Package ‘TIMP’

January 20, 2025

Title Fitting Separable Nonlinear Models in Spectroscopy and
Microscopy

Version 1.13.6

Description A problem solving environment (PSE) for fitting separable
nonlinear models to measurements arising in physics and chemistry
experiments, as described by Mullen & van Stokkum (2007)
<doi:10.18637/jss.v018.103> for its use in fitting time resolved
spectroscopy data, and as described by Laptenok et al. (2007)
<doi:10.18637/jss.v018.108> for its use in fitting Fluorescence
Lifetime Imaging Microscopy (FLIM) data, in the study of Forster
Resonance Energy Transfer (FRET). "TIMP" also serves as the
computation backend for the " GloTarAn" software, a graphical user
interface for the package, as described in Snellenburg et al. (2012)
<doi:10.18637/js5.v049.103>.

License GPL (>=2)
URL https://github.com/glotaran/TIMP

BugReports https://github.com/glotaran/TIMP/issues
Depends fields (>=4.1), methods, R (>=2.10.0)

Imports colorspace, deSolve, gclus, gplots, graphics, grDevices,
minpack.lm (>= 1.1-1), nnls (>= 1.1), splines, stats, utils

Encoding UTF-8
Language en-US
RoxygenNote 7.2.3
NeedsCompilation yes

Author Katharine M. Mullen [aut] (Original package creator),
Joris Snellenburg [cre, ctb] (<https://orcid.org/0000-0002-1428-0221>),
Sergey P. Laptenok [ctb],
David Nicolaides [ctb],
Ivo H.M. van Stokkum [aut] (<https://orcid.org/0000-0002-6143-2021>)

Maintainer Joris Snellenburg <j.snellenburg@vu.nl>
Repository CRAN
Date/Publication 2022-12-12 13:10:02 UTC

https://doi.org/10.18637/jss.v018.i03
https://doi.org/10.18637/jss.v018.i08
https://doi.org/10.18637/jss.v049.i03
https://github.com/glotaran/TIMP
https://github.com/glotaran/TIMP/issues
https://orcid.org/0000-0002-1428-0221
https://orcid.org/0000-0002-6143-2021

2 Contents

Contents
TIMP-package e 3
amp-Class e e e 3
baseIRF e 6
dat-class e 7
denS4 . .. 11
divergeZimage e e e e e e 12
donorAcceptorTagged 13
donorTagged e 14
efit2file 14
examineFit L 15
fit-class e 16
fitModel 16
FLIMPIOts o e e e e 20
getClpindepX-methods L 24
getResid L L 24
getResults 25
mitModel 30
kin-class e 33
kinopt-class L 40
mass-classo 44
massopt-class 45
mea_IRF e 45
modifyModel e 46
multimodel-class 47
multitheta-class 48
opt-classo 49
outlierCorr. e 52
plotter-methods 53
preProcess 54
readclpO L L e e e e 59
readData e 60
res-class 60
residPart-methods L 61
SPEC-Class 62
Specopt-Class e e e 63
sumKinSpecEst 64
TATZEL e e e e e e e e e 65
theta-class L. 65
WITEAVETAZE . . . o v v o e e i i e e e e e e e e e e e 67

Index 68

TIMP-package 3

TIMP-package a problem solving environment for fitting separable nonlinear models
in physics and chemistry applications

Description

TIMP is a problem solving environment for fitting separable nonlinear models to measurements
arising in physics and chemistry experiments, and has been extensively applied to time-resolved
spectroscopy and FLIM-FRET data.

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum Maintainer: Joris J. Snellenburg <j.snellenburg@vu.nl>

References

Mullen KM, van Stokkum IHM (2007). “TIMP: An R Package for Modeling Multi-way Spectro-
scopic Measurements.” Journal of Statistical Software, 18(3). doi:10.18637/jss.v018.103.

Laptenok S, Mullen KM, Borst JW, van Stokkum IHM, Apanasovich VYV, Visser ATWG (2007).
“Fluorescence Lifetime Imaging Microscopy (FLIM) Data Analysis with TIMP.” Journal of Statis-
tical Software, 18(8). doi:10.18637/jss.v018.108.

See https://glotaran.github.io/TIMP/ for further documentation.

amp-class Class "amp" for diagonal matrix model specification.

Description

amp is the class for diagonal matrix model specification; such models are internally initialized when
a tri-linear-type model is fit to the data via passing the argument opt to fitModel as an object of
class opt in which the slot trilinear has the value TRUE. All objects of class amp are sub-classes
of class dat; see documentation for dat for a description of these slots.

Details

See kin-class for an example of the initialization of a kin object via the initModel function.

Objects from the Class

Objects can be created by calls of the form new("amp”, ...) oramp(...).

https://doi.org/10.18637/jss.v018.i03
https://doi.org/10.18637/jss.v018.i08
https://glotaran.github.io/TIMP/

4 amp-class

Slots

amps list of vectors of starting values for the parameters of the amplitudes for each dataset; one
vector of values is used to parameterize the values corresponding to each dataset.

autoclp0
C2

chinde
clinde

clp0
clpCon
clpdep
clpequ
clpequspec
clpequspecBD
clpType
cohcol
compnames
constrained
datafile
datCall
drel
dscalspec
E2

fixed

free
fvecind
getX
getXsuper
highcon
inten

iter

Iclp0
Iclpequ
lowcon
makeps
mhist
mod_type

mvecind

amp-class

ncomp
nl

nt

nvecind

outMat
parnames
positivepar

prel

prelspec

psi.df
psi.weight
pvecind

satMat

scalx

sigma

simdata

title
usecompnames()
usecompnamesequ
weight
weightList
weightM
weightpar
weightsmooth

X

x2

Extends

Class kin-class, directly.

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

kin-class, spec-class, opt-class

6 baseIRF

baseIRF Baseline subtraction from a vector, usually representing an IRF.

Description

Baseline subtraction from a vector, usually representing an IRF.

Usage

baseIRF(irfvec, indexlow, indexhigh, removeNeg = FALSE)

Arguments
irfvec Vector to subtract a baseline from
indexlow Lowest index to base the baseline estimation on
indexhigh Highest index to base the baseline estimation on
removeNeg Whether negative values should be replaced with 0.
Details

Currently estimates the baseline as the mean of data between indexlow and indexhigh, and subtracts
the result from the entire vector.

Value

vector

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

Examples

irfvec <- rnorm(128, mean=1)

plot(irfvec, type="1")

irfvec_corrected <- baseIRF(irfvec, 1, 10)
lines(irfvec_corrected, col=2)

dat-class 7

dat-class Class "dat" for model and data storage

Description

dat is the super-class of other classes representing models and data, so that other model/data
classes (e.g., kin and spec for kinetic and spectral models respectively) also have the slots de-
fined here. Slots whose description are marked with *** may be specified in the . .. argument of
the initModel function.

Objects from the Class

Objects from the class can be created by calls of the form new("dat"”, ...) ordat(...), but most
are most often made by invoking another function such as readData or initModel.

Slots

chinde

clinde
clpequspecBD
cohcol
compnames
highcon

lowcon

Iscalpar
thetascal: *** Object of class "vector"” vector of values to scale the parameter vector with.
mvecind

nvecind

outMat

satMat
usecompnames()
usecompnamesequ
weightList

getX

getXsuper

weightpar: *** Object of class "1ist" list of vectors c(first_x, last_x, first_x2, last_x2,
weight), where each vector is of length 5 and specifies an interval in which to weight the data.
e first_x: first(absolute, not an index) x to weight
* last_x: last (absolute, not an index) x to weight
o first_x2: first (absolute, not an index) x2 to weight
e last_x2: last (absolute, not an index) x2 to weight

dat-class

e weight: numeric by which to weight data

Note that if vector elements 1-4 are NA (not a number), the firstmost point of the data is taken
for elements 1 and 3, and the lastmost points are taken for 2 and 4. For example, weightpar
=1list(c(40, 1500, 400, 600, .9), c(NA, NA, 700, 800, .1)) will weight data between
times 40 and 1500 picoseconds and 700 and 800 wavelengths by .9, and will weight data at all
times between wavelength 700 and 800 by .1. Note also that for single photon counting data
weightpar = list(poisson = TRUE) will apply poisson weighting to all non-zero elements
of the data.

mod_type: *** Object of class "character” character string defining the model type, e.g., "kin"
or "spec”

fixed: *** Object of class "1ist" list of lists or vectors giving the parameter values to fix (at their
starting values) during optimization.

free: *** Object of class "1ist" list of lists or vectors giving the parameter values to free during
optimization; if this list is present then all parameters not specified in it are fixed, e.g., free =
list(irfpar = 2) will fix every parameter at its starting value except for the 2nd irfpar. If
fix = 1list(none=TRUE) (or if the element none has length greater than 0) then all parameters
in the model are fixed. Note that this option only should be applied to multiexperiment models
in which at least one parameter applying to some other dataset is optimized (nls always must
have at least one parameter to optimize).

constrained: *** Object of class "1ist" list whose elements are lists containing a character vec-
tor what, a vector ind, and either (but not both) a character vector low and high. what should
specify the parameter type to constrain. ind should give the index of the parameter to be con-
strained, e.g., 1 if indexing into a vector, and c (1, 2) if indexing into a list. low gives a number
that the parameter should always remain lower than and high gives a number that the param-
eter should always remain higher than (so that low bounds the parameter value from above
and high bounds the parameter value from below). It is not now possible to specify both
low and high for a single parameter value. An example of a complete constrained spec-
ification is constrained = list(list(what = "kinpar”, ind=2, low=.3),list(what =
"parmu”, ind=c(1,1), high=.002))

clp@: *** Objectof class "1ist" list of lists with elements 1ow, high and comp, specifying the least
value in x2 to constrain to zero, the greatest value in x2 to constrain to zero, and the component
to which to apply the zero constraint, respectively. e.g., clp@ = list(list(low=400, high =
600, comp=2), list(low =600, high = 650, comp=4)) applies zero constraints to the spec-
tra associated with components 2 and 4.

autoclp@: *** Object of class "1ist” that has two elements; oldRes, the output of fitModel
and an index ind representing the index of the dataset to use in oldRes; ind defaults to one.
The clp that are negative in o1dRes are constrained to zero in the new model; this is primarily
useful when fitting a model, finding some negative clp, and constraining them to zero by fitting
again with this option. See also the help page for opt for other ways to constrain the clp to
non-negativity.

clpequspec: *** Object of class "1ist" list of lists each of which has elements to, from, low,
high, and optional element dataset to specify the dataset from which to get the reference
clp (that is, a spectrum for kinetic models). to is the component to be fixed in relation to
some other component; from is the reference component. low and high are the least and
greatest absolute values of the clp vector to constrain. e.g., clpequspec = list(list(low
=400, high =600, to=1, from=2)) will constrain the first component to equality to the

dat-class 9

second component between wavelengths 400 and 600. Note that equality constraints are ac-

tually constraints to a linear relationship. For each of the equality constraints specified as a

list in the clpequspec list, specify a starting value parameterizing this linear relation in the
vector clpequ; if true equality is desired then fix the corresponding parameter in clpequ to

1. Note that if multiple components are constrained, the from in the sublists should be in-
creasing order, (i.e., (list(to=2, from=1, low=100, high=10000),1list(to=3, from=1,
1low=10000, high=100)),not list(to=3, from=1, low=10000, high=100),1ist(to=2, from=1,
low=10000, high=100))

clpequ: ***Qbject of class "vector"” describes the parameters governing the clp equality con-
straints specified in clpequspec

prelspec: *** Object of class "1ist" list of lists to specify the functional relationship between
parameters, each of which has elements

» whatlcharacter string describing the parameter type to relate, e.g., "kinpar”

» what2the parameter type on which the relation is based; usually the same as what1

¢ indlindex into what1

¢ ind2index into what?2

* relcharacter string, optional argument to specify functional relation type, by default linear

e.g., prelspec = list(list(whatl1 = "kinpar”, what2 = "kinpar”, ind1 =1, ind2 =5))
relates the 1st element of kinpar to the 5th element of kinpar. The starting values parame-
terizing the relationship are given in the prel vector

positivepar: *** Object of class "vector"” containing character strings of those parameter vec-
tors to constrain to positivity, e.g., positivepar=c("kinpar")

weight: Object of class "logical” TRUE when the specification in weightpar is to be applied and
FALSE otherwise

psi.df: Object of class "matrix"” dataset from 1 experiment

psi.weight: Object of class "matrix” weighted dataset from 1 experiment
x: Object of class "vector” time or other independent variable.

nt: Object of class "integer” length x

x2: Object of class "vector” vector of points in 2nd independent dimension, such as wavelengths
of wavenumbers

nl: Object of class "integer” length x2

C2: Object of class "matrix” concentration matrix for simulated data

E2: Object of class "matrix” matrix of spectra for simulated data

sigma: Object of class "numeric” noise level in simulated data

parnames: Object of class "vector” vector of parameter names, used internally

simdata: Object of class "logical” logical that is TRUE if the data is simulated, FALSE otherwise;
will determine whether values in C2 and E2 are plotted with results

weightM: Object of class "matrix” weights

weightsmooth: Object of class "1list” type of smoothing to apply with weighting; not currently
used

makeps: Object of class "character” specifies the prefix of files written to postscript

10 dat-class

1clp@: Object of class "logical” TRUE if specification in c1p®@ is to be applied and FALSE other-
wise

lclpequ: Object of class "logical” TRUE if specification in clpequspec is to be applied and FALSE
otherwise

title: Object of class "character” displayed on output plots

mhist: Object of class "1ist" list describing fitting history

datCall: Object of class "1ist" list of calls to functions

dscal: Object of class "list”

dscalspec: Object of class "list”

dummy: Object of class "1ist"” containing dummy parameters

drel: Object of class "vector"” vector of starting parameters for dataset scaling relations

scalx: Object of class "numeric"” numeric by which to scale the x axis in plotting

prel vector of starting values for the relations described in prelspec

fvecind: Object of class "vector"” vector containing indices of fixed parameters

pvecind: Object of class "vector” used internally to store indices of related parameters.

iter: Object of class "numeric” describing the number of iterations that is run; this is sometimes
stored after fitting, but has not effect as an argument to initModel

clpCon: Object of class "1ist” used internally to enforce constraints on the clp
ncomp: Object of class "numeric” describing the number of components in a model
clpdep: Object of class "logical” describing whether a model is dependent on the index of x2

inten: Object of class "matrix” for use with FLIM data; represents the number of photons per
pixel measured over the course of all times t represented by the dataset. See the help for the
readData function for more information.

datafile: Object of class "character” containing the name of a datafile associated with the
psi.df

clpType: Object of class "character” that is "nt" if the model has clp in the "x" dimension and
"nl" otherwise (so that, e.g., if mod_type = "kin", then clpType = "n1").
Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum, Joris J. Snellenburg, Sergey P. Laptenok

See Also

kin-class, spec-class

Examples

simulate data

C <- matrix(nrow = 51, ncol = 2)
k <= c(.5, 1)

t <- seq(@, 2, by = 2/50)

CL, 11 <- exp(- k[1] * t)

denS4 11

CL, 2] <- exp(- k[2] = t)

E <- matrix(nrow = 51, ncol = 2)

wavenum <- seq(18000, 28000, by=200)

location <- c(25000, 20000)

delta <- c(5000, 7000)

amp <- c(1, 2)

E[, 11 <- amp[1] * exp(- log(2) * (2 * (wavenum - location[1])/deltal[1]1)"2)
E[, 2] <- amp[2] * exp(- log(2) * (2 * (wavenum - location[2])/deltal[2])*2)
sigma <- .001

Psi_q <- C %*% t(E) + sigma * rnorm(nrow(C) * nrow(E))

initialize an object of class dat
Psi_g_data <- dat(psi.df = Psi_q, x = t, nt = length(t),
x2 = wavenum, nl = length(wavenum))

initialize an object of class dat via initModel

this dat object is also a kin object

kinetic_model <- initModel(mod_type = "kin", segmod = FALSE,
kinpar = c(.1, 2))

denS4 Time-resolved absorption data

Description

Time-resolved absorption data measured at two different laser intensities

Usage

data("denS4")
data("denS5")

Format

denS4 is an object of class dat representing absorption data. denS5 is an object of class dat rep-
resenting absorption data measured at half the laser intensity as compared to the intensity used to
measure denS4.

References

This data was described in Mullen KM, van Stokkum IHM (2007). TIMP: An R Package for Mod-
eling Multi-way Spectroscopic Measurements. Journal of Statistical Software, 18(3), doi:10.18637/
jss.v018.103.

Examples

data("denS4")
image.plot(denS4@x, denS4@x2, denS4@psi.df)

https://doi.org/10.18637/jss.v018.i03
https://doi.org/10.18637/jss.v018.i03

12

divergeZimage

divergeZimage

Plots a matrix with a diverging palette, with the center value of the
palette possible to set

Description

An image plot of a matrix is a way of visualizing data; when the data represents a quantity like
transient absorption, where negative values represent a different phenomena than positive values, it
can be useful to set values at zero in the image plot to grey, whereas positive values are assigned
to red, and negative values are assigned to blue. Alternately, when comparing image plots of sev-
eral matrices, it may be useful to set the value assigned to grey uniformly, with values above this
threshold assigned to red, and below this threshold assigned to blue.

Usage

divergeZimage(ob, out=FALSE, file="divergeZimage.pdf",

Arguments

ob

out

file

lin

title
center
X2

X
plainmat
ylab
xlab

Value

lin = 1, title = "", center = 0,

x2 = vector(), x= vector(),

plainmat = FALSE, ylab="wavelength (nm)",
xlab = "time (ns)")

either an object of class dat or a numeric matrix; if a numeric matrix is given
then set plainmat=TRUE and specify labels for the columns of matrix in x2 and
for the rows of the matrix in x

a logical indicating whether to write to the screen in the case that this is possible
or to a file; if TRUE, writes to a pdf file

a character vector giving a filename to write to in the case that out=TRUE

range of x to plot linearly; values not between -1in and 1in are plotted on a log
scale

character vector giving a title for the plot

point assigned to grey in the diverging palette.

vector of labels for the columns of the matrix; used only if plainmat=TRUE
vector of labels for the rows of the matrix; used only if plainmat=TRUE
logical indicating whether ob is a matrix, as opposed to an object of class dat
character vector giving a label to put on the y-axis

character vector giving a label to put on the x-axis

No return value, called for side effects

donorAcceptorTagged 13

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

dat

Examples

exd <- dat(psi.df=matrix(rnorm(1000), ncol=100, nrow=100),
x=1:100,x2=1:100, nl=as.integer(100), nt=as.integer(100))

by default linear range until 1 is used, logarithmic thereafter
divergeZimage (exd)

can change this as desired
divergeZimage(exd, 1in=10, title="plot linearly to 10")

donorAcceptorTagged Fluorescent lifetime imaging microscopy (FLIM) data

Description

Donor-and-acceptor tagged fluorescent lifetime imaging microscopy (FLIM) data.

Usage

data("donorAcceptorTagged")

Format

cy@05c and cy@06 are objects of class dat representing donor-and-acceptor tagged data.

Details

See FLIMplots for examples using this data.

References

This data was described in

Mullen KM, van Stokkum IHM (2008). The variable projection algorithm in time-resolved spec-
troscopy, microscopy and mass-spectroscopy applications, Numerical Algorithms, in press, doi:10.1007/
s1107500892352.

https://doi.org/10.1007/s11075-008-9235-2
https://doi.org/10.1007/s11075-008-9235-2

14 efit2file

donorTagged Fluorescent lifetime imaging microscopy (FLIM) data

Description

Donor-only tagged fluorescent lifetime imaging microscopy (FLIM) data.

Usage
data("donorTagged")

Format

c001 and c@03 are objects of class dat representing donor-only data.

Details

See FLIMplots for examples using this data.

References

This data was described in

Mullen KM, van Stokkum IHM (2008). The variable projection algorithm in time-resolved spec-

troscopy, microscopy and mass-spectroscopy applications, Numerical Algorithms, in press, doi:10.1007/

s1107500892352.

efit2file Convert 'tim’ FORTRAN efit files to plain matrices in ASCII files

Description
tim’ efit files sometimes represent spectra associated with multiple datasets; for each matrix of
spectra stored in such a file, this function writes a plain text file.

Usage

efit2file(filename, skip = 2, numcol, nrows=vector())

Arguments
filename This is the path to the file to read in, as a quoted string.
skip number of lines at the top of the file before the data begins
numcol number of columns the data
nrows a vector saying how many rows are in each of the matrices of spectra in the file;

for instance nrows = c (256,256, 256) would indicate that the file stores spectra
associated with 3 datasets, each of which contains 256 wavelengths. If nrows is
not given, then a single file containing all data is written.

https://doi.org/10.1007/s11075-008-9235-2
https://doi.org/10.1007/s11075-008-9235-2

examineFit 15

Value

No return value, called for side effects

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

readData

examineFit Examines the results of a call to fitModel

Description

Examine the results of a call to fitModel by a call to plotting functions; call this function with
argument an object returned from fitModel. Possibly also supply a new specification of plots to be
generated.

Usage

examineFit(resultfitModel, opt=vector())

Arguments

resultfitModel list returned by a call to fitModel

opt possibly an object of class opt giving options for plotting; if opt has length zero
(the default) then the plotting options given in the opt list of resultFitModel
are applied
Details

The fitModel function returns a list of results, and initiates plotting functions. Given the resultfitModel
list fitModel returns, examineFit initiates the plotting functions, and thus may be used to examine
results.

Value

No return value, called for side effects

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also
fitModel, opt

16 fitModel

fit-class Class "fit" to store the results of model fitting associated with all
datasets analyzed.

Description

Class to store results of model fitting associated with all datasets in a single call to the fitModel
function. An object of class fit is stored in the slot fit of objects of class multimodel.

Objects from the Class

Objects can be created by calls of the form new("fit", ...).

Slots

rss

resultlist: Object of class "1ist” that contains an object of class res for each dataset modeled,
in the order that they were specified.

nlsres: Object of class "1ist"” containing named elements

* onlsoutput of the call to nls used in model optimization.

¢ sumonlsresult of call summary(onls)

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

res-class, multimodel-class

fitModel Performs optimization of (possibly multidataset) models.

Description

Performs optimization of (possibly multidataset) models and outputs plots and files representing the
fit of the model to the data.

Usage

fitModel(data, modspec=list(), datasetind = vector(),
modeldiffs = 1list(), opt = opt(),lprogress=FALSE)

fitModel 17

Arguments

data list of objects of class dat containing the data to be modeled

modspec list whose elements are models of class dat describing the models as results
from a call to the function initModel

datasetind vector that has the same length as data; for each dataset in data specify the
model it should have as an index into modspec; default mapping is that all
datasets use the first model given in modspec

modeldiffs list whose elements specify any dataset-specific model differences.

* linkclp list of vectors containing the indices of datasets. If the two dataset
indices are in the same vector, their conditionally linear parameters will
be equated if they represent the same condition (e.g., a wavelength) within
thresh. For example, linkclp = 1ist(1:10, 11:15) will let datasets 1-
10 and 11-15 have the same clp. Note that if 1inkclp is not given, it will
default to 1list{1:1length(data)}, so that the clp from all datasets are
equated when they represent conditions within thresh of each other.
Consider the situation where the clp from many different datasets are equated.
Then it is important to note that the specification of constraints appli-
cable to the clp will also be equated, and will be read from the model
assigned to the first dataset in the group.

* dscal list of lists specifying linear scaling relations between datasets; each
list has elements to, from, value. The index of the dataset to be scaled is
given in to; the index of the dataset on which the scaling is to be based is
given in from. The starting value parameterizing the relationship is given as
value. For example, dscal = list(list(to=2,from=1,value=.457)).

* thresh numeric describing the tolerance with which clp from different datasets
are to be considered as equal. For instance, for two datasets containing data
at 750 and 751 nm, respectively, thresh=1.5 will equate the clp at 750 and
751 between datasets. Specify a negative value of thresh to estimate clp
per-dataset. See Section 2.2 of the paper in the references for the model
equations.

* free list of lists specifying individual parameters to free for a given dataset.
each sublist has named elements

what character string naming parameter type, e.g., "kinpar"
ind vector of indices into parameter vector or list, e.g., c(2,3) or 4
dataset dataset index in which parameter is to be freed
start starting value for freed parameter
For example, free = list(list(what = "irfpar"”, ind =1, dataset = 2,
start=-.1932),list(what = "kinpar”, ind =5, dataset =2, start=.0004),1list(what
="kinpar", ind =4, dataset = 2, start=.0159)).
» remove list of lists specifying individual parameters to remove from param-

eter groups for a given dataset. each sublist has named elements

— what character string naming parameter type, e.g., "kinpar"

— dataset dataset index in which parameter group is to be removed

— ind vector of indices into parameter vector or list, e.g., c(2,3) or 4
where parameter should be removed

18 fitModel

* add list of lists specifying individual parameters to add to parameter groups
for a given dataset. each sublist has named elements

what character string naming parameter type, e.g., "kinpar"

dataset dataset index in which parameter group is to change

start starting value for added parameter

ind vector of indices into parameter vector or list, e.g., c(2,3) or 4
where parameter should be added.
* changelist of lists specifying entire parameter groups to change for a given
dataset. each sublist has named elements
— what character string naming parameter type, e.g., "kinpar"
— dataset dataset index in which parameter group is to change
— spec new specification that in initModel would follow "what", e.g., for
c(.1, .3) if what="kinpar"
* rel list of lists specifying parameters to relate between datasets each sublist
has named elements
— whatl character string naming parameter type to be determined in rela-
tion to some other parameter type , e.g., "kinpar"
— what?2 character string naming parameter type on which another param-
eter type is to depend, e.g., "kinpar"
— ind1 vector of indices into parameter vector or list, e.g., c(2, 3) or 4 of
the dependent parameter.
— ind2 vector or numeric of indices into parameter vector or list, e.g.,
c(2,3) or 4 of the parameter on which another parameter will depend
— dataset] dataset index of the dependent parameter
— dataset2 dataset index of the parameter on which another parameter
will depend
— rel optional character string describing functional relationship between
parameters; defaults to "lin" for linear relationship
— start starting value or vector of values parameterizing relationship be-
tween parameters
» weightlist List of new weights for the datasets returned by the function
outlierCorrs (as the element weightlList of the list that is the return
value of this function).

opt Object of class kinopt or specopt specifying fitting and plotting options.
lprogress Logical specifying whether textual output of fitting progress is returned
Details

This function applies the nls function internally to optimize nonlinear parameters and to solve for
conditionally linear parameters (clp) via the partitioned variable projection algorithm.

Value
A list is returned containing the following elements:

 currTheta is a list of objects of class theta whose elements contain the parameter estimates
associated with each dataset modeled.

fitModel 19

* currModel is an object of class multimodel containing the results of fitting as well as the
model specification

* toPlotter is a list containing all arguments used by the plotting function; it is used to regenerate
plots and other output by the examineFit function

* nlsprogress if lprogress = TRUE textual output of the fitting progress is returned as an array
of strings

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

References

Mullen KM, van Stokkum IHM (2007). “TIMP: an R package for modeling multi-way spectro-
scopic measurements.” Journal of Statistical Software, 18(3). doi:10.18637/jss.v018.103

See Also

readData, initModel, examineFit

Examples

2 simulated concentration profiles in time
C <- matrix(nrow = 51, ncol = 2)

k <- c(.5, 1)

t <- seq(@, 2, by = 2/50)

CL, 1] <- exp(- k[1] * t)

C[, 2] <- exp(- k[2] * t)

2 simulated spectra in wavelength

E <- matrix(nrow = 51, ncol = 2)

wavenum <- seq(18000,28000, by=200)

location <- c(25000, 20000)

delta <- c(5000, 7000)

amp <- c(1, 2)

E[, 11 <= amp[1] * exp(- log(2) * (2 * (wavenum - location[1])/deltal[1])"2)
E[, 2] <- amp[2] * exp(- log(2) * (2 * (wavenum - location[2])/deltal[2])"2)

simulated time-resolved spectra
sigma <- .001
Psi_q <- C %*% t(E) + sigma * rnorm(nrow(C) * nrow(E))

as an object of class dat
Psi_qg_data <- dat(psi.df = Psi_q, x = t, nt = length(t), x2 = wavenum, nl =
length(wavenum))

model for the data in the time-domain
kinetic_model <- initModel(mod_type = "kin", segmod = FALSE,
kinpar = c(.1, 2))

fit the model

https://doi.org/10.18637/jss.v018.i03

20

FLIMplots

kinetic_fit <- fitModel(data = list(Psi_g_data),
modspec = list(kinetic_model), opt = kinopt(iter=4, plot=FALSE))

FLIMplots Functions to plot FLIM results.

Description

Functions to plot FLIM results.

Usage
plotHistAmp(multimodel, t, i=1)
plotHistNormComp(multimodel, t, i=1)
plotIntenImage(multimodel, t, i=1, tit=c("Intensity Image"))
plotSelIntenImage(multimodel, t, i=1, tit=c("Region of Interest”),
cex=1)
plotTau(multimodel, t, i=1, tit=" < tau > ", plotoptions=kinopt(),
lifetimes=TRUE)
plotNormComp(multimodel, t, i=1)
Arguments
multimodel the currModel element of the list returned by fitModel
t the currTheta element of the list returned by fitModel
i dataset index to make plot for
tit Character vector giving the title

plotoptions object of class kinopt giving the plotting options

cex A numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default
lifetimes A logical value indicating whether the averages per-pixel should be for lifetimes
or their inverse, decay rates.
Value

No return value, called for side effects

Author(s)

Katharine M. Mullen, Sergey Laptenok, Ivo H. M. van Stokkum

See Also

fitModel

FLIMplots

Examples

A
READ IN DATA, PREPROCESS DATA
A

data representing only donor tagged
data("donorTagged")

D1 <- preProcess(c001, sel_time=c(25,230))
D2 <- preProcess(c003, sel_time=c(25,230))

data representing donor-acceptor tagged
data("donorAcceptorTagged”)

DA1 <- preProcess(cy@05c, sel_time=c(25,230))
DA2 <- preProcess(cy@06, sel_time=c(25,230))

FHHHEHHHEHHEEAEHEA A
READ IN MEASURED IRF, PREPROCESS IRF
SR

data("mea_IRF")
mea_IRF <- baseIRF(mea_IRF, 100, 150)[25:230]

I
SPECIFY INITIAL MODEL
A

modelC <- initModel(mod_type = "kin",

starting values for decays

kinpar=c(1.52, 0.36),

numerical convolution algorithm to use

convalg = 2,

measured IRF

measured_irf = mea_IRF,

lambdac = 650,

shift of the irf is fixed

parmu = list(@), fixed = list(parmu=1),

one component represents a pulse-following with the IRF shape
cohspec = list(type = "irf"),

parallel kinetics

seqmod=FALSE,

decay parameters are non-negative
positivepar=c("kinpar"),

title="Global CFP bi-exp model with pulse-follower")

A
FIT MODEL FOR DONOR ONLY DATA
I

21

FLIMplots

fitD <- fitModel(list(D1,D2),
list(modelC),
estimate the linear coeefficients per-dataset
modeldiffs = list(linkclp=list(1,2)),
opt=kinopt(iter=1, linrange = 10,
addfilename = TRUE,
output = "pdf”,
makeps = "globalD",
notraces = TRUE,
selectedtraces = seq(1, length(c@@1@x2), by=11),
summaryplotcol = 4, summaryplotrow = 4,
ylimspec = c(1, 2.5),
xlab = "time (ns)", ylab = "pixel number”,
FLIM=TRUE))

I
FIT MODEL FOR DONOR-ACCEPTOR DATA
A

fitDA <- fitModel(list(DA1,DA2),

list(modelC),

estimate the linear coeefficients per-dataset
modeldiffs = list(linkclp=list(1,2)),
opt=kinopt(iter=1, linrange = 10,

addfilename = TRUE,

output = "pdf"”,

makeps = "globalDA",

notraces = TRUE,

selectedtraces = seq(1, length(c@01@x2), by=11),
summaryplotcol = 4, summaryplotrow = 4,

ylimspec = c(1, 2.5),

xlab = "time (ns)"”, ylab = "pixel number”,
FLIM=TRUE))

HHHHHHHEHE AR
COMPARE THE DECAY RATES
HHHHHHAEEE
parEst(fitD)

parEst(fitDA)

HHHHHHAREE A
ADDITIONAL FIGURES
HHHEHHRREERE AR
oldpar <- par(no.readonly = TRUE)

par(mfrow=c(2,2), mar=c(1,3,1,12))

par(cex=1.5)
plotIntenImage(fitD$currModel, fitD$currTheta, 1, tit="")

par(cex=1.5)

FLIMplots

plotIntenImage(fitDA$currModel, fitD$currTheta, 1, tit="")

par(cex=1.5)
plotIntenImage(fitD$currModel, fitD$currTheta, 2, tit="")

par(cex=1.5)
plotIntenImage(fitDA$currModel, fitD$currTheta, 2, tit="")

par(oldpar)
SRR

plo <- kinopt(ylimspec = c¢(.25,1.1), imagepal=grey(seq(1,9,length=100)))
par(mfrow=c(2,2), mar=c(1,3,1,12))

par(cex=1.5)
plotTau(fitD$currModel, fitD$currTheta, 1, tit="",plotoptions=plo,
lifetimes=FALSE)

par(cex=1.5)
plotTau(fitDA$currModel, fitD$currTheta, 1, tit="",6plotoptions=plo,
lifetimes=FALSE)

par(cex=1.5)
plotTau(fitD$currModel, fitD$currTheta, 2, tit="", plotoptions=plo,
lifetimes=FALSE)

par(cex=1.5)
plotTau(fitDA$currModel, fitD$currTheta, 2, tit="", plotoptions=plo,
lifetimes=FALSE)

par(oldpar)
end donttest

HHHHHHEEHE AR

CLEANUP GENERATED FILES

B s S S

This removes the files that were generated in this example

(do not run this code if you wish to inspect the output)

file_list_cleanup = c('globalDA_paramEst.txt', 'globalDA_spec_dataset_1.txt',
'globalDA_spec_dataset_2.txt', 'globalD_paramEst.txt',
'globalD_spec_dataset_1.txt', 'globalD_spec_dataset_2.txt',
Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplotsx.pdf"))

Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {
if (file.exists(f)) {
unlink(f)
}
3

23

24 getResid

getClpindepX-methods Generic function getClpindepX in Package ‘TIMP’

Description
Gets the matrix associated with nonlinear parameter estimates for the case that this matrix is not
re-calculated per conditionally linear parameter.

Usage

getClpindepX(model, multimodel, theta, returnX, rawtheta, dind)

Arguments

model Object of class dat; function switches on this argument.

multimodel Object of class multimodel used in standard error determination

theta Vector of nonlinear parameter estimates.

returnX logical indicating whether to return a vectorized version of the X matrix

rawtheta vector of nonlinear parameters; used in standard error determination

dind numeric indicating the dataset index; used in standard error determination
Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also
dat-class
getResid For data correction, fits a model (but ignores plotting commands) in
order to obtain the SVD of the residuals, which then can be used in
data-correction.
Description

For data correction, fits a model exactly as does fitModel (but ignores plotting commands) in order
to obtain the SVD of the residuals. These residuals can then be subtracted away from the original
data to some extent with the preProcess function.

Usage

getResid(data, modspec=list(), datasetind = vector(),
modeldiffs = list(), opt = opt())

getResults 25

Arguments
data As in the fitModel function
modspec As in the fitModel function
datasetind As in the fitModel function
modeldiffs As in the fitModel function
opt As in the fitModel function
Value

list containing the first five left and right singular vectors of the residuals, as well as the first five
singular values. A weight matrix (if used) is also included in this list.

See Also

fitModel, preProcess

getResults Functions to print and return parts of the object returned by the fitting
routines.

Description

Functions to print and return parts of the object returned by fitModel. onls returns the output of
the nls function. sumonls returns the result of calling summary on onls function. parEst returns
a summary of model parameter estimates. The remaining functions return lists representing various
aspects of the results returned by the function fitModel.

Usage

onls(result)

sumnls(result)

parEst(result, param = "", dataset = NA, verbose = TRUE, file="",
stderr=TRUE)

getXList(result, group = vector(), file="")

getCLPList(result, getclperr = FALSE, file="")

getX(result, group = vector(), dataset=1, file="", lreturnA = FALSE, lreturnC = FALSE)
getC(result, dataset=1, file="")

getCLP(result, getclperr = FALSE, dataset=1, file="")

getDAS(result, getclperr = FALSE, dataset=1, file="")

getData(result, dataset = 1, weighted = FALSE)

getResiduals(result, dataset = 1)

getSVDResiduals(result, numsing = 2, dataset = 1)

getTraces(result, dataset = 1, file="")

getdiml(result, dataset = 1)

getdim2(result, dataset = 1)

26 getResults

Arguments

result return value of fitModel

param character vector of the particular parameters to return; if param=="" then all
parameters are given.

dataset index of the dataset from which to return results; by default dataset=NA in
which case results from all datasets are returned

verbose logical that defaults to TRUE that determines whether parEst just returns a list
invisibly or prints as well.

getclperr logical that defaults to FALSE that determines whether a list containing the stan-
dard error estimates associated with the conditionally linear parameters, as op-
posed to the conditionally linear parameters themselves

numsing integer that defaults to 2; determines the number of singular vectors to return

weighted logical indicating whether to return weighted or unweighted data

lreturnA logical indicating whether to return an A matrix instead

lreturnC logical indicating whether to return a C matrix instead

file character vector; if not " writes the results to a file with name file.

group The value at which to determine the X matrix (maybe a wavelength index, for
example)

stderr Whether to return standard error estimates on parameters, if they were calculated
in fitting.

Value

sumnls returns an object of class "summary.nls".
onls returns an object of class "nls".

parEst returns an object of class "list"” representing the parameter estimates and the standard
errors if stderr=TRUE and they have been calculated.

getXList returns a "1ist” of length equal to the number of datasets modeled, where each element
represents the matrix determined by the nonlinear parameters (under a kinetic model, the concen-
trations).

getCLPList returns a "1ist" of length equal to the number of datasets modeled, where each el-
ement represents the matrix determined as conditionally linear parameters (under a kinetic model,
the spectra).

getX returns a numeric "matrix” that represents the matrix determined by the nonlinear parameters
(under a kinetic model, the concentrations). However, in case lreturnC = TRUE it returns the C
matrix, and in case IreturnA = TRUE it returns the A matrix that is used to compute the C matrix in
case the kinetic model differs from parallel decays.

getC returns (under a kinetic model) a numeric "matrix” that represents the raw matrix of concen-
trations of the dataset determined by the nonlinear parameters.

getDAS returns (under a kinetic model) a numeric "matrix” that represents the Decay Associated
Spectra (DAS).

getCLPList returns a numeric "matrix” that represents the matrix determined as conditionally
linear parameters (under a kinetic model, the spectra).

getResults 27

getSVDData returns a "list"” of length 3 with named elements values, left and right, where
values contains the singular values, left contains numsing left singular vectors, and right con-
tains numsing right singular vectors, all of the unweighted data. The number of singular vectors
returned is determined by numsing.

getData returns the dataset specified by the argument dataset (weighted data in the case that
weighted=TRUE) as a "matrix”

getResiduals returns a "matrix” of residuals for the dataset with index given by the argument
dataset; the matrix returned has the dimension of the dataset itself.

getSVDResiduals returns a "list"” of length 3 with named elements values, left and right,
where values contains the singular values, lef't contains numsing left singular vectors, and right
contains numsing right singular vectors, all of the residuals. The number of singular vectors re-
turned is determined by numsing.

getTraces returns a "matrix” of model estimates for the dataset with index given by the argument
dataset; the matrix returned has the dimension of the dataset itself.

getdiml returns a "vector” of x values in the dataset (times for kinetic models).

getdim2 returns a "vector” of x2 values (wavelengths for kinetic models).

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also
fitModel

Examples

Example showing the addition of non-negativity constraints to
conditionally linear parameters (here the spectra associated with
a kinetic model)

For the 1st simulated dataset, the constraints offer a modest improvement
in the estimated spectra, whereas for the 2nd simulated dataset, they

prevent a catastrophe in which the estimated components are hugely

compensating.

HHHHHHARHE R

load TIMP

HHHEHHAEEEEH R

require(TIMP)

HHHHHHARHE

set random seed for reproducability of noise

A

set.seed(80)

28

getResults

B s S S S S
SIMULATE DATA, noise realization 1
HHHEHHAREEH AR

dt4 <- simndecay_gen(kinpar = c(.4, .8, 2), seqgmod = FALSE, tmax
= 2, deltat = .04, specpar = list(c(25000, 3000, .01), c(22000,
3000, .01), c(18000, 3000, .01)), lmin=350, lmax=550, deltal = 2,
sigma=.01)

IR
SPECIFY INITIAL MODEL
I

mod1 <- initModel(mod_type = "kin", kinpar = c(.4, .8, 2),
seqmod=FALSE)

HHHHAHHHAHHAA A
FIT INITIAL MODEL
A

sT <- fitModel(list(dt4), list(mod1), opt=kinopt(iter=50, plot=FALSE))

HHHHHHAEEE AR

EXTRACT ESTIMATED SPECTRA

these spectra have some negative values
HHHHHHEEEEE AR

sTcp <- getCLP(sT)

plot the estimated spectra with the values used in
simulation (before adding noise) for comparison
matplot(dt4@x2, sTcp, xlab = "wavelength (nm)"”, col = 2:4, type="1",
ylab="" 1ty=1, main =
paste("Estimated spectra, adding no constraints\n"))
matplot(dt4@x2,dt4@E2, add=TRUE, type="1", col=1, lty=2)
abline(0,0)

HHHHHHAEEE A

FIT INITIAL MODEL

adding constraints to non-negativity of the
spectra via the opt option nnls=TRUE
HHHEHHHEHE AR

sV <- fitModel(list(dt4), list(mod1), opt=kinopt(iter=50, nnls=TRUE,
plot=FALSE))

HHHHHHAEEE A

EXTRACT ESTIMATED SPECTRA

these spectra have no negative values
HHHHHHAEEE R

getResults 29

sVep <- getCLP(sV)

plot the estimated spectra with the values used in
simulation (before adding noise) for comparison
matplot(dt4@x2, sVcp, xlab = "wavelength (nm)", col = 2:4, type="1",
ylab="" 1ty=1,
main = paste("Estimated spectra, with non-negativity constraints\n"))
matplot(dt4@x2,dt4@E2, add=TRUE, type="1", col=1, lty=2)
abline(0,0)

HHHHHHAREHE A
SIMULATE DATA, noise realization 2
B s S

dt4_2 <- simndecay_gen(kinpar = c(.4, .8, 2), segmod = FALSE, tmax
= 2, deltat = .04, specpar = list(c(25000, 3000, .01), c(22000,
3000, .01), c(18000, 3000, .01)), 1lmin=350, lmax=550, deltal = 2,
sigma=.01)

R
SPECIFY INITIAL MODEL
I

mod1 <- initModel(mod_type = "kin", kinpar = c(.4, .8, 2),
seqmod=FALSE)

B S S S S s
FIT INITIAL MODEL
HHHHAHRHHRHAHAHRHRHRHAE

sT <- fitModel(list(dt4_2), list(mod1l), opt=kinopt(iter=50,plot=FALSE))

HHHHHHAEEE A

EXTRACT ESTIMATED SPECTRA

these spectra have some negative values
HHHEHHEEEEE AR

sTcp <- getCLP(sT)

plot the estimated spectra with the values used in
simulation (before adding noise) for comparison
matplot(dt4@x2, sTcp, xlab = "wavelength (nm)"”, col = 2:4, type="1",
ylab="" 1ty=1, main =
paste("Estimated spectra, adding no constraints\n"))
matplot(dt4@x2,dt4@E2, add=TRUE, type="1", col=1, lty=2)
abline(0,0)

HHHEHHEEEERE AR

FIT INITIAL MODEL

adding constraints to non-negativity of the
spectra via the opt option nnls=TRUE
HHHEHHAEHEE R

30 initModel

sV <- fitModel(list(dt4_2), list(mod1), opt=kinopt(iter=50, nnls=TRUE,
plot=FALSE))

HHHEHHEREEH AR

EXTRACT ESTIMATED SPECTRA

these spectra have no negative values
B S S

sVep <- getCLP(sV)

plot the estimated spectra with the values used in
simulation (before adding noise) for comparison
matplot(dt4@x2, sVcp, xlab = "wavelength (nm)", col = 2:4, type="1",
ylab="" 1ty=1,
main = paste(”"Estimated spectra, with non-negativity constraints\n"))
matplot(dt4@x2,dt4@E2, add=TRUE, type="1", col=1, lty=2)
abline(0,0)

end donttest

HHHHHHAEEER AR

CLEANUP GENERATED FILES

HHHHHHHHHHEE A

This removes the files that were generated in this example

(do not run this code if you wish to inspect the output)

file_list_cleanup = c(Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplots*.pdf"))

Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {
if (file.exists(f)) {
unlink(f)
}
3

initModel Defines the model to be used in analysis.

Description

Allows definition of a model of class "dat" to be used in analysis. The arguments specify the model.

Usage

initModel(...)

initModel 31

Arguments
specify the model class via the character string e.g., kin-class or spec and any
of the slots associated with that model type (which is a subclass of class dat, so
that all slots in dat may also be specified), e.g., mod_type = "kin" will initialize
a model with class kin, for a kinetic model.

Details

For examples, see the help files for dat-class and fitModel

Value

an object of class dat with the sub-class given by the value of the mod_type input.

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

dat-class, kin-class, spec-class, fitModel

Examples

THHHEHHHEHHEEAAEEEA A
READ IN PSI 1
A

data(denS4)

HHHEHHAEHEE A

PREPROCESS PSI 1

HHHHHHHEEE A

denS4<-preProcess(data = denS4, scalx2 = c(3.78, 643.5))
HHHEHHAEEE A

READ IN PSI 2

HHHHHHEEEE AR

data(denS5)

HHHEHHPRHEEEE AR

PREPROCESS PSI 2

HHHHHHPEEEE AR

denS5<-preProcess(data = denS5, scalx2 = c(3.78, 643.5))
HHHEHHRRHEH AR

DEFINE INITIAL MODEL
FHHHEHHHAHH A

32

model1<- initModel(mod_type = "kin",

kinpar= c(7.9, 1.08, 0.129, .0225, .00156) ,
irfpar=c(-.1018, 0.0434),

disptau=FALSE, dispmu=TRUE, parmu = list(c(.230)),
lambdac = 650,

segmod=TRUE,

positivepar=c("kinpar"),

title="S4",

cohspec = list(type = "irf"))

AR
FIT INITIAL MODEL
I

denRes1 <- fitModel(data=list(denS4, denS5), list(modell),
opt=kinopt(iter=5, divdrel = TRUE, linrange = .2,

makeps = "den1"”, selectedtraces = c¢(1,5,10), plotkinspec =TRUE,
output="pdf"”, xlab = "time (ps)”, ylab = "wavelength"))

HHH A
REFINE INITIAL MODEL, RE-FIT
adding some per-dataset parameters
HHHH A A

denRes2 <- fitModel(data = list(denS4, denS5), modspec = list(modell),
modeldiffs = list(dscal = list(list(to=2,from=1,value=.457)),

free = list(

list(what = "irfpar”, ind = 1, dataset = 2, start=-.1932),

list(what = "kinpar"”, ind = 5, dataset = 2, start=.0004),

list(what = "kinpar"”, ind = 4, dataset = 2, start= .0159)

)),

opt=kinopt(iter=5, divdrel = TRUE, linrange = .2,

xlab = "time (ps)"”, ylab = "wavelength"”, output="pdf",

makeps = "den2", selectedtraces = c¢(1,5,10)))

IR
REFINE MODEL FURTHER AS NEW MODEL OBJECT
IR

model2 <- initModel(mod_type = "kin",

kinpar= c(7.9, 1.08, 0.129, .0225, .00156),
irfpar=c(-.1018, 0.0434),

parmu = list(c(.230)),

lambdac = 650,

positivepar=c("kinpar”, "coh"),

cohspec = list(type = "seq", start = c(8000, 1800)))

AR
FIT NEW MODEL OBJECT
A

initModel

kin-class 33

denRes3 <- fitModel(data = list(denS4, denS5), list(model2),
modeldiffs = list(dscal = list(list(to=2,from=1,value=.457)),
free = list(

list(what = "irfpar”, ind = 1, dataset = 2, start=-.1932),
list(what = "kinpar"”, ind = 5, dataset = 2, start=.0004),
list(what = "kinpar”, ind = 4, dataset = 2, start= .0159)

),

opt=kinopt(iter=5, divdrel = TRUE, linrange = .2,

makeps = "den3", selectedtraces = ¢(1,5,10), plotkinspec =TRUE,
stderrclp = TRUE, kinspecerr=TRUE, output="pdf",

xlab = "time (ps)”, ylab = "wavelength”,

breakdown = list(plot=c(643.50, 658.62, 677.5))))

end donttest

HHHHHHAEHH

#i# CLEANUP GENERATED FILES

B s s S

This removes the files that were generated in this example

(do not run this code if you wish to inspect the output)

file_list_cleanup = c('denl_paramEst.txt', 'den2_paramEst.txt', 'den3_paramEst.txt',
Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplots*.pdf"))

Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {
if (file.exists(f)) {
unlink(f)
}
3

kin-class Class "kin" for kinetic model storage.

Description

kin is the class for kinetic models; an object of class "kin" is initialized if mod_type = "kin" is an
argument of initModel. All objects of class kin are sub-classes of class dat; see documentation
for dat for a description of these slots.

Details

See dat-class for an example of the initialization of a kin object via the initModel function.

Objects from the Class

Objects can be created by calls of the form new("kin", ...) orkin(...). Slots whose description
are marked with *** may be specified in the ... argument of the initModel function.

34 kin-class

Slots

anipar
anispec
autoclp0

C2

chinde

clinde

clp0

clpCon
clpdep
clpequ
clpequspecBD
clpType
cohcol

cohirf
datafile
datCall

drel

dscal
dscalspec
dummy: Object of class "1ist"” of dummy parameters which can be used in complex relations
E2

fixed
fixedkmat
free

fvecind

getX
getXsuper
highcon

inten
kin2scal
kinpar2
kinscalspecial
kinscalspecialspec
Iclp0

Iclpequ

title

kin-class

parnames
prel

prelspec

psi.df
psi.weight
pvecind

satMat

scalx
usecompnames(
usecompnamesequ
usekin2

weight
weightList
weightM
weightpar
weightsmooth

X

x2

clpequspec
compnames
constrained
iter
lightregimespec
lowcon

makeps

mbhist
mod_type
mvecind
ncomp

nl

nt

nvecind

outMat
positivepar
sigma

simdata

speckin2

36

kin-class

kinpar *** vector of rate constants to be used as starting values for the exponential decay of
components; the length of this vector determines the number of components of the kinetic
model.

specpar: *** Object of class "1ist"” parameters for spectral constraints

segmod: *** Object of class "logical” that is TRUE if a sequential model is to be applied and
FALSE otherwise

irf: Object of class "logical” that is TRUE is an IRF is modeled and FALSE otherwise
mirf: Object of class "logical” that is TRUE if a measured IRF is modeled and FALSE otherwise
measured_irf: *¥** Object of class "vector” containing a measured IRF

convalg: *** Object of class "numeric” 1-3 determining the numerical convolution algorithm
used in the case of modeling a measured IRF; if 3 then supply a reference lifetime in the slot
reftau.

reftau: *** Object of class "numeric” containing a reference lifetime to be used when convalg=3

irffun: *** Object of class "character” describing the function to use to describe the IRF, by
default "gaus"

irfpar: *** Object of class "vector” of IRF parameters; for the common Gaussian IRF this
vector is ordered c(location, width)

dispmu: Object of class "logical” that is TRUE if dispersion of the parameter for IRF location is
to be modeled and FALSE otherwise

dispmufun: ***QObject of class "character” describing the functional form of the dispersion of
the IRF location parameter; if equal to "discrete" then the IRF location is shifted per element
of x2 and parmu should have the same length as x2. defaults to a polynomial description

parmu: *** Object of class "1ist" of starting values for the dispersion model for the IRF location

disptau: Object of class "logical” thatis TRUE if dispersion of the parameter for IRF width is to
be modeled and FALSE otherwise

disptaufun: *** Object of class "character” describing the functional form of the dispersion
of the IRF width parameter; if equal to "discrete” then the IRF width is parameterized
per element of x2 and partau should have the same length as x2. defaults to a polynomial
description

partau: *** Object of class "vector” of starting values for the dispersion model for the IRF
FWHM

fullk: Object of class "logical” that is TRUE if the data are to be modeled using a compartmental
model defined in a K matrix and FALSE otherwise

kmat: *** Object of class "array” containing the K matrix descriptive of a compartmental model

jvec: *** Object of class "vector"” containing the J vector descriptive of the inputs to a compart-
mental model

ncolc: Object of class "vector"” describing the number of columns of the C matrix for each clp in
X2

kinscal: *** Object of class "vector” of starting values for branching parameters in a compart-
mental model

kmatfit: Object of class "array” of fitted values for a compartmental model

kin-class 37

cohspec: *** QObject of class "1ist"” describing the model for coherent artifact/scatter compo-
nent(s) containing the element type and optionally the element numdatasets. The element
type can be set as follows:

"irf": if type="1irf", the coherent artifact/scatter has the time profile of the IRF.

"freeirfdisp”: if type="freeirfdisp”, the coherent artifact/scatter has a Gaussian time
profile whose location and width are parameterized in the vector coh.

"irfmulti”: if type="irfmulti” the time profile of the IRF is used for the coherent ar-
tifact/scatter model, but the IRF parameters are taken per dataset (for the multidataset
case), and the integer argument numdatasets must be equal to the number of datasets
modeled.

n n

seq”: if type="seq" a sequential exponential decay model is applied, whose starting value
are contained in an additional list element start. This often models oscillating behavior
well, where the number of oscillations is the number of parameter starting values given
in start. The starting values after optimization will be found in the slot coh of the object
of class theta corresponding to each dataset modeled.

noson

mix": if type="mix" if type="mix" a sequential exponential decay model is applied along
with a model that follows the time profile of the IRF; the coherent artifact/scatter is then
a linear superposition of these two models; see the above description of seq for how to
supply the starting values.

coh: *#* Object of class "vector” of starting values for the parameterization of a coherent artifact

oscspec: *** Object of class "1ist" describing the model for additional oscillation component(s)
containing the element type and optionally the element start. The element start can be
used to specify the starting values for the oscillation function. The element type can be set as
follows:

"harmonic”: if type="harmonic”, the oscillation function is a damped harmonic oscillator.
oscpar: *** Object of class "vector” of starting values for the oscillation parameters

wavedep: Object of class "logical” describing whether the kinetic model is dependent on x2
index (i.e., whether there is clp-dependence)

lambdac: *** Object of class "numeric” for the center wavelength to be used in a polynomial
description of x2-dependence

amplitudes: *** QObject of class "vector” that may be used to multiply the concentrations by a
square diagonal matrix with the number of columns that the concentration matrix has; the di-
agonal is given in amplitudes and these values will be treated as parameters to be optimized.

streak: *** Object of class "logical” that defaults to FALSE; if streak=TRUE then the period of
the laser is expected via streakT.

streakT: *** Object of class "numeric” the period of the laser; this will be used to add a back-
sweep term to the concentration matrix and should be set in conjunction streak=TRUE.

doublegaus: *** Object of class "logical” that defaults to FALSE and determines whether a dou-
ble Gaussian should be used to model the IRF. If doublegaus=TRUE then irfpar should con-
tain four numeric values corresponding to the location (mean) of the IRF, the FWHM of the
first Gaussian, the FWHM of the second Gaussian, and the relative amplitude of the second
Gaussian, respectively.

multiplegaus: *** Object of class "logical” that defaults to FALSE and determines whether
multiple Gaussians should be used to model the IRF. If multiplegaus=TRUE then irfpar

38 kin-class

should contain: two numeric values corresponding to the location (mean) and the FWHM of
the first Gaussian of the IRF, and three numeric values for each additional gaussian modeled,
corresponding to the relative scaling to the first gaussian, the shift (in time) relative to the first
gaussian and the FWHM of the additional Gaussian, respectively.

numericalintegration: *** Object of class "logical” that defaults to FALSE and determines
whether a kinetic theory model of a reaction mechanism should be numerically integrated (us-
ing deSolve) to find the concentrations. If numericalintegration=TRUE then initialvals
should specify the initial concentrations and reactantstoichiometrymatrix and stoichiometrymatrix
should specify the reaction mechanism, as per Puxty et. al. (2006).

initialvals: *** Object of class "vector” giving the concentrations at the initial time step.

reactantstoichiometrymatrix: *** Object of class "vector” giving the (integer) stoichiomet-
ric coefficients for the reactants; this is the matrix Xr of Puxty et. al. (2006) with dim=NULL.

stoichiometrymatrix: *** Object of class "vector” giving the (integer) stoichiometric coeffi-
cients for the reactions; this is the matrix X of Puxty et. al. (2006) with dim=NULL.
Extends

Class dat-class, directly.

Author(s)
Katharine M. Mullen, David Nicolaides, Ivo H. M. van Stokkum

References

Puxty, G., Maeder, M., and Hungerbuhler, K. (2006) Tutorial on the fitting of kinetics models to
multivariate spectroscopic measurements with non-linear least-squares regression, Chemometrics
and Intelligent Laboratory Systems 81, 149-164.

See Also

dat-class, spec-class

Examples
Example in modeling second order kinetics, by
David Nicolaides.

On simulated data.

A
load TIMP
AR

library("TIMP")
S

SIMULATE DATA
A

kin-class

set up the Example problem, a la in-situ UV-Vis spectroscopy of a simple
reaction.
A+ 2B ->C+ D, 2C > E

cstart <- c(A=1.0, B=0.8, C=0.0, D=0.0, E = 0.0)
times <- c(seq(0,2, length=21), seq(3,10, length=8))
k <- c(kA = 0.5, k2€ = 1)

stoichiometry matrices

rsmatrix <- ¢(1,2,0,0,0,0,0,2,0,0)
smatrix <- ¢(-1,-2,1,1,0,0,0,-2,0,1)
concentrations <- calcD(k, times, cstart, rsmatrix, smatrix)

wavelengths <- seq(500, 700, by=2)

spectra <- matrix(nrow = length(wavelengths), ncol = length(cstart))
location <- c¢(550, 575, 625, 650, 675)

delta <- c(10, 10, 10, 10, 10)

spectral, 1] <- exp(- log(2) *

(2 * (wavelengths - location[1])/deltal1])*2)
spectral, 2] <- exp(- log(2) *

(2 * (wavelengths - location[2])/delta[2])*2)
spectral, 3] <- exp(- log(2) *

(2 * (wavelengths - location[3])/delta[31)*2)
spectral, 4] <- exp(- log(2) *

(2 * (wavelengths - location[4])/deltal4])"2)
spectral, 5] <- exp(- log(2) *

(2 * (wavelengths - location[5])/deltal[5]1)"2)

sigma <- .001
Psi_q <- concentrations %*% t(spectra) + sigma *
rnorm(dim(concentrations)[1] * dim(spectra)[1])

store the simulated data in an object of class "dat”
kinetic_data <- dat(psi.df=Psi_g , x = times, nt = length(times),
x2 = wavelengths, nl = length(wavelengths))

IR R
DEFINE MODEL
IR

starting values
kstart <- c(kA = 1, k2C = 0.5)

model definition for 2nd order kinetics

kinetic_model <- initModel(mod_type = "kin", segmod = FALSE,
kinpar = kstart,
numericalintegration = TRUE,
initialvals = cstart,
reactantstoichiometrymatrix = rsmatrix,
stoichiometrymatrix = smatrix)

A

40

kinopt-class

FIT INITIAL MODEL

adding constraints to non-negativity of the
spectra via the opt option nnls=TRUE
HHHEHHAREEH AR

kinetic_fit <- fitModel(data=list(kinetic_data),
modspec = list(kinetic_model),
opt = kinopt(nnls = TRUE, iter=80,
selectedtraces = seq(1,kinetic_data@nl,by=2)))

look at estimated parameters
parEst(kinetic_fit)

various results

concentrations

conRes <- getX(kinetic_fit)

matplot(times, conRes, type="b", col=1,pch=21, bg=1:5, xlab="time (sec)”,
ylab="concentrations”, main="Concentrations (2nd order kinetics)")

spectra
specRes <- getCLP(kinetic_fit)

matplot(wavelengths, specRes, type="b", col=1,pch=21, bg=1:5,
xlab="wavelength (nm)",
ylab="amplitude”, main="Spectra")

see help(getResults) for how to get more results information from
kinetic_fit

HHHEHHEEEEE A
CLEANUP GENERATED FILES
HHHEHHHEEE AR
This removes the files that were generated in this example
(do not run this code if you wish to inspect the output)
file_list_cleanup = c(Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplots*.pdf"))
Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {

if (file.exists(f)) {

unlink(f)

}

3

kinopt-class Class "kinopt" stores options for fitting and plotting kinetic models

kinopt-class 41

Description

Class "kinopt" stores options for fitting and plotting kinetic models in particular; this is a subclass
of class opt

Details

See opt-class for the specification of fitting/plotting options that are not specific to the class type.

Objects from the Class

Objects can be created by calls of the form new("kinopt”, ...) or kinopt(...)

Slots

notraces: Object of class "logical” that defaults to FALSE; if TRUE, do not plot traces

selectedtraces: Object of class "vector” containing x indices for which plots of traces are
desired under a kinetic model

breakdown: Object of class "1ist"” with the following elements:

* plotvector of x2 values to plot the breakdown for. These values be specified in a fuzzy
way: an x2 value within abs(x2[1] - x2[2])/10@ a value given in plot means that a
plot for that x2 value will be generated, where the reference x2[1] and x2[2] are from
the first dataset modeled.

* tolnumeric giving a tolerance by which the values in plot are compared to x2 values for
near-equality. The default is defined as abs(x2[1] - x2[2]1)/100.

* superimposevector of dataset indices for which results should be superimposed if the
dataset has an x2 value at a value in plot.

FLIM Object of class "logical” that defaults to FALSE; if TRUE, the data represent a FLIM exper-
iment and special plots are generated.

FLIMresidimag Object of class "logical” that defaults to TRUE; if FALSE and a FLIM image is
analyzed, the residuals are not plotted as an image.

noFLIMsummary Object of class "logical” that defaults to FALSE; if TRUE and a FLIM image
is analyzed, only other plots requested by the user (such as traces or residuals) are generated,
and no summary plot in made.

kinspecest Object of class "logical” that defaults to FALSE; if TRUE, make a plot of the spectra
associated with the kinetic components as well as the lifetime estimates.

writeplaincon Object of class "1ist”; if length is greater than O, then the concentration model
will be evaluated at the vector of x values supplied as the element "x" of writeplaincon and
the result will be written to file for each dataset.

writerawcon Object of class "logical” that defaults to FALSE; if TRUE, then the representation of
the concentration profiles before the application of constraints (to account for the equality of
spectra, etc.) is written to file for each dataset.

plotcohcolspec Object of class "logical” that defaults to TRUE; if FALSE then the spectra associ-
ated with the coherent artifact (pulse-follower) are not included in the summary plots

plotpulsefol: Object of class "logical” defaults to FALSE; if TRUE adding imageplots of pulse-
folower amplitudes in summary plot (only with FLIM plots).

kinopt-class

ylimcomp Object of class "vector” that defaults to vector(); Works In the case of plotting the
results of FLIM image analysis, ylimspec can be used to determine the range used in the
image plot of normalized amplitudes.

addfilename
addest
adddataimage
algorithm
coldata

colfit

divdrel
getStartTri
imagepal

iter
kinspecerr
linrange
Itydata

Ityfit

makeps
maxfev
minFactor
nlsalgorithm
nnls

nnlscrit
noplotest
normspec
optimmethod
output
paropt
parscale

plot
plotkinspec
residplot
residtraces
samespecline
specinterpol
specinterpolbspline
specinterpolpoints

specinterpolseg

kinopt-class

stderrclp
summaryplotcol
summaryplotrow
sumnls
superimpose
title

trilinear
triStart
writeclperr
writecon
writedata
writefit
writefitivo
writenormspec
writespec
writespecinterpol
xlab

xlim

xlimspec

ylab

ylimspec

ylimspecplus

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

examineFit, fitModel, opt-class, specopt-class

44 mass-class

mass-class Class "mass" for mass spectrometry model storage.

Description

mass is the class for mass spectrometry models; an object of class "mass" is initialized if mod_type
= "mass" is an argument of initModel. All objects of class mass are sub-classes of class kin; see
documentation for kin for a description of these slots.

Details

See kin-class for an example of the initialization of a kin object via the initModel function.

Objects from the Class

Objects can be created by calls of the form new("mass”, ...) orkin(...).

Slots
peakpar list of vectors of starting values for the parameters of components; one vector of values is
used to parameterize each component.

peakfunct: Object of class "character” that specifies the function by which components are pa-
rameterized in time; this is by default "expmodgaus" for the exponentially modified Gaussian
function.

1zerofile: Object of class "character” that specifies the filename of the 1zero specification to
read in from file. This file has the format: 1st line not read; lines thereafter are the space-
delimited index of the component to constrain, the lower bound of the constraint, and the
upper bound of the constraint, e.g., 1 218.80 220.09

extracomp: Object of class "logical” that defaults to TRUE and determines whether a component
with constant concentration in time is added to the model to represent a baseline.

shift: Object of class "vector” that represents a shift of the location of each elution profile
peak; this can be specified per-component, in which case length(shift) is the number
of components (not including a baseline component) or for all components, in which case
length(shift ==1).
Extends

Class kin-class, directly.

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

kin-class, spec-class

massopt-class 45

massopt-class Class "massopt" stores options for fitting and plotting models for mass
spectrometry data

Description
Class "massopt" stores options for fitting and plotting models models for mass spectrometry data in
particular; this is a subclass of class opt that contains options applicable to all model types
Details
See opt-class and for the specification of fitting/plotting options that are not specific to the mass
class type.
Objects from the Class

Objects can be created by calls of the form new("massopt”, ...) ormassopt(...)

Slots

axis.by: Object of class "numeric” that allows labels on the bars representing the mass spectra
to to skipped, e.g., axis.by=2 will add a label to every second bar

scale.concen: Objectof class "logical” that scales the concentration matrix using the algorithm
found in the function scaleConList.

nummaxtraces: Object of class "nummaxtraces” that defaults to zero; if greater than zero then this
number of the traces with the maximum amplitude are plotted

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

examineFit, fitModel, opt-class, specopt-class

mea_IRF Instrument response for fluorescent lifetime imaging microscopy
(FLIM) data

Description

A measured instrument response over 256 time channels for a set of fluorescent lifetime imaging
microscopy (FLIM) datasets.

46 modifyModel

Usage

data("mea_IRF")

Format

mea_IRF represents a measured instrument response as a numeric vector over 256 time channels.

Details

See FLIMplots for examples using this data.

References

This data was described in

Mullen KM, van Stokkum IHM (2008). The variable projection algorithm in time-resolved spec-
troscopy, microscopy and mass-spectroscopy applications, Numerical Algorithms, in press, doi:10.1007/
s1107500892352.

modifyModel Allows the starting values for parameters associated with a model to
be updated with the values found in fitting the model.

Description

Allows the starting values for parameters associated with a model to be updated with the values
found in fitting the model. That is, a model is specified with initModel. Then fitModel is used to
optimize the starting values for parameters. modifyModel allows modification of the starting values
in the model specification with the optimized values found via fitModel.

Usage

modifyModel (model = list(), newest = list(), exceptslots = vector())

Arguments

model an object of class dat returned by initModel; if this argument is of length (@),
which is the default, then the last model fit is used (which is found in the global
variable . currModel@model)

newest an object of class theta containing new parameter estimates; if this argument is
of length (@), which is the default, then the parameter estimates associated with
dataset 1 in the last model fit are used (which are found in the global variable
.currThetal[1]])

exceptslots a vector of character vector of slot names whose corresponding slots are to be

left out of the update

https://doi.org/10.1007/s11075-008-9235-2
https://doi.org/10.1007/s11075-008-9235-2

multimodel-class 47

Value

an object of class dat that returns the results of calling initModel with the new starting values.

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

initModel, fitModel

multimodel-class Class "multimodel” for storage of multidataset models, data and the
results of fitting.

Description

multimodel is the class to store data, a generally applicable model, a list of per-data models, a
specification of per-dataset model differences, and results for the analysis of possibly many datasets.
After a call to fitModel an object is initialized of the multimodel class.

Details

after a call to fitModel, an object of class multimodel exists in the global environment as the
variable currModel

Objects from the Class

Objects can be created by calls of the form new("multimodel”, ...) ormultimodel(...).

Slots

data: Object of class "1ist"” of objects of class dat containing data

modellist: Object of class "list” of length n where n is the number of datasets given in data,
and each element i is an object of class dat giving the dataset-specific model applicable to
datal[i]]

modeldiffs: Object of class "1list"” of per-dataset model differences input as an argument to the
fitModel function

fit: Object of class "fit"” containing a list of results per-dataset as well as the output of optimiza-
tion returned by the nls function.

groups: Object of class "1ist” containing a list of lists of the groups of clp to link across datasets.
Each component list contains vectors of form (clp condition index, dataset index), and such
vectors in the same component list are linked between datasets. See fitModel for more details
on the linking possibilities.

48 multitheta-class

stderrclp: Object of class "logical” describing whether standard error estimates on condi-
tionally linear parameters should be calculated; this is determined by the opt argument of
fitModel and defaults to FALSE

algorithm
datasetind
finished
getXsuper
modelspec
nclp

nnls

nnlscrit
optlist
parorder
parorderchange
parorderdiff

trilinear

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also
fitModel
multitheta-class Class "multitheta"” that stores a list with one element of class "theta"
for each dataset modeled.
Description

Class multitheta stores a list with one element of class theta for each dataset modeled, corre-
sponding to the parameter estimates associated with that dataset.

Objects from the Class

Objects can be created by calls of the form new("multitheta”, ...) ormultitheta(...).

Slots

th: Object of class "list"” with element i corresponding to the theta object for the ith dataset
modeled.

opt-class 49

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

theta-class, dat-class

opt-class Class "opt" stores options for fitting and plotting

Description

Class "opt" stores options for fitting and plotting applicable to all model types

Details

See kinopt-class, specopt-class and massopt-class for the specification of fitting/plotting
options that are specific to the class type.

Objects from the Class

Objects can be created by calls of the form new("opt”, ...) oropt(...).

Slots
getStartTri

imagepal
maxfev
minFactor
nnlscrit
noplotest
notraces
optimmethod
parscale
residtraces
selectedtraces
sumnls
trilinear
triStart
writedata
writefitivo

xlim

50

opt-class

algorithm: Object of class "character” that defaults to algorithm="nls", so that the function
nls is used to optimize nonlinear parameters under least squares criteria. Other options are

nls.1lm: optimize nonlinear parameters under least squares criteria using nls.1m

optim: optimize nonlinear parameters under poisson regression criteria with the Nelder-Mead
algorithm in optim; if this option is used then it MUST be used in conjunction with
nnls=TRUE. Currently, it must also be used with stderrclp=FALSE.

nnls: Object of class "logical” that defaults to FALSE. If nn1s=TRUE, constrain the conditionally
linear parameters to nonnegativity via a nonnegative least squares algorithm as implemented
via the function nnls from the package by the same name.

writecon: Object of class "logical” that defaults to FALSE; if true then concentrations are written
to a txt file; row labels are x

writespec: Object of class "logical” that defaults to FALSE; if TRUE then spectra are written to a
txt file; row labels are x2

writenormspec: Object of class "logical” that defaults to FALSE; if TRUE then normalized spectra
are written to a txt file; row labels are x2

writefit: Object of class "logical” that defaults to FALSE; if TRUE then fit is written to a txt file;
row and column labels are x and x2

writeclperr: Object of class "logical” that defaults to FALSE; if true then the error bars for clp
are written to a txt file. This option is only sensible with stderrclp=TRUE.

output: Object of class "character” that defaults to "ps”, which means that plots written to file
are postscript. Alternatively, specify output = "pdf”, and plots are written as pdf files

addfilename: Object of class "logical” that, for each data file, tries to add the filename to plots
associated with output for that data.

residplot: Object of class "logical” defaults to FALSE; if TRUE generate a plot of residuals in a
separate window.

adddataimage: Object of class "logical” defaults to FALSE; if TRUE adding imageplot of data in
summary plot.

plot: Object of class "logical” that defaults to TRUE; if FALSE then do not write output in the
form of plots and other windows to the screen.

divdrel: Object of class "logical” that defaults to FALSE; if TRUE, plot traces and concentration
profiles divided by the dataset scaling parameters where they apply; this allows for the fit of
datasets having different intensities on the same scale.

plotkinspec: Object of class "logical” that defaults to FALSE; if TRUE, generates a separate plot
of the spectra associated with the components that are not a part of a coherent artifact/scatter
model.

superimpose: Object of class "vector” containing dataset indices whose results should be super-
imposed in plots

xlab: Object of class "character” containing label for x-axis, e.g., "nanoseconds” or "picoseconds”

ylab: Object of class "character” containing label for y-axis, e.g., "wavelength”
title: Object of class "character” containing title to write at the top of plots.

makeps: Object of class "character” containing prefix to plot files written to postscript; if present
postscript will be written. Note that this string is also used as the preffix of txt output files

opt-class 51

linrange: Object of class "numeric” giving linear range of time axis for plotting; time will be
plotted linearly from -linrange to linrange and plotted on a logarithmic (base 10) axis else-
where

summaryplotrow: Object of class "numeric” giving number of rows in summary plot; defaults to
4

summaryplotcol: Object of class "numeric” giving number of columns in summary plot; defaults
to 4

iter: Object of class "numeric” giving number of iterations to optimize model parameters; if
nls=FALSE so that the Levenberg-Marquardt algorithm is applied, then iter is interpreted
as the maximum number of residual function evaluations (see the help page of the function
nls.1m for details)

paropt: Object of class "1ist"” of graphical parameters in format par(...) to apply to plots.

stderrclp: Object of class "logical” that defaults to FALSE; if TRUE, estimates of the standard
error of conditionally linear parameters are made

addest: Object of class "vector"” containing character strings of which parameter estimates should
be added to the summary plot, e.g., addest = c("kinpar”, "irfpar")

kinspecerr Object of class "logical” that defaults to FALSE; if TRUE, add standard error estimates
to the clp a plot generated with kinspecest=TRUE or plotkinspec=TRUE. This option can
only be used if the estimates were generated during fitting via the option stderrclp=TRUE

xlimspec Object of class "vector” that defaults to vector(); if changed, it should specify the
desired x-limits of the plot of clp

ylimspec Object of class "vector” that defaults to vector(); if changed, it should specify the
desired y-limits of the plot of clp. In the case of plotting the results of FLIM image analysis,
ylimspec can be used to determine the range used in the image plot of lifetimes.

ylimspecplus Object of class "vector” that defaults to vector (); if changed, the first value should
specify a vector to add to the y-limits of the plot of clp

samespecline Object of class "logical” that defaults to FALSE; if TRUE, then the line-type for clp
is the same for all datasets

specinterpol Object of class "logical” that defaults to FALSE; if TRUE, use spline instead of lines
between the points representing estimated clp

specinterpolpoints Object of class "logical” that defaults to TRUE; if TRUE, add points represent-
ing the actual estimates for clp to plots of the curves representing smoothed clp

specinterpolseg Object of class "numeric” that defaults to 50; represents the number of segments
used in a spline-based representation of clp

specinterpolbspline Object of class "logical” that defaults to FALSE; determines whether a B-
spline based representation of clp is used (when specinterpol=TRUE) or a piecewise polyno-
mial representation

normspec Object of class "logical” that determines whether clp are normalized in plots

writespecinterpol Object of class "logical” that defaults to FALSE; if TRUE, a spline-based rep-
resentation of clp is written to ASCII files

nlsalgorithm Object of class "character” that defaults to "default” and determines the algo-
rithm used by nls, if nls is used in optimization. See help(nls) for other possibilities, such
as "port”, which is more stable with respect to starting values but requires more time.

52 outlierCorr

Ityfit Object of class "numeric” if given, sets the line type of the fit in plots of the fit/data; see 1ty
in help(par) for options.

Itydata Object of class "numeric” if given, sets the line type of the data in plots of the fit/data; see
1ty in help(par) for options.

colfit Object of class "vector” if given, sets the color of the fit corresponding to each dataset in
plots of the fit/data; see col in help(par) for options. If given length(colfit) must be
equal to the number of datasets in the analysis

coldata Object of class "vector” if given, sets the color of the data for each dataset in plots of the
fit/data; see col in help(par) for options. If given, length(coldata) must be equal to the
number of datasets in the analysis

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

kinopt-class, specopt-class

outlierCorr Finds and removes outliers from a datasets

Description

Finds and removes outliers from datasets given the results of fitting as returned by fitModel. Uses
the residuals in the fitted results to return a list of corrected datasets to be used in place of the
datasets used in the call to fitModel as well as a list of weights. The data returned contains the
fitted values at pointed that are outliers and will be assigned zero weight in subsequent fits.

Usage

outlierCorr(oldRes, fence=3, saturCorr=FALSE, saturThresh=.05,
saturMin=NA, saturDivMax=3, outlierCorr=TRUE,

newM = TRUE)
Arguments
oldRes Object returned by fitModel function
fence Object of class "numeric” determining what points to consider outliers.
saturCorr whether to correct for saturation
saturThresh See code.
saturMin See code.
saturDivMax See code.
outlierCorr whether to perform outlier correction

newM whether to add to the outliers and saturation points detected previously

plotter-methods 53

Details

We calculate the fourth spread at a given value of x2 in a dataset. Those points that are less than the
first quartile minus the fourth spread times fence are outliers, as are those points that are more than
the third quartile plus the fourth spread times fence. Outliers are assigned a weight of zero and are
assigned the values found in fitting for the purpose of generating smooth-looking plots.

Value

list containing the elements dt, a list of corrected datasets, and weightlList, a list of new weight
matrices.

See Also

fitModel, preProcess

plotter-methods Generic function plotter in Package ‘TIMP’

Description

Methods for function plotter in Package “TIMP’ that call plotting and output functions.

Usage

plotter(model, multimodel, multitheta, plotoptions)

Arguments
model Object of class dat; function switches on this argument.
multimodel Object of class multimodel
multitheta Object of class multitheta
plotoptions list of output options input to fitModel as the argument opt
Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

dat-class

54

preProcess

preProcess

Performs preprocessing on data stored as an objects of class dat.

Description

Performs data sampling, selection, baseline correction, scaling, and data correction on an object of

class dat.

Usage

preProcess(data, sample = 1, sample_time = 1, sample_lambda = 1,

sel_time =

vector(), sel_lambda = vector(), baselinetime = vector(),

baselinelambda = vector(), scalx = NULL, scalx2 = NULL,
sel_lambda_ab = vector(), sel_time_ab = vector(), rm_x2=vector(),
rm_x = vector(), svdResid = list(), numV = 0@, sel_special = list(),

doubleDiff

Arguments

data

sample

sample_time

sample_lambda

sel_time

sel_lambda

baselinetime

baselinelambda

scalx

scalx2

sel_lambda_ab

= FALSE, doubleDiffFile = "doubleDiff.txt")

Object of class dat

integer describing sampling interval to take in both time and x2; e.g., sample=2
will sample every 2nd time and every 2nd point in x2.

integer describing sampling interval in time; e.g., sample_time=2 will sample
every 2nd element of the time vector.

integer describing sampling interval in x2; e.g., sample_lambda=2 will sample
every 2nd element in the x2 vector.

vector of length 2 describing the first and last time index of data to select; e.g.,
sel_time=c(5,120) will select data at times indexed 5-120.

vector of length 2 describing the first and last x2 index of data to select; e.g.,
sel_lambda=c(5,120) will select data at x2 indexed 5-120.

a vector of form c(timeIndexmin, timeIndexmax, lambdaIndexmin, lambdaIndexmax).
The average of data between x2 indexes lambdaIndexmin and lambdaIndexmax
is subtracted from data with time index between timeIndexmin and timeIndexmax.

a vector of form c(timeIndexmin, timeIndexmax, lambdaIndexmin, lambdaIndexmax).
The average of data between time indexes timeIndexmin and timeIndexmax is
subtracted from data with x2 index between lambdaIndexmin and 1ambdaIndexmax.

numeric by which to linearly scale the x axis (which often represents time), so
that newx = oldx * scalx

vector of length 2 by which to linearly scale the x2 axis, so that newx2 = oldx2
* scalx2[1] + scalx2[2]

vector of length 2 describing the absolute values (e.g., wavelengths, wavenum-
bers, etc.) between which data should be selected. e.g., sel_lambda_ab =
c (400, 600) will select data associated with x2 values between 400 and 600.

preProcess

sel_time_ab

rm_x2

rm_x

svdResid

numV

sel_special

doubleDiff

doubleDiffFile

Value

object of class dat.

Author(s)

55

vector of length 2 describing the absolute times between which data should be
selected. e.g., sel_time_ab = c(50, 5000) will select data associated with time
values between 50 and 5000 picoseconds.

vector of x2 indices to remove from the data
vector of x indices to remove from the data

list returned from the getResid function, containing residuals to be used in data
correction.

numeric specifying how many singular vectors to use in data correction. Maxi-
mum is five.

list of lists specifying x indices to remove from individual wavelength ranges,
e.g., sel_special =1ist(c(400,600,10,12),c(600,800,11,13)) indicates
that between wavelength 400 and 600, time indices between 10 and 12 should
be removed from the data, and between wavelengths 600 and 800, time indices
between 11 and 13 should be removed from the data. Note that the number of
time indices to remove should be the same in each wavelength interval specified.
Also note that the time vector associated with the data after the first set of indices
is removed will be associated with the resulting dataset.

logical indicating whether the data should be converted to represent differences
between times.

character string indicating the file name of time difference data to create in the
case that doubleDiff=TRUE.

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

readData, getResid

Examples

A

READ DATA

A

data("target")

A
PREPROCESS DATA
A

select certain wavelengths for modeling

56

C1_1 <- preProcess(data = C1, baselinelambda = c(1,12,1,32))
C1_1 <- preProcess(data = C1_1, sel_lambda = c(8, 27))

C1_1 <- preProcess(data = C1_1, rm_x = c(40, 41, 101, 116))
C1_1 <- preProcess(data = C1_1, sel_time_ab = c(-10, 100000))

C2_1 <- preProcess(data = C2, sel_lambda = c(2, 32))
C2_1 <- preProcess(data = C2_1, baselinelambda = c(1,12,1,32))
C2_1 <- preProcess(data = C2_1, sel_time_ab = c(-10, 100000))

C3_1 <- preProcess(data = C3, sel_lambda = c(1, 25))
C3_1 <- preProcess(data = C3_1, baselinelambda = c¢(1,12,1,32))

S
SPECIFY K Matrix and J vector
S

initialize 2 7x7 arrays to 0
delK <- array(@, dim=c(7,7,2))

the matrix is indexed:
delK[ROW K MATRIX, COL K MATRIX, matrix number]

in the first matrix, put the index of compartments
that are non-zero

the transfer rate of the compartment is governed by
kinpar[index]

delK[1,1,1] <-
delK[5,1,1] <-
delK[2,2,1] <-
delK[5,2,1] <-
delK[3,3,1] <-
delK[5,3,1] <-
delK[4,4,1] <-
delK[6,5,1] <-
delK[7,6,1] <-
delK[7,7,1] <-

N Uh WA NS =N

print out the resulting array to make sure it's right
delK

jvector <- c(.48443195136500550341, .28740782363398824522,
.13749071230100625137, 0.9066953510E-01, @, @, 0)

datalist <- list(C1, C2, C3)

for plotting selected traces, get a vector of all the wavenumbers
allx2 <- vector()

for(i in 1:length(datalist))

preProcess

preProcess

allx2 <- append(allx2,datalist[[i]]@x2)
allx2 <- sort(unique(allx2))

HHHEHHEREEH AR

SPECIFY INITIAL MODEL

note that low is the larger wavenumber in the clpequ spec!
B S S

modell <- initModel(mod_type = "kin",

kinpar=c(0.13698630, 0.3448275849E-01, ©0.1020408142E-01, 0.2941176528E-02,
0.17000, ©0.015, ©.1074082902E-03),

fixed = list(prel = 1:6, clpequ=1:3, kinpar=1:7, irfpar=1, parmu=1),
irfpar=c(0.4211619198, 0.6299000233E-01),

prelspec = list(

list(what1="kinpar"”, ind1=1, what2 = "kinpar”, ind2=4,
start=c(-1,0.1369863003)),

list(what1="kinpar"”, ind1=2, what2 = "kinpar”, ind2=4,
start=c(-1,0.3448275849E-01)),

list(what1="kinpar"”, ind1=3, what2 = "kinpar"”, ind2=4,
start=c(-1,0.1020408142E-01))

),

parmu = list(c(-0.1411073953)),

lambdac = 1290,

kmat = delK,

jvec = jvector,

positivepar="kinpar",

weightpar=list(c(-20,1.4,1,2000,.2)),

clpequspec =list(

list(to=2, from=1, low=100, high=10000),

list(to=3, from=1, low=100, high=10000),

list(to=4, from=1, low=100, high=10000)),

clpequ = c(1,1,1),

cohspec = list(type = "irf"))

S

GET RESID

same format as call to fitModel, but does not plot
S

serResid <- getResid(list(C1_1, C2_1, C3_1), list(modell),

modeldiffs = list(thresh = 0.00005,

dscal = list(list(to=2,from=1,value=4),
list(to=3,from=1,value=0.8000000119)),

free = list(

list(what="irfpar"”, ind=1, start= c(0.1231127158), dataset=2),
list(what="parmu”, ind=c(1,1), start= c(0.1219962388), dataset=2),
list(what="irfpar"”, ind=1, start= c(0.3724052608), dataset=3),
list(what="parmu"”, ind=c(1,1), start= c(0.8844097704E-01), dataset=3)),
change = list(

list(what="fixed", spec=list(clpequ=1:3, kinpar=1:7, irfpar=1:2,
parmu=1, drel = 1, prel=1:6), dataset=2:3))),

opt=kinopt(iter=0, title="Cosimo Spectra, Not Normalized, with Error”,
stderrclp=TRUE, kinspecerr=TRUE, writespec = TRUE,

57

58

preProcess

plotkinspec = TRUE,plotcohcolspec=FALSE,
selectedtraces = seq(1, length(allx2), by=2),
specinterpol = TRUE, specinterpolpoints=FALSE,
divdrel=TRUE, xlab="wavenumber"”,writeclperr = TRUE,
makeps = "err", linrange = 1, superimpose=1:3))

I
MAKE CORRECTED DATASETS USING RESID INFO
THHHEHHHEHHHAHHAAAA A

C1_3 <- preProcess(data = C1_1, svdResid = serResid[[1]], numV = 2)
C2_3 <- preProcess(data = C2_1, svdResid = serResid[[2]], numV = 2)
C3_3 <- preProcess(data = C3_1, svdResid = serResid[[3]], numV = 2)

HHHHAHHHAHAAEAAEA A
FIT MODEL
AR

serRes<-fitModel(list(C1_3, C2_3, C3_3), list(modell),

modeldiffs = list(thresh = 0.00005,

dscal = list(list(to=2,from=1,value=4),
list(to=3,from=1,value=0.8000000119)),

free = list(

list(what="irfpar”, ind=1, start= c(0.1231127158), dataset=2),
list(what="parmu", ind=c(1,1), start= c(0.1219962388), dataset=2),
list(what="irfpar"”, ind=1, start= c(0.3724052608), dataset=3),
list(what="parmu”, ind=c(1,1), start= c(0.8844097704E-01), dataset=3)),
change = list(

list(what="fixed", spec=list(clpequ=1:3, kinpar=1:7, irfpar=1:2,
parmu=1, drel = 1, prel=1:6), dataset=2:3))),

opt=kinopt(iter=0, title="Cosimo Spectra, Not Normalized, with Error”,
stderrclp=TRUE, kinspecerr=TRUE, writespec = TRUE,

plotkinspec = TRUE,plotcohcolspec=FALSE, writerawcon = TRUE,
selectedtraces = seq(1, length(allx2), by=2),

specinterpol = TRUE, specinterpolpoints=FALSE,

divdrel=TRUE, xlab="wavenumber"” writeclperr = TRUE,

makeps = "h20", linrange = 1, superimpose=1:3))

end donttest

B s

CLEANUP GENERATED FILES

HHHEHHABEERE AR

This removes the files that were generated in this example

(do not run this code if you wish to inspect the output)

file_list_cleanup = c('h20_paramEst.txt', 'h20_rawconcen_dataset_1.txt',
'h20_rawconcen_dataset_2.txt', 'h20_rawconcen_dataset_3.txt',
'h20_spec_dataset_1.txt', 'h20_spec_dataset_2.txt',
'h20_spec_dataset_3.txt', 'h20_std_err_clp_1.txt',
'h20_std_err_clp_2.txt', 'h20_std_err_clp_3.txt',
'err_paramEst.txt', 'err_spec_dataset_1.txt', 'err_spec_dataset_2.txt',
‘err_spec_dataset_3.txt', 'err_std_err_clp_1.txt',
'err_std_err_clp_2.txt', 'err_std_err_clp_3.txt',
Sys.glob("*paramEst.txt"), Sys.glob("x.ps"), Sys.glob("Rplots*.pdf"))

readclp0 59

Iterate over the files and delete them if they exist
for (f in file_list_cleanup) {
if (file.exists(f)) {
unlink(f)
}
3

readclp@ This function reads in a specification of constraints to zero on the clp.

Description

This function is useful for the case that there are many constraints to zero in the model, as is the
case for some mass spectrometry models.

Usage

readclp@(filenm)
Arguments

filenm Object of class "character” that gives is the path to the file to read in.
Details

The file to be read in should have the following format: 1st line is not read. Lines thereafter are
the space-delimited index of the component to constrain, the lower bound of the constraint, and the
upper bound of the constraint, e.g., 1 218.800000000000011 220.099999999999994.

Value
The constraints to zero in the format documented in the help file for the "dat"” class. Therefore a call
to "readclp@” may be used inside a call to "initModel”, as in c1p@ = readclp@("filename”).
Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

initModel

60 res-class

readData This function reads in data the ivo file format

Description

Data in the formats described at https://glotaran.github.io/legacy/file_formats may be
read from file into an R object for analysis.

Usage
readData(filenm, typ="", sep = "")
Arguments
filenm This is the path to the file to read in, as a quoted string.
typ if typ="plain” the the file being read in stores data as a plain matrix, with x
values as the first element of each row except the first and x2 values as the first
row.
sep This is an optional argument describing how the data is delimited; defaults to " "
Value

an object of class dat

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also
preProcess
res-class Class "res" to store the results of model fitting associated with a single
dataset.
Description

Class to store results of model fitting associated with a single dataset. A list containing objects of
class res is a slot in class fit. An object of class fit is stored in the slot fit of objects of class
multimodel.

Objects from the Class

Objects can be created by calls of the form new("res"”, ...). A res object is created after model
fitting via the residual function residPart.

https://glotaran.github.io/legacy/file_formats

residPart-methods 61

Slots

cp: Object of class "1ist” that contains the estimates for conditionally linear parameters.
resid: Object of class "1ist" of residuals, with one element for each dataset modeled.
fitted: Object of class "list" of fits, with one element for each dataset modeled.
irfvec: Object of class "1ist"” with a vector of elements for each element of the clp x2
cohirf

std_err_clp

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

fit-class, multimodel-class

residPart-methods Generic function residPart in Package ‘TIMP’

Description
Methods for function residPart in Package ‘TIMP’ determine the part of the residual vector asso-
ciated with a single ‘part’ of the dataset(s).

Usage

residPart(model, group, multimodel, thetalist, clpindepX, finished,
returnX, rawtheta)

Arguments

model Object of class dat; switches on this argument.

group list of vector pairs (x2 index, dataset index) for which the part of the residual
vector is to be determined

multimodel Object of class multimodel

thetalist Object of class multitheta

clpindepX Object of class matrix containing the matrix determined directly by the nonlin-
ear parameters (e.g., a concentration matrix in the case of a kinetic model) in the
case that this matrix does not depend on the x2 index

finished logical determining whether fitting is finished that triggers the storage of results

returnX logical determining whether to just return the matrix X directly dependent on
nonlinear parameters; this is used in the finite difference derivative of X used to
get standard error estimates on the conditionally linear parameters.

rawtheta numeric vector of nonlinear parameters to be optimized by nls; this is used in

the finite difference derivative of X used to get standard error estimates on the
conditionally linear parameters.

62

spec-class

See Also

dat-class, spec-class, kin-class

spec-class Class "spec” for the storage of spectral models.

Description

spec is the class for spectral models; an object of class "mass" is initialized if mod_type = "spec”
is an argument of initModel. All objects of class spec are also of class dat; see documentation
for dat for a description of these slots. Note that here x2 will refer to the independent variable in
which traces are resolved, e.g., wavelength or wavenumber.

Objects from the Class

Objects can be created by calls of the form new("spec”, ...) or spec(...).

Slots

clpequ: Object of class "vector"” of starting values for linear relationships between clp

specpar: Object of class "1ist" of vectors of starting values for spectral parameters; the num-
ber of vectors gives the number of components in the resulting spectral model; each vector
contains the parameters associated with a component. e.g., specpar = 1ist(c(20000, 3000,
.3, 21000, 2000, .4), c(18000, 1000, .2)); the parameters in each vector are grouped
c(location_spectra, width_spectra, skew_spectra). the location and width parame-
ters are given in wavenumbers.

n o n

specfun: Object of class "character”, "gaus” for a spectral model of a superposition of skewed
Gaussians; "bspline” for a bspline-based model.

specref: Object of class "numeric” index defining the center value of the x2 variable.

specCon: Object of class "1ist” used internally to store constraints.

specdisp: Object of class "logical” TRUE if time-dependence of the spectral parameters is to be
taken into account and FALSE otherwise

specdisppar: Object of class "1list”

specdispindex: Object of class "1ist"” of vectors defining those indexes of specpar whose time-
dependence is to be modeled. e.g., specdispindex =1list(c(1,1),c(1,2), c(1,3)) says
that parameters 1-3 of spectra 1 are to be modeled as time-dependent.

nupow: Object of class "numeric” describing the power to which wavenumbers are raised in the
model equation; see Equation 30 of the paper in the references section for a complete descrip-
tion

timedep: Object of class "logical” describing whether the model for spectra E is dependent on
x-index (i.e., whether it is clp-dependent).

parmufunc: Object of class "character"” describing the function form of the time-dependence
of spectral parameters; options are "exp" for exponential time dependence, "multiexp” for
multiexponential time dependence, and "poly” for polynomial time dependence. defaults to
polynomial time dependence.

ncole vector describing the number of columns of the E matrix for each value in the x vector

specopt-class 63

Extends

Class dat-class, directly.

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

References

Ivo H. M. van Stokkum, "Global and target analysis of time-resolved spectra, Lecture notes for
the Troisieme Cycle de la Physique en Suisse Romande", Department of Physics and Astronomy,
Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands, 2005, https://www.nat.
vu.nl/~ivo/pub/2005/1lecturenotes3cycle.pdf

See Also

kin-class, dat-class

specopt-class Class "specopt" stores options for fitting and plotting spectral models

Description
Class "specopt" stores options for fitting and plotting spectral models in particular; this is a subclass
of class opt.

Details

See opt-class for the specification of fitting/plotting options that are not specific to the class type.

Objects from the Class

Objects can be created by calls of the form new("specopt”, ...). or specopt(...)

Slots

nospectra: Object of class "logical” that defaults to FALSE; if TRUE, do not plot time-resolved
spectra

selectedspectra: Object of class "vector” containing x indices for which plots of time-resolved
spectra are desired under a spectral model

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

opt-class, kinopt-class

https://www.nat.vu.nl/~ivo/pub/2005/lecturenotes3cycle.pdf
https://www.nat.vu.nl/~ivo/pub/2005/lecturenotes3cycle.pdf

64

sumKinSpecEst

sumKinSpecEst

Makes a summary plot of spectra associated with kinetic components
alongside a plot showing parameter estimates

Description

Makes a summary plot of spectra associated with kinetic components alongside a plot showing
parameter estimates for, by default, kinetic parameters. If the analysis had more parameters in the
addEst slot of the argument opt, then more parameters are displayed. Note that this summary
leaves out the spectra associated with coherent artifact or scatter.

Usage

sumKinSpecEst(listFits, addtitle = TRUE, customtitle = "", preps = "",
ylimlist=1list(), kinspecerr=TRUE)

Arguments

listFits
addtitle

customtitle
preps

ylimlist

kinspecerr

Details

list of objects returned by the fitModel function

logical regarding whether to add a title; if TRUE and customtitle is not given
then the title is "Summary of EADS for: " plus the analysis titles

character vector containing a title
character vector describing the prefix of the postscript filename given as output

list with elements 1ist(ind, ylim). indis anindex into listFits; ylimis the
desired ylim for the plot for that analysis

logical regarding whether to add error bars for to the estimated spectra.

This looks best with less than five objects in 1istFits.

Value

No return value, called for side effects

Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

fitModel, examineFit

target 65

target Ultrafast time-resolved fluorescence data

Description

Ultrafast time-resolved absorption data

Usage

data("target”)

Format

C1, C2 and C3 are objects of class dat.

Details

See preProcess for examples using this data.

References

This data was described in Bonetti C, Mathes T, van Stokkum IHM, Mullen KM, Groot ML and
van Grondelle R, Hegemann P and Kennis, JTM (2008), The variable projection algorithm in time-
resolved spectroscopy, microscopy and mass-spectroscopy applications, Hydrogen bond switching
among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared
spectroscopy, Biophysical Journal, in press, doi:10.1529/biophys;j.108.139246.

theta-class Class "theta" for storage of nonlinear parameter estimates

Description

theta is the class to store parameter estimates associated with possibly many datasets; after a
call to fitModel a list containing theta objects for each of the n datasets analyzed in the call
to fitModel is created. To see the parameter estimates associated with the datasets, examine the
object currTheta in the list returned by fitModel

Details
after a call to fitModel, an object of class theta exists in the global environment as the variable
currTheta

Objects from the Class

Objects can be created by calls of the form new("theta”, ...) or theta(...).

https://doi.org/10.1529/biophysj.108.139246

66 theta-class

Slots

kinpar: Object of class "vector” of rate constant estimates
specpar: Object of class "1ist” of spectral shape parameter estimates
irfpar: Object of class "vector” of IRF parameter estimates

parmu: Object of class "1ist"” of parameter estimates describing dispersion of the location of other
parameters (in time, temp., etc.)

partau: Object of class "vector” of parameter estimates describing dispersion of the width of
other parameters (in time)

clpequ: Object of class "vector"” of parameter estimates describing conditionally linear parame-
ters (spectra, in a kinetic model) relations

specdisppar: Object of class "1ist"” of parameter estimates describing dispersion of spectra

kinscal: Object of class "vector"” of parameters describing kinetic relations in the context of a
compartmental scheme

prel: Objectof class "vector” of parameters describing relations between parameters (which may
be linear, exponential, etc.)

dummy: Object of class "1ist"” of dummy parameters which can be used in complex relations

eigenvaluesK: Object of class "vector” containing the eigenvalues of the kinetic transfer matrix
K

coh: Object of class "vector” of parameters describing a coherent artifact or pulse follower.

drel: Object of class "vector” of parameters describing relations between datasets (linear, and
possibly per-wavelength or, in general, per-clp)

amplitudes
amps

anipar

cohirf

jvec

kin2scal
kinpar2
kinscalspecial

oscpar: Object of class "vector"” of parameters describing oscillation parameters. The length
depends on the type of oscillation and the number of oscillations.

peakpar
shift
Author(s)

Katharine M. Mullen, Ivo H. M. van Stokkum, Joris J. Snellenburg, Sergey P. Laptenok

See Also

fitModel ,multitheta-class

writeAverage 67

writeAverage Writes the average of scans stored in a file to a new file in the ’ivo’
format

Description

Some measurement set-ups dump a set of matrices stacked on top of each other to a file; each matrix
represents a scan. This function writes the average of the scans to a file in the ’.ivo’ format.

Usage

writeAverage(filename, ntimes, nwave, scans,
fileout = paste(filename, "Average.ivo", sep=""),
calibration = 1:nwave, wexplicit=FALSE)

Arguments
filename This is the path to the file to read in, as a quoted string.
ntimes number of times in each scan
nwave number of wavelengths in each scan
scans number of full scans to read
fileout a character vector specifying the filename to write the averaged data to; the
default is to write a file named "filenameAverage.ivo"
calibration a numeric vector representing the wavelength labels; by default the labels "1, 2,
..., nwave" are used
wexplicit logical whether the file is written in the *wavelength explicit’ format, with each
column of the matrix written representing a wavelength, as opposed to the "time
explicit’ format, where each column represents a timepoint.
Value

No return value, called for side effects

Author(s)
Katharine M. Mullen, Ivo H. M. van Stokkum

See Also

readData

Index

x classes

amp-class, 3
dat-class, 7
fit-class, 16
kin-class, 33
kinopt-class, 40
mass-class, 44
massopt-class, 45
multimodel-class, 47
multitheta-class, 48
opt-class, 49
res-class, 60
spec-class, 62
specopt-class, 63
theta-class, 65

x datasets

denS4, 11
donorAcceptorTagged, 13
donorTagged, 14
mea_IRF, 45

target, 65

x file

baselRF, 6
efit2file, 14
examineFit, 15
fitModel, 16
getResid, 24
getResults, 25
initModel, 30
modifyModel, 46
outlierCorr, 52
preProcess, 54
readclpo, 59
readData, 60
sumKinSpecEst, 64
writeAverage, 67

+ hplot

divergeZimage, 12
FLIMplots, 20

68

+ methods
getClpindepX-methods, 24
plotter-methods, 53
residPart-methods, 61

+ package
TIMP-package, 3

amp (amp-class), 3
amp-class, 3

baseIRF, 6

c001 (donorTagged), 14

c003 (donorTagged), 14

C1 (target), 65

C2 (target), 65

C3 (target), 65

cy@05c (donorAcceptorTagged), 13
Ccy006 (donorAcceptorTagged), 13

dat, 13

dat (dat-class), 7
dat-class, 7

denS4, 11

denS5 (denS4), 11
divergeZimage, 12
donorAcceptorTagged, 13
donorTagged, 14

efit2file, 14
examineFit, 15, 19, 43,45, 64

fit (fit-class), 16

fit-class, 16

fitModel, 15, 16, 20, 25, 27, 31, 43,45, 47,
48, 53, 64-66

FLIMplots, 13, 14, 20, 46

getC (getResults), 25
getCLP (getResults), 25
getClpindepX (getClpindepX-methods), 24

INDEX

getClpindepX, amp-method
(getClpindepX-methods), 24

getClpindepX, kin-method
(getClpindepX-methods), 24

getClpindepX,mass-method
(getClpindepX-methods), 24

getClpindepX, spec-method
(getClpindepX-methods), 24

getClpindepX-methods, 24

getCLPList (getResults), 25

getDAS (getResults), 25

getData (getResults), 25

getdiml (getResults), 25

getdim2 (getResults), 25

getResid, 24, 55

getResiduals (getResults), 25

getResults, 25

getSVDData (getResults), 25

getSVDResiduals (getResults), 25

getTraces (getResults), 25

getX (getResults), 25

getXList (getResults), 25

initModel, 7, 10, 19, 30, 33, 47, 59

kin (kin-class), 33
kin-class, 33

kinopt (kinopt-class), 40
kinopt-class, 40

mass (mass-class), 44
mass-class, 44

massopt (massopt-class), 45
massopt-class, 45

mea_IRF, 45

modifyModel, 46

multimodel (multimodel-class), 47
multimodel-class, 47

multitheta (multitheta-class), 48
multitheta-class, 48

nls, 18

onls (getResults), 25
opt, 15

opt (opt-class), 49
opt-class, 49
outlierCorr, 52

parEst (getResults), 25

plotHistAmp (FLIMplots), 20
plotHistNormComp (FLIMplots), 20
plotIntenImage (FLIMplots), 20
plotNormComp (FLIMplots), 20
plotSelIntenImage (FLIMplots), 20
plotTau (FLIMplots), 20

plotter (plotter-methods), 53

plotter,kin-method (plotter-methods), 53
plotter,mass-method (plotter-methods),

53

plotter, spec-method (plotter-methods),

53
plotter-methods, 53
preProcess, 25, 53, 54, 60, 65

readclpo, 59
readData, 15, 19, 55, 60, 67
res (res-class), 60
res-class, 60
residPart (residPart-methods), 61
residPart, amp-method
(residPart-methods), 61
residPart,kin-method
(residPart-methods), 61
residPart,mass-method
(residPart-methods), 61
residPart, spec-method
(residPart-methods), 61
residPart-methods, 61

spec, 31

spec (spec-class), 62
spec-class, 62

specopt (specopt-class), 63
specopt-class, 63
sumKinSpecEst, 64

sumnls (getResults), 25

target, 65

theta (theta-class), 65
theta-class, 65

TIMP (TIMP-package), 3
TIMP-package, 3

writeAverage, 67

	TIMP-package
	amp-class
	baseIRF
	dat-class
	denS4
	divergeZimage
	donorAcceptorTagged
	donorTagged
	efit2file
	examineFit
	fit-class
	fitModel
	FLIMplots
	getClpindepX-methods
	getResid
	getResults
	initModel
	kin-class
	kinopt-class
	mass-class
	massopt-class
	mea_IRF
	modifyModel
	multimodel-class
	multitheta-class
	opt-class
	outlierCorr
	plotter-methods
	preProcess
	readclp0
	readData
	res-class
	residPart-methods
	spec-class
	specopt-class
	sumKinSpecEst
	target
	theta-class
	writeAverage
	Index

