Package ‘SomaDatalO’

February 6, 2026

Type Package
Title Input/Output 'SomaScan' Data
Version 6.5.0

Description Load and export 'SomaScan' data via the
'SomaL ogic Operating Co., Inc." structured text file
called an ADAT ('*.adat'). For file format see
<https://github.com/SomalLogic/SomalLogic-Data/blob/main/README . md>.
The package also exports auxiliary functions for
manipulating, wrangling, and extracting relevant
information from an ADAT object once in memory.

License MIT + file LICENSE
URL https://somalogic.github.io/SomaDatalIO/, https://somalogic.com

BugReports https://github.com/Somalogic/SomaDatal0/issues
Depends R (>=4.1.0)

Imports cli, dplyr (>= 1.0.6), ggplot2, lifecycle (>= 1.0.0), magrittr
(>=2.0.1), methods, readxl (>= 1.3.1), tibble (>= 3.1.2),
tidyr (>=1.1.3)

Suggests Biobase, knitr, purrr, recipes, rlang, rmarkdown, spelling,
testthat (>= 3.0.0), usethis (>= 2.0.1), withr

VignetteBuilder knitr

Copyright Somal.ogic Operating Co., Inc. 2026
Encoding UTF-8

Language en-US

LazyData true

LazyDataCompression xz

Lazyl.oad true

Config/testthat/edition 3
Config/Needs/website tidyverse/tidytemplate
RoxygenNote 7.3.3

https://github.com/SomaLogic/SomaLogic-Data/blob/main/README.md
https://somalogic.github.io/SomaDataIO/
https://somalogic.com
https://github.com/SomaLogic/SomaDataIO/issues

NeedsCompilation no

Author Stu Field [aut] (ORCID: <https://orcid.org/0000-0002-1024-5859>),
Caleb Scheidel [cre],
Somal ogic Operating Co., Inc. [cph, fnd]

Maintainer Caleb Scheidel <calebjscheidel@gmail.com>
Repository CRAN
Date/Publication 2026-02-06 18:50:02 UTC

Contents

adat-helpers
adat2eSet L e
addAttributes
addClass
calcOutlierMap
calc_eLOD e
cleanNames e
ColMeta e
diffAdats e
getAnalytelnfo L
getAnalytes L e e e e e
getOutlierlds
groupGenerics L.
is_intact_attr
is_seqFormat Lo
lift_adat
loadAdatsAsList
merge_clin L e
PATAMS o L e e e e e e e e e
parseHeader
pivotExpressionSet
plotMap
preProcessAdat
read_adat L e
read_annotations e e e e e e e e e e
TOWNAMES .« . o v v v vt e e e e e e e e e e e e e e e e e
Seqld
SomaDatalO-deprecated
SomaScanObjects e
soma_adat e e
transform L. e
updateColMeta e e
write_adat L e

Index

Contents

https://orcid.org/0000-0002-1024-5859

adat-helpers 3

adat-helpers Helpers to Extract Information from an ADAT

Description

Retrieve elements of the HEADER attribute of a soma_adat object:
getAdatVersion() determines the the ADAT version number from a parsed ADAT header.

getSomaScanVersion() determines the original SomaScan assay version that generated RFU mea-
surements within a soma_adat object.

checkSomaScanVersion() determines if the version of is a recognized version of SomaScan.

Table of SomaScan assay versions:

Version Commercial Name Size
V4 5k 5284
v4.1 7k 7596
v5.0 11k 11083

getSignalSpace() determines the current signal space of the RFU values, which may differ from
the original SomaScan signal space if the data have been lifted. See 1ift_adat() and vignette("lifting-and-bridging”
package = "SomaDataI0").

getSomaScanLiftCCC() accesses the lifting Concordance Correlation Coefficients between various
SomaScan versions. For more about CCC metrics see 1ift_adat().

Usage

getAdatVersion(x)
getSomaScanVersion(adat)
getSignalSpace(adat)

checkSomaScanVersion(ver)

getSomaScanLiftCCC(matrix = c("plasma”, "serum"))
Arguments
X Either a soma_adat object with intact attributes or the attributes themselves of a
soma_adat object.
adat A soma_adat object (with intact attributes), typically created using read_adat ().
ver character(1). The SomaScan version as a string. Note: the "v"-prefix is case
insensitive.

matrix Character. A string of (usually) either "serum” or "plasma”.

4 adat-helpers

Value

\link[=getAdatVersion]{getAdatVersion()?}
The key-value of the Version as a string.

\link[=getSomaScanVersion]{getSomaScanVersion()}
The key-value of the AssayVersion as a string.

\link[=getSignalSpacel{getSignalSpace()}
The key-value of the SignalSpace as a string.

\link[=checkSomaScanVersion]{checkSomaScanVersion()}
Returns NULL (invisibly) if checks pass.

\link[=getSomaScanLiftCCC]{getSomaScanLiftCCC()}
Returns a tibble of either the serum or plasma CCC between various versions
of the SomaScan assay.

Author(s)

Stu Field

References

Lin, Lawrence I-Kuei. 1989. A Concordance Correlation Coefficient to Evaluate Reproducibility.
Biometrics. 45:255-268.

Examples
getAdatVersion(example_data)

attr(example_data, "Header.Meta")$HEADER$Version <- "99.9"
getAdatVersion(example_data)

ver <- getSomaScanVersion(example_data)
ver

rfu_space <- getSignalSpace(example_data)
rfu_space

is.null(checkSomaScanVersion(ver))

plasma (default)
getSomaScanLiftCCC()

serum
getSomaScanLiftCCC("serum”)

adat2eSet 5

adat2eSet Convert ADAT to ExpressionSet Object

Description

Utility to convert a Somalogic soma_adat object to an ExpressionSet object via the Biobase
package from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/
Biobase.html.

Usage

adat2eSet(adat)

Arguments

adat A soma_adat class object as read into the R environment using read_adat ().

Details

The Biobase package is required and must be installed from Bioconductor via the following at the
R console:

if (!requireNamespace(”"BiocManager"”, quietly = TRUE)) {
install.packages(”"BiocManager")

b

BiocManager: :install("Biobase"”, version = remotes::bioc_version())

Value

A Bioconductor object of class ExpressionSet.

Author(s)

Stu Field

References

https://bioconductor.org/install/

See Also

Other eSet: pivotExpressionSet()

https://www.bioconductor.org/packages/release/bioc/html/Biobase.html
https://www.bioconductor.org/packages/release/bioc/html/Biobase.html
https://bioconductor.org/install/

6 addAttributes

Examples

eSet <- adat2eSet(example_data)
class(eSet)
eSet

ft <- Biobase::exprs(eSet)
head(ft[, 1:10L]1, 10L)

addAttributes Add Attributes to soma_adat Objects

Description

Adds a set of attributes, typically "Header.Meta" and "Col.Meta", to adata. frame, tibble, soma_adat
or similar tabular object. Existing attributes data are not over-written. Typically untouched are:

* names
e class

® row.names

Usage

addAttributes(data, new.atts)

Arguments

data The receiving data. frame object for new attributes.

new.atts A named list object containing new attributes to add to the existing ones.
Value

A data frame object corresponding to data but with the attributes of new.atts grafted on to it.
Existing attribute names are not over-written.

Author(s)
Stu Field

See Also

attr(), generics::setdiff()

addClass

addClass Add a Class to an Object

Description

Utility to add (prepend) a class(es) to existing objects.

Usage

addClass(x, class)

Arguments

X The object to receive new class(es).

class Character. The name of additional class(es).
Value

An object with new classes.

Author(s)

Stu Field

See Also

class(), typeof (), structure()

Examples
class(iris)
addClass(iris, "new") |> class()
addClass(iris, c("A", "B")) [> class() # 2 classes
addClass(iris, c("A", "data.frame")) |> class() # no duplicates

addClass(iris, c("data.frame”, "A")) |> class() # re-orders if exists

8 calcOutlierMap

calcOutlierMap Calculate MAD Outlier Map

Description

Calculate the median absolute deviation (statistical) outliers measurements and fold-change criteria
from an ADAT. Two values are required for the calculation: median absolute deviation (MAD) and
fold-change (FC). Outliers are determined based on the result of both 6*MAD and x*FC , where x is
the number of fold changes defined.

Usage

calcOutlierMap(
data,
anno_tbl = NULL,
apt.order = c(NA, "dilution”, "signal"),
sample.order = NULL,

fc.crit = 5

)

S3 method for class 'outlier_map'

print(x, ...)

Arguments

data A soma_adat object containing RFU feature data.

anno_tbl An annotations table produced via getAnalyteInfo(). Used to calculate an-
alyte dilutions for the matrix column ordering. If NULL, a table is generated
internally from data (if possible), and the analytes are plotted in dilution order.

apt.order Character. How should the columns/features be ordered? Options include: by
dilution mix ("dilution"), by median overall signal ("signal"), or as-is in data
(default).

sample.order Either a character string indicating the column name with entries to be used to
order the data frame rows, or a numeric vector representing the order of the data
frame rows. The default (NULL) leaves the row ordering as it is in data.

fc.crit Integer. The fold change criterion to evaluate. Defaults to 5x.
X An object of class "outlier_map”.

Arguments for S3 print methods.

Details

For the S3 plotting method, see plot.Map().

calcOutlierMap 9

Value

A list of class c("outlier_map”, "Map") containing:

matrix A boolean matrix of TRUE/FALSE whether each sample is an outlier according
the the stated criteria.

x.lab A character string containing the plot x-axis label.

title A character string containing the plot title.

rows.by.freq A logical indicating if the samples are ordered by outlier frequency.

class.tab A table containing the frequencies of each class if input sample.order is de-
fined as a categorical variable.

sample.order A numeric vector representing the order of the data frame rows.

legend. sub A character string containing the plot legend subtitle.

Functions

e print(outlier_map): There is a S3 print method for class "outlier_map".

Author(s)

Stu Field

See Also

Other Calc Map: getOutlierIds(), plot.Map()

Examples
dat <- example_data |> dplyr::filter(SampleType == "Sample")
om <- calcOutlierMap(dat)
class(om)

S3 print method

om
~sample.order = "frequency"”" orders samples by outlier frequency
om <- calcOutlierMap(dat, sample.order = "frequency")

om$rows.by.freq
om$sample.order

order samples field in Adat
om <- calcOutlierMap(dat, sample.order = "Sex")
om$sample.order

10 calc_ eLOD

calc_elLOD Calculate Estimated Limit of Detection (eLOD)

Description

Calculate the estimated limit of detection (eLOD) for SOMAmer reagent analytes in the provided
input data. The input data should be filtered to include only buffer samples desired for eLOD
calculation.

Usage

calc_elLOD(data)

Arguments
data A soma_adat, data. frame, or tibble object including Seqld columns (seq. XXXXX . XX)
containing RFU values.
Details

eLOD is calculated using the following steps:

1. For each SOMAmer, the median and adjusted median absolute deviation (M AD 4gjysteq) are
calculated, where

MAD pgjusted = 1.4826 x MAD

The 1.4826 is a set constant used to adjust the MAD to be reflective of the standard deviation
of the normal distribution.

2. For each SOMAmer, calculate

eLOD = median + 3.3 * MAD agjusted

Note: The eLOD is useful for non-core matrices, including cell lysate and CSF, but should be used
carefully for evaluating background signal in plasma and serum.

Value

A tibble object with 2 columns: Seqld and eLOD.

Author(s)

Caleb Scheidel, Christopher Dimapasok

cleanNames 11

Examples

filter data frame using vector of Sampleld controls
df <- withr::with_seed(101, {
data.frame(
SampleType = rep(c("Sample”, "Buffer"”), each = 10),
Sampleld = paste@("”Sample_", 1:20),

seq.20.1.100 = runif(20, 1, 100),
seq.21.1.100 = runif (20, 1, 100),
seq.22.2.100 = runif (20, 1, 100)
)
»

sample_ids <- paste@("Sample_", 11:20)

-

selected_samples <- df [> filter(Sampleld %in% sample_ids)

selected_elod <- calc_elLOD(selected_samples)
head(selected_elod)

Not run:
filter ~soma_adat™ object to buffer samples
buffer_samples <- example_data |> filter(SampleType == "Buffer")

calculate elLOD
buffer_elod <- calc_elLOD(buffer_samples)
head(buffer_elod)

use eLOD to calculate signal to noise ratio of samples

samples_median <- example_data |> dplyr::filter(SampleType == "Sample”) |>
dplyr::summarise(across(starts_with(”seq"”), median, .names = "median_{col}")) |>
tidyr::pivot_longer(starts_with("median_"), names_to = "Seqld”,
values_to = "median_signal”) |>

dplyr::mutate(Seqld = gsub("median_seq”, "seq"”, Seqld))

analytes with signal to noise > 2

ratios <- samples_median |>
dplyr::mutate(signal_to_noise = median_signal / buffer_elod$elLOD) |>
dplyr::filter(signal_to_noise > 2) |>
dplyr::arrange(desc(signal_to_noise))

head(ratios)

End(Not run)

cleanNames Clean Up Character String

Description

Often the names, particularly within soma_adat objects, are messy due to varying inputs, this func-
tion attempts to remedy this by removing the following:

* trailing/leading/internal whitespace

12 Col.Meta

* non-alphanumeric strings (except underscores)
* duplicated internal dots (. .), (.. .), etc.

¢ SomaScan normalization scale factor format

Usage

cleanNames(x)

Arguments

X Character. String to clean up.

Value

A cleaned up character string.

Author(s)
Stu Field

See Also
trimws(), gsub(), sub()

Examples

cleanNames (" sdkfj...sdlkfj.sdfii4994### ")

cleanNames("Hyb. .Scale")

Col.Meta Analyte Annotations, Col.Meta, and Row Info

Description

In a standard SomaLogic ADAT, the section of information that sits directly above the measurement
data (RFU data matrix) is the column meta data (Col.Meta), which contains detailed information
and annotations about the analytes, SeqId()s, and their targets. See section below for further
information about available fields and their descriptions. Use getAnalyteInfo() to obtain an
object containing this information for programmatic analyses, and use getMeta() to obtain the
column names representing the row-specific meta data about the samples (see section below).

Col Meta (Analyte Annotations)

Information describing the analytes is found to the above the data matrix in a standard Somal.ogic
ADAT. This information may consist of the any or all of the following:

Col.Meta

Field

Seqld

SeqidVersion

Somald

TargetFullName

Target

UniProt

EntrezGenelD
EntrezGeneSymbol
Organism

Units

Type

Dilution
PlateScale_Reference
CalReference

medNormRef ReferenceRFU
Cal_V4_<YY>_<SSS>_<PPP>
ColCheck
QcReference_<LLLLL>

CalQcRatio_V4_<YY>_<SSS>_<PPP>

Row Meta (Sample Annotations)

13

Description

SomaLogic sequence identifier

Version of SOMAmer sequence

Target identifier, of the form SLnnnnnn (8 characters in length)
Target name curated for consistency with UniProt name
Somal ogic Target Name

UniProt identifier(s)

Entrez Gene Identifier(s)

Entrez Gene Symbol names

Protein Source Organism

Relative Fluorescence Units

SOMAmer target type

Dilution mix assignment

PlateScale reference value

Calibration sample reference value

Median normalization reference value

Calibration scale factor (for given Year_Study_Plate)
QC acceptance criteria across all plates/sets

QC sample reference value (for given QC lot)

Post calibration median QC ratio to reference (for given Year_Study_Plate)

Information describing the samples is typically found to the left of the data matrix in a standard
Somalogic ADAT. This information may consist of clinical information provided by the client, or
run-specific diagnostic information included for assay quality control. Below are some examples of

Examp
2182-5¢
2
SL0O003
Comple
C4b
POCOL-
720 721
C4A -
Human
RFU
Protein
0.01%
1378.8:¢
1378.8¢
490.342
0.64
PASS
PASS
1.04

what may be present in this section:

Field

Plateld
ScannerID
PlatePosition
Slideld
Subarray
Sampleld
SampleType
PercentDilution
SampleMatrix
Barcode
Barcode2d
SampleNotes
SampleDescription
AssayNotes
TimePoint
Extldentifier
SsfExtId
SampleGroup

Description

Plate identifier

Scanner used to analyze slide

Location on 96 well plate (A1-H12)

Agilent slide barcode

Agilent subarray (1 — 8)

1st form is Subject Identifier, 2nd form (calibrators, buffers)
1st form for clinical samples (Sample), 2nd form as above
Highest concentration the SOMAmer dilution groups
Sample matrix

1D Barcode of aliquot

2D Barcode of aliquot

Assay team sample observation

Supplemental sample information

Assay team run observation

Sample time point

Primary key for Subarray

Primary key for sample

Sample group

Examples

V4-18-004_001, V4-18-004_002
SG12064173, SG14374437
Al,HI2

2.58E+11

1,8

2031

Sample, QC, Calibrator, Buffer
20

Plasma-PPT

S622225

1.91E+08

Cloudy, Low sample volume, Reddis

Plasma QC 1

Beads aspirated, Leak/Hole, Smear
Baseline

EXID40000000032037
EID102733

A,B

14 diffAdats

Siteld Collection site SomaLogic, Covance
TubeUniquelD Unique tube identifier 1.12E+11
CLI Cohort definition identifier CLI6006F001
HybControlNormScale = Hybridization control scale factor 0.948304
RowCheck Normalization acceptance criteria for all row scale factors PASS, FLAG
NormScale_0_5 Median signal normalization scale factor (0.5% mix) 1.02718
NormScale_0_005 Median signal normalization scale factor (0.005% mix) 1.119754
NormScale_20 Median signal normalization scale factor (20% mix) 0.996148

Examples

Annotations/Col.Meta
tbl <- getAnalyteInfo(example_data)
tbl

Row/sample Meta
r_m <- getMeta(example_data)
head(r_m)

Normalization Scale Factors
grep(”"NormScale”, r_m, value = TRUE)

adat subset
example_datal[1:3, head(r_m)]

diffAdats Diff Two ADAT Objects

Description

Diff tool for the differences between two soma_adat objects. When diffs of the table values are
interrogated, only the intersect of the column meta data or feature data is considered

Usage

diffAdats(adat1, adat2, tolerance = 1e-06)

Arguments

adat1, adat2 Two soma_adat objects to compare.

tolerance Numeric > 0. Differences smaller than tolerance are not triggered. See all.equal().
Value

NULL, invisibly. Called for side effects.

getAnalytelnfo 15

Note

Only diffs of the column name intersect are reported.

Author(s)
Stu Field

Examples

subset ~example_data™ for speed

all Seqlds from 2000 -> 2999

seqs <- grep("*seq\\.2[0-91{3}", names(example_data), value = TRUE)
ex_data_small <- head(example_datal, c(getMeta(example_data), seqgs)], 10L)
dim(ex_data_small)

no diff to itself
diffAdats(ex_data_small, ex_data_small)

remove random column
rm <- withr::with_seed(123, sample(1:ncol(ex_data_small), 1))
diffAdats(ex_data_small, ex_data_small[, -rm])

randomly shuffle Subarray
diffAdats(ex_data_small, dplyr::mutate(ex_data_small, Subarray = sample(Subarray)))

modify 2 RFUs randomly

new <- ex_data_small

new[5L, c(rm, rm + 1L)] <- 999
diffAdats(ex_data_small, new)

getAnalyteInfo Get Analyte Annotation Information

Description

Uses the Col.Meta attribute (analyte annotation data that appears above the protein measurements
in the *. adat text file) of a soma_adat object, adds the AptName column key, conducts a few sanity
checks, and generates a "lookup table" of analyte data that can be used for simple manipulation
and indexing of analyte annotation information. Most importantly, the analyte column names of the
soma_adat (e.g. seq.XXXX.XX) become the AptName column of the lookup table and represents the
key index between the table and soma_adat from which it comes.

Usage

getAnalyteInfo(adat)
getTargetNames (tbhl)

getFeatureData(adat)

16 getAnalytelnfo

Arguments
adat A soma_adat object (with intact attributes), typically created using read_adat ().
tbl A tibble object containing analyte target annotation information. This is usu-
ally the result of a call to getAnalyteInfo().
Value

A tibble object with columns corresponding to the column meta data entries in the soma_adat.
One row per analyte.

Functions

» getTargetNames(): creates a lookup table (or dictionary) as a named list object of AptNames
and Target names in key-value pairs. This is a convenient tool to quickly access a TargetName
given the AptName in which the key-value pairs map the seq.XXXX.XX to its corresponding
TargetName in tbl. This structure which provides a convenient auto-completion mechanism
at the command line or for generating plot titles.

e getFeatureData(): [Superseded]. Please now use getAnalyteInfo().

Author(s)
Stu Field

See Also

getAnalytes(), is_intact_attr(), read_adat()

Examples

Get Aptamer table
anno_tbl <- getAnalyteInfo(example_data)
anno_tbl

Use “dplyr::group_by()"
dplyr::tally(dplyr::group_by(anno_tbl, Dilution)) # print summary by dilution

Columns containing "Target”
anno_tbl |>
dplyr::select(dplyr::contains("Target"))

Rows of "Target” starting with MMP
anno_tbl |>
dplyr::filter(grepl(""MMP", Target))

Target names
tg <- getTargetNames(anno_tbl)

how to use for plotting
feats <- sample(anno_tbl$AptName, 6)
op <- par(mfrow = c(2, 3))

getAnalytes 17

sapply(feats, function(.x) plot(1:10, main = tg[[.x11))
par(op)

getAnalytes Get Analytes

Description

Return the feature names (i.e. the column names for SOMAmer reagent analytes) from a soma_adat.
S3 methods also exist for these classes:

#> [1] getAnalytes.character getAnalytes.data.frame getAnalytes.default
#> [4] getAnalytes.list getAnalytes.matrix getAnalytes.recipe
#> [7] getAnalytes.soma_adat

#> see '?methods' for accessing help and source code

getMeta() returns the inverse, a character vector of string names of non-analyte feature columns/variables,
which typically correspond to the clinical ("meta") data variables. S3 methods exist for these
classes:

#> [1] getMeta.character getMeta.data.frame getMeta.default getMeta.list
#> [5] getMeta.matrix getMeta.soma_adat
#> see '?methods' for accessing help and source code

Usage

getAnalytes(x, n = FALSE, rm.controls = FALSE)

getMeta(x, n = FALSE)

getFeatures(x, n = FALSE, rm.controls = FALSE)

Arguments
X Typically a soma_adat class object created using read_adat ().
n Logical. Return an integer corresponding to the length of the features?
rm.controls Logical. Should all control and non-human analytes (e.g. HybControls, Non-Human,
Non-Biotin, Spuriomer) be removed from the returned value?
Value

getAnalytes(): a character vector of ADAT feature ("analyte") names.
getMeta(): a character vector of ADAT clinical ("meta") data names.

For both, if n = TRUE, an integer corresponding to the length of the character vector.

18 getOutlierlds

Functions

» getFeatures(): [Superseded]. Please now use getAnalytes().

Author(s)
Stu Field

See Also

is.apt()

Examples

RFU feature variables

apts <- getAnalytes(example_data)
head(apts)
getAnalytes(example_data, n = TRUE)

vector string
bb <- getAnalytes(names(example_data))
all.equal(apts, bb)

create some control sequences

#o~ Spuriomer ~~~ HybControl ~~~

apts2 <- c("seq.2053.2", "seq.2171.12", head(apts))
apts?2

no_crtl <- getAnalytes(apts2, rm.controls = TRUE)
no_crtl

setdiff(apts2, no_crtl)

clinical variables

mvec <- getMeta(example_data)
head(mvec, 10)
getMeta(example_data, n = TRUE)

test 'data.frame' and 'character' S3 methods are identical
identical (getMeta(example_data), getMeta(names(example_data))) # TRUE

getOutlierIds Get Flagged Ids From MAD Outlier Map

Description

Return the IDs of flagged samples for objects of the outlier_map class. Samples are flagged based
on the percent analytes (RFU columns) for a given sample that were identified as outliers using the
median absolute deviation (MAD).

Usage
getOutlierIds(x, flags = 0.05, data = NULL, include = NULL)

groupGenerics

Arguments

X

flags

data

include

Value

19

An object of class:
e outlier_map - from calcOutlierMap()

Numeric in [0, 1]. For an "outlier_map”, the proportion of the analytes
(columns) for a given sample that must be outliers for a flag to be placed at the
right-axis, right-axis, thus flagging that sample. If NULL (default), @.05 (5%) is
selected.

Optional. The data originally used to create the map x. If omitted, a single
column data frame is returned.

Optional. Character vector of column name(s) in data to include in the resulting
data frame. Ignored if data = NULL.

A data. frame of the indices (idx) of flagged samples, along with any additional variables as spec-

ified by include.

Author(s)

Caleb Scheidel

See Also

Other Calc Map: calcOutlierMap(), plot.Map()

Examples

flagged outliers

create a single sample outlier (12)
out_adat <- example_data

apts <- getAnalytes(out_adat)
out_adat[12, apts] <- out_adat[12, apts] x 10

om <- calcOutlierMap(out_adat)
getOutlierIds(om, out_adat, flags = 0.05, include = c("Sex", "Subarray"))

groupGenerics

Group Generics for soma_adat Class Objects

Description

S3 group generic methods to apply group specific prototype functions to the RFU data only of
soma_adat objects. The clinical meta data are not transformed and remain unmodified in the re-
turned object (Math() and Ops()) or are ignored for the Summary () group. See groupGeneric().

20

Usage

groupGenerics

S3 method for class 'soma_adat'

Math(x,

D)

antilog(x, base

= 10)

S3 method for class 'soma_adat'
Ops(el, e2 = NULL)

S3 method for class 'soma_adat'
Summary(..., na.rm = FALSE)

S3 method for class 'soma_adat'

el == e2

Arguments

X

base

el, e2

na.rm

Value

The soma_adat class object to perform the transformation.
Additional arguments passed to the various group generics as appropriate.

A positive or complex number: the base with respect to which logarithms are
computed.

Objects.
Logical. Should missing values be removed?

A soma_adat object with the same dimensions of the input object with the feature columns trans-
formed by the specified generic.

Functions

e antilog(): performs the inverse or anti-log transform for a numeric vector of soma_adat
object. note: default is base = 10, which differs from the log() default base e.

* Ops(soma_adat): performs binary mathematical operations on class soma_adat. See Ops().

* Summary(soma_adat): performs summary calculations on class soma_adat. See Summary ().

» ==: compares left- and right-hand sides of the operator unless the RHS is also a soma_adat,
in which case diffAdats() is invoked.

Math

Group members:

[1]
#> [7]
[13]
#> [19]
#> [25]
#> [31]

n n

abs
"atanh"”
"cummin
"floor"
"log2"
"tan"

n

"acos” "acosh” "asin” "asinh” "atan"
"ceiling" "cos” "cosh” "cospi” "cummax”
"cumprod” "cumsum” "digamma” "exp” "expm1”
"gamma” "lgamma” "log" "logl0@" "loglp”
"sign" "sin" "sinh" "sinpi” "sqgrt"

"tanh" "tanpi "trigamma” "trunc”

groupGenerics 21

Commonly used generics of this group include:

e log(), log10(), log2(), antilog(), abs(), sign(), floor(), sart(), exp()

Ops

Group members:

#> [1] ”+ll n_n ”*” nan ll%%” H%/%H II/H H::” ll>” H<ll n !:” ”<:ll
#> [13] ">="
Note that for the ~==" method if the RHS is also a soma_adat, diffAdats() is invoked which
compares LHS vs. RHS. Commonly used generics of this group include:
.+’_?*’/7A’::9>,<
Summary

Group members:

n

#> I:-I:I uallu uanyu "maX” ”min” uprodu urangen ”Sum

Commonly used generics of this group include:

e max(), min(), range(), sum(), any()

Author(s)
Stu Field

See Also

groupGeneric(), getGroupMembers(), getGroup()

Examples

subset “example_data™ for speed

all Seqlds from 2000 -> 2999

seqgs <- grep("*seq\\.2[0-91{3}", names(example_data), value = TRUE)
ex_data_small <- head(example_data[, c(getMeta(example_data), seqs)], 10L)
dim(ex_data_small)

ex_data_small$seq.2991.9
Math Generics:

log-transformation

a <- log(ex_data_small)

a$seq.2991.9

b <- loglo(ex_data_small)
b$seq.2991.9

22

isTRUE(all.equal(b, log(ex_data_small, base = 10)))

floor
¢ <- floor(ex_data_small)
c$seq.2991.9

square-root
d <- sqgrt(ex_data_small)
d$seq.2991.9

rounding
e <- round(ex_data_small)

e$seq.2991.9

inverse log
antilog(1:4)

alog <- antilog(b)

all.equal(ex_data_small, alog)

Ops Generics:

plusl <- ex_data_small + 1
times2 <- ex_data_small *

sq <- ex_data_small*2

2

all.equal(sqrt(sq), ex_data_small)

gt100k <- ex_data_small >
gt100k

100000

ex_data_small == ex_data_small # invokes diffAdats()

Summary Generics:
sum(ex_data_small)
any(ex_data_small < 100)
sum(ex_data_small < 100)
min(ex_data_small)
min(ex_data_small, @)
max(ex_data_small)
max(ex_data_small, 1e+7)

range (ex_data_small)

low RFU analytes

how many

return b -> linear space

groupGenerics

is_intact_attr 23

is_intact_attr Are Attributes Intact?

Description

This function runs a series of checks to determine if a soma_adat object has a complete set of
attributes. If not, this indicates that the object has been modified since the initial read_adat()
call. Checks for the presence of both "Header.Meta" and "Col.Meta" in the attribute names. These
entries are added during the read_adat () call. Specifically, within these sections it also checks for
the presence of the following entries:

"Header.Meta'" section: "HEADER", "COL_DATA", and "ROW_DATA"
""Col.Meta'' section: "Seqld", "Target", "Units", and "Dilution"

If any of the above they are altered or missing, FALSE is returned.

is.intact.attributes() is [Superseded]. It remains for backward compatibility and may be
removed in the future. You are encouraged to shift your code to is_intact_attr().

Usage

is_intact_attr(adat, verbose = interactive())

is.intact.attributes(adat, verbose = interactive())

Arguments
adat A soma_adat object to query.
verbose Logical. Should diagnostic information about failures be printed to the console?
If the default, see interactive(), is invoked, only messages via direct calls
are triggered. This prohibits messages generated deep in the call stack from
bubbling up to the user.
Value

Logical. TRUE if all checks pass, otherwise FALSE.

See Also

attributes()

Examples

checking attributes

my_adat <- example_data

is_intact_attr(my_adat) # TRUE

is_intact_attr(my_adat[, -303L]) # doesn't break atts; TRUE
attributes(my_adat)$Col.Meta$Target <- NULL # break attributes
is_intact_attr(my_adat) # FALSE (Target missing)

24 lift_adat

is_seqFormat Test AptName Format

Description

Test whether an object is in the new seq.XXXX. XX format.

Usage

is_seqgFormat(x)

Arguments

X The object to be tested.

Value
A logical indicating whether x contains AptNames consistent with the new format, beginning with
a seq. prefix.

Author(s)
Stu Field, Eduardo Tabacman

Examples

character S3 method
is_segFormat(names(example_data)) # no; meta data not “seq.
is_seqFormat(tail(names(example_data), -20L)) # yes

soma_adat S3 method
is_seqFormat(example_data)

lift_adat Lift an ADAT Between Assay Versions

Description

The SomaScan platform continually improves its technical processes between assay versions. The
primary change of interest is content expansion, and other protocol changes may be implemented
including: changing reagents, liquid handling equipment, and well volumes.

Table of SomaScan assay versions:

Version Commercial Name Size
V4 5k 5284
va. 1 7k 7596

lift_adat 25

v5.0 11k 11083

However, for a given analyte, these technical upgrades can result in minute measurement signal
differences, requiring a calibration (aka "lifting" or "bridging") to bring RFUs into a comparable
signal space. This is accomplished by applying an analyte-specific scalar, a linear transformation,
to each analyte RFU measurement (column). If you have an annotations file (*.x1sx) and wish to
examine the bridging scalars themselves, please see read_annotations().

Lifting between SomaScan versions no longer requires an annotations file containing lifting scalars.
We now enable users to pass a bridge parameter, indicating the direction of the bridge. For exam-
ple, to "lift" between 11k -> 7k, you must be acting on SomaScan data in 11k RFU space and would
pass bridge = "11k_to_7k". Likewise, 7k -> 5k requires bridge = "7k_to_5k". Lastly, you may
also lift directly from 11k -> 5k (aka "double-bridge") with bridge = "11k_to_5k". See below for
all options for the bridge argument.

Usage

lift_adat(
adat,
bridge = c("11k_to_7k", "11k_to_5k", "7k_to_11k", "7k_to_5k", "5k_to_11k", "5k_to_7k"),
anno.tbl = deprecated()

)

is_lifted(adat)

Arguments
adat A soma_adat object (with intact attributes), typically created using read_adat ().
bridge The direction of the lift (i.e. bridge).
anno. tbl [Deprecated]. Please now use the bridge argument.

Details

Matched samples across assay versions are used to calculate bridging scalars. For each analyte, this
scalar is computed as the ratio of population medians across assay versions. Please see the lifting
vignette vignette("lifting-and-bridging”, package = "SomaDatal0") for more details.

Value

lift_adat(): A "lifted" soma_adat object corresponding to the scaling requested in the bridge
parameter. RFU values are rounded to 1 decimal place to match standard SomaScan delivery format.

is_lifted(): Logical. Whether the RFU values in a soma_adat have been lifted from its original
signal space to a new signal space.

26 lift_adat

Lin’s CCC

The Lin’s Concordance Correlation Coefficient (CCC) is calculated by computing the correlation
between post-lift RFU values and the RFU values generated on the original SomaScan version.
This CCC estimate is a measure of how well an analyte can be bridged across SomaScan ver-
sions. See vignette("lifting-and-bridging"”, package = "SomaDataI0"). As with the lift-
ing scalars, if you have an annotations file you may view the analyte-specific CCC values via
read_annotations(). Alternatively, getSomaScanLiftCCC() retrieves these values from an in-
ternal object for both "serum” and "plasma”.

Analyte Setdiff

» Newer versions of SomaScan typically have additional content, i.e. new reagents added to
the multi-plex assay that bind to additional proteins. When lifting o a previous SomaScan
version, new reagents that do not exist in the "earlier" assay version assay are scaled by 1.0,
and thus maintained, unmodified in the returned object. Users may need to drop these columns
in order to combine these data with a previous study from an earlier SomaScan version, e.g.
with collapseAdats().

* In the inverse scenario, lifting "forward" from a previous, lower-plex version, there will be
extra reference values that are unnecessary to perform the lift, and a warning is triggered. The
resulting data consists of RFU data in the "new" signal space, but with fewer analytes than
would otherwise be expected (e.g. 11k space with only 5284 analytes; see example below).

References

Lin, Lawrence I-Kuei. 1989. A Concordance Correlation Coefficient to Evaluate Reproducibility.
Biometrics. 45:255-268.

Examples

“example_data™ is SomaScan (V4, 5k)
adat <- head(example_data, 3L)
dim(adat)

getSomaScanVersion(adat)

getSignalSpace(adat)

perform 'lift'
lift_11k <- lift_adat(adat, "5k_to_11k") # warning

is_lifted(1ift_11k)
dim(1ift_11k)

attributes updated to reflect the 'lift’
attr(lift_11k, "Header")$HEADER$SignalSpace

attr(lift_11k, "Header")$HEADER$ProcessSteps

loadAdatsAsList 27

loadAdatsAsList Load ADAT files as a list

Description

Load a series of ADATSs and return a list of soma_adat objects, one for each ADAT file. collapseAdats()
concatenates a list of ADATs from loadAdatsAsList(), while maintaining the relevant attribute
entries (mainly the HEADER element). This makes writing out the final object possible without the

loss of HEADER information.

Usage
loadAdatsAsList(files, collapse = FALSE, verbose = interactive(), ...)
collapseAdats(x)
Arguments
files A character string of files to load.
collapse Logical. Should the resulting list of ADATSs be collapsed into a single ADAT
object?
verbose Logical. Should the function call be run in verbose mode.
Additional arguments passed to read_adat ().
X A list of soma_adat class objects returned from loadAdatsAsList().
Details

Note 1: The default behavior is to "vertically bind" (rbind()) on the intersect of the column vari-
ables, with unique columns silently dropped.

Note 2: If "vertically binding" on the column union is desired, use dplyr: :bind_rows(), however
this results in NAs in non-intersecting columns. For many files with little variable intersection,
a sparse RFU-matrix will result (and will likely break ADAT attributes):

adats <- loadAdatsAsList(files)
union_adat <- dplyr::bind_rows(adats, .id = "SourceFile")
Value
A list of ADATSs named by files, each a soma_adat object corresponding to an individual file in
files. For collapseAdats(), a single, collapsed soma_adat object.
Author(s)
Stu Field

28 merge_clin

See Also

read_adat ()
Other IO: parseHeader (), read_adat (), soma_adat, write_adat()

Examples

only 1 file in directory
dir(system.file("extdata”, package = "SomaDataI0"))

files <- system.file("extdata”, package = "SomaDatalO") |>
dir(pattern = "[.Jadat$", full.names = TRUE) [|> rev()

adats <- loadAdatsAsList(files)
class(adats)

collapse into 1 ADAT
collapsed <- collapseAdats(adats)
class(collapsed)

Alternatively use “collapse = TRUE"®

loadAdatsAsList(files, collapse = TRUE)

merge_clin Merge Clinical Data into SomaScan

Description

Occasionally, additional clinical data is obtained affer samples have been submitted to SomaLogic,
or even after ’SomaScan’ results have been delivered. This requires the new clinical variables,
i.e. non-proteomic, data to be merged with ’SomaScan’ data into a "new" ADAT prior to analysis.
merge_clin() easily merges such clinical variables into an existing soma_adat object and is a
simple wrapper around dplyr::left_join().

Usage
merge_clin(x, clin_data, by = NULL, by_class = NULL, ...)

Arguments
X A soma_adat object (with intact attributes), typically created using read_adat ().
clin_data One of 2 options:

* adata frame containing clinical variables to merge into x, or

* apath to afile, typically a *. csv, containing clinical variables to merge into
X.

merge_clin

by

by_class

Details

29

A character vector of variables to join by. See dplyr::left_join() for more
details.

If clin_data s a file path, a named character vector of the variable and its class.
This ensures the "by-key" is compatible for the join. For example, c(SampleId
= "character”). See read.table() for details about its colClasses argu-
ment, and also the examples below.

Additional parameters passed to dplyr::left_join().

This functionality also exists as a command-line tool (R script) contained in merge_clin.R that
lives in the cli/merge system file directory. Please see:

e dir(system.file("cli/merge”, package = "SomaDatalI0"), full.names = TRUE)

e vignette(”"cli-merge-tool”, package = "SomaDataI0")

Value

A soma_adat with new clinical variables merged.

Author(s)
Stu Field

See Also

dplyr::left_join()

Examples

retrieve clinical data
clin_file <- system.file("cli/merge”, "meta.csv”,

clin_file

package = "SomaDatalO”,
mustWork = TRUE)

view clinical data to be merged:

1) “group”
2) “newvar’

clin_df <- read.csv(clin_file, colClasses = c(Sampleld = "character"”))

clin_df

create mini-adat
apts <- withr::with_seed(123, sample(getAnalytes(example_data), 2L))
adat <- head(example_data, 9L) |[> # 9 x 2

dplyr::select(Sampleld, all_of(apts))

merge clinical variables
merged <- merge_clin(adat, clin_df, by = "SampleId")

merged

30 parseHeader

Alternative syntax:

1) pass file path

2) merge on different variable names

3) convert join type on-the-fly

clin_file2 <- system.file("cli/merge”, "meta2.csv”,
package = "SomaDatalO",
mustWork = TRUE)

id_type <- typeof(adat$Sampleld)

merged2 <- merge_clin(adat, clin_file2, # file path
by = c(Sampleld = "ClinKey"), # join on 2 variables
by_class = c(ClinKey = id_type)) # match types
merged?2
params Common Parameters in SomaDatalO
Description

The parameters below are commonly used throughout the SomaDatalO package.

Arguments
adat A soma_adat object (with intact attributes), typically created using read_adat ().
X A soma_adat object (with intact attributes), typically created using read_adat ().
matrix Character. A string of (usually) either "serum” or "plasma”.

Value

A soma_adat class object.

parseHeader SomaLogic ADAT parser

Description

Parses the header section of an ADAT file.

Usage
parseHeader(file)
Arguments
file Character. The elaborated path and file name of the *. adat file to be loaded into

an R workspace environment.

pivotExpressionSet 31

Value

A list of relevant file information required by read_adat () in order to complete loading the ADAT
file, including:

Header.Meta list of notes and other information about the adat

Col.Meta list of vectors that contain the column meta data about individual analytes, in-
cludes information about the target name and calibration and QC ratios

file_specs list of values of the file parsing specifications

row_meta character vector of the clinical variables; assay information that is included in

the adat output along with the RFU data

Author(s)
Stu Field

See Also

Other I0: 1loadAdatsAsList(), read_adat(), soma_adat, write_adat()

Examples

f <- system.file("extdata”, "example_datal®@.adat”,
package = "SomaDataI0”, mustWork = TRUE)

header <- parseHeader(f)

names (header)

header$Header.Meta

header$file_specs

header$row_meta

head(as.data.frame(header$Col.Meta))

pivotExpressionSet Convert to Long Format

Description

Utility to convert an ExpressionSet class object from the "wide" data format to the "long" format
via tidyr: :pivot_longer(). The Biobase package is required for this function.

Usage

pivotExpressionSet(eSet)

meltExpressionSet(eSet)

32 plot.Map

Arguments

eSet An ExpressionSet class object, created using adat2eSet ().

Value

A tibble consisting of the long format conversion of an ExpressionSet object.

Functions

e meltExpressionSet(): [Superseded]. Please now use pivotExpressionSet().

Author(s)
Stu Field

See Also

Other eSet: adat2eSet()

Examples

subset into a reduced mini-ADAT object

10 samples (rows)

5 clinical variables and 3 features (cols)
sub_adat <- example_data[1:10, c(1:5, 35:37)]
ex_set <- adat2eSet(sub_adat)

convert ExpressionSet object to long format
adat_long <- pivotExpressionSet(ex_set)

plot.Map Plot Image Maps

Description

Plotting function for objects of the outlier_map class. Produces a heatmap-style image using
ggplot2 syntax, for objects produced by calcOutlierMap().

Usage

S3 method for class 'Map'
plot(
X,
color.scheme = NULL,
legend.ticks = 7,
gridlines = NULL,
gridlinecol = "red”,

plot.Map

gridlinelwd = 0.5,
gridlinelty = 2,
main = NULL,

y.lab = NULL,
x.lab = NULL,
flags = NULL,

legend.width = 1,
legend.height = 2,
filename = NULL,

33

plot.width =

14,

plot.height = 8,

plot.scale

Arguments

X

color.scheme

legend. ticks
gridlines

gridlinecol
gridlinelwd
gridlinelty

main
y.lab
x.lab

flags

1,

An object of class: outlier_map
Which color scheme to use. Typical choices include:

* gplots: :redgreen()

e gplots: :bluered()

e grDevices: :heat.colors()

e grDevices: :terrain.colors()

e grDevices::topo.colors()

* RColorBrewer: :brewer.pal()

e viridis::viridis()

e viridis::magma()
How many ticks to place on the color legend.
Numeric vector or logical. Indicates where to draw the horizontal grid lines
that can be used to separate samples (rows). This should be a vector of the
cumulative sum of the horizontal lines to be drawn, typically something like
cumsum(table(data$Sex)). Alternatively, TRUE can be passed whereby the
lines are determined by the "class.tab" element of x$class. tab (if possible).
Color of the gridlines.
Width of the gridlines.
Line type of the gridlines.
Character. Main title for the plot. See ggplot2::ggtitle() for ggplot2 style
graphics.
Character. Optional string for the y-axis. Otherwise one is automatically gener-
ated (default).
Character. Optional string for the x-axis. Otherwise one is automatically gener-
ated (default).
Numeric in [0, 1]. For an "outlier_map”, the proportion of the analytes
(columns) for a given sample that must be outliers for a flag to be placed at the

right-axis, right-axis, thus flagging that sample. If NULL (default), @.05 (5%) is
selected.

34 preProcessAdat

legend.width Width for the color legend.
legend.height Height for the color legend.

filename Optional. If provided, the plot will be written to a file. The file name must also
include the desired file type extension; this will be used to determine the file
type, e.g. a file named foo. png will be saved as a PNG. See ggplot2: :ggsave()
for a full list of file type (device) options.

plot.width If "filename !=NULL", the width of the plot image file.
plot.height If "filename !=NULL", the height of the plot image file.
plot.scale If "filename !=NULL", the scale of the plot image file.

Arguments required by the plot() generic. Currently unused.

Value

Plot an image of the passed matrix.

Author(s)

Stu Field, Amanda Hiser

See Also

ggplot2::ggplot(), ggplot2: :geom_raster()
Other Calc Map: calcOutlierMap(), getOutlierIds()

Examples

example_data |>
dplyr::filter(SampleType == "Sample") |>
head(10) |>
calcOutlierMap() |>
plot(flags = 0.05)

preProcessAdat Pre-Process an ADAT Object for Analysis

Description

Pre-process an ADAT file containing raw analyte RFU values in preparation for analysis. For more
details please refer to the pre-processing how-to article

https://somalogic.github.io/SomaDataIO/dev/articles/pre-processing.html

preProcessAdat 35
Usage
preProcessAdat(
adat,
filter.features = TRUE,
filter.controls = TRUE,
filter.rowcheck = TRUE,
filter.qc = deprecated(),
filter.outliers = FALSE,
data.qc = NULL,
log.10 = FALSE,
center.scale = FALSE

Arguments

adat

filter.features

filter.controls

filter.rowcheck

filter.qc

filter.outliers

data.qc

log.10

center.scale

A soma_adat object created using read_adat (), including Seqld columns (seq. xXxxx . Xx)
containing raw RFU values.

Logical. Should non-human protein features (Seqlds) be dropped? Default is
TRUE.

Logical. Should SomaScan technical control samples be dropped? If TRUE, this
retains all samples where SampleType = "Sample” (study samples) and discards
all others including buffer, calibrator, and QC control samples. Default is TRUE.

Logical. If TRUE only samples that pass default normalization acceptance criteria
will be retained. Default is TRUE.

[Deprecated] Logical. Please use filter.rowcheck instead. This parameter is
deprecated and will be removed in a future version.

Logical. Should the adat object drop outlier samples? An outlier sample is
defined by >= 5% of filtered Seqlds exceeding +/- 6 MAD and 5x fold-change
from the median signal. This filter is typically appropriate for studies on plasma,
serum, and other biological matrices generally exhibiting homeostatic character-
istics. For studies on matrices such as tissue homogenate, cell culture, or study
designs containing client-provided background lysis buffer controls (or similar),
this filter will likely not be appropriate. Default is FALSE. If set to TRUE it is
highly recommended that filter.controls is also set to TRUE

Character. Character vector of variable names for which data QC plots are de-
sired. Default is NULL, which does not generate any QC plots. Note: These
plots are for visual inspection only, no samples or features are dropped from the
output soma_adat object.

Logical. Should the RFU values be log10 transformed? Default is FALSE.

Logical. Should the RFU values be Z-transformed (centered and scaled)? De-
fault is FALSE. If set to set to TRUE it is highly recommended that log. 1@ is also
set to TRUE

36 read_adat

Details
The soma_adat object is pre-processed with the following steps:

1. Filter features -> down to human protein analytes

2. Filter samples -> by the following order and criteria: a) Retain study samples only (dropping
buffer, calibrator, and QC samples) b) Only those that pass default normalization acceptance
criteria ¢) Those not identified as outliers.

3. Data QC -> plots of normalization scale factors by clinical covariates

4. Transformations -> log10, center, and scale analyte RFU values

Value

A soma_adat object.

Author(s)

Caleb Scheidel

Examples

preProcessAdat (example_data, data.qc = c("Age”, "Sex"))

read_adat Read (Load) SomalLogic ADATs

Description

The parse and load a *.adat file as a data. frame-like object into an R workspace environment.
The class of the returned object is a soma_adat object.

read.adat() is [Superseded]. For backward compatibility it will likely never go away completely,
but you are strongly encouraged to shift your code to use read_adat ().

is.soma_adat() checks whether an object is of class soma_adat. See inherits().

Usage
read_adat(file, debug = FALSE, verbose = getOption("verbose"), ...)
read.adat(file, debug = FALSE, verbose = getOption("verbose"), ...)

is.soma_adat(x)

read_adat

Arguments

file

debug

verbose

Value

37

Character. The elaborated path and file name of the *. adat file to be loaded into
an R workspace.

Logical. Used for debugging and development of an ADAT that fails to load,
particularly out-of-spec, poorly modified, or legacy ADATS.

Logical. Should the function call be run in verbose mode, printing relevant
diagnostic call information to the console.

Additional arguments passed ultimately to read.delim(), or additional argu-
ments passed to either other S3 print or summary methods as required by those
generics.

An R object to test.

A data. frame-like object of class soma_adat consisting of SomalLogic RFU (feature) data and
clinical meta data as columns, and samples as rows. Row names are labeled with the unique
ID "Slideld_Subarray" concatenation. The sections of the ADAT header (e.g., "Header.Meta",
"Col.Meta", ...) are stored as attributes (e.g. attributes(x)$Header .Meta).

Logical. Whether x inherits from class soma_adat.

Author(s)

Stu Field

See Also

read.delim()

Other IO: 1loadAdatsAsList(), parseHeader (), soma_adat, write_adat()

Examples

path to *.adat file
replace with your file path
adat_path <- system.file("extdata”, "example_datal@.adat”,

adat_path

package = "SomaDatalI0”, mustWork = TRUE)

my_adat <- read_adat(adat_path)

is.soma_adat(my_adat)

38 rownames

read_annotations Import a SomaLogic Annotations File

Description

Import a SomalLogic Annotations File

Usage

read_annotations(file)

Arguments
file A path to an annotations file location. This is a sanctioned, versioned file pro-
vided by Somal.ogic Operating Co., Inc. and should be an unmodified * . x1sx
file.
Value

A tibble containing analyte-specific annotations and related (e.g. lift/bridging) information, keyed
on SomaLogic Seqld, the unique SomaScan analyte identifier.

Examples
Not run:
for example
file <- "~/Downloads/SomaScan_11K_Annotated_Content.xlsx"

anno_tbl <- read_annotations(file)

End(Not run)

rownames Helpers for Working With Row Names

Description

Easily move row names to a column and vice-versa without the unwanted side-effects to object class

and attributes. Drop-in replacement for tibble: : rownames_to_column() and tibble: :column_to_rownames()
which can have undesired side-effects to complex object attributes. Does not import any external

packages, modify the environment, or change the object (other than the desired column). When

using col2rn(), if explicit row names exist, they are overwritten with a warning. add_rowid()

does not affect row names, which differs from tibble: :rowid_to_column().

rownames 39

Usage
rn2col(data, name = ".rn")
col2rn(data, name = ".rn")
has_rn(data)
rm_rn(data)
set_rn(data, value)
add_rowid(data, name = ".rowid")
Arguments
data An object that inherits from class data.frame. Typically a soma_adat class
object.
name Character. The name of the column to move.
value Character. The new set of names for the data frame. If duplicates exist they are
modified on-the-fly via make.unique().
Value

All functions attempt to return an object of the same class as the input with fully intact and un-
modified attributes (aside from those required by the desired action). has_rn() returns a scalar
logical.

Functions

rn2col(): moves the row names of data to an explicit column whether they are explicit or
implicit.

col2rn(): is the inverse of rn2col(). If row names exist, they will be overwritten (with
warning).

has_rn(): returns a boolean indicating whether the data frame has explicit row names as-
signed.

rm_rn(): removes existing row names, leaving only "implicit" row names.
set_rn(): sets (and overwrites) existing row names for data frames only.

add_rowid(): adds a sequential integer row identifier; starting at 1:nrow(data). It does not
remove existing row names currently, but may in the future (please code accordingly).

Examples
df <- data.frame(a = 1:5, b = rnorm(5), row.names = LETTERS[1:5])
df
rn2col (df) # default name is ~.rn”

rn2col (df, "AptName") # pass “name ="

40

Seqld

moving columns
df$mtcars <- sample(names(mtcars), 5)
col2rn(df, "mtcars”) # with a warning

Move back and forth easily
Leaves original object un-modified
identical(df, col2rn(rn2col(df)))

add "id"” column
add_rowid(mtcars)

remove row names
has_rn(mtcars)

mtcars2 <- rm_rn(mtcars)
has_rn(mtcars2)

SeqlId Working with SomaLogic Seqlds

Description

The Seqld is the cornerstone used to uniquely identify Somalogic analytes. SeqIds follow the
format <Pool>-<Clone>_<Version>, for example "1234-56_7" can be represented as:

Pool Clone Version
1234 56 7

See Details below for the definition of each sub-unit. The <Pool>-<Clone> combination is suffi-
cient to uniquely identify a specific analyte and therefore versions are no longer provided (though
they may be present in legacy ADATSs). The tools below enable users to extract, test, identify,
compare, and manipulate SeqIds across assay runs and/or versions.

Usage

getSeqld(x, trim.version = FALSE)
regexSeqld()

locateSeqld(x, trailing = TRUE)
seqid2apt(x)

apt2seqid(x)

is.apt(x)

is.Seqld(x)

Seqld 41

is.AptName(x)
matchSeqlds(x, y, order.by.x = TRUE)

getSeqldMatches(x, y, show = FALSE)

Arguments

X Character. A vector of strings, usually analyte/feature column names, AptNames,
or Seqlds. For seqid2apt(), a vector of Seqlds. For apt2seqid(), a charac-
ter vector containing Seqlds. For matchSeqIds(), a vector of pattern matches
containing Seqlds. Can be AptNames with GeneIDs, the seq.XXXX format, or
even "naked" Seqlds.

trim.version Logical. Whether to remove the version number, i.e. "1234-56_7" -> "1234-56".
Primarily for legacy ADATS.

trailing Logical. Should the regular expression explicitly specify trailing Seqld pattern
match, i.e. "regex$"? This is the most common case and the default.

y Character. A second vector of AptNames containing SeqIds to match against
those in contained in x. For matchSeqIds() these values are returned if there
are matching elements.

order.by.x Logical. Order the returned character string by the x (first) argument?
show Logical. Return the data frame visibly?
Details
Pool: ties back to the original well during SELEX
Clone: ties to the specific sequence within a pool

Version: refers to custom modifications (optional/defunct)

AptName a SeqIdcombined with a string, usually a Geneld- or seq. -prefix, for convenient, human-
readable manipulation from within R.

Value

getSeqIld(): a character vector of SeqIds captured from a string.

regexSeqId(): a regular expression (regex) string pre-defined to match Somalogic the SeqId
pattern.

locateSeqId(): a data frame containing the start and stop integer positions for SeqId matches
at each value of x.

seqid2apt(): a character vector with the seq. * prefix, i.e. the inverse of getSeqId().
apt2seqid(): a character vector of Seqlds. is.SeqId() will return TRUE for all elements.
is.apt(), is.SeqId(): Logical. TRUE or FALSE.

matchSeqIds(): a character string corresponding to values in y of the intersect of x and y. If no
matches are found, character(0).

getSeqIldMatches(): a nxz2 data frame, where n is the length of the intersect of the matching
Seqlds. The data frame is named by the passed arguments, x and y.

42 Seqld

Functions

* getSeqId(): extracts/captures the the SeqId match from an analyte column identifier, i.e.
column name of an ADAT loaded with read_adat(). Assumes the SeqIld pattern occurs at
the end of the string, which for the vast majority of cases will be true. For edge cases, see the
trailing argument to locateSeqId().

* regexSeqld(): generates a pre-formatted regular expression for matching of SeqIds. Note
the trailing match, which is most commonly required, but locateSeqId() offers an alternative
to mach anywhere in a string. Used internally in many utility functions

* locateSeqId(): generates a data frame of the positional SeqId matches. Specifically de-
signed to facilitate SeqId extraction via substr(). Similar to stringr::str_locate().

* seqid2apt(): converts a Seqld into anonymous-AptName format, i.e. 1234-56 -> seq.1234.56.
Version numbers (1234-56_ver) are always trimmed when present.

* apt2seqid(): converts an anonymous-AptName into SeqIld format, i.e. seq.1234.56 ->
1234-56. Version numbers (seq.1234.56.ver) are always trimmed when present.

e is.apt(): regular expression match to determine if a string contains a Seqld, and thus is
probably an AptName format string. Both legacy EntrezGeneSymbol-Seqld combinations or
newer so-called "anonymous-AptNames” formats (seq.1234.45) are matched.

* is.SeqId(): tests for SeqId format, i.e. values returned from getSeqId() will always return
TRUE.

e is.AptName(): tests for AptName format, i.e. values returned from seqid2apt () will always
return TRUE. This function will only match AptNames, not SeqIds, and is therefore more strict
than is.apt().

* matchSeqIds(): matches two character vectors on the basis of their intersecting SeqIds.
Note that elements in y not containing a SeqId regular expression are silently dropped.

» getSegIldMatches(): matches two character vectors on the basis of their intersecting Seglds
only (irrespective of the GeneID-prefix). This produces a two-column data frame which then
can be used as to map between the two sets.

The final order of the matches/rows is by the input corresponding to the first argument (x).
By default the data frame is invisibly returned to avoid dumping excess output to the console

(see the show = argument.)
Author(s)
Stu Field

See Also

generics::intersect()

Examples

x <- c("ABDC.3948.48.2", "3948.88",
"3948.48.2", "3948-48_2", "3948.48.2",
"3948-48_2", "3948-88",
"My.Favorite.Apt.3948.88.9")

SomaDatalO-deprecated 43

tibble::tibble(orig = X,
Seqld = getSeqld(x),
Seqld_trim = getSeqld(x, TRUE),
AptName = seqid2apt(Seqld))

Logical Matching

is.apt("AGR2.4959.2") # TRUE
is.apt("”seq.4959.2") # TRUE
is.apt("4959-2") # TRUE
is.apt("AGR2") # FALSE

SeqIld Matching

x <- c("seq.4554.56", "seq.3714.49", "Plateld")
y <= c("Group"”, "3714-49", "Assay", "4554-56")
matchSeqlds(x, y)

matchSeqlds(x, y, order.by.x = FALSE)

vector of features
feats <- getAnalytes(example_data)

match_df <- getSeqldMatches(feats[1:100], feats[90:500]) # 11 overlapping
match_df

a <- utils::head(feats, 15)
b <- withr::with_seed(99, sample(getSeqld(a))) # => Seqld & shuffle
(getSeqldMatches(a, b)) # sorted by first vector "a"

SomaDatalO-deprecated Deprecated function(s) of the SomaDatalO package

Description

These functions have either been [Superseded] or [Deprecated] in the current version of Soma-
DatalO package. They may eventually be completely removed, so please re-code your scripts
accordingly based on the suggestions below:

Function Now Use
getSomamers () [Superseded] getAnalytes()
getSomamerData() [Superseded] getAnalyteInfo()

Details

Some badges you may see in SomaDatalO:
[Superseded]

[Deprecated]

[Soft-deprecated]

[Stable]

44 SomaScanObjects

SomaScanObjects Example Data and Objects

Description

The example_data object is intended to provide existing and prospective Somalogic customers
with example data to enable analysis preparation prior to receipt of SomaScan data, and also for
those generally curious about the SomaScan data deliverable. It is not intended to be used as a
control group for studies or provide any metrics for SomaScan data in general.

Format

example_data a soma_adat parsed via read_adat () containing 192 samples (see below for break-

down of sample type). There are 5318 columns containing 5284 analyte features and 34 clin-
ical meta data fields. These data have been pre-processed via the following steps:

* hybridization normalized (all samples)

* calibrators and buffers median normalized

* plate scaled

* calibrated

* Adaptive Normalization by Maximum Likelihood (ANML) of QC and clinical samples

Notel: The Age and Sex (M/F) fields contain simulated values designed to contain biological
signal.

*xNote2:** The ~SampleType™ column contains sample source/type information
and usually the ~SampleType == Sample” represents the "client” samples.

Note3: The original source file can be found at
\url{https://github.com/SomaLogic/SomalLogic-Data}.

ex_analytes character string of the analyte features contained in the soma_adat object, derived
from a call to getAnalytes().

ex_anno_tbl a lookup table corresponding to a transposed data frame of the "Col.Meta" attribute
of an ADAT, with an index key field AptName included in column 1, derived from a call to
getAnalyteInfo().

ex_target_names A lookup table mapping SeqId feature names -> target names contained in
example_data. This object (or one like it) is convenient at the console via auto-complete
for labeling and/or creating plot titles on the fly.

ex_clin_data A table containing Sampleld, smoking_status, and alcohol_use fields for each
clinical sample in example_data used to demonstrate how to merge sample annotation infor-
mation to an existing soma_adat object.

Data Description

The example_data object contains a SomaScan V4 study from healthy normal individuals. The
RFU measurements themselves and other identifiers have been altered to protect personally iden-
tifiable information (PII), but also retain underlying biological signal as much as possible. There

SomaScanObjects 45

are 192 total EDTA-plasma samples across two 96-well plate runs which are broken down by the
following types:

* 170 clinical samples (client study samples)
* 10 calibrators (replicate controls for combining data across runs)
* 6 QC samples (replicate controls used to assess run quality)

* 6 Buffer samples (no protein controls)

Data Processing

The standard V4 data normalization procedure for EDTA-plasma samples was applied to this dataset.
For more details on the data standardization process see the Data Standardization and File Specifi-
cation Technical Note. General details are outlined above.

Source

https://github.com/SomalLogic/SomalLogic-Data
SomaLogic Operating Co., Inc.

Examples

S3 print method
example_data

print header info
print(example_data, show_header = TRUE)

class(example_data)

Features/Analytes
head(ex_analytes, 20L)

Feature info table (annotations)
ex_anno_tbl

Search via ~“filter()"
dplyr::filter(ex_anno_tbl, grepl(”"*MMP", Target))

Lookup table -> targets
MMP-9
ex_target_names$seq.2579.17

gender hormone FSH
tapply(example_data$seq.3032.11, example_data$Sex, median)

gender hormone LH
tapply(example_data$seq.2953.31, example_data$Sex, median)

Target lookup
ex_target_names$seq.2953. 31 # tab-completion at console

https://github.com/SomaLogic/SomaLogic-Data

46

Sample Type/Source
table(example_data$SampleType)

Sex/Gender Variable

table(example_data$Sex)

Age Variable

summary (example_data$Age)

soma_adat

soma_adat

The soma_adat Class and S3 Methods

Description

The soma_adat data structure is the primary internal R representation of SomaScan data. A soma_adat
is automatically created via read_adat () when loading a . adat text file. It consists of adata. frame-
like object with leading columns as clinical variables and SomaScan RFU data as the remaining
variables. Two main attributes corresponding to analyte and SomaScan run information contained

in the *.adat file are added:

orattr(x, "Col.Meta")

file_specs: parsing specifications for the ingested *.adat file

row_meta: the names of the non-RFU fields. See getMeta().

Header .Meta: information about the SomaScan run, see parseHeader () orattr(x, "Header.Meta")

Col.Meta: annotations information about the SomaScan reagents/analytes, see getAnalyteInfo()

See groupGenerics() for a details on Math(), Ops(), and Summary() methods that dispatch on
class soma_adat.

See reexports() for a details on re-exported S3 generics from other packages (mostly dplyr and
tidyr) to enable S3 methods to be dispatched on class soma_adat.

Below is a list of all currently available S3 methods that dispatch on the soma_adat class:

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

(1]

[5]

91
[13]
[17]
[21]
[25]
[29]
[33]
[37]

see '?methods' for accessing help and source code

L

arrange

getAdatVersion

inner_join
median
print
sample_frac
separate
Summary

[L

$

count
getAnalytes
is_segFormat
merge

rename
sample_n
slice_sample
transform

[[<-

$<-

filter
getMeta
left_join
mutate
right_join
select
slice
ungroup

[<-
anti_join
full_join
group_by
Math

Ops
row.names<-
semi_join
summary
unite

soma_adat 47

The S3 print () method returns summary information parsed from the object attributes, if present,
followed by a dispatch to the tibble: :tibble() print method. Rownames are printed as the first
column in the print method only.

The S3 summary () method returns the following for each column of the ADAT object containing
SOMAmer data (clinical meta data is excluded):

* Target (if available)

* Minimum value

* 1st Quantile

* Median

* Mean

* 3rd Quantile

* Maximum value

 Standard deviation

¢ Median absolute deviation (mad())

* Interquartile range (IQR())
The S3 Extract() method is used for sub-setting a soma_adat object and relies heavily on the

[method that maintains the soma_adat attributes intact and subsets the Col.Meta so that it is
consistent with the newly created object.

S3 extraction via $ is fully supported, however, as opposed to the data.frame method, partial
matching is not allowed for class soma_adat.

S3 extraction via [[is supported, however, we restrict the usage of [[for soma_adat. Use only
a numeric index (e.g. 1L) or a character identifying the column (e.g. "SampleID"). Do not use
[[i,j]1] syntax with [[, use [instead. As with $, partial matching is not allowed.

S3 assignment via [is supported for class soma_adat.
S3 assignment via $ is fully supported for class soma_adat.
S3 assignment via [[is supported for class soma_adat.

S3 median() is not currently supported for the soma_adat class, however a dispatch is in place to
direct users to alternatives.
Usage

S3 method for class 'soma_adat'
print(x, show_header = FALSE, ...)

S3 method for class 'soma_adat'
summary(object, tbl = NULL, digits = max(3L, getOption("digits”) - 3L), ...)

S3 method for class 'soma_adat'
x[i, j, drop = TRUE, ...]

S3 method for class 'soma_adat'
x$name

48 soma_adat

S3 method for class 'soma_adat'
x[[i, j, ..., exact = TRUE]]

S3 replacement method for class 'soma_adat'
x[i, j, ...]1 <= value

S3 replacement method for class 'soma_adat'
x$i, j, ... <- value

S3 replacement method for class 'soma_adat'
x[[i, j, ...1] <= value

S3 method for class 'soma_adat'

median(x, na.rm = FALSE, ...)
Arguments
x, object A soma_adat class object.
show_header Logical. Should all the Header Data information be displayed instead of the
data frame (tibble) object?
Ignored.
tbl An annotations table. If NULL (default), annotation information is extracted from

the object itself (if possible). Alternatively, the result of a call to getAnalyteInfo(),
from which Target names can be extracted.

digits Integer. Used for number formatting with signif ().

i,] Row and column indices respectively. If j is omitted, i is used as the column
index.

drop Coerce to a vector if fetching one column via tb1[, jJ. Default FALSE, ignored
when accessing a column via tb1[j].

name A name or a string.

exact Ignored with a warning().

value A value to store in a row, column, range or cell.

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds.

Value
The set of S3 methods above return the soma_adat object with the corresponding S3 method ap-
plied.

See Also

groupGenerics()

Other I0O: 1oadAdatsAsList(), parseHeader(), read_adat(), write_adat()

transform 49

Examples

S3 print method
example_data

show the header info (no RFU data)
print(example_data, show_header = TRUE)

S3 summary method

MMP analytes (4)

mmps <- c("seq.2579.17", "seq.2788.55", "seq.2789.26", "seq.4925.54")
mmp_adat <- example_datal, c("Sex", mmps)]

summary (mmp_adat)

Summarize by group

mmp_adat |>
split(mmp_adat$Sex) |[>
lapply(summary)

Alternatively pass annotations with Target info
anno <- getAnalyteInfo(mmp_adat)
summary (mmp_adat, tbl = anno)

transform Scale Transform soma_adat Columns/Rows

Description

Scale the i-th row or column of a soma_adat object by the i-th element of a vector. Designed to
facilitate linear transformations of only the analyte/RFU entries by scaling the data matrix. If scaling
the analytes/RFU (columns), v must have getAnalytes(adat, n = TRUE) elements. If scaling the
samples (rows), v must have nrow(_data) elements.

Usage
S3 method for class 'soma_adat'
transform(” _data™, v, dim = 2L, ...)
Arguments
_data A soma_adat object.
v A numeric vector of the appropriate length corresponding to dim.
dim Integer. The dimension to apply elements of v to. 1 = rows; 2 = columns (de-
fault).

Currently not used but required by the S3 generic.

50 transform

Details

Performs the following operations (quickly):

Columns:
Mypzp = Anap * diag(v)pzp
Rows:
Mna:p = dzag(v)nmn * Anwp
Value

A modified value of _data with either the rows or columns linearly transformed by v.

Note

This method in intentionally naive, and assumes the user has ordered v to match the columns/rows
of _data appropriately. This must be done upstream.

See Also

apply (), sweep()

Examples

simplified example of underlying operations
M <- matrix(1:12, ncol = 4)

M

v <- 1:4

M %x% diag(v) # transform columns
v <-1:3

diag(v) %*% M # transform rows

dummy ADAT example:

v <- ¢c(2, 0.5) # double seql; half seq2

adat <- data.frame(sample = paste@("sample_", 1:3),
seq.1234.56 = c(1, 2, 3),
$eq.9999.88 = c(4, 5, 6) x 10)

adat

“soma_adat™ to invoke S3 method dispatch
class(adat) <- c("soma_adat”, "data.frame")
trans <- transform(adat, v)
data.frame(trans)

updateColMeta 51

updateColMeta Update Col.-Meta Attribute to Match Annotations Object

Description

Utility to update a provided soma_adat object’s column metadata to match the annotations object.

Usage

updateColMeta(adat, anno)

Arguments

adat A soma_adat data object to update attributes.

anno A tibble containing analyte-specific annotations from read_annotations()
Details

Attempts to update the following column metadata in the adat:

* Somald

* Target

* TargetFullName

e UniProt

* Type

* Organism

* EntrezGeneSymbol
* EntrezGenelD

Value

An identical object to adat with Col.Meta updated to match those in anno.

Author(s)
Caleb Scheidel

Examples

Not run:

anno_tbl <- read_annotations("path/to/annotations.xlsx")
adat <- read_adat("path/to/adat_file.adat")
updated_adat <- updateColMeta(adat, anno_tbl)

End(Not run)

52 write_adat

write_adat Write an ADAT to File

Description

One can write an existing modified internal ADAT (soma_adat R object) to an external file. How-
ever the ADAT object itself must have intact attributes, see is_intact_attr().

Usage

write_adat(x, file)

Arguments
X A soma_adat object (with intact attributes), typically created using read_adat ().
file Character. File path where the object should be written. For example, extensions
should be *. adat.
Details

The ADAT specification no longer requires Windows end of line (EOL) characters ("\r\n"). The
current EOL spec is "\n"” which is commonly used in POSIX systems, like MacOS and Linux.
Since the EOL affects the resulting checksum, ADATSs written on other systems generate slightly
differing files. Standardizing to "\n" attempts to solve this issue. For reference, see the EOL en-
coding for operating systems below:

Symbol Platform Character
LF Linux "\n"
CR MacOS "\r"

CRLF DOS/Windows "\r\n”

Value

Invisibly returns the input x.

Author(s)
Stu Field

See Also

read_adat(), is_intact_attr()
Other IO: loadAdatsAsList (), parseHeader(), read_adat(), soma_adat

write_adat

Examples

trim to 1 sample for speed
adat_out <- head(example_data, 1L)

attributes must(!) be intact to write
is_intact_attr(adat_out)

write_adat(adat_out, file = tempfile(fileext = ".adat"))

53

Index

x Calc Map
calcOutlierMap, 8
getOutlierlIds, 18
plot.Map, 32
* 10
loadAdatsAsList, 27
parseHeader, 30
read_adat, 36
soma_adat, 46
write_adat, 52
* datasets
SomaScanObjects, 44
* eSet
adat2eSet, 5
pivotExpressionSet, 31
==.soma_adat (groupGenerics), 19
[.soma_adat (soma_adat), 46
[<-.soma_adat (soma_adat), 46
[[.soma_adat (soma_adat), 46
[[<-.soma_adat (soma_adat), 46
$.soma_adat (soma_adat), 46
$<-.soma_adat (soma_adat), 46

adat-helpers, 3
adat2eSet, 5, 32
adat2eSet(), 32

add_rowid (rownames), 38
add_rowid(), 38
addAttributes, 6
addClass, 7
all.equal(), 14
annotations (Col.Meta), 12
antilog (groupGenerics), 19
apply(), 50

apt2seqid (Seqld), 40
apt2seqid(), 41

attr(), 6
attributes(), 23

calc_elOD, 10

54

calcOutlierMap, 8, 19, 34
calcOutlierMap(), 19, 32
checkSomaScanVersion (adat-helpers), 3
checkSomaScanVersion(), 3
class(),7

cleanNames, 11

Col.Meta, 12

col2rn (rownames), 38

col2rn(), 38

collapseAdats (loadAdatsAsList), 27
collapseAdats(), 26, 27

colmeta (Col.Meta), 12

diffAdats, 14
diffAdats(), 20, 21
dplyr::bind_rows(), 27
dplyr::left_join(), 28, 29

ex_analytes (SomaScanObjects), 44
ex_anno_tbl (SomaScanObjects), 44
ex_clin_data (SomaScanObjects), 44
ex_target_names (SomaScanObjects), 44
example_data (SomaScanObjects), 44
Extract(), 47

generics::intersect(), 42
generics::setdiff(), 6
getAdatVersion (adat-helpers), 3
getAdatVersion(), 3
getAnalytelnfo, 15
getAnalytelInfo(), 8, 12, 16, 43, 44, 46, 48
getAnalytes, 17
getAnalytes(), 1618, 43, 44
getFeatureData (getAnalyteInfo), 15
getFeatures (getAnalytes), 17
getGroup(), 21
getGroupMembers(), 21

getMeta (getAnalytes), 17
getMeta(), 12, 17,46
getOutlierIds, 9, 18, 34

INDEX

getSeqld (Seqld), 40

getSeqld(), 41, 42

getSeqldMatches (Seqld), 40

getSeqldMatches(), 41

getSignalSpace (adat-helpers), 3

getSignalSpace(), 3

getSomamerData (SomaDatalO-deprecated),
43

getSomamerData(), 43

getSomamers (SomaDatalO-deprecated), 43

getSomamers(), 43

getSomaScanLiftCCC (adat-helpers), 3

getSomaScanLiftCCC(), 3, 26

getSomaScanVersion (adat-helpers), 3

getSomaScanVersion(), 3

getTargetNames (getAnalytelInfo), 15

ggplot2: :geom_raster(), 34

ggplot2::ggplot(), 34

ggplot2: :ggsave(), 34

ggplot2::ggtitle(), 33

gplots: :bluered(), 33

gplots: :redgreen(), 33

grDevices: :heat.colors(), 33

grDevices::terrain.colors(), 33

grDevices: :topo.colors(), 33

groupGeneric(), 19, 21

groupGenerics, 19

groupGenerics(), 46, 48

gsub(), 12

has_rn (rownames), 38
has_rn(), 39

inherits(), 36

interactive(), 23

IQRQ), 47

is.apt (Seqld), 40

is.apt(), 18,41

is.AptName (Seqld), 40

is.intact.attributes (is_intact_attr),
23

is.intact.attributes(), 23

is.Seqld (Seqld), 40

is.Seqld(), 41

is.soma_adat (read_adat), 36

is.soma_adat(), 36

is_intact_attr, 23

is_intact_attr(), 16, 23, 52

is_lifted (lift_adat), 24

55

is_lifted(), 25
is_seqgFormat, 24

lift_adat, 24

lift_adat(), 3,25
loadAdatsAsList, 27, 31, 37,48, 52
loadAdatsAsList(), 27
locateSeqld (Seqld), 40
locateSeqld(), 41, 42

log(), 20

mad(), 47

make.unique(), 39

matchSeqlds (Seqld), 40

matchSeqlds(), 41

Math(), 19, 46

Math.soma_adat (groupGenerics), 19

median(), 47

median.soma_adat (soma_adat), 46

meltExpressionSet (pivotExpressionSet),
31

merge_clin, 28

merge_clin(), 28

name, 48

Ops(), 19, 20, 46
Ops.soma_adat (groupGenerics), 19

params, 30
parseHeader, 28, 30, 37, 48, 52
parseHeader(), 46
pivotExpressionSet, 5, 31
pivotExpressionSet(), 32
plot.Map, 9, 19, 32
plot.Map(), 8
preProcessAdat, 34

print(), 47

print.outlier_map (calcOutlierMap), 8
print.soma_adat (soma_adat), 46

rbind(), 27

RColorBrewer: :brewer.pal(), 33

read.adat (read_adat), 36

read.adat(), 36

read.delim(), 37

read. table(), 29

read_adat, 28, 31, 36, 48, 52

read_adat(), 3, 5, 16, 17, 23, 25, 27, 28, 30,
31, 35, 36,42, 44, 46, 52

56 INDEX

read_annotations, 38
read_annotations(), 25, 26
reexports(), 46
regexSeqld (Seqld), 40
regexSeqld(), 41

rm_rn (rownames), 38
rn2col (rownames), 38
rn2col (), 39

rowmeta (Col.Meta), 12
rownames, 38

Seqld, 38, 40

SeqIld(), 12

segid2apt (Seqld), 40
seqid2apt(), 41, 42

set_rn (rownames), 38

signif (), 48
soma_adat, 28, 31, 37,46, 52
SomaDatalO-deprecated, 43
SomaScanObjects, 44
stringr::str_locate(), 42
structure(), 7

sub(), 12

substr(), 42

Summary(), 19, 20, 46
summary (), 47

Summary . soma_adat (groupGenerics), 19
summary.soma_adat (soma_adat), 46
sweep(), 50

tibble::tibble(), 47
tidyr::pivot_longer(), 31
transform, 49

trimws(), 12

typeof (), 7

updateColMeta, 51

viridis::magma(), 33
viridis::viridis(), 33

warning(), 48
write_adat, 28, 31, 37,48, 52

	adat-helpers
	adat2eSet
	addAttributes
	addClass
	calcOutlierMap
	calc_eLOD
	cleanNames
	Col.Meta
	diffAdats
	getAnalyteInfo
	getAnalytes
	getOutlierIds
	groupGenerics
	is_intact_attr
	is_seqFormat
	lift_adat
	loadAdatsAsList
	merge_clin
	params
	parseHeader
	pivotExpressionSet
	plot.Map
	preProcessAdat
	read_adat
	read_annotations
	rownames
	SeqId
	SomaDataIO-deprecated
	SomaScanObjects
	soma_adat
	transform
	updateColMeta
	write_adat
	Index

