
Package ‘ambit’
February 7, 2026

Type Package

Title Simulation and Estimation of Ambit Processes

Version 0.2.3

Description Simulation and estimation tools for
various types of ambit processes, including trawl processes and weighted
trawl processes.

Language en-GB

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.0.0)

Imports base, DEoptim, fBasics, LSTS, nnet, Rcpp, stats

LinkingTo Rcpp

Suggests ggplot2, knitr, latex2exp, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Almut E. D. Veraart [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8582-3652>)

Maintainer Almut E. D. Veraart <a.veraart@imperial.ac.uk>

Repository CRAN

Date/Publication 2026-02-07 20:30:02 UTC

Contents
acf_Exp . 2
acf_LM . 3
acf_supIG . 4
AddSlices_Rcpp . 5
AddWeightedSlices_Rcpp . 5

1

https://orcid.org/0000-0001-8582-3652

2 acf_Exp

asymptotic_variance . 6
asymptotic_variance_est . 7
c4est . 8
discrete_fourier_sin_cos . 10
fit_exp_periodic_trawl . 10
fit_exp_sin_trawl . 11
fit_exp_sin_trawl_periodfixed . 12
fit_exp_sin_trawl_periodogram . 13
fit_LM_periodic_trawl . 14
fit_LM_sin_trawl . 15
fourier_sin_cos . 16
kernel_generic_trawl_acf . 16
kernel_generic_trawl_acf_incrtol . 17
kernel_trawl_acf . 18
kernel_trawl_acf_exp_periodic . 18
kernel_trawl_acf_exp_sin . 19
kernel_trawl_acf_LM_periodic . 20
LebA_est . 20
LebA_slice_est . 22
LebA_slice_est_approx . 23
LebA_slice_ratio_est_acfbased . 25
my_mae . 26
my_mse . 27
my_results . 27
nonpar_trawlest . 28
rq . 30
sim_weighted_trawl . 31
sim_weighted_trawl_gen . 32
test_asymnorm . 34
test_asymnorm_est . 35
test_asymnorm_est_dev . 37
trawl_deriv . 38
trawl_deriv_mod . 39
trawl_est . 40
trawl_Exp . 42
trawl_LM . 43
trawl_supIG . 44

Index 45

acf_Exp Autocorrelation function of the exponential trawl function

Description

This function computes the autocorrelation function associated with the exponential trawl function.

acf_LM 3

Usage

acf_Exp(x, lambda)

Arguments

x The argument (lag) at which the autocorrelation function associated with the
exponential trawl function will be evaluated

lambda parameter in the exponential trawl

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

Its autocorrelation function is given by:

r(x) = e−λx, for x ≥ 0.

Value

The autocorrelation function of the exponential trawl function evaluated at x

Examples

acf_Exp(1,0.1)

acf_LM Autocorrelation function of the long memory trawl function

Description

This function computes the autocorrelation function associated with the long memory trawl func-
tion.

Usage

acf_LM(x, alpha, H)

Arguments

x The argument (lag) at which the autocorrelation function associated with the
long memory trawl function will be evaluated

alpha parameter in the long memory trawl

H parameter in the long memory trawl

4 acf_supIG

Details

The trawl function is parametrised by the two parameters H > 1 and α > 0 as follows:

g(x) = (1− x/α)−H , for x ≤ 0.

Its autocorrelation function is given by

r(x) = (1 + x/α)(1−H), for x ≥ 0.

Value

The autocorrelation function of the long memory trawl function evaluated at x

Examples

acf_LM(1,0.3,1.5)

acf_supIG Autocorrelation function of the supIG trawl function

Description

This function computes the autocorrelation function associated with the supIG trawl function.

Usage

acf_supIG(x, delta, gamma)

Arguments

x The argument (lag) at which the autocorrelation function associated with the
supIG trawl function will be evaluated

delta parameter in the supIG trawl

gamma parameter in the supIG trawl

Details

The trawl function is parametrised by the two parameters δ ≥ 0 and γ ≥ 0 as follows:

g(x) = (1− 2xγ−2)−1/2 exp(δγ(1− (1− 2xγ−2)1/2)), for x ≤ 0.

It is assumed that δ and γ are not simultaneously equal to zero. Its autocorrelation function is given
by:

r(x) = exp(δγ(1−
√

1 + 2x/γ2)), for x ≥ 0.

Value

The autocorrelation function of the supIG trawl function evaluated at x

AddSlices_Rcpp 5

Examples

acf_supIG(1,0.3,0.1)

AddSlices_Rcpp Add slices and return vector of the sums of slices

Description

Add slices and return vector of the sums of slices

Usage

AddSlices_Rcpp(slicematrix)

Arguments

slicematrix A matrix of slices.

Value

Returns the vector of the sums of the slices

AddWeightedSlices_Rcpp

Add slices and return vector of the weighted sums of slices

Description

Add slices and return vector of the weighted sums of slices

Usage

AddWeightedSlices_Rcpp(slicematrix, weightvector)

Arguments

slicematrix A matrix of slices.

weightvector A vector of weights.

Value

Returns the vector of the weighted sums of the slices

6 asymptotic_variance

asymptotic_variance Computing the true asymptotic variance in the CLT of the trawl esti-
mation

Description

This function computes the theoretical asymptotic variance appearing in the CLT of the trawl pro-
cess for a given trawl function and fourth cumulant.

Usage

asymptotic_variance(t, c4, varlevyseed = 1, trawlfct, trawlfct_par)

Arguments

t Time point at which the asymptotic variance is computed

c4 The fourth cumulant of the Levy seed of the trawl process

varlevyseed The variance of the Levy seed of the trawl process, the default is 1

trawlfct The trawl function for which the asymptotic variance will be computed (Exp,
supIG or LM)

trawlfct_par The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma,
LM: alpha, H)

Details

As derived in Sauri and Veraart (2022), the asymptotic variance in the central limit theorem for the
trawl function estimation is given by

σ2
a(t) = c4(L

′)a(t) + 2{
∫ ∞

0

a(s)2ds+

∫ t

0

a(t− s)a(t+ s)ds−
∫ ∞

t

a(s− t)a(t+ s)ds},

for t > 0. The integrals in the above formula are approximated numerically.

Value

The function returns σ2
a(t).

Examples

#Compute the asymptotic variance at time t for an exponential trawl with
#parameter 2; here we assume that the fourth cumulant equals 1.
av<-asymptotic_variance(t=1, c4=1, varlevyseed=1, trawlfct="Exp", trawlfct_par=2)
#Print the av
av$v
#Print the four components of the asymptotic variance separately
av$v1
av$v2
av$v3

asymptotic_variance_est 7

av$v4

#Note that v=v1+v2+v3+v4
av$v
av$v1+av$v2+av$v3+av$v4

asymptotic_variance_est

Estimating the asymptotic variance in the trawl function CLT

Description

This function estimates the asymptotic variance which appears in the CLT for the trawl function
estimation.

Usage

asymptotic_variance_est(t, c4, varlevyseed = 1, Delta, avector, N = NULL)

Arguments

t The time point at which to compute the asymptotic variance

c4 The fourth cumulant of the Levy seed of the trawl process

varlevyseed The variance of the Levy seed of the trawl process, the default is 1

Delta The width Delta of the observation grid

avector The vector (â(0), â(∆n), ..., â((n− 1)∆n))

N The optional parameter to specify the upper bound Nn in the computations of
the estimators

Details

As derived in Sauri and Veraart (2022), the estimated asymptotic variance is given by

σ̂2
a(t) = v̂1(t) + v̂2(t) + v̂3(t) + v̂4(t),

where
v̂1(t) := ĉ4(L′)â(t) = RQnâ(t)/â(0),

for

RQn :=
1√

2n∆n

n−2∑
k=0

(X(k+1)∆n
−Xk∆n)

4,

and

v̂2(t) := 2

Nn∑
l=0

â2(l∆n)∆n,

8 c4est

v̂3(t) := 2

min{i,n−1−i}∑
l=0

â((i− l)∆n)â((i+ l)∆n)∆n,

v̂4(t) := −2

Nn−i∑
l=i

â((l − i)∆n)â((i+ l)∆n)∆n.

Value

The estimated asymptotic variance v̂ = σ̂2
a(t) and its components v̂1, v̂2, v̂3, v̂4.

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data <- sim_weighted_trawl(my_n, my_delta,

"Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl function
my_lag <- 100+1
trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat

#Estimate the fourth cumulant of the trawl process
c4_est <- c4est(Poi_data, my_delta)

asymptotic_variance_est(t=1, c4=c4_est, varlevyseed=1,
Delta=my_delta, avector=trawl)$v

c4est Estimating the fourth cumulant of the trawl process

Description

This function estimates the fourth cumulant of the trawl process.

c4est 9

Usage

c4est(data, Delta)

Arguments

data The data set used to estimate the fourth cumulant

Delta The width Delta of the observation grid

Details

According to Sauri and Veraart (2022), estimator based on X0, X∆n
, . . . , X(n−1)∆n

is given by

ĉ4(L
′) = RQn/â(0),

where

RQn :=
1√

2n∆n

n−2∑
k=0

(X(k+1)∆n
−Xk∆n

)4,

and

â(0) =
1

2∆nn

n−2∑
k=0

(X(k+1)∆n
−Xk∆n)

2.

Value

The function returns the estimated fourth cumulant of the Levy seed: ĉ4(L′).

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Estimate the fourth cumulant of the trawl process
c4est(Poi_data, my_delta)

10 fit_exp_periodic_trawl

discrete_fourier_sin_cos

discrete_fourier_sin_cos

Description

discrete_fourier_sin_cos

Usage

discrete_fourier_sin_cos(x, a, b, tau)

Arguments

x argument for which the acf will be computed (this can be a vector)

a vector of coefficients a_0,...a_n

b vector of coefficients b_1,...b_n

tau period of function

Details

Computes the Fourier approximation of a function using the sin-cos representation for given coef-
ficients a_0,...a_n, b_1, ...b_n and rounds the values to a grid of width 1

Value

Fourier approximation or vector of Fourier approximations evaluated in x

fit_exp_periodic_trawl

Fits an exponential periodic trawl function to equidistant time series
data

Description

Fits an exponential periodic trawl function to equidistant time series data

fit_exp_sin_trawl 11

Usage

fit_exp_periodic_trawl(
x,
m = 1,
tau,
GMMlag = 50,
Delta = 1,
plotacf = FALSE,
lags = 100

)

Arguments

x vector of equidistant time series data

m the order of the Fourier approximation of the periodic function

tau the period, if not provided it will be estimated

GMMlag lag length used in the GMM estimation, the default is 50

Delta interval length of the time grid used in the time series, the default is 1

plotacf binary variable specifying whether or not the empirical and fitted autocorrelation
function should be plotted

lags number of lags to be used in the plot of the autocorrelation function

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

The parameter τ is estimated using the smoothed periodogram, the parameter λ is estimated by
GMM.

Value

lambda: the parameter λ in the exponential trawl, tau: the period τ , a: the vector of the Fourier
coefficients, b: the vector of the Fourier coefficients.

fit_exp_sin_trawl Fits an exponential trawl function to equidistant time series data

Description

Fits an exponential trawl function to equidistant time series data

Usage

fit_exp_sin_trawl(x, GMMlag = 10, Delta = 1, plotacf = FALSE, lags = 100)

12 fit_exp_sin_trawl_periodfixed

Arguments

x vector of equidistant time series data

GMMlag lag length used in the GMM estimation, the default is 10

Delta interval length of the time grid used in the time series, the default is 1

plotacf binary variable specifying whether or not the empirical and fitted autocorrelation
function should be plotted

lags number of lags to be used in the plot of the autocorrelation function

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

The Lebesgue measure of the corresponding trawl set is given by 1/λ. Both parameters λ and τ are
estimated by GMM.

Value

lambda: the memory parameter λ in the exponential trawl

fit_exp_sin_trawl_periodfixed

Fits an exponential trawl function to equidistant time series data

Description

Fits an exponential trawl function to equidistant time series data

Usage

fit_exp_sin_trawl_periodfixed(
x,
tau = 1,
GMMlag,
Delta = 1,
plotacf = FALSE,
lags = 100

)

fit_exp_sin_trawl_periodogram 13

Arguments

x vector of equidistant time series data
tau period in the sine function, the default is 1
GMMlag lag length used in the GMM estimation, the default is tau
Delta interval length of the time grid used in the time series, the default is 1
plotacf binary variable specifying whether or not the empirical and fitted autocorrelation

function should be plotted
lags number of lags to be used in the plot of the autocorrelation function

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

The Lebesgue measure of the corresponding trawl set is given by 1/λ.

Value

lambda: the memory parameter λ in the exponential trawl

fit_exp_sin_trawl_periodogram

Fits an exponential trawl function to equidistant time series data

Description

Fits an exponential trawl function to equidistant time series data

Usage

fit_exp_sin_trawl_periodogram(
x,
GMMlag = 10,
Delta = 1,
plotacf = FALSE,
lags = 100

)

Arguments

x vector of equidistant time series data
GMMlag lag length used in the GMM estimation, the default is 10
Delta interval length of the time grid used in the time series, the default is 1
plotacf binary variable specifying whether or not the empirical and fitted autocorrelation

function should be plotted
lags number of lags to be used in the plot of the autocorrelation function

14 fit_LM_periodic_trawl

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

The Lebesgue measure of the corresponding trawl set is given by 1/λ. The period parameter is
estimated using the smoothed periodogram and the trawl paramter is estimated using GMM.

Value

lambda: the memory parameter λ in the exponential trawl

fit_LM_periodic_trawl Fits a supGamma periodic trawl function to equidistant time series
data

Description

Fits a supGamma periodic trawl function to equidistant time series data

Usage

fit_LM_periodic_trawl(
x,
m = 1,
tau,
GMMlag = 50,
Delta = 1,
plotacf = FALSE,
lags = 100

)

Arguments

x vector of equidistant time series data

m the order of the Fourier approximation of the periodic function

tau the period, if not provided it will be estimated

GMMlag lag length used in the GMM estimation, the default is 50

Delta interval length of the time grid used in the time series, the default is 1

plotacf binary variable specifying whether or not the empirical and fitted autocorrelation
function should be plotted

lags number of lags to be used in the plot of the autocorrelation function

fit_LM_sin_trawl 15

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = (1 + x/α)H , for x ≤ 0.

The parameter τ is estimated using the smoothed periodogram, the other parameters are estimated
by GMM.

Value

alpha: the parameter α in the supGamma trawl, H: the parameter H in the supGamma trawl, tau:
the period τ , a: the vector of the Fourier coefficients, b: the vector of the Fourier coefficients.

fit_LM_sin_trawl Fits a LM periodic trawl function to equidistant time series data

Description

Fits a LM periodic trawl function to equidistant time series data

Usage

fit_LM_sin_trawl(x, GMMlag = 10, Delta = 1, plotacf = FALSE, lags = 100)

Arguments

x vector of equidistant time series data

GMMlag lag length used in the GMM estimation, the default is 10

Delta interval length of the time grid used in the time series, the default is 1

plotacf binary variable specifying whether or not the empirical and fitted autocorrelation
function should be plotted

lags number of lags to be used in the plot of the autocorrelation function

Details

The trawl function is parametrised by the parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

The Lebesgue measure of the corresponding trawl set is given by 1/λ. Both parameters λ and τ are
estimated by GMM.

Value

lambda: the memory parameter λ in the exponential trawl

16 kernel_generic_trawl_acf

fourier_sin_cos fourier_sin_cos

Description

fourier_sin_cos

Usage

fourier_sin_cos(x, a, b, tau)

Arguments

x argument for which the acf will be computed (this can be a vector)

a vector of coefficients a_0,...a_n

b vector of coefficients b_1,...b_n

tau period of function

Details

Computes the Fourier approximation of a function using the sin-cos representation for given coef-
ficients a_0,...a_n, b_1, ...b_n

Value

Fourier approximation or vector of Fourier approximations evaluated in x

kernel_generic_trawl_acf

kernel_generic_trawl_acf

Description

kernel_generic_trawl_acf

Usage

kernel_generic_trawl_acf(p, g, x)

Arguments

p kernel function to be used in the weighted trawl process

g trawl function

x argument for which the acf will be computed (this can be a vector)

kernel_generic_trawl_acf_incrtol 17

Details

We numerically approximate the acf for a given periodic function p and a given trawl function g

Value

acf or vector of acfs evaluated in x

Examples

my_p <- function(x){sin(x)}
my_g <- function(x){exp(-x)}
kernel_generic_trawl_acf(my_p, my_g, 1)

kernel_generic_trawl_acf(my_p, my_g, c(1,2,3,4))

kernel_generic_trawl_acf_incrtol

kernel_generic_trawl_acf_incrtol

Description

kernel_generic_trawl_acf_incrtol

Usage

kernel_generic_trawl_acf_incrtol(p, g, x)

Arguments

p kernel function to be used in the weighted trawl process

g trawl function

x argument for which the acf will be computed (this can be a vector)

Details

We numerically approximate the acf for a given periodic function p and a given trawl function g We
allow for an increased tolerance level in the integral computations.

Value

acf or vector of acfs evaluated in x

18 kernel_trawl_acf_exp_periodic

kernel_trawl_acf kernel_trawl_acf

Description

kernel_trawl_acf

Usage

kernel_trawl_acf(p, trawlfct, trawlfct_par, x)

Arguments

p kernel function to be used in the weighted trawl process

trawlfct the trawl function used (Exp, supIG or LM)

trawlfct_par parameter vector of trawl function

x argument for which the acf will be computed (this can be a vector)

Details

We numerically approximate the acf for a given periodic function p and a given trawl function g

Value

acf or vector of acfs evaluated in x

kernel_trawl_acf_exp_periodic

kernel_trawl_acf_exp_periodic

Description

kernel_trawl_acf_exp_periodic

Usage

kernel_trawl_acf_exp_periodic(x, lambda, a, b, tau)

Arguments

x argument for which the acf will be computed (this can be a vector)

lambda parameter in the trawl function

a vector of Fourier coefficients

b vector of Fourier coefficients

tau period in the sine function

kernel_trawl_acf_exp_sin 19

Details

We compute the acf of a weighted trawl process with exponential trawl function and periodic func-
tion

Value

acf or vector of acfs evaluated in x

kernel_trawl_acf_exp_sin

kernel_trawl_acf_exp_sin

Description

kernel_trawl_acf_exp_sin

Usage

kernel_trawl_acf_exp_sin(x, lambda, tau)

Arguments

x argument for which the acf will be computed (this can be a vector)

lambda parameter in the exponential trawl function

tau period in the sine function

Details

We compute the acf of a weighted trawl process with exponential trawl function and periodic func-
tion given by the sine function

Value

acf or vector of acfs evaluated in x

20 LebA_est

kernel_trawl_acf_LM_periodic

kernel_trawl_acf_LM_periodic

Description

kernel_trawl_acf_LM_periodic

Usage

kernel_trawl_acf_LM_periodic(x, alpha, H, a, b, tau)

Arguments

x argument for which the acf will be computed (this can be a vector)

alpha parameter in the trawl function

H parameter in the trawl function

a vector of Fourier coefficients

b vector of Fourier coefficients

tau period in the sine function

Details

We compute the acf of a weighted trawl process with supGamma trawl function and periodic func-
tion

Value

acf or vector of acfs evaluated in x

LebA_est Nonparametric estimation of the trawl set Leb(A)

Description

This function estimates the size of the trawl set given by Leb(A).

Usage

LebA_est(data, Delta, biascor = FALSE)

LebA_est 21

Arguments

data Data to be used in the trawl function estimation.

Delta Width of the grid on which we observe the data

biascor A binary variable determining whether a bias correction should be computed,
the default is FALSE

Details

Estimation of the trawl function using the methodology proposed in Sauri and Veraart (2022).

Value

The estimated Lebesgue measure of the trawl set

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 5000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(1726)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl set without bias correction
LebA1 <-LebA_est(Poi_data, my_delta)
LebA1

#Estimate the trawl set with bias correction
LebA2 <-LebA_est(Poi_data, my_delta, biascor=TRUE)
LebA2

#Note that Leb(A)=1/my_lambda for an exponential trawl

22 LebA_slice_est

LebA_slice_est Nonparametric estimation of the trawl (sub-) sets Leb(A), Leb(A inter-
section A_h), Leb(A setdifference A_h)

Description

This function estimates Leb(A), Leb(A intersection A_h), Leb(A\ A_h).

Usage

LebA_slice_est(
data,
Delta,
h,
biascor = FALSE,
adjust_neg = FALSE,
adjust_variance = FALSE

)

Arguments

data Data to be used in the trawl function estimation.

Delta Width of the grid on which we observe the data

h Time point used in A intersection A_h and the setdifference A setdifference A_h

biascor A binary variable determining whether a bias correction should be computed,
the default is FALSE

adjust_neg A binary variable determining whether negative estimates of the trawl function
should be set to 0, the default is FALSE

adjust_variance

A binary variable determining whether a variance adjustment should be used,
the default is FALSE

Details

Estimation of the trawl function using the methodology proposed in Sauri and Veraart (2022).

Value

LebA

LebAintersection

LebAsetdifference

LebA_slice_est_approx 23

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 5000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(1726)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl set and its two slices at time h=2 without bias correction
est1 <- LebA_slice_est(Poi_data, my_delta, h=2)
est1$LebA
est1$LebAintersection
est1$LebAsetdifference

#Estimate the trawl set and its two slices at time h=2 without bias correction
est2 <- LebA_slice_est(Poi_data, my_delta, h=2, biascor=TRUE)
est2$LebA
est2$LebAintersection
est2$LebAsetdifference

#Note that Leb(A)=1/my_lambda for an exponential trawl

LebA_slice_est_approx Nonparametric estimation of the trawl (sub-) sets Leb(A), Leb(A inter-
section A_h), Leb(A setdifference A_h)

Description

This function estimates Leb(A), Leb(A intersection A_h), Leb(A\ A_h).

Usage

LebA_slice_est_approx(esttrawl, Delta, h, adjust_neg = FALSE)

Arguments

esttrawl Vector containing estimated trawl function.

Delta Width of the grid on which we observe the data

24 LebA_slice_est_approx

h Time point used in A intersection A_h and the setdifference A setdifference A_h

adjust_neg A binary variable determining whether negative estimates of the trawl function
should be set to 0, the default is FALSE

Details

Estimation of the trawl function using the methodology proposed in Sauri and Veraart (2022).

Value

LebA

LebAintersection

LebAsetdifference

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 5000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(1726)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl set and its two slices at time h=2 without bias correction
est1 <- LebA_slice_est(Poi_data, my_delta, h=2)
est1$LebA
est1$LebAintersection
est1$LebAsetdifference

#Estimate the trawl set and its two slices at time h=2 without bias correction
est2 <- LebA_slice_est(Poi_data, my_delta, h=2, biascor=TRUE)
est2$LebA
est2$LebAintersection
est2$LebAsetdifference

#Note that Leb(A)=1/my_lambda for an exponential trawl

LebA_slice_ratio_est_acfbased 25

LebA_slice_ratio_est_acfbased

Nonparametric estimation of the ratios Leb(A intersection
A_h)/Leb(A), Leb(A setdifference A_h)/Leb(A)

Description

This function estimates the ratios Leb(A intersection A_h)/Leb(A), Leb(A\ A_h)/Leb(A).

Usage

LebA_slice_ratio_est_acfbased(data, Delta, h)

Arguments

data Data to be used in the trawl function estimation.

Delta Width of the grid on which we observe the data

h Time point used in A intersection A_h and the setdifference A setdifference A_h

Details

Estimation of the trawl function using the methodology proposed in Sauri and Veraart (2022) which
is based on the empirical acf.

Value

LebAintersection_ratio: LebAintersection/LebA

LebAsetdifference_ratio: LebAsetdifference/LebA

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 5000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(1726)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

26 my_mae

#Estimate the trawl set and its two slices at time h=0.5
est <- LebA_slice_ratio_est_acfbased(Poi_data, my_delta, h=0.5)
#Print the ratio LebAintersection/LebA
est$LebAintersection_ratio
#Print the ratio LebAsetdifference/LebA
est$LebAsetdifference_ratio

my_mae my_mse

Description

Returns the mean absolute error between two vectors

Usage

my_mae(x, y)

Arguments

x vector

y vector

Value

Mean absolute error between the two vectors x and y

Examples

#Simulate two vectors of i.i.d.~standard normal data
set.seed(456)
x <- rnorm(100)
y <- rnorm(100)
#Compute the mean absolute error between both vectors
my_mae(x,y)

my_mse 27

my_mse my_mse

Description

Returns the mean squared error between two vectors

Usage

my_mse(x, y)

Arguments

x vector

y vector

Value

Mean square error between the two vectors x and y

Examples

#Simulate two vectors of i.i.d.~standard normal data
set.seed(456)
x <- rnorm(100)
y <- rnorm(100)
#Compute the mean squared error between both vectors
my_mse(x,y)

my_results my_results

Description

Returns summary statistics

Usage

my_results(x, sd = 1, digits = 3, reduced_percentiles = FALSE)

28 nonpar_trawlest

Arguments

x Numeric vector of data values

sd Optional parameter giving the standard deviation of the normal distribution used
for computing the coverage probabilities. Default is 1.

digits Optional parameter specifying to how many digits the results should be rounded.
Default is 3.

reduced_percentiles

Optional logical parameter specifying whether only the upper three levels of 90
Default is FALSE.

Details

This function returns the sample mean, sample standard deviation and the coverage probabilities at
levels 75 (or just 90 standard normal quantiles. Coverage probability is calculated as the proportion
of |x| values that fall within the specified quantile range.

Value

A numeric vector containing:

• Sample mean

• Sample standard deviation

• Coverage probabilities at the specified levels

When reduced_percentiles=FALSE: returns 8 values(mean, sd, 6 coverage levels) When reduced_percentiles=TRUE:
returns 5 values (mean, sd, 3 coverage levels)

Examples

#Simulate i.i.d.~standard normal data
set.seed(456)
data <- rnorm(10000)
#Display the sample mean, standard deviation and coverage probabilities:
my_results(data)

nonpar_trawlest Nonparametric estimation of the trawl function

Description

This function implements the nonparametric trawl estimation proposed in Sauri and Veraart (2022).

Usage

nonpar_trawlest(data, Delta, lag = 100)

nonpar_trawlest 29

Arguments

data Data to be used in the trawl function estimation.

Delta Width of the grid on which we observe the data

lag The lag until which the trawl function should be estimated

Details

Estimation of the trawl function using the methodology proposed in Sauri and Veraart (2022). Sup-
pose the data is observed on the grid 0, Delta, 2Delta, ..., (n-1)Delta. Given the path contained in
data, the function returns the lag-dimensional vector

(â(0), â(∆), . . . , â((lag − 1)∆)).

In the case when lag=n, the n-1 dimensional vector

(â(0), â(∆), . . . , â((n− 2)∆))

is returned.

Value

ahat Returns the lag-dimensional vector (â(0), â(∆), . . . , â((lag − 1)∆)). Here, â(0) is estimated
based on the realised variance estimator.

a0_alt Returns the alternative estimator of a(0) using the same methodology as the one used for t>0.
Note that this is not the recommended estimator to use, but can be used for comparison purposes.

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 5000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(1726)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl function
my_lag <- 100+1
PoiEx_trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat

#Plot the estimated trawl function and superimpose the true one

30 rq

l_seq <- seq(from = 0,to = (my_lag-1), by = 1)
esttrawlfct.data <- base::data.frame(l=l_seq[1:31],

value=PoiEx_trawl[1:31])
p1 <- ggplot2::ggplot(esttrawlfct.data, ggplot2::aes(x=l,y=value))+

ggplot2::geom_point(size=3)+
ggplot2::geom_function(fun = function(x) acf_Exp(x*my_delta,my_lambda), colour="red", size=1.5)+
ggplot2::xlab("l")+
ggplot2::ylab(latex2exp::TeX("$\\hat{a}(\\cdot)$ for Poisson trawl process"))

p1

rq Computing the scaled realised quarticity

Description

This function computes the scaled realised quarticity of a time series for a given width of the obser-
vation grid.

Usage

rq(data, Delta)

Arguments

data The data set used to compute the scaled realised quarticity

Delta The width Delta of the observation grid

Details

According to Sauri and Veraart (2022), the scaled realised quarticity for X0, X∆n
, . . . , X(n−1)∆n

is given by

RQn :=
1√

2n∆n

n−2∑
k=0

(X(k+1)∆n
−Xk∆n

)4.

Value

The function returns the scaled realised quarticity RQ_n.

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter

sim_weighted_trawl 31

#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path

#Compute the scaled realised quarticity
rq(Poi_data, my_delta)

sim_weighted_trawl Simulation of a weighted trawl process

Description

This function simulates a weighted trawl process for various choices of the trawl function and the
marginal distribution.

Usage

sim_weighted_trawl(
n,
Delta,
trawlfct,
trawlfct_par,
distr,
distr_par,
kernelfct = NULL

)

Arguments

n number of grid points to be simulated (excluding the starting value)

Delta grid-width

trawlfct the trawl function a used in the simulation (Exp, supIG or LM)

trawlfct_par parameter vector of trawl function (Exp: lambda, supIG: delta, gamma, LM:
alpha, H)

distr marginal distribution. Choose from "Gamma" (Gamma), "Gauss" (Gaussian),
"Cauchy" (Cauchy), "NIG" (Normal Inverse Gaussian), Poi" (Poisson), "Neg-
Bin" (Negative Binomial)

distr_par parameters of the marginal distribution: (Gamma: shape, scale; Gauss: mu,
sigma (i.e. the second parameter is the standard deviation, not the variance);
Cauchy: l, s; NIG: alpha, beta, delta, mu; Poi: v, NegBin: m, theta)

kernelfct the kernel function p used in the ambit process

32 sim_weighted_trawl_gen

Details

This functions simulates a sample path from a weighted trawl process given by

Yt =

∫
(−∞,t]×(−∞,∞)

p(t− s)I(0,a(t−s))(x)L(dx, ds),

for t ≥ 0, and returns Y0, Y∆, . . . , Yn∆.

Value

path Simulated path

slice_sizes slice sizes used

S_matrix Matrix of all slices

kernelweights kernel weights used

Examples

#Simulation of a Gaussian trawl process with exponential trawl function
n<-2000
Delta<-0.1
trawlfct="Exp"
trawlfct_par <-0.5
distr<-"Gauss"
distr_par<-c(0,1) #mean 0, std 1
set.seed(233)
path <- sim_weighted_trawl(n, Delta, trawlfct, trawlfct_par, distr, distr_par)$path
#Plot the path
library(ggplot2)
df <- data.frame(time = seq(0,n,1), value=path)
p <- ggplot(df, aes(x=time, y=path))+

geom_line()+
xlab("l")+
ylab("Trawl process")
p

sim_weighted_trawl_gen

Simulation of a weighted trawl process with generic trawl function

Description

This function simulates a weighted trawl process for a generic trawl function and various choices
the marginal distribution. The specific trawl function to be used can be supplied directly by the user.

sim_weighted_trawl_gen 33

Usage

sim_weighted_trawl_gen(
n,
Delta,
trawlfct_gen,
distr,
distr_par,
kernelfct = NULL

)

Arguments

n number of grid points to be simulated (excluding the starting value)

Delta grid-width

trawlfct_gen the trawl function a used in the simulation

distr marginal distribution. Choose from "Gamma" (Gamma), "Gauss" (Gaussian),
"Cauchy" (Cauchy), "NIG" (Normal Inverse Gaussian), Poi" (Poisson), "Neg-
Bin" (Negative Binomial)

distr_par parameters of the marginal distribution: (Gamma: shape, scale; Gauss: mu,
sigma (i.e. the second parameter is the standard deviation, not the variance);
Cauchy: l, s; NIG: alpha, beta, delta, mu; Poi: v, NegBin: m, theta)

kernelfct the kernel function p used in the ambit process

Details

This functions simulates a sample path from a weighted trawl process given by

Yt =

∫
(−∞,t]×(−∞,∞)

p(t− s)I(0,a(t−s))(x)L(dx, ds),

for t ≥ 0, and returns Y0, Y∆, . . . , Yn∆. The user needs to ensure that trawlfct_gen is a monotonic
function.

Value

path Simulated path

slice_sizes slice sizes used

S_matrix Matrix of all slices

kernelweights kernel weights used

Examples

#Simulation of a Gaussian trawl process with exponential trawl function
n<-2000
Delta<-0.1

trawlfct_par <-0.5

34 test_asymnorm

distr<-"Gauss"
distr_par<-c(0,1) #mean 0, std 1
set.seed(233)

a <- function(x){exp(-trawlfct_par*x)}
path <- sim_weighted_trawl_gen(n, Delta, a,

distr, distr_par)$path
#Plot the path
library(ggplot2)
df <- data.frame(time = seq(0,n,1), value=path)
p <- ggplot(df, aes(x=time, y=path))+

geom_line()+
xlab("l")+
ylab("Trawl process")

p

test_asymnorm Computing the infeasible test statistic from the trawl function estima-
tion CLT

Description

This function computes the infeasible test statistic appearing in the CLT for the trawl function
estimation.

Usage

test_asymnorm(ahat, n, Delta, k, c4, varlevyseed = 1, trawlfct, trawlfct_par)

Arguments

ahat The term â(k∆n) in the CLT

n The number n of observations in the sample

Delta The width Delta of the observation grid

k The time point in 0, 1, . . . , n− 1; the test statistic will be computed for the time
point k ∗∆n.

c4 The fourth cumulant of the Levy seed of the trawl process

varlevyseed The variance of the Levy seed of the trawl process, the default is 1

trawlfct The trawl function for which the asymptotic variance will be computed (Exp,
supIG or LM)

trawlfct_par The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma,
LM: alpha, H)

test_asymnorm_est 35

Details

As derived in Sauri and Veraart (2022), the infeasible test statistic is given by
√
n∆n√

σ2
a(k∆n)

(â(k∆n)− a(k∆n)) ,

for k ∈ {0, 1, . . . , n− 1}.

Value

The function returns the infeasible test statistic specified above.

Examples

test_asymnorm(ahat=0.9, n=5000, Delta=0.1, k=1, c4=1, varlevyseed=1,
trawlfct="Exp", trawlfct_par=0.1)

test_asymnorm_est Computing the feasible statistic of the trawl function CLT

Description

This function computes the feasible statistics associated with the CLT for the trawl function estima-
tion.

Usage

test_asymnorm_est(
data,
Delta,
trawlfct,
trawlfct_par,
biascor = FALSE,
k = NULL

)

Arguments

data The data set based on observations of X0, X∆n
, . . . , X(n−1)∆n

Delta The width Delta of the observation grid
trawlfct The trawl function for which the asymptotic variance will be computed (Exp,

supIG or LM)
trawlfct_par The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma,

LM: alpha, H)
biascor A binary variable determining whether a bias correction should be computed,

the default is FALSE
k The optional parameter specifying the time point in 0, 1, . . . , n − 1; the test

statistic will be computed for the time point k∆n.

36 test_asymnorm_est

Details

As derived in Sauri and Veraart (2022), the feasible statistic, for t > 0, is given by

T (t)n :=

√
n∆n√
σ̂2
a(t)

(â(t)− a(t)− bias(t)) .

For t = 0, we have

T (t)n :=

√
n∆n√
RQn

(â(0)− a(0)− bias(0)) ,

where

RQn :=
1√

2n∆n

n−2∑
k=0

(X(k+1)∆n
−Xk∆n)

4.

We set bias(t) = 0 in the case when biascor==FALSE and bias(t) = 0.5 ∗∆ ∗ â′(t) otherwise.

Value

The function returns the vector of the feasible statistics (T (0)n, T ((∆)n, . . . , T ((n− 2)∆n)) if no
bias correction is required and (T (0)n, T ((∆)n, . . . , T ((n − 3)∆n)) if bias correction is required
if k is not provided, otherwise it returns the value T (k∆n)n. If the estimated asymptotic variance
is <= 0, the value of the test statistic is set to 999.

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data <- sim_weighted_trawl(my_n, my_delta,

"Exp", my_lambda, "Poi", my_v)$path

#Compute the test statistic for time t=0
##Either one can use:
test_asymnorm_est(Poi_data, my_delta,

trawlfct="Exp", trawlfct_par=my_lambda)[1]
#or:
test_asymnorm_est(Poi_data, my_delta,

trawlfct="Exp", trawlfct_par=my_lambda, k=0)

test_asymnorm_est_dev 37

test_asymnorm_est_dev Computing the feasible statistic of the trawl function CLT

Description

This function computes the feasible test statistic appearing in the CLT for the trawl function esti-
mation.

Usage

test_asymnorm_est_dev(
ahat,
n,
Delta,
k,
c4,
varlevyseed = 1,
trawlfct,
trawlfct_par,
avector

)

Arguments

ahat The estimated trawl function at time t: â(t)

n The number of observations in the data set

Delta The width Delta of the observation grid

k The time point in 0, 1, . . . , n− 1; the test statistic will be computed for the time
point k ∗∆n.

c4 The fourth cumulant of the Levy seed of the trawl process

varlevyseed The variance of the Levy seed of the trawl process, the default is 1

trawlfct The trawl function for which the asymptotic variance will be computed (Exp,
supIG or LM)

trawlfct_par The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma,
LM: alpha, H)

avector The vector (â(0), â(Deltan), ..., â((n− 1)∆n))

Details

As derived in Sauri and Veraart (2022), the feasible statistic is given by

T (k∆n)n :=

√
n∆n√

σ̂2
a(∆n)

(â(∆n)− a(∆n))

.

38 trawl_deriv

Value

The function returns the feasible statistic T (∆n)n if the estimated asymptotic variance is positive
and 999 otherwise.

trawl_deriv Estimating the derivative of the trawl function using the empirical
derivative

Description

This function estimates the derivative of the trawl function using the empirical derivative of the
trawl function.

Usage

trawl_deriv(data, Delta, lag = 100)

Arguments

data Numeric vector of data used to compute the derivative of the trawl function

Delta Numeric value specifying the width Delta of the observation grid

lag Integer specifying the lag until which the trawl function derivative should be
estimated. Default is 100.

Details

This function first estimates the trawl function â(t) using nonpar_trawlest, then computes the
derivative using finite differences:

â′(l∆n) =
â((l + 1)∆n)− â(l∆n)

∆n
,

for l = 0, 1, . . . , lag − 1.

Value

Numeric vector of length lag containing the estimated derivative values (â′(0), â′(∆), . . . , â′((lag−
1)∆)).

See Also

nonpar_trawlest for the underlying trawl function estimation

trawl_deriv_mod 39

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data <- sim_weighted_trawl(my_n, my_delta,

"Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl function
my_lag <- 100+1
trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat

#Estimate the derivative of the trawl function
trawl_deriv <- trawl_deriv(Poi_data, my_delta, lag=100)

trawl_deriv_mod Estimating the derivative of the trawl function

Description

This function estimates the derivative of the trawl function using the modified version proposed in
Sauri and Veraart (2022).

Usage

trawl_deriv_mod(data, Delta, lag = 100)

Arguments

data Numeric vector of data used to compute the derivative of the trawl function

Delta Numeric value specifying the width Delta of the observation grid

lag Integer specifying the lag until which the trawl function derivative should be
estimated. Default is 100.

40 trawl_est

Details

According to Sauri and Veraart (2022), the derivative of the trawl function can be estimated based
on observations X0, X∆n , . . . , X(n−1)∆n

by

â′(t) =
1

n∆2
n

n−2∑
k=l+1

(X(k+1)∆n
−Xk∆n

)(X(k−l)∆n
−X(k−l−1)∆n

),

for ∆nl ≤ t < (l + 1)∆n.

Value

The function returns the lag-dimensional vector (â′(0), â′(∆), . . . , â′((lag − 1)∆)).

Examples

##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta

###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1

#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data <- sim_weighted_trawl(my_n, my_delta,

"Exp", my_lambda, "Poi", my_v)$path

#Estimate the trawl function
my_lag <- 100+1
trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat

#Estimate the derivative of the trawl function
trawl_deriv <- trawl_deriv_mod(Poi_data, my_delta, lag=100)

trawl_est Bias-corrected nonparametric estimation of the trawl function

Description

This function implements bias correction for the nonparametric trawl estimation proposed in Sauri
and Veraart (2022).

trawl_est 41

Usage

trawl_est(data, Delta)

Arguments

data Data to be used in the trawl function estimation.

Delta Width of the grid on which we observe the data

Details

This function performs bias correction on the nonparametric trawl function estimates obtained using
the methodology of Sauri and Veraart (2022). The bias correction is implemented by estimating the
derivative of the trawl function and applying the correction 0.5 × ∆ × â′(t), where â′(t) is the
estimated derivative at lag t.

Suppose the data is observed on the grid 0, Delta, 2Delta, ..., (n-1)Delta. Given the path contained
in data, the function returns both the original and bias-corrected estimates of the trawl function.

The bias correction is based on the theoretical result that the leading bias term in nonparametric
trawl function estimation is proportional to Delta times the derivative of the true trawl function.

Value

trawlfct Returns the original nonparametric trawl function estimate obtained from nonpar_trawlest.

trawlfct_biascor Returns the bias-corrected trawl function estimate, computed as the original esti-
mate minus the bias correction term 0.5×∆× â′(t).

See Also

nonpar_trawlest, trawl_deriv_mod

Examples

#Simulation of a Gaussian trawl process with exponential trawl function
n<-2000
Delta<-0.5

trawlfct_par <-0.5
distr<-"Gauss"
distr_par<-c(0,1) #mean 0, std 1
set.seed(233)

a <- function(x){exp(-trawlfct_par*x)}
path <- sim_weighted_trawl_gen(n, Delta, a,

distr, distr_par)$path
#Plot the path
library(ggplot2)
df <- data.frame(time = seq(0,n,1), value=path)
p <- ggplot(df, aes(x=time, y=path))+

geom_line()+
xlab("l")+

42 trawl_Exp

ylab("Trawl process")
p

result <- trawl_est(path, Delta)

original_estimate <- result$trawlfct[1:30]
bias_corrected <- result$trawlfct_biascor[1:30]

True exponential values for the same lags
lags <- 0:(length(original_estimate)-1)
true_vals <- a(lags * Delta)

Plot all three
plot(lags, original_estimate,

type = "l", col = "blue", lwd = 2,
xlab = "Lag index", ylab = "Trawl function estimate",
main = "Trawl function: Original vs bias-corrected vs true",
ylim = range(c(original_estimate, bias_corrected, true_vals), na.rm = TRUE))

lines(lags, bias_corrected,
col = "red", lwd = 2, lty = 2)

lines(lags, true_vals,
col = "black", lwd = 2, lty = 3)

legend("topright",
legend = c("Original", "Bias-corrected", "True exponential"),
col = c("blue", "red", "black"),
lty = c(1, 2, 3), lwd = 2)

trawl_Exp Evaluates the exponential trawl function

Description

Evaluates the exponential trawl function

Usage

trawl_Exp(x, lambda)

Arguments

x the argument at which the exponential trawl function will be evaluated

lambda the parameter λ in the exponential trawl

trawl_LM 43

Details

The trawl function is parametrised by parameter λ > 0 as follows:

g(x) = eλx, for x ≤ 0.

Value

The exponential trawl function evaluated at x

Examples

trawl_Exp(-1,0.5)

trawl_LM Evaluates the long memory trawl function

Description

Evaluates the long memory trawl function

Usage

trawl_LM(x, alpha, H)

Arguments

x the argument at which the supOU/long memory trawl function will be evaluated

alpha the parameter α in the long memory trawl

H the parameter H in the long memory trawl

Details

The trawl function is parametrised by the two parameters H > 1 and α > 0 as follows:

g(x) = (1− x/α)−H , for x ≤ 0.

If H ∈ (1, 2], then the resulting trawl process has long memory, for H > 2, it has short memory.

Value

the long memory trawl function evaluated at x

Examples

trawl_LM(-1,0.5, 1.5)

44 trawl_supIG

trawl_supIG Evaluates the supIG trawl function

Description

Evaluates the supIG trawl function

Usage

trawl_supIG(x, delta, gamma)

Arguments

x the argument at which the supIG trawl function will be evaluated

delta the parameter δ in the supIG trawl

gamma the parameter γ in the supIG trawl

Details

The trawl function is parametrised by the two parameters δ ≥ 0 and γ ≥ 0 as follows:

gd(x) = (1− 2xγ−2)−1/2 exp(δγ(1− (1− 2xγ−2)1/2)), for x ≤ 0.

It is assumed that δ and γ are not simultaneously equal to zero.

Value

The supIG trawl function evaluated at x

Examples

trawl_supIG(-1,0.5,0.2)

Index

acf_Exp, 2
acf_LM, 3
acf_supIG, 4
AddSlices_Rcpp, 5
AddWeightedSlices_Rcpp, 5
asymptotic_variance, 6
asymptotic_variance_est, 7

c4est, 8

discrete_fourier_sin_cos, 10

fit_exp_periodic_trawl, 10
fit_exp_sin_trawl, 11
fit_exp_sin_trawl_periodfixed, 12
fit_exp_sin_trawl_periodogram, 13
fit_LM_periodic_trawl, 14
fit_LM_sin_trawl, 15
fourier_sin_cos, 16

kernel_generic_trawl_acf, 16
kernel_generic_trawl_acf_incrtol, 17
kernel_trawl_acf, 18
kernel_trawl_acf_exp_periodic, 18
kernel_trawl_acf_exp_sin, 19
kernel_trawl_acf_LM_periodic, 20

LebA_est, 20
LebA_slice_est, 22
LebA_slice_est_approx, 23
LebA_slice_ratio_est_acfbased, 25

my_mae, 26
my_mse, 27
my_results, 27

nonpar_trawlest, 28, 38, 41

rq, 30

sim_weighted_trawl, 31

sim_weighted_trawl_gen, 32

test_asymnorm, 34
test_asymnorm_est, 35
test_asymnorm_est_dev, 37
trawl_deriv, 38
trawl_deriv_mod, 39, 41
trawl_est, 40
trawl_Exp, 42
trawl_LM, 43
trawl_supIG, 44

45

	acf_Exp
	acf_LM
	acf_supIG
	AddSlices_Rcpp
	AddWeightedSlices_Rcpp
	asymptotic_variance
	asymptotic_variance_est
	c4est
	discrete_fourier_sin_cos
	fit_exp_periodic_trawl
	fit_exp_sin_trawl
	fit_exp_sin_trawl_periodfixed
	fit_exp_sin_trawl_periodogram
	fit_LM_periodic_trawl
	fit_LM_sin_trawl
	fourier_sin_cos
	kernel_generic_trawl_acf
	kernel_generic_trawl_acf_incrtol
	kernel_trawl_acf
	kernel_trawl_acf_exp_periodic
	kernel_trawl_acf_exp_sin
	kernel_trawl_acf_LM_periodic
	LebA_est
	LebA_slice_est
	LebA_slice_est_approx
	LebA_slice_ratio_est_acfbased
	my_mae
	my_mse
	my_results
	nonpar_trawlest
	rq
	sim_weighted_trawl
	sim_weighted_trawl_gen
	test_asymnorm
	test_asymnorm_est
	test_asymnorm_est_dev
	trawl_deriv
	trawl_deriv_mod
	trawl_est
	trawl_Exp
	trawl_LM
	trawl_supIG
	Index

