
Package ‘SCORPION’
February 5, 2026

Type Package

Title Single Cell Oriented Reconstruction of PANDA Individual
Optimized Networks

Version 1.3.0

Description Constructs gene regulatory networks from single-cell gene expression data us-
ing the PANDA (Passing Attributes between Networks for Data Assimilation) algorithm.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports cli, methods, irlba, igraph, RANN, Matrix, pbapply, dplyr

Suggests RhpcBLASctl, testthat (>= 3.0.0)

RoxygenNote 7.3.3

NeedsCompilation no

Author Daniel Osorio [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4424-8422>),

Marieke L. Kuijjer [aut] (ORCID:
<https://orcid.org/0000-0001-6280-3130>)

Maintainer Daniel Osorio <daniecos@uio.no>

Repository CRAN

Date/Publication 2026-02-04 23:50:02 UTC

Contents
regressEdges . 2
runSCORPION . 4
scorpion . 9
scorpionTest . 12
testEdges . 13

Index 17

1

https://orcid.org/0000-0003-4424-8422
https://orcid.org/0000-0001-6280-3130

2 regressEdges

regressEdges Regression analysis of edges across ordered conditions

Description

Performs linear regression on network edges from runSCORPION output to identify edges that
show significant trends across ordered conditions (e.g., disease progression: Normal -> Border ->
Tumor).

Usage

regressEdges(networksDF, orderedGroups, padjustMethod = "BH", minMeanEdge = 0)

Arguments

networksDF A data.frame output from runSCORPION containing TF-target pairs as rows and
network identifiers as columns.

orderedGroups A named list where each element is a character vector of column names in
networksDF. Names represent ordered conditions (e.g., list(Normal = c("P31–
N", "P32–N"), Border = c("P31–B", "P32–B"), Tumor = c("P31–T", "P32–
T"))). The order of list elements defines the progression (first to last).

padjustMethod Character specifying the p-value adjustment method for multiple testing correc-
tion. See p.adjust for options. Default "BH" (Benjamini-Hochberg FDR).

minMeanEdge Numeric threshold for minimum mean absolute edge weight to include in test-
ing. Edges with mean absolute weight below this threshold are excluded. De-
fault 0 (no filtering).

Details

This function performs simple linear regression for each edge, modeling edge weight as a function
of an ordered categorical variable (coded as 0, 1, 2, ... for each condition level).

The slope coefficient indicates the average change in edge weight per step along the ordered pro-
gression. Positive slopes indicate increasing edge weights, negative slopes indicate decreasing edge
weights.

The function uses vectorized computations for efficiency with large datasets.

Value

A data.frame containing:

• tf: Transcription factor

• target: Target gene

• slope: Regression slope (change in edge weight per condition step)

• intercept: Regression intercept

• rSquared: R-squared value (proportion of variance explained)

regressEdges 3

• fStatistic: F-statistic for the regression

• pValue: Raw p-value for the slope

• pAdj: Adjusted p-value

• meanEdge: Overall mean edge weight across all conditions

• One column per condition showing mean edge weight in that condition

Examples

Not run:
Load test data and build networks by donor and region
Note: T = Tumor, N = Normal, B = Border regions
data(scorpionTest)
nets <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = c("donor", "region")

)

Define ordered progression: Normal -> Border -> Tumor
normal_nets <- grep("--N$", colnames(nets), value = TRUE)
border_nets <- grep("--B$", colnames(nets), value = TRUE)
tumor_nets <- grep("--T$", colnames(nets), value = TRUE)

ordered_conditions <- list(
Normal = normal_nets,
Border = border_nets,
Tumor = tumor_nets

)

Perform regression analysis
results_regression <- regressEdges(

networksDF = nets,
orderedGroups = ordered_conditions

)

View top edges with strongest trends
head(results_regression[order(results_regression$pAdj),])

Edges with positive slopes (increasing from N to T)
increasing <- results_regression[results_regression$pAdj < 0.05 &

results_regression$slope > 0,]
print(paste("Edges increasing along N->B->T:", nrow(increasing)))

Edges with negative slopes (decreasing from N to T)
decreasing <- results_regression[results_regression$pAdj < 0.05 &

results_regression$slope < 0,]
print(paste("Edges decreasing along N->B->T:", nrow(decreasing)))

Filter by minimum edge weight and R-squared

4 runSCORPION

strong_trends <- results_regression[results_regression$pAdj < 0.05 &
results_regression$rSquared > 0.7 &
abs(results_regression$meanEdge) > 0.1,]

End(Not run)

runSCORPION Run SCORPION across cell groups and return combined networks

Description

Builds per-group regulatory networks by running scorpion on subsets of cells defined by cellsMetadata
and combining the resulting networks into a wide-format data frame where each column corre-
sponds to a network.

Usage

runSCORPION(
gexMatrix,
tfMotifs,
ppiNet,
cellsMetadata,
groupBy,
normalizeData = TRUE,
removeBatchEffect = FALSE,
batch = NULL,
minCells = 30,
computingEngine = "cpu",
nCores = 1,
gammaValue = 10,
nPC = 25,
assocMethod = "pearson",
alphaValue = 0.1,
hammingValue = 0.001,
nIter = Inf,
outNet = "regNet",
zScaling = TRUE,
showProgress = TRUE,
randomizationMethod = "None",
scaleByPresent = FALSE,
filterExpr = FALSE

)

Arguments

gexMatrix An expression dataset with genes in the rows and barcodes (cells) in the columns.

runSCORPION 5

tfMotifs A motif dataset, a data.frame or a matrix containing 3 columns. Each row de-
scribes a motif associated with a transcription factor (column 1) a gene (column
2) and a score (column 3).

ppiNet A Protein-Protein-Interaction dataset, a data.frame or matrix containing 3 columns.
Each row describes a protein-protein interaction between transcription factor 1
(column 1), transcription factor 2 (column 2) and a score (column 3).

cellsMetadata A data.frame with cell-level metadata; must contain columns specified in groupBy.

groupBy Character vector of one or more column names in cellsMetadata to use for
grouping cells into networks.

normalizeData Boolean to indicate normalization of expression data. Default TRUE performs
log normalization.

removeBatchEffect

Boolean to indicate batch effect correction. Default FALSE.

batch Factor or vector giving batch assignment for each cell; required if removeBatchEffect
= TRUE.

minCells Minimum number of cells per group required to build a network. Default is 30.
computingEngine

Either ’cpu’ or ’gpu’. Passed to scorpion.

nCores Number of processors to be used if BLAS or MPI is active.

gammaValue Graining level of data (proportion of number of single cells to super-cells). De-
fault 10.

nPC Number of principal components to use for kNN network construction. Default
25.

assocMethod Association method. Must be one of ’pearson’, ’spearman’ or ’pcNet’. Default
’pearson’.

alphaValue Value to be used for update variable in PANDA. Default 0.1.

hammingValue Value at which to terminate the process based on Hamming distance. Default
0.001.

nIter Sets the maximum number of iterations PANDA can run before exiting. Default
Inf.

outNet Character specifying which network to extract. Options include "regNet", "coreg-
Net", "coopNet". Default "regNet".

zScaling Boolean to indicate use of Z-Scores in output. FALSE will use [0,1] scale.
Default TRUE.

showProgress Boolean to indicate printing of output for algorithm progress. Default TRUE.
randomizationMethod

Method by which to randomize gene expression matrix. Default "None". Must
be one of "None", "within.gene", "by.gene".

scaleByPresent Boolean to indicate scaling of correlations by percentage of positive samples.
Default FALSE.

filterExpr Boolean to indicate whether or not to remove genes with 0 expression across all
cells. Default FALSE.

6 runSCORPION

Details

This function is a wrapper around scorpion that groups cells according to metadata columns, filters
out groups with insufficient cells, runs network inference on each remaining group independently,
and finally combines all resulting networks into a single wide-format data frame.

Value

A data.frame in wide format where rows represent TF-target pairs (union across all networks) and
columns represent network identifiers. Cell values are edge weights from the corresponding net-
work.

Examples

Not run:
Load test data
data(scorpionTest)

Example 1: Group by single column (region)
nets_by_region <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = "region"

)

-- SCORPION --
+ Normalizing data (log scale)
i 3 networks requested
+ 3 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined

head(nets_by_region)
tf target T B N
1 AATF ACKR1 -0.31433856 -0.3569918 -0.33734920
2 ABL1 ACKR1 -0.32915008 -0.3648895 -0.34437341
3 ACSS2 ACKR1 -0.31418599 -0.3557854 -0.33663144
4 ADNP ACKR1 0.04105895 0.1109288 0.09910822
5 AEBP2 ACKR1 -0.18964574 -0.2202269 -0.17558140
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.31024700 -0.3508320 -0.33054519

Example 2: Group by single column (donor)
nets_by_donor <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = "donor"

)

runSCORPION 7

-- SCORPION --
+ Normalizing data (log scale)
i 3 networks requested
+ 3 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined
head(nets_by_donor)
tf target P31 P32 P33
1 AATF ACKR1 -0.34869366 -0.3557884 -0.35010835
2 ABL1 ACKR1 -0.33724323 -0.3575331 -0.32875974
3 ACSS2 ACKR1 -0.34569954 -0.3573108 -0.34980657
4 ADNP ACKR1 0.09933951 0.1045316 0.06046914
5 AEBP2 ACKR1 -0.25111137 -0.2245655 -0.23157035
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.34148264 -0.3518686 -0.34398594

Example 3: Group by two columns (donor and region)
nets_by_donor_region <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = c("donor", "region")

)

-- SCORPION --
+ Normalizing data (log scale)
i 9 networks requested
+ 9 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined
head(nets_by_donor_region)
tf target P31--T P31--B P31--N
1 AATF ACKR1 -0.32634975 -0.33717677 -0.3442886
2 ABL1 ACKR1 -0.34048759 -0.33890429 -0.3509986
3 ACSS2 ACKR1 -0.32570697 -0.33600811 -0.3436603
4 ADNP ACKR1 0.07975735 0.05354279 0.1048301
5 AEBP2 ACKR1 -0.21472437 -0.20545660 -0.1815737
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.31861592 -0.32809314 -0.3375652

Example 4: Group by three columns (donor, region, and cell_type)
nets_by_donor_region_cell_type <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = c("donor", "region", "cell_type")

)

-- SCORPION --
+ Normalizing data (log scale)
i 9 networks requested

8 runSCORPION

+ 9 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined
head(nets_by_donor_region_cell_type)
tf target P31--T--Epithelial P31--B--Epithelial
1 AATF ACKR1 -0.32634975 -0.33717677
2 ABL1 ACKR1 -0.34048759 -0.33890429
3 ACSS2 ACKR1 -0.32570697 -0.33600811
4 ADNP ACKR1 0.07975735 0.05354279
5 AEBP2 ACKR1 -0.21472437 -0.20545660
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.31861592 -0.32809314

Example 5: Using GPU computing engine (if available)
nets_gpu <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = "region",
computingEngine = "gpu"

)

-- SCORPION --
+ Normalizing data (log scale)
i 3 networks requested
+ 3 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined
head(nets_gpu)
tf target T B N
1 AATF ACKR1 -0.31433821 -0.3569913 -0.33734894
2 ABL1 ACKR1 -0.32915005 -0.3648892 -0.34437302
3 ACSS2 ACKR1 -0.31418574 -0.3557851 -0.33663106
4 ADNP ACKR1 0.04105883 0.1109285 0.09910798
5 AEBP2 ACKR1 -0.18964562 -0.2202267 -0.17558131
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.31024694 -0.3508317 -0.33054504

Example 6: Removing batch effect using donor as batch
nets_batch_corrected <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = "region",
removeBatchEffect = TRUE,
batch = scorpionTest$metadata$donor

)

-- SCORPION --
+ Normalizing data (log scale)
+ Correcting for batch effects

scorpion 9

i 3 networks requested
+ 3 networks meet the minimum cell requirement (30)
i Computing networks
+ Networks successfully constructed
+ Networks successfully combined
head(nets_batch_corrected)
tf target T B N
1 AATF ACKR1 -0.3337298 -0.34885471 -0.13011777
2 ABL1 ACKR1 -0.3408020 -0.35409813 -0.17694266
3 ACSS2 ACKR1 -0.3325270 -0.35115311 -0.12661518
4 ADNP ACKR1 0.1117504 0.08691481 0.01608898
5 AEBP2 ACKR1 -0.2334648 -0.22113011 0.12519312
6 AEBP2_EED_EZH2_RBBP4_SUZ12 ACKR1 -0.3274770 -0.34475499 -0.12449908

End(Not run)

scorpion Build gene regulatory networks from single-cell RNA-seq data using
PANDA

Description

Constructs gene regulatory networks from single-cell/nuclei RNA-seq data by first applying coarse-
graining to reduce sparsity, then running the PANDA (Passing Attributes between Networks for
Data Assimilation) message-passing algorithm to integrate transcription factor motifs, protein-
protein interactions, and gene expression data into unified regulatory networks.

Usage

scorpion(
tfMotifs = NULL,
gexMatrix,
ppiNet = NULL,
computingEngine = "cpu",
nCores = 1,
gammaValue = 10,
nPC = 25,
assocMethod = "pearson",
alphaValue = 0.1,
hammingValue = 0.001,
nIter = Inf,
outNet = c("regNet", "coregNet", "coopNet"),
zScaling = TRUE,
showProgress = TRUE,
randomizationMethod = "None",
scaleByPresent = FALSE,
filterExpr = FALSE

)

10 scorpion

Arguments

tfMotifs A motif dataset (data.frame or matrix) with 3 columns: TF, target gene, and
motif score. Pass NULL for co-expression analysis only.

gexMatrix An expression dataset, with genes in the rows and barcodes (cells) in the columns.

ppiNet A Protein-Protein-Interaction dataset (data.frame or matrix) with 3 columns:
protein 1, protein 2, and interaction score. Pass NULL to disable protein in-
teraction integration.

computingEngine

Character specifying computing device: ’cpu’ or ’gpu’ (if available). Default
’cpu’.

nCores Number of processors to be used if BLAS or MPI is active.

gammaValue Graining level of data (proportion of number of single cells in the initial dataset
to the number of super-cells in the final dataset)

nPC Number of principal components to use for construction of single-cell kNN net-
work.

assocMethod Association method. Must be one of ’pearson’, ’spearman’ or ’pcNet’.

alphaValue Numeric update parameter (0 to 1) controlling relative contribution of prior net-
works. Default 0.1.

hammingValue Numeric convergence threshold based on Hamming distance. Algorithm stops
when updates fall below this. Default 0.001.

nIter Sets the maximum number of iterations PANDA can run before exiting.

outNet A vector containing which networks to return. Options include "regNet", "coreg-
Net", "coopNet".

zScaling Boolean to indicate use of Z-Scores in output. FALSE will use [0,1] scale.

showProgress Boolean to indicate printing of output for algorithm progress.
randomizationMethod

Method by which to randomize gene expression matrix. Default "None". Must
be one of "None", "within.gene", "by.genes". "within.gene" randomization scram-
bles each row of the gene expression matrix, "by.gene" scrambles gene labels.

scaleByPresent Boolean to indicate scaling of correlations by percentage of positive samples.

filterExpr Boolean to remove genes with zero expression across all cells before network
inference. Default FALSE.

Value

A list of 6 elements describing the inferred networks at convergence:

• regNet: Regulatory network matrix (TFs × genes)

• coregNet: Co-regulation network matrix (genes × genes)

• coopNet: Cooperation network matrix (TFs × TFs)

• numGenes: Number of genes in the network

• numTFs: Number of transcription factors

• numEdges: Total number of edges in regulatory network

scorpion 11

Author(s)

Daniel Osorio <daniecos@uio.no>

See Also

runSCORPION for building networks across cell groups.

Examples

Loading example data
data(scorpionTest)

The structure of the data
str(scorpionTest)

List of 4
$ gex :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
.. ..@ i : int [1:46171] 29 32 41 43 61 170 208 245 251 269 ...
.. ..@ p : int [1:1955] 0 11 62 97 112 163 184 215 257 274 ...
.. ..@ Dim : int [1:2] 300 1954
.. ..@ Dimnames:List of 2
..$: chr [1:300] "IGHM" "IGHG2" "IGLC3" "IGLL5" ...
..$: chr [1:1954] "P31-T_AAACGGGTCGGTTAAC" "P31-T_AAAGATGGTGGCCCTA" ...
.. ..@ x : num [1:46171] 1 1 1 1 2 2 1 1 2 1 ...
.. ..@ factors : list()
$ tf :'data.frame': 371738 obs. of 3 variables:
..$ source_genesymbol: chr [1:371738] "MYC" "SPI1" "JUN_JUND" "FOS_JUND" ...
..$ target_genesymbol: chr [1:371738] "TERT" "BGLAP" "JUN" "JUN" ...
..$ weight : num [1:371738] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "origin")= chr "cache"
..- attr(*, "url")= chr "https://omnipathdb.org/interactions? __truncated__
$ ppi :'data.frame': 4076 obs. of 3 variables:
..$ source_genesymbol: chr [1:4076] "ZIC1" "HES5" "ATOH1" "DLL1" ...
..$ target_genesymbol: chr [1:4076] "ATOH1" "ATOH1" "HES5" "NOTCH1" ...
..$ weight : num [1:4076] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "origin")= chr "cache"
..- attr(*, "url")= chr "https://omnipathdb.org/interactions?__truncated__
$ metadata:'data.frame': 1954 obs. of 4 variables:
..$ cell_id : chr [1:1954] "P31-T_AAACGGGTCGGTTAAC" "P31-T_AAAGATGGTGGCCCTA"...
..$ donor : chr [1:1954] "P31" "P31" "P31" "P31" ...
..$ region : chr [1:1954] "T" "T" "T" "T" ...
..$ cell_type: Factor w/ 1 level "Epithelial": 1 1 1 1 1 1 1 1 1 1 ...

Running SCORPION for epithelial cells from the normal tissue
We are using alphaValue = 0.8 for testing purposes (Default = 0.1).
scorpionOutput <- scorpion(

tfMotifs = scorpionTest$tf,
gexMatrix = scorpionTest$gex[, scorpionTest$metadata$region == "N"],
ppiNet = scorpionTest$ppi,
alphaValue = 0.8

)

12 scorpionTest

-- SCORPION --
+ Initializing and validating
+ Verified sufficient samples
i Normalizing networks
i Learning Network
i Using tanimoto similarity
+ Successfully ran SCORPION on 281 Genes and 963 TFs

Structure of the output.
str(scorpionOutput)

List of 6
$ regNet : num [1:963, 1:281] -0.1556 -0.0455 -0.1461 1.6881 0.8746 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:963] "AATF" "ABL1" "ACSS2" "ADNP" ...
.. ..$: chr [1:281] "ACKR1" "ACTA2" "ACTG2" "ADAMDEC1" ...
$ coregNet: num [1:281, 1:281] 2.02e+06 3.84 4.10 -1.26 8.81e-01 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:281] "ACKR1" "ACTA2" "ACTG2" "ADAMDEC1" ...
.. ..$: chr [1:281] "ACKR1" "ACTA2" "ACTG2" "ADAMDEC1" ...
$ coopNet : num [1:963, 1:963] 1.17e+07 -2.66 8.13 -1.31 4.95 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:963] "AATF" "ABL1" "ACSS2" "ADNP" ...
.. ..$: chr [1:963] "AATF" "ABL1" "ACSS2" "ADNP" ...
$ numGenes: int 281
$ numTFs : int 963
$ numEdges: int 270603

scorpionTest Example single-cell gene expression, motif, and ppi data

Description

This data is a list containing three objects. The motif data.frame describes a set of pairwise
connections where a specific known sequence motif of a transcription factor was found upstream of
the corresponding gene. The expression dgCMatrix is a set of 230 gene expression levels measured
across 80 cells. Finally, the ppi data.frame describes a set of known pairwise protein-protein
interactions.

Usage

data(scorpionTest)

Format

A list containing three datasets.

gex A subsetted version of 10X Genomics’ 3k PBMC dataset provided by the Seurat package.

tf Subset of the transcription-factor and target gene list provided by the dorothea package for
Homo sapiens.

testEdges 13

ppi The known protein-protein interactions and the combined score downloaded from the STRING
database

Examples

Loading example data
data(scorpionTest)

The structure of the data
str(scorpionTest)

List of 3
$ gex:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
.. ..@ i : int [1:4456] 1 5 8 11 22 30 33 34 36 38 ...
.. ..@ p : int [1:81] 0 47 99 149 205 258 306 342 387 423 ...
.. ..@ Dim : int [1:2] 230 80
.. ..@ Dimnames:List of 2
..$: chr [1:230] "MS4A1" "CD79B" "CD79A" "HLA-DRA" ...
..$: chr [1:80] "ATGCCAGAACGACT" "CATGGCCTGTGCAT" "GAACCTGATGAACC" "TGACTGGATTCTCA" ...
.. ..@ x : num [1:4456] 1 1 3 1 1 4 1 5 1 1 ...
.. ..@ factors : list()
$ tf :'data.frame': 4485 obs. of 3 variables:
..$ tf : chr [1:4485] "ADNP" "ADNP" "ADNP" "AEBP2" ...
..$ target: chr [1:4485] "PRF1" "TMEM40" "TNFRSF1B" "CFP" ...
..$ mor : num [1:4485] 1 1 1 1 1 1 1 1 1 1 ...
$ ppi:'data.frame': 12754 obs. of 3 variables:
..$ X.node1 : chr [1:12754] "ADNP" "ADNP" "ADNP" "AEBP2" ...
..$ node2 : chr [1:12754] "ZBTB14" "NFIA" "CDC5L" "YY1" ...
..$ combined_score: num [1:12754] 0.769 0.64 0.581 0.597 0.54 0.753 0.659 0.548 0.59 0.654 ...

testEdges Test edges from SCORPION networks

Description

Performs statistical testing of network edges from runSCORPION output. Supports single-sample
tests (testing if edges differ from zero) and two-sample tests (comparing edges between two groups).

Usage

testEdges(
networksDF,
testType = c("single", "two.sample"),
group1,
group2 = NULL,
paired = FALSE,
alternative = c("two.sided", "greater", "less"),
padjustMethod = "BH",
minMeanEdge = 0

)

14 testEdges

Arguments

networksDF A data.frame output from runSCORPION containing TF-target pairs as rows and
network identifiers as columns.

testType Character specifying the test type. Options are:

• "single": Single-sample test (one-sample t-test against zero)
• "two.sample": Two-sample comparison (t-test between two groups)

group1 Character vector of column names in networksDF representing the first group
(or the only group for single-sample tests).

group2 Character vector of column names in networksDF representing the second group.
Required for two-sample tests, ignored for single-sample tests.

paired Logical indicating whether to perform a paired t-test. Default FALSE. When
TRUE, group1 and group2 must have the same length and be in matched or-
der (e.g., group1[1] is paired with group2[1]). Useful for comparing matched
samples such as Tumor vs Normal from the same patient.

alternative Character specifying the alternative hypothesis. Options: "two.sided" (default),
"greater", or "less".

padjustMethod Character specifying the p-value adjustment method for multiple testing correc-
tion. See p.adjust for options. Default "BH" (Benjamini-Hochberg FDR).

minMeanEdge Numeric threshold for minimum mean absolute edge weight to include in test-
ing. Edges with mean absolute weight below this threshold are excluded. De-
fault 0 (no filtering).

Details

For single-sample tests, the function tests whether the mean edge weight across replicates signifi-
cantly differs from zero using a one-sample t-test.

For two-sample tests, the function compares edge weights between two groups using Welch’s t-test
(unequal variances assumed).

For paired tests, the function calculates the difference between matched pairs and performs a one-
sample t-test on the differences (testing if mean difference differs from zero). This is appropriate
when samples are matched (e.g., Tumor and Normal from the same patient).

Edges are tested independently, and p-values are adjusted for multiple testing using the specified
method.

The function uses fully vectorized computations for efficiency, making it suitable for large-scale
analyses with millions of edges. T-statistics and p-values are calculated using matrix operations
without iteration.

Value

A data.frame containing:

• tf: Transcription factor

• target: Target gene

• meanEdge: Mean edge weight

testEdges 15

• tStatistic: Test statistic

• pValue: Raw p-value

• pAdj: Adjusted p-value

• For two-sample tests: meanGroup1, meanGroup2, diffMean (Group1 - Group2), log2FoldChange

Examples

Not run:
Load test data and build networks by donor and region
Note: T = Tumor, N = Normal, B = Border regions
data(scorpionTest)
nets <- runSCORPION(

gexMatrix = scorpionTest$gex,
tfMotifs = scorpionTest$tf,
ppiNet = scorpionTest$ppi,
cellsMetadata = scorpionTest$metadata,
groupBy = c("donor", "region")

)

Single-sample test: Test if edges in Tumor region differ from zero
tumor_nets <- grep("--T$", colnames(nets), value = TRUE) # T = Tumor
results_single <- testEdges(

networksDF = nets,
testType = "single",
group1 = tumor_nets

)

Two-sample test: Compare Tumor vs Border regions
tumor_nets <- grep("--T$", colnames(nets), value = TRUE) # T = Tumor
border_nets <- grep("--B$", colnames(nets), value = TRUE) # B = Border
results_tumor_vs_border <- testEdges(

networksDF = nets,
testType = "two.sample",
group1 = tumor_nets,
group2 = border_nets

)

View top differential edges (Tumor vs Border)
head(results_tumor_vs_border[order(results_tumor_vs_border$pAdj),])

Compare Tumor vs Normal regions
normal_nets <- grep("--N$", colnames(nets), value = TRUE) # N = Normal
results_tumor_vs_normal <- testEdges(

networksDF = nets,
testType = "two.sample",
group1 = tumor_nets,
group2 = normal_nets

)

Filter by minimum edge weight for focused analysis
results_filtered <- testEdges(

networksDF = nets,

16 testEdges

testType = "two.sample",
group1 = tumor_nets,
group2 = normal_nets,
minMeanEdge = 0.1 # Only test edges with |mean| >= 0.1

)

Paired t-test: Compare matched Tumor vs Normal samples (same patient)
Ensure columns are ordered by patient: P31--T with P31--N, P32--T with P32--N, etc.
tumor_nets_ordered <- c("P31--T", "P32--T", "P33--T")
normal_nets_ordered <- c("P31--N", "P32--N", "P33--N")
results_paired <- testEdges(

networksDF = nets,
testType = "two.sample",
group1 = tumor_nets_ordered,
group2 = normal_nets_ordered,
paired = TRUE

)

End(Not run)

Index

p.adjust, 2, 14

regressEdges, 2
runSCORPION, 2, 4, 11, 14

scorpion, 4–6, 9
scorpionTest, 12

testEdges, 13

17

	regressEdges
	runSCORPION
	scorpion
	scorpionTest
	testEdges
	Index

