sim.

mlogweight_b2.sim in the case of doubly-censored data. This file is related to the density of the
random intercept from the model given by formula2 and random2.
Fully created only if store$a.b2 = TRUE.
The same structure as mlogweight.sim.
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r.sim this file is related to the density of the error term from the model given by formula.
Fully created only if store$r = TRUE. The file contains the labels of the mixture compo-
nents into which the residuals are intrinsically assigned. Instead of indeces on the scale
{−K, . . . ,K} values from 1 to (2K + 1) are stored here. Function vecr2matr can be used
to transform it back to indices from −K to K.

r_b.sim this file is related to the density of the random intercept from the model given by formula
and random.
Fully created only if store$r.b = TRUE.
The same structure as r.sim.

r_2.sim in the case of doubly-censored data. This file is related to the density of the error term
from the model given by formula2.
Fully created only if store$r2 = TRUE.
The same structure as r.sim.

r_b2.sim in the case of doubly-censored data. This file is related to the density of the random
intercept from the model given by formula2 and random2.
Fully created only if store$r.b2 = TRUE.
The same structure as r.sim.

lambda.sim this file is related to the density of the error term from the model given by formula.
One column labeled lambda. These are the values of the smoothing parameterλ (hyperparam-
eters of the prior distribution of the transformed mixture weights ak).

lambda_b.sim this file is related to the density of the random intercept from the model given by
formula and random.
The same structure as lambda.sim.

lambda_2.sim in the case of doubly-censored data. This file is related to the density of the error
term from the model given by formula2.
The same structure as lambda.sim.

lambda_b2.sim in the case of doubly-censored data. This file is related to the density of the ran-
dom intercept from the model given by formula2 and random2.
The same structure as lambda.sim.

beta.sim this file is related to the model given by formula.
Sampled values of the regression parameters β.
The columns are labeled according to the colnames of the design matrix.

beta_2.sim in the case of doubly-censored data, the same structure as beta.sim, however related
to the model given by formula2.

b.sim this file is related to the model given by formula and random.
Fully created only if store$b = TRUE. It contains sampled values of random intercepts for all
clusters in the data set. The file has N columns.

b_2.sim fully created only if store$b2 = TRUE and in the case of doubly-censored data, the same
structure as b.sim, however related to the model given by formula2 and random2.

Y.sim this file is related to the model given by formula.
Fully created only if store$y = TRUE. It contains sampled (augmented) log-event times for all
observations in the data set.
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Y_2.sim fully created only if store$y2 = TRUE and in the case of doubly-censored data, the same
structure as Y.sim, however related to the model given by formula2.

logposter.sim This file is related to the residuals of the model given by formula.
Columns labeled loglik, penalty, and logprw. The columns have the following meaning.

loglik = −(
∑N

i=1 ni)
{
log(

√
2π) + log(σ)

}
− 0.5

∑N
i=1

∑ni

l=1

{
(σ2 τ2)−1 (yi,l − x′

i,lβ −

bi − α− τµri,l)
2
}

where yi,l denotes (augmented) (i,l)th true log-event time.
In other words, loglik is equal to the conditional log-density

N∑
i=1

ni∑
l=1

log
{
p
(
yi,l

∣∣ ri,l, β, bi, error-G-spline
)}

;

penalty: the penalty term

−1

2

∑
k

(
∆ ak

)2

(not multiplied by λ);
logprw = −2 (

∑
i ni) log

{∑
k ak

}
+

∑
k Nk ak, where Nk is the number of residuals as-

signed intrinsincally to the kth mixture component.
In other words, logprw is equal to the conditional log-density

N∑
i=1

ni∑
l=1

log
{
p(ri,l | error-G-spline weights)

}
.

logposter_b.sim This file is related to the random intercepts from the model given by formula and
random.
Columns labeled loglik, penalty, and logprw. The columns have the following meaning.

loglik = −N
{
log(

√
2π) + log(σ)

}
− 0.5

∑N
i=1

{
(σ2 τ2)−1 (bi − α− τµri)

2
}

where bi denotes (augmented) ith random intercept.
In other words, loglik is equal to the conditional log-density

N∑
i=1

log
{
p
(
bi

∣∣ ri, b-G-spline
)}

;

The columns penalty and logprw have the analogous meaning as in the case of logposter.sim
file.

logposter_2.sim in the case of doubly-censored data, the same structure as logposter.sim, how-
ever related to the model given by formula2.

logposter_b2.sim in the case of doubly-censored data, the same structure as logposter_b.sim,
however related to the model given by formula2 and random2.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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Examples

## See the description of R commands for
## the cluster specific AFT model
## with the Signal Tandmobiel data,
## analysis described in Komarek and Lesaffre (2007).
##
## R commands available in the documentation
## directory of this package
## - see ex-tandmobCS.R and
## https://www2.karlin.mff.cuni.cz/ komarek/software/bayesSurv/ex-tandmobCS.pdf
##

cgd Chronic Granulomatous Disease data

Description

Dataset from Fleming and Harrington (1991).

Data from a multicenter placebo-controlled randomized trial of gamma inferon in patients with
chronic granulomatous disease (CGD). 128 patients were randomized to either gamma inferon (n =
63) or placebo (n = 65). For each patient the times from study entry to initial and any recurrent
serious infections are available. There is a minimum of one and a maximum of eight (recurrent)
infection times per patient, with a total of 203 records.

Usage

data(cgd)

Format

a~data frame with 203 rows and 17 columns. There are the following variables contained in the
data frame.

hospit code of the hospital
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ID case identification number

RDT date randomization onto study (mmddyy)

IDT date of onset of serious infection, or date the patient was taken off the study (mmddyy)

trtmt treatment code, 1 = rIFN-gamma, 2 = placebo

inherit pattern of inheritance, 1 = X-linked, 2 = autosomal recessive

age age in years

height height of the patient in cm

weight weight of the patient in kg

cortico using corticosteroids at time of study entry, 1 = yes, 2 = no

prophy using prophylatic antibiotics at time of study entry, 1 = yes, 2 = no

gender 1 = male, 2 = female

hcat hospital category, 1 = US-NIH, 2 = US-other, 2 = Europe - Amsterdam, 4 = Europe - other

T1 elapsed time (in days) from randomization (from sequence = 1 record) to diagnosis of a serious
infection or, if a censored observation, elapsed time from randomization to censoring date;
computed as IDT - RDT (from sequence = 1 record)

T2 0, for sequence = 1 record, if sequence > 1, T2 = T1(from previous record) + 1

event censoring indicator, 1 = non-censored observation, 2 = censored observation

sequence sequence number, for each patient, the infection recods are in sequence number order

Source

Appendix D.2 of Fleming and Harrington (1991).

References

Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York:
John Wiley and Sons.

credible.region Compute a simultaneous credible region (rectangle) from a sample for
a vector valued parameter.

Description

See references below for more details.

Usage

credible.region(sample, probs=c(0.90, 0.975))

Arguments

sample a data frame or matrix with sampled values (one column = one parameter)

probs probabilities for which the credible regions are to be computed
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Value

A list (one component for each confidence region) of length equal to length(probs). Each com-
ponent of the list is a matrix with two rows (lower and upper limit) and as many columns as the
number of parameters giving the confidence region.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic
systems (with Discussion). Statistical Science, 10, 3 - 66, page 30

Held, L. (2004). Simultaneous inference in risk assessment; a Bayesian perspective In: COMPSTAT
2004, Proceedings in Computational Statistics (J. Antoch, Ed.), 213 - 222, page 214

Held, L. (2004b). Simultaneous posterior probability statements from Monte Carlo output. Journal
of Computational and Graphical Statistics, 13, 20 - 35.

Examples

m <- 10000
sample <- data.frame(x1=rnorm(m), x2=rnorm(m), x3=rnorm(m))
probs <- c(0.70, 0.90, 0.95)
CR <- credible.region(sample, probs=probs)

for (kk in 1:length(CR)){
suma <- sum(sample$x1 >= CR[[kk]]["Lower", "x1"] & sample$x1 <= CR[[kk]]["Upper", "x1"] &

sample$x2 >= CR[[kk]]["Lower", "x2"] & sample$x2 <= CR[[kk]]["Upper", "x2"] &
sample$x3 >= CR[[kk]]["Lower", "x3"] & sample$x3 <= CR[[kk]]["Upper", "x3"])

show <- c(suma/m, probs[kk])
names(show) <- c("Empirical", "Desired")
print(show)

}

densplot2 Probability density function estimate from MCMC output

Description

Displays a plot of the density estimate for each variable in x, calculated by the density function.

This is slightly modified version of densplot function of a coda package to conform to my personal
preferences.

Usage

densplot2(x, plot = TRUE, show.obs = FALSE, bwf, bty = "n", main = "",
xlim, ylim, xlab, ylab, ...)
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Arguments

x an mcmc or mcmc.list object.

plot if TRUE this function works more or less in the same way as coda function
densplot function. If FALSE this function returns one data frame for each chain
with computed density which can be used for future plotting.

show.obs show observations along the x-axis?

bwf function for calculating the bandwidth. If omitted, the bandwidth is calculate
by 1.06 times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one fifth power.

xlim, ylim, xlab, ylab
further arguments passed to the plot.default function.

bty, main, ... further arguments passed to the plot.default function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

files2coda Read the sampled values from the Bayesian survival regression model
to a coda mcmc object.

Description

This function creates a coda mcmc object from values found in files where sampled values from
bayessurvreg1 function are stored or from data.frames.

Usage

files2coda(files, data.frames, variant = 1, dir = getwd(),
start = 1, end, thin = 1, header = TRUE, chain)

Arguments

files a vector of strings giving the names of files that are to be converted to coda
objects. If missing and data.frames is also missing, all appropriate files found
in a directory dir are converted to coda objects. File "iteration.sim" is always
used (if found) to index the sampled values. If this file is not found the sampled
values are indexed from 1 to the sample size. If "mixture.sim" appeares here,
only the column with number of mixture components is converted to the coda
object.

data.frames a vector of strings giving the names of data.frames that are to be converted to
coda objects.
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variant a variant of bayessurvreg function used to generate sampled values. This argu-
ment is only used to identify appropriate files when files argument is missing.
Currently only 1 is supported to cooperate with bayessurvreg1.

dir string giving the directory where it will be searched for the files with sampled
values.

start the first row (possible header does not count) from the files with the sampled
values that will be converted to coda objects.

end the last row from the files with the sampled values that will be converted to coda
objects. If missing, it is the last row in files.

thin additional thinning of sampled values (i.e. only every thin value from files
and data.frames is considered).

header TRUE or FALSE indicating whether the files with the sampled values contain
also the header on the first line or not.

chain parameter giving the number of the chain if parallel chains were created and
sampled values stored in data.frames further stored in lists(). If missing, data.frames
are not assumed to be stored in lists.

Value

A list with mcmc objects. One object per file or data.frame.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

Examples

## *** illustration of usage of parameters 'data.frames' and 'chain' ***
## *********************************************************************
## Two parallel chains with four variables, stored in data.frames
## data.frames are further stored in lists
library("coda")

group1 <- list(); group2 <- list(); group3 <- list()
## first chain of first two variables:

group1[[1]] <- data.frame(var1 = rnorm(100, 0, 1), var2 = rnorm(100, 5, 4))
## second chain of first two variables:

group1[[2]] <- data.frame(var1 = rnorm(100, 0, 1), var2 = rnorm(100, 5, 4))
## first chain of the third variable:

group2[[1]] <- data.frame(var3 = rgamma(100, 1, 1))
## second chain of the third variable:

group2[[2]] <- data.frame(var3 = rgamma(100, 1, 1))
## first chain of the fourth variable:

group3[[1]] <- data.frame(var4 = rbinom(100, 1, 0.4))
## second chain of the fourth variable:

group3[[2]] <- data.frame(var4 = rbinom(100, 1, 0.4))

## Create mcmc objects for each chain separately
mc.chain1 <- files2coda(data.frames = c("group1", "group2", "group3"), chain = 1)
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mc.chain2 <- files2coda(data.frames = c("group1", "group2", "group3"), chain = 2)

## Create mcmc.list to represent two parallel chains
mc <- mcmc.list(mc.chain1, mc.chain2)
rm(mc.chain1, mc.chain2)

## *** illustration of usage of parameter 'data.frames' without 'chain' ***
## ************************************************************************
## Only one chain for four variables was sampled and stored in three data.frames

## chain of first two variables:
group1 <- data.frame(var1 = rnorm(100, 0, 1), var2 = rnorm(100, 5, 4))

## chain of the third variable:
group2 <- data.frame(var3 = rgamma(100, 1, 1))

## chain of the fourth variable:
group3 <- data.frame(var4 = rbinom(100, 1, 0.4))

## Create an mcmc object
mc <- files2coda(data.frames = c("group1", "group2", "group3"))

give.summary Brief summary for the chain(s) obtained using the MCMC.

Description

This function computes a sample mean, quantiles and a Bayesian p-value which is defined as

p = 2×min(n−, n+),

where n− is the number of the sampled values which are negative and n+ is the number of sampled
values which are positive.

Usage

give.summary(sample, probs=c(0.5, 0.025, 0.975))

Arguments

sample a data frame or a vector with sampled values

probs probabilities of the quantiles that are to be computed

Value

A matrix or a vector with the sample mean, quantiles and a Bayesian p-value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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Examples

## Example with a sample stored in a vector:
sample <- rnorm(1000)
give.summary(sample)

## Example with a sample stored in a data.frame:
sample <- data.frame(x=rnorm(1000), y=rgamma(1000, shape=1, rate=1))
give.summary(sample)

marginal.bayesGspline Summary for the marginal density estimates based on the bivariate
model with Bayesian G-splines.

Description

Compute the estimate of the marginal density function based on the values sampled using the
MCMC (MCMC average evaluated in a grid of values) in a model where density is specified as
a bivariate Bayesian G-spline.

This function serves to summarize the MCMC chains related to the distributional parts of the con-
sidered models obtained using the functions: bayesHistogram and bayesBisurvreg.

If asked, this function returns also the values of the marginal G-spline evaluated in a grid at each
iteration of MCMC.

Usage

marginal.bayesGspline(dir, extens = "", K, grid1, grid2,
skip = 0, by = 1, last.iter, nwrite, only.aver = TRUE)

Arguments

dir directory where to search for files (‘mixmoment.sim’, ‘mweight.sim’, ‘mmean.sim’,
‘gspline.sim’) with the MCMC sample.

extens an extension used to distinguish different sampled G-splines if more G-splines
were used in one simulation (e.g. with doubly-censored data). According to
which bayes*survreg* function was used, specify the argument extens in the
following way.

bayesHistogram: always extens = ""

bayesBisurvreg:
• to compute the marginals of the bivariate distribution of the error term

for the onset time: extens = "";
• to compute the marginals of the bivariate distribution of the error term

for the event time if there was doubly-censoring: extens = "_2";

K a~vector of length 2 specifying the number of knots at each side of the middle
knot for each dimension of the G-spline.
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grid1 grid of values from the first dimension at which the sampled marginal densities
are to be evaluated.

grid2 grid of values from the second dimension at which the sampled marginal densi-
ties are to be evaluated.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.

nwrite frequency with which is the user informed about the progress of computation
(every nwriteth iteration count of iterations change).

only.aver TRUE/FALSE, if TRUE only MCMC average is returned otherwise also values of
the marginal G-spline at each iteration are returned (which might ask for quite
lots of memory).

Value

An object of class marginal.bayesGspline is returned. This object is a list with components
margin1 and margin2 (for two margins).

Both margin1 and margin2 components are data.frames with columns named grid and average
where

grid is a grid of values (vector) at which the McMC average of the marginal G-spline
was computed.

average are McMC averages of the marginal G-spline (vector) evaluated in grid.

There exists a method to plot objects of the class marginal.bayesGspline.

Attributes

Additionally, the object of class marginal.bayesGspline has the following attributes:

sample.size a length of the McMC sample used to compute the McMC average.

sample1 marginal (margin = 1) G-spline evaluated in a grid of values. This attribute is present only
if only.aver = FALSE.
This a matrix with sample.size columns and length(grid1) rows.

sample2 marginal (margin = 2) G-spline evaluated in a grid of values. This attribute is present only
if only.aver = FALSE.
This a matrix with sample.size columns and length(grid2) rows.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
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Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2006),
##
## R commands available
## in the documentation
## directory of this package
## - see ex-tandmobPA.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobPA.pdf
##

plot.bayesDensity Plot an object of class bayesDensity

Description

This function plots an object created by bayesDensity.

Usage

## S3 method for class 'bayesDensity'
plot(x, k.cond, dim.plot = TRUE, over = TRUE,

alegend = TRUE, standard = TRUE, center = FALSE,
type = "l", bty = "n",
xlab = expression(epsilon), ylab = expression(f(epsilon)),
lty, xlim, ylim, xleg, yleg, main, ...)

Arguments

x an object of class bayesDensity.

k.cond a numerical vector giving the numbers of mixture components for which the
conditional densities are to be plotted. 0 states for the unconditional (overall)
density, averaged over the mixture with all possible numbers of components. If
NULL, all conditional and the unconditional density found in x will be plotted.

dim.plot an indicator whether the dimension of the plot used in par(mfrow) should be
computed automatically. If dim.plot = FALSE and over = FALSE the user has to
determine himself using par(mfrow) how to put the plots on the page.
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over an indicator whether all densities should be drawn into one plot using different
types of lines. If FALSE a separate plot for each density is created.

alegend an indicator whether an automatic legend should be added to the plot.

standard logical, do we want to plot standardized density?

center logical, do we want to plot centered density?, set both standard and center to
FALSE if you wish to plot unstandardized density.

xleg, yleg position of the legend if over = TRUE.
type, bty, xlab, ylab, lty, xlim, ylim, main, ...

other arguments passed to the plot.default function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

plot.bayesGspline Plot an object of class bayesGspline

Description

This function plots an object created by bayesGspline.

Usage

## S3 method for class 'bayesGspline'
plot(x, add = FALSE, type = "l", lty=1, bty = "n",

xlab, ylab, main, sub, ...)

Arguments

x an object of class bayesGspline.

add if TRUE a new plot is produced, otherwise it is drawn to an existing plot.
type, lty, bty, xlab, ylab, main, sub, ...

other arguments passed to the plot.default function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>
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plot.marginal.bayesGspline

Plot an object of class marginal.bayesGspline

Description

This function plots an object created by marginal.bayesGspline.

Usage

## S3 method for class 'marginal.bayesGspline'
plot(x, type = "l", lty=1, bty = "n",

xlab1, ylab1, main1, xlab2, ylab2, main2, sub, ...)

Arguments

x an object of class marginal.bayesGspline.
type, lty, bty, xlab1, ylab1, main1, xlab2, ylab2, main2, sub, ...

other arguments passed to the plot.default function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

predictive Compute predictive quantities based on a Bayesian survival regression
model fitted using bayessurvreg1 function.

Description

This function runs additional McMC to compute predictive survivor and hazard curves and predic-
tive event times for specified values of covariates.

Firstly, the function bayessurvreg1 has to be used to obtain a sample from the posterior distribution
of unknown quantities.

Directly, posterior predictive quantiles and means of asked quantities are computed and stored in
files.

Function predictive.control serves only to perform some input checks inside the main function
predictive.
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Usage

predictive(formula, random, time0 = 0, data = parent.frame(),
grid, type = "mixture", subset, na.action = na.fail,
quantile = c(0, 0.025, 0.5, 0.975, 1),
skip = 0, by = 1, last.iter, nwrite, only.aver = FALSE,
predict = list(Et=TRUE, t=FALSE, Surv=TRUE, hazard=FALSE, cum.hazard=FALSE),
store = list(Et=TRUE, t = FALSE, Surv = FALSE, hazard = FALSE, cum.hazard=FALSE),
Eb0.depend.mix = FALSE,
dir, toler.chol = 1e-10, toler.qr = 1e-10)

predictive.control(predict, store, only.aver, quantile)

Arguments

formula the same formula as that one used to sample from the posterior distribution of
unknown quantities by the function bayessurvreg1.

random the same random statement as that one used to sample from the posterior distri-
bution of unknown quantities by the function bayessurvreg1.

time0 starting time for the survival model. This option is used to get correct hazard
function in the case that the original model was log(T − time0) = . . . .

data optional data frame in which to interpret the variables occuring in the formu-
las. Usually, you create a new data.frame similar to that one used to obtain
a sample from the posterior distribution. In this new data.frame, put covari-
ate values equal to these for which predictive quantities are to be obtained. If
cluster statement was used, assign a unique cluster identification to each ob-
servation. Response variable and a censoring indicator may be set to arbitrary
values. They are only used in formula but are ignored for computation.

grid a list of length as number of observations in data or a vector giving grids of
values where predictive survivor functions, hazards, cumulative hazards are to
be evaluated. If it is a vector, same grid is used for all observations from data.
Not needed if only predict$t or predict$Et are TRUE. If time0 is different
from zero your grid should start at time0 and not at zero.

type a character string giving the type of assumed error distribution. Currently, valid
are substrings of "mixture". In the future, "spline", "polya.tree" might be also
implemented.

subset subset of the observations from the data to be used. This option will normally
not be needed.

na.action function to be used to handle any NAs in the data. The user is discouraged to
change a default value na.fail.

quantile a vector of quantiles that are to be computed for each predictive quantity.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.
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nwrite frequency with which is the user informed about the progress of computation
(every nwriteth iteration count of iterations change).

only.aver if TRUE only posterior predictive mean is computed for all quantities and no
quantiles.

predict a list of logical values indicating which predictive quantities are to be sampled.
Components of the list:

Et predictive expectations of survivor times
t predictive survivor times
Surv predictive survivor functions
hazard predictive hazard functions
cum.hazard predictive cumulative hazard functions

store a list of logical values indicating which predictive quantities are to be stored in
files as ‘predET*.sim’, ‘predT*.sim’, ‘predS*.sim’, ‘predhazard*.sim’, ‘pred-
cumhazard*.sim’. If you are interested only in posterior means or quantiles
of the predictive quantities you do not have to store sampled values. Pos-
terior means and quantiles are stored in files ‘quantET*.sim’, ‘quantT*.sim’,
‘quantS*.sim’, ‘quanthazard*.sim’, ‘quantpredhazard*.sim’.

Eb0.depend.mix a logical value indicating whether the mean of the random intercept (if included
in the model) was given in a hierarchical model as an overall mean of the mixture
in the error term. With FALSE (default) you have the same model as that one
described in an accompanying paper. An ordinary user is discouraged from
setting this to TRUE.

dir a string giving a directory where previously simulated values were stored and
where newly obtained quantities will be stored. On Unix, do not use ‘~/’ to
specify your home directory. A full path must be given, e.g. ‘/home/arnost/’.

toler.chol tolerance for the Cholesky decomposition.

toler.qr tolerance for the QR decomposition.

Value

An integer which should be equal to zero if everything ran fine.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
Wetenschappen.

Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated
interval-censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549
- 569.



predictive2 71

Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2007).
##
## R commands available
## in the documentation
## directory of this package as
## - ex-cgd.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-cgd.pdf
##
## - ex-tandmobMixture.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobMixture.pdf
##

predictive2 Compute predictive quantities based on a Bayesian survival regression
model fitted using bayesBisurvreg or bayessurvreg2 or bayessurvreg3
functions.

Description

This function computes predictive densities, survivor and hazard curves for specified combinations
of covariates.

Firstly, either the function bayesBisurvreg or the function bayessurvreg2 or the function bayessurvreg3
has to be used to obtain a sample from the posterior distribution of unknown quantities.

Function predictive2.control serves only to perform some input checks inside the main function
predictive2.

Usage

predictive2(formula, random, obs.dim, time0, data = parent.frame(),
grid, na.action = na.fail, Gspline,
quantile = c(0, 0.025, 0.5, 0.975, 1),
skip = 0, by = 1, last.iter, nwrite,
only.aver = TRUE,
predict = list(density=FALSE, Surv=TRUE,

hazard=FALSE, cum.hazard=FALSE),
dir, extens = "", extens.random="_b", version=0)

predictive2Para(formula, random, obs.dim, time0, data = parent.frame(),
grid, na.action = na.fail, Gspline,
quantile = c(0, 0.025, 0.5, 0.975, 1),
skip = 0, by = 1, last.iter, nwrite,
only.aver = TRUE,
predict = list(density=FALSE, Surv=TRUE,
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hazard=FALSE, cum.hazard=FALSE),
dir, extens = "", extens.random="_b", version=0)

predictive2.control(predict, only.aver, quantile, obs.dim,
time0, Gspline, n)

Arguments

formula the same formula as that one used to sample from the posterior distribution
of unknown quantities by the function bayesBisurvreg or bayessurvreg2 or
bayessurvreg3. On the left hand side whichever Surv object of a~proper length
can be used (it is ignored anyway).
REMARK: the prediction must be asked for at least two combinations of covari-
ates. This is the restriction imposed by one of the internal functions I use.

random the same random statement as that one used to sample from the posterior distri-
bution of unknown quantities by the function bayessurvreg2 or bayessurvreg3,
not applicable if bayesBisurvreg was used to sample from the posterior distri-
bution.

obs.dim a vector that has to be supplied if bivariate data were used for estimation (using
the function bayesBisurvreg). This vector has to be of the same length as the
number of covariate combinations for which the predictive quantities are to be
computed. It determines to which dimension (1 or 2) each observation belong.

time0 a~vector of length Gspline$dim giving the starting time for the survival model.
It does not have to be supplied if equal to zero (usually). This option is used to
get hazard and density functions on the original time scale in the case that the
model was log(T − time0) = . . . . Note that time0 IS NOT the starting time
of doubly censored observation since there after subtracting the onset time, the
starting time is (usually) equal to zero.

data optional data frame in which to interpret the variables occuring in the formu-
las. Usually, you create a new data.frame similar to that one used to obtain
a sample from the posterior distribution. In this new data.frame, put covari-
ate values equal to these for which predictive quantities are to be obtained. If
cluster statement was used, assign a unique cluster identification to each ob-
servation. Response variable and a censoring indicator may be set to arbitrary
values. They are only used in formula but are ignored for computation.

grid a~vector giving the grid of values where predictive quantities are to be evaluated.
The grid should normally start at some value slightly higher than time0.

na.action function to be used to handle any NAs in the data. The user is discouraged to
change a default value na.fail.

Gspline a~list specifying the G-spline used for the error distribution in the model. It is
a~list with the following components:
dim dimension of the G-spline, in the case when the function bayesBisurvreg

was used to fit the model this will usually be equal to 2, in the case when
the function bayessurvreg2 was used to fit the model this MUST be equal
to 1.

K a~vector of length Gspline$dim specifying the number of knots at each side
of the middle knot for each dimension of the G-spline.
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quantile a vector of quantiles that are to be computed for each predictive quantity.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.

nwrite frequency with which is the user informed about the progress of computation
(every nwriteth iteration count of iterations change).

only.aver if TRUE only posterior predictive mean is computed for all quantities and no
quantiles.
The word of warning: with only.aver set to FALSE, all quantities must be stored
for all iterations of the MCMC to be able to compute the quantiles. This might
require quite lots of memory.

predict a list of logical values indicating which predictive quantities are to be computed.
Components of the list:

density predictive density
Surv predictive survivor functions
hazard predictive hazard functions
cum.hazard predictive cumulative hazard functions

dir directory where to search for files (‘mixmoment.sim’, ‘mweight.sim’, mmean.sim’,
gspline.sim’, ’beta.sim’, ’D.sim’, . . . ) with the McMC sample.

extens an extension used to distinguish different sampled G-splines if more formulas
were used in one MCMC simulation (e.g. with doubly-censored data).

• if the data were not doubly-censored or if you wish to compute predictive
quantities for the onset time of the doubly-censored data then

extens = ""

• if the data were doubly-censored and you wish to compute predictive quan-
tities for the event time then

extens = "_2"

extens.random only applicable if the function bayessurvreg3 was used to generate the MCMC
sample.
This is an extension used to distinguish different sampled G-splines determining
the distribution of the random intercept (under the presence of doubly-censored
data).

• if the data were not doubly-censored or if you wish to compute predictive
quantities for the onset time of the doubly-censored data then

extens.random = "_b"
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• if the data were doubly-censored and you wish to compute predictive quan-
tities for the event time then

extens.random = "_b2"

version this argument indicates by which bayes*survreg* function the chains used by
bayesGspline were created. Use the following:

bayesBisurvreg: version = 0;
bayessurvreg2: version = 0;
bayessurvreg3: with all distributions specified as G-splines: version = 3;
bayessurvreg3: with error distributions specified as G-splines and bivariate

normal random intercepts: version = 32.

n number of covariate combinations for which the prediction will be performed.

Value

A list with possibly the following components (what is included depends on the value of the argu-
ments predict and only.aver):

grid a~vector with the grid values at which the survivor function, survivor density,
hazard and cumulative hazard are computed.

Surv predictive survivor functions.
A~matrix with as many columns as length(grid) and as many rows as the number
of covariate combinations for which the predictive quantities were asked. One
row per covariate combination.

density predictive survivor densities.
The same structure as Surv component of the list.

hazard predictive hazard functions.
The same structure as Surv component of the list.

cum.hazard predictive cumulative hazard functions.
The same structure as Surv component of the list.

quant.Surv pointwise quantiles for the predictive survivor functions.
This is a list with as many components as the number of covariate combinations.
One component per covariate combination.
Each component of this list is a~matrix with as many columns as length(grid)
and as many rows as the length of the argument quantile. Each row of this ma-
trix gives values of one quantile. The rows are also labeled by the probabilities
(in %) of the quantiles.

quant.density pointwise quantiles for the predictive survivor densities.
The same structure as quant.Surv component of the list.

quant.hazard pointwise quantiles for the predictive hazard functions.
The same structure as quant.Surv component of the list.

quant.cum.hazard

pointwise quantiles for the predictive cumulative hazard functions.
The same structure as quant.Surv component of the list.
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Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
Wetenschappen.

Komárek, A. and Lesaffre, E. (2008). Bayesian accelerated failure time model with multivariate
doubly-interval-censored data and flexible distributional assumptions. Journal of the American
Statistical Association, 103, 523 - 533.

Komárek, A. and Lesaffre, E. (2006). Bayesian semi-parametric accelerated failurew time model
for paired doubly interval-censored data. Statistical Modelling, 6, 3 - 22.

Komárek, A., Lesaffre, E., and Legrand, C. (2007). Baseline and treatment effect heterogeneity for
survival times between centers using a random effects accelerated failure time model with flexible
error distribution. Statistics in Medicine, 26, 5457 - 5472.

Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2006),
## Komarek and Lesaffre (2008),
## Komarek, Lesaffre, and Legrand (2007).
##
## R commands available in the documentation
## directory of this package
## - ex-tandmobPA.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobPA.pdf
## - ex-tandmobCS.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobCS.pdf
## - ex-eortc.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-eortc.pdf

print.bayesDensity Print a summary for the density estimate based on the Bayesian model.

Description

This function prints a~object created by bayesDensity.

Usage

## S3 method for class 'bayesDensity'
print(x, ...)
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Arguments

x an object of class bayesDensity.

... this is here for a consistency with a generic function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

rMVNorm Sample from the multivariate normal distribution

Description

According to the parametrization used, sample from the multivariate normal distribution.

The following parametrization can be specified

standard In this case we sample from either N (µ,Σ) or from N (µ,Q−1).

canonical In this case we sample from N (Q−1b, Q−1).

Generation of random numbers is performed by Algorithms 2.3-2.5 in Rue and Held (2005, pp.
34-35).

Usage

rMVNorm(n, mean=0, Sigma=1, Q, param=c("standard", "canonical"))

Arguments

n number of observations to be sampled.

mean For param="standard", it is a vector µ of means. If length(mean) is equal to
1, it is recycled and all components have the same mean.
For param="canonical", it is a vector b of canonical means. If length(mean)
is equal to 1, it is recycled and all components have the same mean.

Sigma covariance matrix of the multivariate normal distribution. It is ignored if Q is
given at the same time.

Q precision matrix of the multivariate normal distribution.
It does not have to be supplied provided Sigma is given and param="standard".
It must be supplied if param="canonical".

param a character which specifies the parametrization.
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Value

Matrix with sampled points in rows.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Boca
Raton: Chapman and Hall/CRC.

See Also

rnorm, Mvnorm.

Examples

### Mean, covariance matrix, its inverse
### and the canonical mean
mu <- c(0, 2, 0.5)
L <- matrix(c(1, 1, 1, 0, 0.5, 0.5, 0, 0, 0.3), ncol=3)
Sigma <- L %*% t(L)
Q <- chol2inv(t(L))
b <- Q %*% mu

print(Sigma)
print(Q)
print(Sigma %*% Q)

### Sample using different parametrizations
set.seed(775988621)
n <- 10000

### Sample from N(mu, Sigma)
xx1 <- rMVNorm(n=n, mean=mu, Sigma=Sigma)
apply(xx1, 2, mean)
var(xx1)

### Sample from N(mu, Q^{-1})
xx2 <- rMVNorm(n=n, mean=mu, Q=Q)
apply(xx2, 2, mean)
var(xx2)

### Sample from N(Q^{-1}*b, Q^{-1})
xx3 <- rMVNorm(n=n, mean=b, Q=Q, param="canonical")
apply(xx3, 2, mean)
var(xx3)
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rWishart Sample from the Wishart distribution

Description

Sample from the Wishart distribution

Wishart(ν, S),

where ν are degrees of freedom of the Wishart distribution and S is its scale matrix. The same
parametrization as in Gelman (2004) is assumed, that is, if W ∼ Wishart(ν, S) then

E(W ) = νS

.

In the univariate case, Wishart(ν, S) is the same as Gamma(ν/2, 1/(2S)).

Generation of random numbers is performed by the algorithm described in Ripley (1987, pp. 99).

Usage

rWishart(n, df, S)

Arguments

n number of observations to be sampled.

df degrees of freedom of the Wishart distribution.

S scale matrix of the Wishart distribution.

Value

Matrix with sampled points (lower triangles of W ) in rows.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis, Second
edition. Boca Raton: Chapman and Hall/CRC.

Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley and Sons.
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Examples

### The same as rgamma(n, shape=df/2, rate=1/(2*S))
n <- 1000
df <- 1
S <- 3
w <- rWishart(n=n, df=df, S=S)
mean(w) ## should be close to df*S
var(w) ## should be close to 2*df*S^2

### Multivariate Wishart
n <- 1000
df <- 2
S <- matrix(c(1,3,3,13), nrow=2)
w <- rWishart(n=n, df=df, S=S)
apply(w, 2, mean) ## should be close to df*S
df*S

df <- 2.5
S <- matrix(c(1,2,3,2,20,26,3,26,70), nrow=3)
w <- rWishart(n=n, df=df, S=S)
apply(w, 2, mean) ## should be close to df*S
df*S

sampleCovMat Compute a sample covariance matrix.

Description

This function computes a sample covariance matrix.

Usage

sampleCovMat(sample)

Arguments

sample a matrix or data.frame with sampled values in rows. I.e. number of rows of
sample determines a sample size, number of columns of sample determines a
dimension of the distribution from which it was sampled.

Details

When y1, . . . , yn is a sequence of p-dimensional vectors yi the sample covariance matrix S is equal
to

S =
1

n− 1

n∑
i=1

(yi −m)(yi −m)T

where

m =
1

n

n∑
i=1

yi.
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When n = 1 the function returns just sum of squares.

Value

This function returns a matrix.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

Examples

## Sample some values
z1 <- rnorm(100, 0, 1) ## first components of y
z2 <- rnorm(100, 5, 2) ## second components of y
z3 <- rnorm(100, 10, 0.5) ## third components of y

## Put them into a data.frame
sample <- data.frame(z1, z2, z3)

## Compute a sample covariance matrix
sampleCovMat(sample)

sampled.kendall.tau Estimate of the Kendall’s tau from the bivariate model

Description

This function computes an estimate of the residual (after adjustment for covariates) Kendall’s tau
for the bivariate survival model fitted using the functions bayesHistogram or bayesBisurvreg.

For both these function their argument prior$specification must be equal to 2!

When G is a bivariate distribution function, the population version of the Kendall’s tau is defined as

τ = 4

∫
GdG− 1

.

For the model estimated using one of the above mentioned functions the value of Kendall’s tau at
each iteration of MCMC is equal to

τ = 4

K1∑
i=−K1

K2∑
j=−K2

K1∑
k=−K1

K2∑
l=−K2

wi,jwk,lΦ

(
µ1,i − µ1,k√

2σ1

)
Φ

(
µ2,j − µ2,l√

2σ2

)
− 1,

where µ1,−K1 , . . . , µ1,K1 are knots in the first margin, µ2,−K2 , . . . , µ2,K2 are knots in the second
margin, σ1 is the basis standard deviation in the first margin, σ2 is the basis standard deviation in
the second margin, and wi,j , i = −K1, . . . ,K1, j = −K2, . . . ,K2 are the G-spline weights.



sampled.kendall.tau 81

Usage

sampled.kendall.tau(dir = getwd(), extens = "", K,
skip = 0, by = 1, last.iter, nwrite)

Arguments

dir directory where to search for files (‘mixmoment.sim’, ‘mweight.sim’, ‘mmean.sim’,
‘gspline.sim’) with the MCMC sample.

extens an extension used to distinguish different sampled G-splines if more G-splines
were used in one simulation (with doubly-censored data) According to which
bayes*survreg* function was used, specify the argument extens in the fol-
lowing way.

bayesHistogram: always extens = ""

bayesBisurvreg:
• to compute the bivariate distribution of the error term for the onset

time: extens = "";
• to compute the bivariate distribution of the error term for the event time

if there was doubly-censoring: extens = "_2";

K a~vector of length 2 specifying the number of knots at each side of the middle
knot for each dimension of the G-spline.

skip number of rows that should be skipped at the beginning of each *.sim file with
the stored sample.

by additional thinning of the sample.

last.iter index of the last row from *.sim files that should be used. If not specified than it
is set to the maximum available determined according to the file mixmoment.sim.

nwrite frequency with which is the user informed about the progress of computation
(every nwriteth iteration count of iterations change).

Value

A vector with sampled values of the Kendall’s tau.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Komárek, A. (2006). Accelerated Failure Time Models for Multivariate Interval-Censored Data
with Flexible Distributional Assumptions. PhD. Thesis, Katholieke Universiteit Leuven, Faculteit
Wetenschappen.

Komárek, A. and Lesaffre, E. (2006). Bayesian semi-parametric accelerated failurew time model
for paired doubly interval-censored data. Statistical Modelling, 6, 3 - 22.
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Examples

## See the description of R commands for
## the models described in
## Komarek (2006),
## Komarek and Lesaffre (2006),
##
## R commands available
## in the documentation
## directory of this package
## - see ex-tandmobPA.R and
## https://www2.karlin.mff.cuni.cz/~komarek/software/bayesSurv/ex-tandmobPA.pdf
##

scanFN Read Data Values

Description

Read numeric data into a data frame from a file. Header is assumed to be present in the file.

Usage

scanFN(file, quiet=FALSE)

Arguments

file the name of a file to read data values from. If the specified file is "", then input
is taken from the keyboard (or stdin if input is redirected). (In this case input
can be terminated by a blank line or an EOF signal, Ctrl-D on Unix and Ctrl-Z
on Windows.)
Otherwise, the file name is interpreted relative to the current working directory
(given by getwd()), unless it specifies an absolute path. Tilde-expansion is
performed where supported.
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call. Whatever mode the connection
is opened in, any of LF, CRLF or CR will be accepted as the EOL marker for a
line and so will match sep = "\n".
file can also be a complete URL.
To read a data file not in the current encoding (for example a Latin-1 file in a
UTF-8 locale or conversely) use a file connection setting the encoding argu-
ment.

quiet logical: if FALSE (default), scan() will print a line, saying how many items have
been read.

Details

See scan.
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Value

data.frame with read data values.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

scan

Examples

cat("x y z", "1 2 3", "1 4 6", "10 20 30", file="ex.data", sep="\n")
pp <- scanFN("ex.data", quiet=FALSE)
pp <- scanFN("ex.data", quiet= TRUE)
print(pp)
unlink("ex.data") # tidy up

simult.pvalue Compute a simultaneous p-value from a sample for a vector valued
parameter.

Description

The p-value is computed as 1 - the credible level of the credible region which just cover the point
(0, 0, ..., 0)’.

The function returns also the simultaneous credible region (rectangle) with a specified credible
level.

Usage

simult.pvalue(sample, precision=0.001, prob=0.95)
## S3 method for class 'simult.pvalue'
print(x, ...)

Arguments

sample a data frame or matrix with sampled values (one column = one parameter)
precision precision with which the p-value is to be computed
prob probability for which the credible region is to be computed
x an object of class simult.pvalue
... who knows
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Value

An object of class ’simult.pvalue’.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

References

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic
systems (with Discussion). Statistical Science, 10, 3 - 66. page 30

Held, L. (2004). Simultaneous posterior probability statements from Monte Carlo output. Journal
of Computational and Graphical Statistics, 13, 20 - 35.

Examples

m <- 1000
sample <- data.frame(x1=rnorm(m), x2=rnorm(m), x3=rnorm(m))
simult.pvalue(sample)

sample <- data.frame(x1=rnorm(m), x2=rnorm(m), x3=rnorm(m, mean=2))
simult.pvalue(sample)

sample <- data.frame(x1=rnorm(m), x2=rnorm(m), x3=rnorm(m, mean=5))
simult.pvalue(sample, prob=0.99, precision=0.0001)

tandmob2 Signal Tandmobiel data, version 2

Description

This is the dataset resulting from a longitudinal prospective dental study performed in Flanders
(North of Belgium) in 1996 – 2001. The cohort of 4\,468 randomly sampled children who attended
the first year of the basic school at the beginning of the study was annualy dental examined by one
of 16 trained dentists. The original dataset consists thus of at most 6 dental observations for each
child.

The dataset presented here contains mainly the information on the emergence and caries times
summarized in the interval-censored observations. Some baseline covariates are also included here.

For more detail on the design of the study see Vanobbergen et al. (2000).

This data set was used in the analyses presented in Komárek et al. (2005), in Lesaffre, Komárek,
and Declerck (2005) and in Komárek and Lesaffre (2007).

IMPORTANT NOTICE: It is possible to use these data for your research work under the condition
that each manuscript is first approved by
Prof. Emmanuel Lesaffre
Leuven Biostatistics and statistical Bioinformatics Centre (L-BioStat)
Katholieke Universiteit Leuven
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Kapucijnenvoer 35
B-3000 Leuven
Belgium
<emmanuel.lesaffre@kuleuven.be>

Usage

data(tandmob2)

Format

a~data frame with 4\,430 rows (38 sampled children did not come to any of the designed dental
examinations) and the following variables

IDNR identification number of a child

GENDER character boy or girl

GENDERNum numeric, 0 = boy, 1 = girl

DOB character, date of birth in the format DDmmmYY

PROVINCE factor, code of the province with

0 = Antwerpen
1 = Vlaams Brabant
2 = Limburg
3 = Oost Vlaanderen
4 = West Vlaanderen

EDUC factor, code of the educational system with

0 = Free
1 = Community school
2 = Province/council school

STARTBR factor, code indicating the starting age of brushing the teeth (as reported by parents)
with

1 = [0, 1] years
2 = (1, 2] years
3 = (2, 3] years
4 = (3, 4] years
5 = (4, 5] years
6 = later than at the age of 5

FLUOR binary covariate, 0 = no, 1 = yes. This is the covariate fluorosis used in the paper Komárek
et al. (2005).

BAD.xx binary, indicator whether a deciduous tooth xx was removed becaues of orthodontical
reasons or not.
xx takes values 53, 63, 73, 83 (deciduous lateral canines), 54, 64, 74, 84 (deciduous first
molars), 55, 65, 75, 85 (deciduous second molars).
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EBEG.xx lower limit of the emergence (in years of age) of the permanent tooth xx. NA if the
emergence was left-censored.
xx takes values 11, 21, 31, 41 (permanent incisors), 12, 22, 32, 42 (permanent central canines),
13, 23, 33, 43 (permanent lateral canines), 14, 24, 34, 44 (permanent first premolars), 15, 25,
35, 45 (permanent second premolars), 16, 26, 36, 46 (permanent first molars), 17, 27, 37, 47
(permanent second molars).

EEND.xx upper limit of the emergence (in years of age) of the permanent tooth xx. NA if the
emergence was right-censored.
xx takes values as for the variable EBEG.xx.

FBEG.xx lower limit for the caries time (in years of age, ‘F’ stands for ‘failure’) of the permanent
tooth xx. NA if the caries time was left-censored.
xx takes values as for the variable EBEG.xx.

FEND.xx upper limit for the caries time (in years of age, ‘F’ stands for ‘failure’) of the permanent
tooth xx. NA if the caries time was right-censored.
xx takes values as for the variable EBEG.xx.
Unfortunately, for all teeth except 16, 26, 36 and 46 almost all the caries times are right-
censored. For teeth 16, 26, 36, 46, the amount of right-censoring is only about 25%.

Txx.DMF indicator whether a deciduous tooth xx was decayed or missing due to caries or filled on
at most the last examination before the first examination when the emergence of the permanent
successor was recorded.
xx takes values 53, 63, 73, 83 (deciduous lateral incisors), 54, 64, 74, 84 (deciduous first
molars), 55, 65, 75, 85 (deciduous second molars).

Txx.CAR indicator whether a~deciduous tooth xx was removed due to the orthodontical reasons
or decayed on at most the last examination before the first examination when the emergence
of the permanent successor was recorded.

Source

Leuven Biostatistics and statistical Bioinformatics Centre (L-BioStat), Katholieke Universiteit Leu-
ven, Kapucijnenvoer 35, 3000 Leuven, Belgium

URL: https://gbiomed.kuleuven.be/english/research/50000687/50000696/

Data collection was supported by Unilever, Belgium. The Signal Tandmobiel project comprises the
following partners: D. Declerck (Dental School, Catholic University Leuven), L. Martens (Dental
School, University Ghent), J. Vanobbergen (Oral Health Promotion and Prevention, Flemish Dental
Association), P. Bottenberg (Dental School, University Brussels), E. Lesaffre (Biostatistical Centre,
Catholic University Leuven), K. Hoppenbrouwers (Youth Health Department, Catholic University
Leuven; Flemish Association for Youth Health Care).

References

Komárek, A., Lesaffre, E., Härkänen, T., Declerck, D., and Virtanen, J. I. (2005). A Bayesian
analysis of multivariate doubly-interval-censored dental data. Biostatistics, 6, 145–155.

Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated
interval-censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549–
569.
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Lesaffre, E., Komárek, A., and Declerck, D. (2005). An overview of methods for interval-censored
data with an emphasis on applications in dentistry. Statistical Methods in Medical Research, 14,
539–552.

Vanobbergen, J., Martens, L., Lesaffre, E., and Declerck, D. (2000). The Signal-Tandmobiel project
– a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year
results. European Journal of Paediatric Dentistry, 2, 87–96.

tandmobRoos Signal Tandmobiel data, version Roos

Description

This is the dataset resulting from a longitudinal prospective dental study performed in Flanders
(North of Belgium) in 1996 – 2001. The cohort of 4\,468 randomly sampled children who attended
the first year of the basic school at the beginning of the study was annualy dental examined by one
of 16 trained dentists. The original dataset consists thus of at most 6 dental observations for each
child.

The dataset presented here contains mainly the information on the emergence and caries times
summarized in the interval-censored observations. Some baseline covariates are also included here.

For more detail on the design of the study see Vanobbergen et al. (2000).

This is the version of the dataset used first by Leroy et al. (2005) and contains a subset of the
tandmob2. Some children were removed to satisfy inclusion criteria given in Leroy et al. (2005).
Additionally, left-censored emergence times of the permanent first molars are adjusted according to
the eruption stage (see Leroy et al., 2005).

This data set was then used in the analyses presented in Komárek and Lesaffre (2006, 2008).

IMPORTANT NOTICE: It is possible to use these data for your research work under the condition
that each manuscript is first approved by
Prof. Emmanuel Lesaffre
Leuven Biostatistics and statistical Bioinformatics Centre (L-BioStat)
Katholieke Universiteit Leuven
Kapucijnenvoer 35
B-3000 Leuven
Belgium
<emmanuel.lesaffre@kuleuven.be>

Usage

data(tandmobRoos)

Format

a~data frame with 4\,394 rows and the following variables

IDNR identification number of a child

GENDER character boy or girl
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DOB character, date of birth in the format DDmmmYY

PROVINCE factor, code of the province with

0 = Antwerpen
1 = Vlaams Brabant
2 = Limburg
3 = Oost Vlaanderen
4 = West Vlaanderen

EDUC factor, code of the educational system with

0 = Free
1 = Community school
2 = Province/council school

GIRL numeric, 0 = boy, 1 = girl

EBEG.xx lower limit of the emergence (in years of age) of the permanent tooth xx. In contrast
to tandmob2, the lower emergence limit for the permanent first molars that were originally
left-censored, are adjusted according to the eruption stage (see Leroy, 2005 for more details).
xx takes values 16, 26, 36, 46 (permanent first molars).

EEND.xx upper limit of the emergence (in years of age) of the permanent tooth xx. NA if the
emergence was right-censored.
xx takes values as for the variable EBEG.xx.

FBEG.xx lower limit for the caries time (in years of age, ‘F’ stands for ‘failure’) of the permanent
tooth xx. NA if the caries time was left-censored.
xx takes values as for the variable EBEG.xx.

FEND.xx upper limit for the caries time (in years of age, ‘F’ stands for ‘failure’) of the permanent
tooth xx. NA if the caries time was right-censored.
xx takes values as for the variable EBEG.xx.
Unfortunately, for all teeth except 16, 26, 36 and 46 almost all the caries times are right-
censored. For teeth 16, 26, 36, 46, the amount of right-censoring is only about 25%.

TOOTH.xx numeric, 0 or 1. Equal to 1 if the information concerning the permanent tooth was
available, 0 if the permanent tooth xx was removed from the dataset by Kris.
xx takes values 16, 26, 36, 46.
These variables are almost useless for ordinary users.

Txxd numeric, 0 or 1. It is equal to 1 if the deciduous tooth xx was decayed, 0 otherwise.
xx takes values 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second
molars).

Txxm numeric, 0 or 1. It is equal to 1 if the deciduous tooth xx was missing due to caries, 0
otherwise.
xx takes values 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second
molars).

Txxf numeric, 0 or 1. It is equal to 1 if the deciduous tooth xx was filled, 0 otherwise.
xx takes values 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second
molars).
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Txxs numeric, 0 or 1. It is equal to 1 if the deciduous tooth xx was sound, 0 otherwise.
xx takes values 54, 64, 74, 84 (deciduous first molars), 55, 65, 75, 85 (deciduous second
molars).

SEAL.xx numeric, 0 or 1. It is equal to 1 if the permanent first molar xx was sealed in pits and
fissures (a form of protection), 0 otherwise.
xx takes values 16, 26, 36, 46 (permanent first molars).

FREQ.BR numeric, 0 or 1. It is equal to 1 if the child brushes daily the teeth, equal to 0 if he/she
brushes less than once a day.

PLAQUE.xx.1 numeric, 0 or 1. It is equal to 1 if there was occlusal plaque in pits and fissures of
the permanent tooth xx. It is equal to 0 if there was either no plaque present or the plaque was
present on the total occlusal surface.
xx takes values 16, 26, 36, 46 (permanent first molars).

PLAQUE.xx.2 numeric, 0 or 1. It is equal to 1 if there was occlusal plaque on the total occlusal
surface of the permanent tooth xx. It is equal to 0 if there was either no plaque present or the
plaque was present only in pits and fissures.
xx takes values 16, 26, 36, 46 (permanent first molars).

Source

Leuven Biostatistics and statistical Bioinformatics Centre (L-BioStat), Katholieke Universiteit Leu-
ven, Kapucijnenvoer 35, 3000 Leuven, Belgium

URL: https://gbiomed.kuleuven.be/english/research/50000687/50000696/

Data collection was supported by Unilever, Belgium. The Signal Tandmobiel project comprises the
following partners: D. Declerck (Dental School, Catholic University Leuven), L. Martens (Dental
School, University Ghent), J. Vanobbergen (Oral Health Promotion and Prevention, Flemish Dental
Association), P. Bottenberg (Dental School, University Brussels), E. Lesaffre (Biostatistical Centre,
Catholic University Leuven), K. Hoppenbrouwers (Youth Health Department, Catholic University
Leuven; Flemish Association for Youth Health Care).

References

Komárek, A. and Lesaffre, E. (2008). Bayesian accelerated failure time model with multivariate
doubly-interval-censored data and flexible distributional assumptions. Journal of the American
Statistical Association, 103, 523–533.

Komárek, A. and Lesaffre, E. (2006). Bayesian semi-parametric accelerated failurew time model
for paired doubly interval-censored data. Statistical Modelling, 6, 3–22.

Leroy, R., Bogaerts, K., Lesaffre, E., and Declerck, D. (2005). Effect of caries experience in primary
molars on cavity formation in the adjacent permanent first molar. Caries Research, 39, 342–349.

Vanobbergen, J., Martens, L., Lesaffre, E., and Declerck, D. (2000). The Signal-Tandmobiel project
– a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year
results. European Journal of Paediatric Dentistry, 2, 87–96.
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traceplot2 Trace plot of MCMC output.

Description

Displays a plot of iterations vs. sampled values for each variable in the chain, with a separate plot
per variable.

This is slightly modified version of traceplot function of a coda package to conform to my per-
sonal preferences.

Usage

traceplot2(x, chains, bty = "n", main, xlab, ...)

Arguments

x an mcmc or mcmc.list object.

chains indeces of chains from the object that are to be plotted.
bty, main, xlab, ...

further arguments passed to the plot.default function.

Value

No return value.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

vecr2matr Transform single component indeces to double component indeces

Description

Components of a bivariate G-spline can be indexed in several ways. Suppose that the knots in the
first dimension are µ1,−K1 , . . . , µ1,K1 and the knots in the second dimension µ2,−K2 , . . . , µ2,K2 .
I.e. we have 2K1+1 knots in the first dimension and 2K2+1 knots in the second dimension. Each
G-spline component can have a double index (k1, k2) assigned which means that it corresponds to
the knot (µ1,k1

, µ2,k2
) or alternatively the same G-spline component can have a~single index

r = (k2 +K2)× (2K1 + 1) + k1 +K1 + 1

assigned where r takes values from 1, . . . ,K1 ×K2. Single indexing is used for example by files
r.sim and r_2.sim generated by functions bayesHistogram, bayesBisurvreg, bayessurvreg2
to save some space.
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This function serves to translate single indeces to double indeces using the relationship

k1 = (r − 1) mod (2K1 + 1)−K1

k2 = (r − 1) div (2K1 + 1)−K2

The function can be used also in one dimensional case when a~simple relationship holds

r = k +K + 1

k = r − 1−K

Usage

vecr2matr(vec.r, KK)

Arguments

vec.r a~vector of single indeces

KK a~vector with numbers of knots on each side of the central knot for each dimen-
sion of the G-spline. The length of KK determines dimension of the G-spline

Value

In bivariate case: a~matrix with two columns and as many rows as the length of vec.r.

In univariate case: a~vector with as ,amy components as the length of vec.r.

Author(s)

Arnošt Komárek <arnost.komarek@mff.cuni.cz>

Examples

### Bivariate G-spline
### with 31 knots in each dimension
KK <- c(15, 15)

### First observation in component (-15, -15),
### second observation in component (15, 15),
### third observation in component (0, 0)
vec.r <- c(1, 961, 481)
vecr2matr(vec.r, KK)
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