Package ‘RSQLite’

February 6, 2026
Title SQLite Interface for R
Version 2.4.6
Date 2026-02-05

Description Embeds the SQLite database engine in R and provides an
interface compliant with the DBI package. The source for the SQLite
engine (version 3.51.2) and for various extensions is included.
System libraries will never be consulted because this package relies
on static linking for the plugins it includes; this also ensures a
consistent experience across all installations.

License LGPL (>=2.1)
URL https://rsqlite.r-dbi.org, https://github.com/r-dbi/RSQLite

BugReports https://github.com/r-dbi/RSQLite/issues
Depends R (>=3.1.0)

Imports bit64, blob (>= 1.2.0), DBI (>= 1.2.0), memoise, methods,
pkgconfig, rlang

Suggests callr, cli, DBItest (>= 1.8.0), decor, gert, gh, hms, knitr,
magrittr, rmarkdown, rvest, testthat (>= 3.0.0), withr, xml2

LinkingTo cppll (>=0.4.0)
VignetteBuilder knitr
Config/Needs/website r-dbi/dbitemplate
Config/autostyle/scope line_breaks
Config/autostyle/strict false
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3.9000

Collate 'SQLiteConnection.R' 'SQLKeywords_SQLiteConnection.R'
'SQLiteDriver.R' 'SQLite.R' 'SQLiteResult.R' 'coerce.R'
‘compatRowNames.R' 'copy.R' 'cpp11.R' 'datasetsDb.R’
'dbAppendTable_SQLiteConnection.R' 'dbBeginTransaction.R'
'dbBegin_SQLiteConnection.R' 'dbBind_SQLiteResult.R'

1

https://rsqlite.r-dbi.org
https://github.com/r-dbi/RSQLite
https://github.com/r-dbi/RSQLite/issues

'dbClearResult_SQLiteResult.R' 'dbColumnInfo_SQLiteResult.R'
'dbCommit_SQLiteConnection.R' 'dbConnect_SQLiteConnection.R'
'dbConnect_SQLiteDriver.R' 'dbDataType_SQLiteConnection.R'
'dbDataType_SQLiteDriver.R' 'dbDisconnect_SQLiteConnection.R'
'dbExistsTable_SQLiteConnection_Id.R'
'dbExistsTable_SQLiteConnection_character.R'
'dbFetch_SQLiteResult.R' 'dbGetException_SQLiteConnection.R'
'dbGetInfo_SQLiteConnection.R' 'dbGetInfo_SQLiteDriver.R'
'dbGetPreparedQuery.R’
'dbGetPreparedQuery_SQLiteConnection_character_data.frame.R'
'dbGetRowCount_SQLiteResult.R'
'dbGetRowsAffected_SQLiteResult.R'
'dbGetStatement_SQLiteResult.R' 'dbHasCompleted_SQLiteResult.R'
'dblsValid_SQLiteConnection.R' 'dbIsValid_SQLiteDriver.R'
'dbIsValid_SQLiteResult.R' 'dbListResults_SQLiteConnection.R'
'dbListTables_SQLiteConnection.R'
'dbQuoteldentifier_SQLiteConnection_SQL.R'
'dbQuoteldentifier_SQLiteConnection_character.R'
'dbReadTable_SQLiteConnection_character.R'
'dbRemoveTable_SQLiteConnection_character.R’
'dbRollback_SQLiteConnection.R' 'dbSendPreparedQuery.R'
'dbSendPreparedQuery_SQLiteConnection_character_data.frame.R'
'dbSendQuery_SQLiteConnection_character.R'
'dbUnloadDriver_SQLiteDriver.R'
'dbUnquoteldentifier_SQLiteConnection_SQL.R'
'dbWriteTable_SQLiteConnection_character_character.R'
'dbWriteTable_SQLiteConnection_character_data.frame.R’
'db_bind.R' 'deprecated.R' 'export.R' 'fetch_SQLiteResult.R’
'import-standalone-check_suggested.R'

'import-standalone-purrr.R' 'initExtension.R' 'initRegExp.R’
'isSQLKeyword_SQLiteConnection_character.R’
'make.db.names_SQLiteConnection_character.R' 'pkgconfig.R’
'show_SQLiteConnection.R' 'sqlData_SQLiteConnection.R’
'table.R' 'transactions.R' 'utils.R' 'version.R' 'zzz.R'

NeedsCompilation yes

Author Kirill Miiller [aut, cre] (ORCID:

<https://orcid.org/0000-0002-1416-3412>),

Hadley Wickham [aut],

David A. James [aut],

Seth Falcon [aut],

D. Richard Hipp [ctb] (for the included SQLite sources),

Dan Kennedy [ctb] (for the included SQLite sources),

Joe Mistachkin [ctb] (for the included SQLite sources),

SQLite Authors [ctb] (for the included SQLite sources),

Liam Healy [ctb] (for the included SQLite sources),

R Consortium [fnd],

RStudio [cph]

Maintainer Kirill Miiller <kirill@cynkra.com>

https://orcid.org/0000-0002-1416-3412

Contents 3

Repository CRAN
Date/Publication 2026-02-06 10:50:07 UTC

Contents
datasetsDb L. e e 3
dbBegin_SQLiteConnectiono 4
dbReadTable_SQLiteConnection_character 5
dbWriteTable_SQLiteConnection_character_character 6
initExtension oL e e 8
rsgliteVersion L e 10
SQLIte . . . o o 11
sqliteCopyDatabase e 13
sqliteSetBusyHandler L 14

Index 16

datasetsDb A sample sqlite database
Description

This database is bundled with the package, and contains all data frames in the datasets package.

Usage

datasetsDb()

Examples

library(DBI)
db <- RSQLite::datasetsDb()
dbListTables(db)

dbReadTable(db, "C02")
dbGetQuery(db, "SELECT * FROM CO2 WHERE conc < 100")

dbDisconnect(db)

4 dbBegin_SQLiteConnection

dbBegin_SQLiteConnection
SQLite transaction management

Description

By default, SQLite is in auto-commit mode. dbBegin() starts a SQLite transaction and turns auto-
commit off. dbCommit () and dbRollback() commit and rollback the transaction, respectively and
turn auto-commit on. DBI::dbWithTransaction() is a convenient wrapper that makes sure that
dbCommit () or dbRollback() is called. A helper function sqliteIsTransacting() is available
to check the current transaction status of the connection.

Usage

S4 method for signature 'SQLiteConnection'
dbBegin(conn, .name = NULL, ..., name = NULL)

S4 method for signature 'SQLiteConnection’
dbCommit(conn, .name = NULL, ..., name = NULL)

S4 method for signature 'SQLiteConnection'
dbRollback(conn, .name = NULL, ..., name = NULL)

sqlitelIsTransacting(conn)

Arguments
conn a SQLiteConnection object, produced by DBI: : dbConnect ()
.name For backward compatibility, do not use.
Needed for compatibility with generic. Otherwise ignored.
name Supply a name to use a named savepoint. This allows you to nest multiple
transaction
See Also

The corresponding generic functions DBI : : dbBegin(), DBI: :dbCommit (), and DBI: :dbRollback().

Examples

library(DBI)

con <- dbConnect(SQLite(), ":memory:")
dbWriteTable(con, "arrests”, datasets::USArrests)
dbGetQuery(con, "select count(*) from arrests”)

dbBegin(con)
rs <- dbSendStatement(con, "DELETE from arrests WHERE Murder > 1")
dbGetRowsAffected(rs)

dbReadTable_SQLiteConnection_character 5

dbClearResult(rs)
dbGetQuery(con, "select count(*) from arrests”)

dbRollback(con)
dbGetQuery(con, "select count(*) from arrests”)[1,]

dbBegin(con)

rs <- dbSendStatement(con, "DELETE FROM arrests WHERE Murder > 5")
dbClearResult(rs)

dbCommit(con)

dbGetQuery(con, "SELECT count(*) FROM arrests”)[1,]

Named savepoints can be nested ----—---------""-——--m
dbBegin(con, name = "a")

dbBegin(con, name = "b")

sqlitelIsTransacting(con)

dbRollback(con, name = "b")

dbCommit(con, name = "a")

dbDisconnect(con)

dbReadTable_SQLiteConnection_character
Read a database table

Description

Returns the contents of a database table given by name as a data frame.

Usage

S4 method for signature 'SQLiteConnection,character’
dbReadTable(
conn,
name,
row.names = pkgconfig::get_config("RSQLite: :row.names.table”, FALSE),
check.names = TRUE,

select.cols = NULL
)
Arguments
conn a SQLiteConnection object, produced by DBI: :dbConnect ()
name a character string specifying a table name. SQLite table names are not case

sensitive, e.g., table names ABC and abc are considered equal.

Needed for compatibility with generic. Otherwise ignored.

6 dbWriteTable_SQLiteConnection_character_character

row.names Either TRUE, FALSE, NA or a string.

If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.

A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

check.names If TRUE, the default, column names will be converted to valid R identifiers.
select.cols Deprecated, do not use.
Details

Note that the data frame returned by dbReadTable () only has primitive data, e.g., it does not coerce
character data to factors.

Value

A data frame.

See Also
The corresponding generic function DBI: : dbReadTable().

Examples

library(DBI)

db <- RSQLite::datasetsDb()

dbReadTable(db, "mtcars")

dbReadTable(db, "mtcars”, row.names = FALSE)
dbDisconnect(db)

dbWriteTable_SQLiteConnection_character_character
Write a local data frame or file to the database

Description

Functions for writing data frames or delimiter-separated files to database tables.

Usage

S4 method for signature 'SQLiteConnection,character,character’
dbWriteTable(

conn,

name,

value,

field.types = NULL,

dbWriteTable_SQLiteConnection_character_character

overwrite = FALSE,
append = FALSE,
header = TRUE,
colClasses = NA,
row.names = FALSE,

nrows = 50,

sep = ",",

eol = "\n",

skip = 0,

temporary = FALSE
)
S4 method for signature 'SQLiteConnection,character,data.frame’
dbWriteTable(

conn,

name,

value,

cee,
row.names
overwrite

pkgconfig::get_config("RSQLite: :row.names.table”, FALSE),
FALSE,

append = FALSE,
field.types = NULL,
temporary = FALSE

Arguments

conn

name

value

field. types
overwrite
append

header

colClasses

a SQLiteConnection object, produced by DBI: : dbConnect()

a character string specifying a table name. SQLite table names are not case
sensitive, e.g., table names ABC and abc are considered equal.

a data.frame (or coercible to data.frame) object or a file name (character). In
the first case, the data.frame is written to a temporary file and then imported
to SQLite; when value is a character, it is interpreted as a file name and its
contents imported to SQLite.

Needed for compatibility with generic. Otherwise ignored.

character vector of named SQL field types where the names are the names of
new table’s columns. If missing, types inferred with DBI: : dbDataType()).

a logical specifying whether to overwrite an existing table or not. Its default is
FALSE.

a logical specifying whether to append to an existing table in the DBMS. Its
default is FALSE

is a logical indicating whether the first data line (but see skip) has a header
or not. If missing, it value is determined following read.table() convention,
namely, it is set to TRUE if and only if the first row has one fewer field that the
number of columns.

Character vector of R type names, used to override defaults when imputing
classes from on-disk file.

8 initExtension

row.names A logical specifying whether the row.names should be output to the output
DBMS table; if TRUE, an extra field whose name will be whatever the R identi-
fier "row.names"” maps to the DBMS (see DBI: :make.db.names()). If NA will
add rows names if they are characters, otherwise will ignore.

nrows Number of rows to read to determine types.
sep The field separator, defaults to ', '.
eol The end-of-line delimiter, defaults to '\n"'.
skip number of lines to skip before reading the data. Defaults to O.
temporary a logical specifying whether the new table should be temporary. Its default is
FALSE.
Details

In a primary key column qualified with AUTOINCREMENT, missing values will be assigned the next
largest positive integer, while nonmissing elements/cells retain their value. If the autoincrement
column exists in the data frame passed to the value argument, the NA elements are overwritten.
Similarly, if the key column is not present in the data frame, all elements are automatically assigned
a value.

See Also

The corresponding generic function DBI: :dbWriteTable().

Examples

con <- dbConnect(SQLite())
dbWriteTable(con, "mtcars”, mtcars)
dbReadTable(con, "mtcars")

A zero row data frame just creates a table definition.
dbWriteTable(con, "mtcars2”, mtcars[0, 1)
dbReadTable(con, "mtcars2")

dbDisconnect(con)

initExtension Add useful extension functions

Description

Several extension functions are included in the RSQLite package. When enabled via initExtension(),
these extension functions can be used in SQL queries. Extensions must be enabled separately for
each connection.

Usage

n

initExtension(db, extension = c("math”, "regexp"”, "series”, "csv", "uuid"))

https://www.sqlite.org/autoinc.html

initExtension 9

Arguments
db A SQLiteConnection object to load these extensions into.
extension The extension to load.

Details

The "math” extension functions are written by Liam Healy and made available through the SQLite
website (https://www.sglite.org/src/ext/contrib). This package contains a slightly modi-
fied version of the original code. See the section "Available functions in the math extension" for
details.

The "regexp” extension provides a regular-expression matcher for POSIX extended regular expres-
sions, as available through the SQLite source code repository (https://sqlite.org/src/file?
filename=ext/misc/regexp.c). SQLite will then implement the A regexp B operator, where A
is the string to be matched and B is the regular expression.

The "series” extension loads the table-valued function generate_series(), as available through
the SQLite source code repository (https://sqlite.org/src/file?filename=ext/misc/series.
).

The "csv"” extension loads the function csv () that can be used to create virtual tables, as available
through the SQLite source code repository (https://sqlite.org/src/file?filename=ext/misc/
CSv.c).

The "uuid” extension loads the functions uuid(), uuid_str(X) and uuid_blob(X) that can be
used to create universally unique identifiers, as available through the SQLite source code repository
(https://sqlite.org/src/file?filename=ext/misc/uuid.c).

Available functions in the math extension

Math functions acos, acosh, asin, asinh, atan, atan2, atanh, atn2, ceil, cos, cosh, cot, coth, degrees,
difference, exp, floor, log, log10, pi, power, radians, sign, sin, sinh, sqrt, square, tan, tanh
String functions charindex, leftstr, ltrim, padc, padl, padr, proper, replace, replicate, reverse, right-

str, rtrim, strfilter, trim

Aggregate functions stdev, variance, mode, median, lower_quartile, upper_quartile

Examples

library(DBI)
db <- RSQLite::datasetsDb()

math

RSQLite::initExtension(db)

dbGetQuery(db, "SELECT stdev(mpg) FROM mtcars")
sd(mtcars$mpg)

regexp
RSQLite::initExtension(db, "regexp")
dbGetQuery(db, "SELECT * FROM mtcars WHERE carb REGEXP '[12]'")

series
RSQLite::initExtension(db, "series"”)

https://www.sqlite.org/src/ext/contrib
https://sqlite.org/src/file?filename=ext/misc/regexp.c
https://sqlite.org/src/file?filename=ext/misc/regexp.c
https://sqlite.org/src/file?filename=ext/misc/series.c
https://sqlite.org/src/file?filename=ext/misc/series.c
https://sqlite.org/src/file?filename=ext/misc/csv.c
https://sqlite.org/src/file?filename=ext/misc/csv.c
https://sqlite.org/src/file?filename=ext/misc/uuid.c

10 rsqlite Version

dbGetQuery(db, "SELECT value FROM generate_series(@, 20, 5);")
dbDisconnect (db)

csv
db <- dbConnect(RSQLite::SQLite())
RSQLite::initExtension(db, "csv")
use the filename argument to mount CSV files from disk
sql <- paste@(

"CREATE VIRTUAL TABLE tbl USING ",

"csv(data='1,2", schema='CREATE TABLE x(a INT, b INT)')"
)
dbExecute(db, sql)
dbGetQuery(db, "SELECT x FROM tbl")

uuid

db <- dbConnect(RSQLite::SQLite())
RSQLite::initExtension(db, "uuid")
dbGetQuery(db, "SELECT uuid();")
dbDisconnect(db)

rsgliteVersion RSQLite version

Description

Return the version of RSQLite.

Usage

rsgliteVersion()

Value

A character vector containing header and library versions of RSQLite.

Examples

RSQLite::rsqliteVersion()

SQLite 11

SQLite Connect to an SQLite database

Description

Together, SQLite () and dbConnect () allow you to connect to a SQLite database file. See DBI: : dbSendQuery ()
for how to issue queries and receive results.

Usage

SQLite(...)

S4 method for signature 'SQLiteConnection'
dbConnect(drv, ...)

S4 method for signature 'SQLiteDriver'
dbConnect(
drv,
dbname = "",
loadable.extensions = TRUE,
default.extensions = loadable.extensions,
cache_size = NULL,

synchronous = "off",
flags = SQLITE_RWC,
vfs = NULL,
bigint = c("integer64”, "integer"”, "numeric"”, "character"),
extended_types = FALSE
)
S4 method for signature 'SQLiteConnection’
dbDisconnect(conn, ...)
Arguments

In previous versions, SQLite () took arguments. These have now all been moved
to DBI: :dbConnect(), and any arguments here will be ignored with a warning.

drv, conn An objected generated by SQLite(), or an existing SQLiteConnection. If an
connection, the connection will be cloned.

dbname The path to the database file. SQLite keeps each database instance in one single
file. The name of the database is the file name, thus database names should be
legal file names in the running platform. There are two exceptions:

nn

* "" will create a temporary on-disk database. The file will be deleted when
the connection is closed.

e ":memory:" or "file::memory:" will create a temporary in-memory database.

12 SQLite

loadable.extensions
When TRUE (default) SQLite3 loadable extensions are enabled. Setting this
value to FALSE prevents extensions from being loaded.

default.extensions
When TRUE (default) the initExtension() function will be called on the new
connection.Setting this value to FALSE requires calling initExtension() man-
ually.

cache_size Advanced option. A positive integer to change the maximum number of disk
pages that SQLite holds in memory (SQLite’s default is 2000 pages). See
https://www.sqlite.org/pragma.html#pragma_cache_size for details.

synchronous Advanced options. Possible values for synchronous are "off" (the default),
"normal", or "full". Users have reported significant speed ups using sychronous
= "off", and the SQLite documentation itself implies considerable improved
performance at the very modest risk of database corruption in the unlikely case
of the operating system (not the R application) crashing. See https://www.
sqlite.org/pragma.html#pragma_synchronous for details.

flags SQLITE_RWC: open the database in read/write mode and create the database file
if it does not already exist; SQLITE_RW: open the database in read/write mode.
Raise an error if the file does not already exist; SQLITE_RO: open the database in
read only mode. Raise an error if the file does not already exist

vfs Select the SQLite3 OS interface. See https://www.sqlite.org/vfs.html for details.
Allowed values are "unix-posix”, "unix-unix-afp”, "unix-unix-flock"”,
"unix-dotfile"”, and "unix-none”.

bigint The R type that 64-bit integer types should be mapped to, default is bit64::integer64,
which allows the full range of 64 bit integers.

extended_types When TRUE columns of type DATE, DATETIME / TIMESTAMP, and TIME are mapped
to corresponding R-classes, c.f. below for details. Defaults to FALSE.

Details

Connections are automatically cleaned-up after they’re deleted and reclaimed by the GC. You can
use DBI: :dbDisconnect() to terminate the connection early, but it will not actually close until all
open result sets have been closed (and you’ll get a warning message to this effect).

Value

SQLite() returns an object of class SQLiteDriver.

dbConnect () returns an object of class SQLiteConnection.

Extended Types

When parameter extended_types = TRUE date and time columns are directly mapped to corre-
sponding R-types. How exactly depends on whether the actual value is a number or a string:

Column type Value is numeric Value is Text
DATE Count of days since 1970-01-01 YMD formatted string (e.g. 2
TIME Count of (fractional) seconds HMS formatted string (e.g. 1

https://www.sqlite.org/pragma.html#pragma_cache_size
https://www.sqlite.org/pragma.html#pragma_synchronous
https://www.sqlite.org/pragma.html#pragma_synchronous

sqliteCopyDatabase 13

DATETIME / TIMESTAMP Count of (fractional) seconds since midnight 1970-01-01 UTC DATE and TIME as above se

If a value cannot be mapped an NA is returned in its place with a warning.

See Also

The corresponding generic functions DBI: : dbConnect () and DBI: :dbDisconnect().

Examples

library(DBI)

Initialize a temporary in memory database and copy a data.frame into it
con <- dbConnect(RSQLite::SQLite(), ":memory:")

data(USArrests)

dbWriteTable(con, "USArrests"”, USArrests)

dbListTables(con)

Fetch all query results into a data frame:
dbGetQuery(con, "SELECT * FROM USArrests")

Or do it in batches

rs <- dbSendQuery(con, "SELECT x FROM USArrests")

d1 <- dbFetch(rs, n = 10) # extract data in chunks of 10 rows
dbHasCompleted(rs)

d2 <- dbFetch(rs, n = -1) # extract all remaining data
dbHasCompleted(rs)

dbClearResult(rs)

clean up
dbDisconnect(con)

sqliteCopyDatabase Copy a SQLite database

Description

Copies a database connection to a file or to another database connection. It can be used to save an
in-memory database (created using dbname = " :memory: " or doname = "file: :memory:") to a file
or to create an in-memory database a copy of another database.

Usage
sqliteCopyDatabase(from, to)

Arguments

from A SQLiteConnection object. The main database in from will be copied to to.

to A SQLiteConnection object pointing to an empty database.

14 sqliteSetBusyHandler

Author(s)

Seth Falcon

References

https://www.sqglite.org/backup.html

Examples

library(DBI)

Copy the built in databaseDb() to an in-memory database
con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbListTables(con)

db <- RSQLite::datasetsDb()

RSQLite: :sgliteCopyDatabase(db, con)
dbDisconnect(db)

dbListTables(con)

dbDisconnect(con)

sqliteSetBusyHandler Configure what SQLite should do when the database is locked

Description

When a transaction cannot lock the database, because it is already locked by another one, SQLite
by default throws an error: database is locked. This behavior is usually not appropriate when
concurrent access is needed, typically when multiple processes write to the same database.

sqliteSetBusyHandler() lets you set a timeout or a handler for these events. When setting a
timeout, SQLite will try the transaction multiple times within this timeout. To set a timeout, pass
an integer scalar to sqliteSetBusyHandler ().

Another way to set a timeout is to use a PRAGMA, e.g. the SQL query
PRAGMA busy_timeout=3000

sets the busy timeout to three seconds.

Usage

sqliteSetBusyHandler(dbObj, handler)

https://www.sqlite.org/backup.html

sqliteSetBusyHandler 15

Arguments
dbObj A SQLiteConnection object.
handler Specifies what to do when the database is locked by another transaction. It can
be:
e NULL: fail immediately,
* an integer scalar: this is a timeout in milliseconds that corresponds to
PRAGMA busy_timeout,
 an R function: this function is called with one argument, see details below.
Details

Note that SQLite currently does not schedule concurrent transactions fairly. If multiple transactions
are waiting on the same database, any one of them can be granted access next. Moreover, SQLite
does not currently ensure that access is granted as soon as the database is available. Make sure that
you set the busy timeout to a high enough value for applications with high concurrency and many
writes.

If the handler argument is a function, then it is used as a callback function. When the database is
locked, this will be called with a single integer, which is the number of calls for same locking event.
The callback function must return an integer scalar. If it returns @L, then no additional attempts are
made to access the database, and an error is thrown. Otherwise another attempt is made to access
the database and the cycle repeats.

Handler callbacks are useful for debugging concurrent behavior, or to implement a more sophisti-
cated busy algorithm. The latter is currently considered experimental in RSQLite. If the callback
function fails, then RSQLite will print a warning, and the transaction is aborted with a "database is
locked" error.

Note that every database connection has its own busy timeout or handler function.

Calling sgliteSetBusyHandler() on a connection that is not connected is an error.

Value

Invisible NULL.

See Also

https://www.sqlite.org/c3ref/busy_handler.html

https://www.sqlite.org/c3ref/busy_handler.html

Index

bit64::integer64, I2

datasetsDb, 3

dbBegin, SQLiteConnection-method
(dbBegin_SQLiteConnection), 4

dbBegin_SQLiteConnection, 4

dbCommit, SQLiteConnection-method
(dbBegin_SQLiteConnection), 4

dbCommit_SQLiteConnection
(dbBegin_SQLiteConnection), 4

dbConnect, SQLiteConnection-method
(SQLite), 11

dbConnect,SQLiteDriver-method (SQLite),
11

dbConnect_SQLiteConnection (SQLite), 11

dbConnect_SQLiteDriver (SQLite), 11

dbDisconnect,SQLiteConnection-method
(SQLite), 11

dbDisconnect_SQLiteConnection (SQLite),
11

DBI::dbBegin(), 4

DBI::dbCommit(), 4

DBI::dbConnect(), 4, 5,7,11,13

DBI: :dbDataType(), 7

DBI::dbDisconnect(), 12, 13

DBI: :dbReadTable(), 6

DBI::dbRollback(), 4

DBI: :dbSendQuery(), 11

DBI::dbWithTransaction(), 4

DBI::dbWriteTable(), 8

DBI: :make.db.names(), 8

dbReadTable, SQLiteConnection,character-method
(dbReadTable_SQLiteConnection_characté

5
dbReadTable_SQLiteConnection_character,
5
dbRollback,SQLiteConnection-method
(dbBegin_SQLiteConnection), 4
dbRollback_SQLiteConnection
(dbBegin_SQLiteConnection), 4

16

dbWriteTable,SQLiteConnection,character,character-method
(dbWriteTable_SQLiteConnection_character_character
6
dbWriteTable,SQLiteConnection,character,data.frame-method
(dbWriteTable_SQLiteConnection_character_character
6
dbWriteTable_SQLiteConnection_character_character,
6
dbWriteTable_SQLiteConnection_character_data.frame
(dbWriteTable_SQLiteConnection_character_character
6

initExtension, 8
initExtension(), 12

read. table(), 7

RSQLite (SQLite), 11
RSQLite-package (SQLite), 11
rsgliteVersion, 10

SQLite, 11

SQLite(), 11

sglite-transaction
(dbBegin_SQLiteConnection), 4

SQLITE_RO (SQLite), 11

SQLITE_RW (SQLite), 11

SQLITE_RWC (SQLite), 11

SQLiteConnection, 4, 5,7,9,11, 12,15

sgliteCopyDatabase, 13

SQLiteDriver, 12

sqlitelsTransacting
(dbBegin_SQLiteConnection), 4

g&iteSetBusyHandler,14

	datasetsDb
	dbBegin_SQLiteConnection
	dbReadTable_SQLiteConnection_character
	dbWriteTable_SQLiteConnection_character_character
	initExtension
	rsqliteVersion
	SQLite
	sqliteCopyDatabase
	sqliteSetBusyHandler
	Index

