
Package ‘RPostgres’
February 6, 2026

Title C++ Interface to PostgreSQL

Version 1.4.9

Date 2026-02-05

Description Fully DBI-compliant C++-backed interface to PostgreSQL
<https://www.postgresql.org/>, an open-source relational database.

License MIT + file LICENSE

URL https://rpostgres.r-dbi.org, https://github.com/r-dbi/RPostgres

BugReports https://github.com/r-dbi/RPostgres/issues

Depends R (>= 3.1.0)

Imports bit64, blob (>= 1.2.0), DBI (>= 1.2.0), hms (>= 1.0.0),
lubridate, methods, withr

Suggests callr, covr, DBItest (>= 1.7.3), knitr, rlang, rmarkdown,
testthat (>= 3.0.0)

LinkingTo cpp11

Config/Needs/website r-dbi/dbitemplate

VignetteBuilder knitr

Config/Needs/build decor

Config/autostyle/scope line_breaks

Config/autostyle/strict false

Config/testthat/edition 3

Encoding UTF-8

LazyLoad true

RoxygenNote 7.3.3.9000

SystemRequirements libpq >= 9.0: libpq-dev (deb) or postgresql-devel
(rpm)

Collate 'PqDriver.R' 'PqConnection.R' 'PqResult.R' 'RPostgres-pkg.R'
'Redshift.R' 'cpp11.R' 'dbAppendTable_PqConnection.R'
'dbBegin_PqConnection.R' 'dbBind_PqResult.R'
'dbClearResult_PqResult.R' 'dbColumnInfo_PqResult.R'

1

https://www.postgresql.org/
https://rpostgres.r-dbi.org
https://github.com/r-dbi/RPostgres
https://github.com/r-dbi/RPostgres/issues

2 Contents

'dbCommit_PqConnection.R' 'dbConnect_PqDriver.R'
'dbConnect_RedshiftDriver.R' 'dbDataType_PqConnection.R'
'dbDataType_PqDriver.R' 'dbDisconnect_PqConnection.R'
'dbExistsTable_PqConnection_Id.R'
'dbExistsTable_PqConnection_character.R' 'dbFetch_PqResult.R'
'dbGetInfo_PqConnection.R' 'dbGetInfo_PqDriver.R'
'dbGetRowCount_PqResult.R' 'dbGetRowsAffected_PqResult.R'
'dbGetStatement_PqResult.R' 'dbHasCompleted_PqResult.R'
'dbIsValid_PqConnection.R' 'dbIsValid_PqDriver.R'
'dbIsValid_PqResult.R' 'dbListFields_PqConnection_Id.R'
'dbListFields_PqConnection_character.R'
'dbListObjects_PqConnection_ANY.R'
'dbListTables_PqConnection.R'
'dbQuoteIdentifier_PqConnection_Id.R'
'dbQuoteIdentifier_PqConnection_SQL.R'
'dbQuoteIdentifier_PqConnection_character.R'
'dbQuoteLiteral_PqConnection.R'
'dbQuoteString_PqConnection_SQL.R'
'dbQuoteString_PqConnection_character.R'
'dbReadTable_PqConnection_character.R'
'dbRemoveTable_PqConnection_character.R'
'dbRollback_PqConnection.R' 'dbSendQuery_PqConnection.R'
'dbUnloadDriver_PqDriver.R'
'dbUnquoteIdentifier_PqConnection_SQL.R'
'dbWriteTable_PqConnection_character_data.frame.R' 'default.R'
'export.R' 'quote.R' 'show_PqConnection.R'
'sqlData_PqConnection.R' 'tables.R' 'transactions.R' 'utils.R'

NeedsCompilation yes

Author Hadley Wickham [aut],
Jeroen Ooms [aut],
Kirill Müller [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1416-3412>),

RStudio [cph],
R Consortium [fnd],
Tomoaki Nishiyama [ctb] (Code for encoding vectors into strings derived

from RPostgreSQL)

Maintainer Kirill Müller <kirill@cynkra.com>

Repository CRAN

Date/Publication 2026-02-06 06:40:48 UTC

Contents
RPostgres-package . 3
Postgres . 4
postgres-query . 5
postgres-tables . 7

https://orcid.org/0000-0002-1416-3412

RPostgres-package 3

postgres-transactions . 9
postgresExportLargeObject . 10
postgresHasDefault . 11
postgresImportLargeObject . 12
postgresIsTransacting . 12
postgresWaitForNotify . 13
quote . 14
Redshift . 15

Index 17

RPostgres-package RPostgres: C++ Interface to PostgreSQL

Description

Fully DBI-compliant C++-backed interface to PostgreSQL https://www.postgresql.org/, an
open-source relational database.

Author(s)

Maintainer: Kirill Müller <kirill@cynkra.com> (ORCID)

Authors:

• Hadley Wickham

• Jeroen Ooms

Other contributors:

• RStudio [copyright holder]

• R Consortium [funder]

• Tomoaki Nishiyama (Code for encoding vectors into strings derived from RPostgreSQL) [con-
tributor]

See Also

Useful links:

• https://rpostgres.r-dbi.org

• https://github.com/r-dbi/RPostgres

• Report bugs at https://github.com/r-dbi/RPostgres/issues

https://www.postgresql.org/
https://orcid.org/0000-0002-1416-3412
https://rpostgres.r-dbi.org
https://github.com/r-dbi/RPostgres
https://github.com/r-dbi/RPostgres/issues

4 Postgres

Postgres Postgres driver

Description

DBI::dbConnect() establishes a connection to a database. Set drv = Postgres() to connect to a
PostgreSQL(-ish) database. Use drv = Redshift() instead to connect to an AWS Redshift cluster.

Manually disconnecting a connection is not necessary with RPostgres, but still recommended; if
you delete the object containing the connection, it will be automatically disconnected during the
next GC with a warning.

Usage

Postgres()

S4 method for signature 'PqDriver'
dbConnect(
drv,
dbname = NULL,
host = NULL,
port = NULL,
password = NULL,
user = NULL,
service = NULL,
...,
bigint = c("integer64", "integer", "numeric", "character"),
check_interrupts = FALSE,
timezone = "UTC",
timezone_out = NULL

)

S4 method for signature 'PqConnection'
dbDisconnect(conn, ...)

Arguments

drv DBI::DBIDriver. Use Postgres() to connect to a PostgreSQL(-ish) database or
Redshift() to connect to an AWS Redshift cluster. Use an existing DBI::DBIConnection
object to clone an existing connection.

dbname Database name. If NULL, defaults to the user name. Note that this argument can
only contain the database name, it will not be parsed as a connection string (in-
ternally, expand_dbname is set to false in the call to PQconnectdbParams()).

host, port Host and port. If NULL, will be retrieved from PGHOST and PGPORT env vars.

user, password User name and password. If NULL, will be retrieved from PGUSER and PGPASSWORD
envvars, or from the appropriate line in ~/.pgpass. See https://www.postgresql.
org/docs/current/libpq-pgpass.html for more details.

https://www.postgresql.org/docs/current/libpq-connect.html
https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-pgpass.html

postgres-query 5

service Name of service to connect as. If NULL, will be ignored. Otherwise, connection
parameters will be loaded from the pg_service.conf file and used. See https://
www.postgresql.org/docs/current/libpq-pgservice.html for details on
this file and syntax.

... Other name-value pairs that describe additional connection options as described
at https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

bigint The R type that 64-bit integer types should be mapped to, default is bit64::integer64,
which allows the full range of 64 bit integers.

check_interrupts

Should user interrupts be checked during the query execution (before first row
of data is available)? Setting to TRUE allows interruption of queries running too
long.

timezone Sets the timezone for the connection. The default is "UTC". If NULL then no
timezone is set, which defaults to the server’s time zone.

timezone_out The time zone returned to R, defaults to timezone. If you want to display date-
time values in the local timezone, set to Sys.timezone() or "". This setting
does not change the time values returned, only their display.

conn Connection to disconnect.

Examples

library(DBI)
Pass more arguments as necessary to dbConnect()
con <- dbConnect(RPostgres::Postgres())
dbDisconnect(con)

postgres-query Execute a SQL statement on a database connection

Description

To retrieve results a chunk at a time, use dbSendQuery(), dbFetch(), then dbClearResult().
Alternatively, if you want all the results (and they’ll fit in memory) use dbGetQuery() which sends,
fetches and clears for you.

Usage

S4 method for signature 'PqResult'
dbBind(res, params, ...)

S4 method for signature 'PqResult'
dbClearResult(res, ...)

S4 method for signature 'PqResult'
dbFetch(res, n = -1, ..., row.names = FALSE)

https://www.postgresql.org/docs/current/libpq-pgservice.html
https://www.postgresql.org/docs/current/libpq-pgservice.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

6 postgres-query

S4 method for signature 'PqResult'
dbHasCompleted(res, ...)

S4 method for signature 'PqConnection'
dbSendQuery(conn, statement, params = NULL, ..., immediate = FALSE)

Arguments

res Code a PqResult produced by DBI::dbSendQuery().

params A list of query parameters to be substituted into a parameterised query. Query
parameters are sent as strings, and the correct type is imputed by PostgreSQL.
If this fails, you can manually cast the parameter with e.g. "$1::bigint".

... Other arguments needed for compatibility with generic (currently ignored).

n Number of rows to return. If less than zero returns all rows.

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

conn A PqConnection created by DBI::dbConnect().

statement An SQL string to execute.

immediate If TRUE, uses the PGsendQuery() API instead of PGprepare(). This allows to
pass multiple statements and turns off the ability to pass parameters.

Multiple queries and statements

With immediate = TRUE, it is possible to pass multiple queries or statements, separated by semi-
colons. For multiple statements, the resulting value of DBI::dbGetRowsAffected() corresponds
to the total number of affected rows. If multiple queries are used, all queries must return data with
the same column names and types. Queries and statements can be mixed.

Examples

library(DBI)
db <- dbConnect(RPostgres::Postgres())
dbWriteTable(db, "usarrests", datasets::USArrests, temporary = TRUE)

Run query to get results as dataframe
dbGetQuery(db, "SELECT * FROM usarrests LIMIT 3")

Send query to pull requests in batches
res <- dbSendQuery(db, "SELECT * FROM usarrests")
dbFetch(res, n = 2)
dbFetch(res, n = 2)
dbHasCompleted(res)
dbClearResult(res)

postgres-tables 7

dbRemoveTable(db, "usarrests")

dbDisconnect(db)

postgres-tables Convenience functions for reading/writing DBMS tables

Description

DBI::dbAppendTable() is overridden because RPostgres uses placeholders of the form $1, $2 etc.
instead of ?.

DBI::dbWriteTable() executes several SQL statements that create/overwrite a table and fill it with
values. RPostgres does not use parameterised queries to insert rows because benchmarks revealed
that this was considerably slower than using a single SQL string.

Usage

S4 method for signature 'PqConnection'
dbAppendTable(conn, name, value, copy = NULL, ..., row.names = NULL)

S4 method for signature 'PqConnection,Id'
dbExistsTable(conn, name, ...)

S4 method for signature 'PqConnection,character'
dbExistsTable(conn, name, ...)

S4 method for signature 'PqConnection,Id'
dbListFields(conn, name, ...)

S4 method for signature 'PqConnection,character'
dbListFields(conn, name, ...)

S4 method for signature 'PqConnection'
dbListObjects(conn, prefix = NULL, ...)

S4 method for signature 'PqConnection'
dbListTables(conn, ...)

S4 method for signature 'PqConnection,character'
dbReadTable(conn, name, ..., check.names = TRUE, row.names = FALSE)

S4 method for signature 'PqConnection,character'
dbRemoveTable(conn, name, ..., temporary = FALSE, fail_if_missing = TRUE)

S4 method for signature 'PqConnection,character,data.frame'

8 postgres-tables

dbWriteTable(
conn,
name,
value,
...,
row.names = FALSE,
overwrite = FALSE,
append = FALSE,
field.types = NULL,
temporary = FALSE,
copy = NULL

)

S4 method for signature 'PqConnection'
sqlData(con, value, row.names = FALSE, ...)

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

name a character string specifying a table name. Names will be automatically quoted
so you can use any sequence of characters, not just any valid bare table name.
Alternatively, pass a name quoted with DBI::dbQuoteIdentifier(), an Id()
object, or a string escaped with DBI::SQL().

value A data.frame to write to the database.

copy If TRUE, serializes the data frame to a single string and uses COPY name FROM stdin.
This is fast, but not supported by all postgres servers (e.g. Amazon’s Redshift).
If FALSE, generates a single SQL string. This is slower, but always supported.
The default maps to TRUE on connections established via Postgres() and to
FALSE on connections established via Redshift().

... Ignored.

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

prefix A fully qualified path in the database’s namespace, or NULL. This argument will
be processed with dbUnquoteIdentifier(). If given the method will return all
objects accessible through this prefix.

check.names If TRUE, the default, column names will be converted to valid R identifiers.

temporary If TRUE, only temporary tables are considered.
fail_if_missing

If FALSE, dbRemoveTable() succeeds if the table doesn’t exist.

overwrite a logical specifying whether to overwrite an existing table or not. Its default is
FALSE.

postgres-transactions 9

append a logical specifying whether to append to an existing table in the DBMS. Its
default is FALSE.

field.types character vector of named SQL field types where the names are the names of
new table’s columns. If missing, types are inferred with DBI::dbDataType()).
The types can only be specified with append = FALSE.

con A database connection.

Schemas, catalogs, tablespaces

Pass an identifier created with Id() as the name argument to specify the schema or catalog, e.g. name
= Id(catalog = "my_catalog", schema = "my_schema", table = "my_table") . To specify the
tablespace, use dbExecute(conn, "SET default_tablespace TO my_tablespace") before creat-
ing the table.

Examples

library(DBI)
con <- dbConnect(RPostgres::Postgres())
dbListTables(con)
dbWriteTable(con, "mtcars", mtcars, temporary = TRUE)
dbReadTable(con, "mtcars")

dbListTables(con)
dbExistsTable(con, "mtcars")

A zero row data frame just creates a table definition.
dbWriteTable(con, "mtcars2", mtcars[0,], temporary = TRUE)
dbReadTable(con, "mtcars2")

dbDisconnect(con)

postgres-transactions Transaction management.

Description

dbBegin() starts a transaction. dbCommit() and dbRollback() end the transaction by either com-
mitting or rolling back the changes.

Usage

S4 method for signature 'PqConnection'
dbBegin(conn, ..., name = NULL)

S4 method for signature 'PqConnection'
dbCommit(conn, ..., name = NULL)

S4 method for signature 'PqConnection'
dbRollback(conn, ..., name = NULL)

10 postgresExportLargeObject

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

... Unused, for extensibility.
name If provided, uses the SAVEPOINT SQL syntax to establish, remove (commit) or

undo a ßsavepoint.

Value

A boolean, indicating success or failure.

Examples

library(DBI)
con <- dbConnect(RPostgres::Postgres())
dbWriteTable(con, "USarrests", datasets::USArrests, temporary = TRUE)
dbGetQuery(con, 'SELECT count(*) from "USarrests"')

dbBegin(con)
dbExecute(con, 'DELETE from "USarrests" WHERE "Murder" > 1')
dbGetQuery(con, 'SELECT count(*) from "USarrests"')
dbRollback(con)

Rolling back changes leads to original count
dbGetQuery(con, 'SELECT count(*) from "USarrests"')

dbRemoveTable(con, "USarrests")
dbDisconnect(con)

postgresExportLargeObject

Exports a large object to file

Description

Exports a large object from the database to a file on disk. This function uses PostgreSQL’s lo_export()
function which efficiently streams the data directly to disk without loading it into memory, mak-
ing it suitable for very large objects (GB+) that would cause memory issues with lo_get(). This
function must be called within a transaction.

Usage

postgresExportLargeObject(conn, oid, filepath)

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

oid the object identifier (Oid) of the large object to export
filepath a path where the large object should be exported

postgresHasDefault 11

Value

invisible NULL on success, or stops with an error

Examples

Not run:
con <- postgresDefault()
filepath <- 'your_image.png'
dbWithTransaction(con, {

oid <- postgresImportLargeObject(con, filepath)
})
Later, export the large object back to a file
dbWithTransaction(con, {

postgresExportLargeObject(con, oid, 'exported_image.png')
})

End(Not run)

postgresHasDefault Check if default database is available.

Description

RPostgres examples and tests connect to a default database via dbConnect(Postgres()). This
function checks if that database is available, and if not, displays an informative message.

postgresDefault() works similarly but returns a connection on success and throws a testthat skip
condition on failure, making it suitable for use in tests.

Usage

postgresHasDefault(...)

postgresDefault(...)

Arguments

... Additional arguments passed on to DBI::dbConnect()

Examples

if (postgresHasDefault()) {
db <- postgresDefault()
print(dbListTables(db))
dbDisconnect(db)

} else {
message("No database connection.")

}

12 postgresIsTransacting

postgresImportLargeObject

Imports a large object from file

Description

Returns an object identifier (Oid) for the imported large object. This function must be called within
a transaction.

Usage

postgresImportLargeObject(conn, filepath = NULL, oid = 0)

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

filepath a path to the large object to import

oid the oid to write to. Defaults to 0 which assigns an unused oid

Value

the identifier of the large object, an integer

Examples

Not run:
con <- postgresDefault()
filepath <- 'your_image.png'
dbWithTransaction(con, {

oid <- postgresImportLargeObject(con, filepath)
})

End(Not run)

postgresIsTransacting Return whether a transaction is ongoing

Description

Detect whether the transaction is active for the given connection. A transaction might be started
with DBI::dbBegin() or wrapped within DBI::dbWithTransaction().

Usage

postgresIsTransacting(conn)

postgresWaitForNotify 13

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

Value

A boolean, indicating if a transaction is ongoing.

postgresWaitForNotify Wait for and return any notifications that return within timeout

Description

Once you subscribe to notifications with LISTEN, use this to wait for responses on each channel.

Usage

postgresWaitForNotify(conn, timeout = 1)

Arguments

conn a PqConnection object, produced by DBI::dbConnect()

timeout How long to wait, in seconds. Default 1

Value

If a notification was available, a list of:

channel Name of channel

pid PID of notifying server process

payload Content of notification

If no notifications are available, return NULL

Examples

library(DBI)
library(callr)

listen for messages on the grapevine
db_listen <- dbConnect(RPostgres::Postgres())
dbExecute(db_listen, "LISTEN grapevine")

Start another process, which sends a message after a delay
rp <- r_bg(function() {

library(DBI)
Sys.sleep(0.3)
db_notify <- dbConnect(RPostgres::Postgres())
dbExecute(db_notify, "NOTIFY grapevine, 'psst'")

14 quote

dbDisconnect(db_notify)
})

Sleep until we get the message
n <- NULL
while (is.null(n)) {

n <- RPostgres::postgresWaitForNotify(db_listen, 60)
}
stopifnot(n$payload == 'psst')

Tidy up
rp$wait()
dbDisconnect(db_listen)

quote Quote postgres strings, identifiers, and literals

Description

If an object of class Id is used for dbQuoteIdentifier(), it needs at most one table component
and at most one schema component.

Usage

S4 method for signature 'PqConnection,Id'
dbQuoteIdentifier(conn, x, ...)

S4 method for signature 'PqConnection,SQL'
dbQuoteIdentifier(conn, x, ...)

S4 method for signature 'PqConnection,character'
dbQuoteIdentifier(conn, x, ...)

S4 method for signature 'PqConnection'
dbQuoteLiteral(conn, x, ...)

S4 method for signature 'PqConnection,SQL'
dbQuoteString(conn, x, ...)

S4 method for signature 'PqConnection,character'
dbQuoteString(conn, x, ...)

S4 method for signature 'PqConnection,SQL'
dbUnquoteIdentifier(conn, x, ...)

Redshift 15

Arguments

conn A PqConnection created by dbConnect()

x A character vector to be quoted.

... Other arguments needed for compatibility with generic (currently ignored).

Examples

library(DBI)
con <- dbConnect(RPostgres::Postgres())

x <- c("a", "b c", "d'e", "\\f")
dbQuoteString(con, x)
dbQuoteIdentifier(con, x)
dbDisconnect(con)

Redshift Redshift driver/connection

Description

Use drv = Redshift() instead of drv = Postgres() to connect to an AWS Redshift cluster. All
methods in RPostgres and downstream packages can be called on such connections. Some have
different behavior for Redshift connections, to ensure better interoperability.

Usage

Redshift()

S4 method for signature 'RedshiftDriver'
dbConnect(
drv,
dbname = NULL,
host = NULL,
port = NULL,
password = NULL,
user = NULL,
service = NULL,
...,
bigint = c("integer64", "integer", "numeric", "character"),
check_interrupts = FALSE,
timezone = "UTC"

)

16 Redshift

Arguments

drv DBI::DBIDriver. Use Postgres() to connect to a PostgreSQL(-ish) database or
Redshift() to connect to an AWS Redshift cluster. Use an existing DBI::DBIConnection
object to clone an existing connection.

dbname Database name. If NULL, defaults to the user name. Note that this argument can
only contain the database name, it will not be parsed as a connection string (in-
ternally, expand_dbname is set to false in the call to PQconnectdbParams()).

host, port Host and port. If NULL, will be retrieved from PGHOST and PGPORT env vars.

user, password User name and password. If NULL, will be retrieved from PGUSER and PGPASSWORD
envvars, or from the appropriate line in ~/.pgpass. See https://www.postgresql.
org/docs/current/libpq-pgpass.html for more details.

service Name of service to connect as. If NULL, will be ignored. Otherwise, connection
parameters will be loaded from the pg_service.conf file and used. See https://
www.postgresql.org/docs/current/libpq-pgservice.html for details on
this file and syntax.

... Other name-value pairs that describe additional connection options as described
at https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

bigint The R type that 64-bit integer types should be mapped to, default is bit64::integer64,
which allows the full range of 64 bit integers.

check_interrupts

Should user interrupts be checked during the query execution (before first row
of data is available)? Setting to TRUE allows interruption of queries running too
long.

timezone Sets the timezone for the connection. The default is "UTC". If NULL then no
timezone is set, which defaults to the server’s time zone.

https://www.postgresql.org/docs/current/libpq-connect.html
https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-pgservice.html
https://www.postgresql.org/docs/current/libpq-pgservice.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

Index

bit64::integer64, 5, 16

dbAppendTable,PqConnection-method
(postgres-tables), 7

dbAppendTable_PqConnection
(postgres-tables), 7

dbBegin,PqConnection-method
(postgres-transactions), 9

dbBegin_PqConnection
(postgres-transactions), 9

dbBind,PqResult-method
(postgres-query), 5

dbBind_PqResult (postgres-query), 5
dbClearResult,PqResult-method

(postgres-query), 5
dbClearResult_PqResult

(postgres-query), 5
dbCommit,PqConnection-method

(postgres-transactions), 9
dbCommit_PqConnection

(postgres-transactions), 9
dbConnect,PqDriver-method (Postgres), 4
dbConnect,RedshiftDriver-method

(Redshift), 15
dbConnect_PqDriver (Postgres), 4
dbConnect_RedshiftDriver (Redshift), 15
dbDisconnect,PqConnection-method

(Postgres), 4
dbDisconnect_PqConnection (Postgres), 4
dbExistsTable,PqConnection,character-method

(postgres-tables), 7
dbExistsTable,PqConnection,Id-method

(postgres-tables), 7
dbExistsTable_PqConnection_character

(postgres-tables), 7
dbExistsTable_PqConnection_Id

(postgres-tables), 7
dbFetch,PqResult-method

(postgres-query), 5
dbFetch_PqResult (postgres-query), 5

dbHasCompleted,PqResult-method
(postgres-query), 5

dbHasCompleted_PqResult
(postgres-query), 5

DBI::dbAppendTable(), 7
DBI::dbBegin(), 12
DBI::dbConnect(), 6, 8, 10–13
DBI::dbDataType(), 9
DBI::dbGetRowsAffected(), 6
DBI::DBIConnection, 4, 16
DBI::DBIDriver, 4, 16
DBI::dbQuoteIdentifier(), 8
DBI::dbSendQuery(), 6
DBI::dbWithTransaction(), 12
DBI::dbWriteTable(), 7
DBI::SQL(), 8
dbListFields,PqConnection,character-method

(postgres-tables), 7
dbListFields,PqConnection,Id-method

(postgres-tables), 7
dbListFields_PqConnection_character

(postgres-tables), 7
dbListFields_PqConnection_Id

(postgres-tables), 7
dbListObjects,PqConnection-method

(postgres-tables), 7
dbListObjects_PqConnection_ANY

(postgres-tables), 7
dbListTables,PqConnection-method

(postgres-tables), 7
dbListTables_PqConnection

(postgres-tables), 7
dbQuoteIdentifier,PqConnection,character-method

(quote), 14
dbQuoteIdentifier,PqConnection,Id-method

(quote), 14
dbQuoteIdentifier,PqConnection,SQL-method

(quote), 14
dbQuoteIdentifier_PqConnection_character

17

18 INDEX

(quote), 14
dbQuoteIdentifier_PqConnection_Id

(quote), 14
dbQuoteIdentifier_PqConnection_SQL

(quote), 14
dbQuoteLiteral,PqConnection-method

(quote), 14
dbQuoteLiteral_PqConnection (quote), 14
dbQuoteString,PqConnection,character-method

(quote), 14
dbQuoteString,PqConnection,SQL-method

(quote), 14
dbQuoteString_PqConnection_character

(quote), 14
dbQuoteString_PqConnection_SQL (quote),

14
dbReadTable,PqConnection,character-method

(postgres-tables), 7
dbReadTable_PqConnection_character

(postgres-tables), 7
dbRemoveTable,PqConnection,character-method

(postgres-tables), 7
dbRemoveTable_PqConnection_character

(postgres-tables), 7
dbRollback,PqConnection-method

(postgres-transactions), 9
dbRollback_PqConnection

(postgres-transactions), 9
dbSendQuery,PqConnection-method

(postgres-query), 5
dbSendQuery_PqConnection

(postgres-query), 5
dbUnquoteIdentifier(), 8
dbUnquoteIdentifier,PqConnection,SQL-method

(quote), 14
dbUnquoteIdentifier_PqConnection_SQL

(quote), 14
dbWriteTable,PqConnection,character,data.frame-method

(postgres-tables), 7
dbWriteTable_PqConnection_character_data.frame

(postgres-tables), 7

Id, 14
Id(), 8, 9

Postgres, 4
Postgres(), 4, 8, 11, 16
postgres-query, 5
postgres-tables, 7

postgres-transactions, 9
postgresDefault (postgresHasDefault), 11
postgresExportLargeObject, 10
postgresHasDefault, 11
postgresImportLargeObject, 12
postgresIsTransacting, 12
postgresWaitForNotify, 13
PqConnection, 6, 8, 10, 12, 13, 15
PqResult, 6

quote, 14

Redshift, 15
Redshift(), 4, 8, 16
RedshiftConnection-class (Redshift), 15
RedshiftDriver-class (Redshift), 15
RPostgres (RPostgres-package), 3
RPostgres-package, 3

sqlData,PqConnection-method
(postgres-tables), 7

sqlData_PqConnection (postgres-tables),
7

Sys.timezone(), 5

	RPostgres-package
	Postgres
	postgres-query
	postgres-tables
	postgres-transactions
	postgresExportLargeObject
	postgresHasDefault
	postgresImportLargeObject
	postgresIsTransacting
	postgresWaitForNotify
	quote
	Redshift
	Index

