Using Robust Covariance Matrix Estimators in PortfolioAnalytics

Yifu Kang and Doug Martin

August 23, 2024

Contents

1

2

Introduction

Compute Classic GmvLO Portfolio Weights
2.1 Load Packages and Data
2.2 Compute Classic GmvLO Weights

Robust GmvLO Portfolios

3.1 Custom covRob.MM Estimator
3.2 Custom covRob.Rocke Estimator
3.3 Custom covRob.Mcd Estimator
3.4 Custom covRob. TSGS Estimator
3.5 Comparison of the Classic and Robust GmvLO Portfolios

Robust GmvLO Portfolio Backtests

4.1 covRob.Rocke GmvLO Backtest
4.2 covRob.Mcd GmvLO Backtest
4.3 covRob. TSGS GmvLO

Writing Your Own Custom Covariance Matrix Function
5.1 A User Custom Function for the covRobRocke Estimator
5.2 A User Custom Function for covRobOGK in robustbase
5.3 Print the Value of Moment Settings

Acknowledgements

References

Contents

ot W

1 Introduction

This vignette describes a method for using robust covariance matrix estimators when constructing a
fully-invested, long-only global minimum variance portfolio (GmvLO) with the PortfolioAnalytics package.
The method can also be used in a straightforward manner for any constrained minimum variance (MinVar)
portfolio. We refer to any MinVar portfolio based on the use of a robust covariance matrix as a robust
MinVar portfolio, with robust GmvLO portfolios as a leading special case.

The R code demo_robustCovMatForPA.R in the PortfolioAnalytics demo folder, reproduces the results in
this Vignette.

It is well-known that outliers can adversely influence all classical estimates, including sample means and
sample covariance matrix estimators, which are foundation elements of MinVar portfolios. It follows
that outliers can adversely influence the performance of MinVar portfolios constructed using the classical
returns means and covariance matrix estimators. With the availability of the robust covariance matrix
estimators, which are not much influenced by outliers, PortfolioAnalytics users can construct robust
MinVar portfolios which are not much influenced by outliers, and evaluate their performance relative to
classic MVO portfolios.

The following “custom” robust mean vector and covariance matrix estimator functions are provided in
PortfolioAnalytics:

1. custom.covRob.MM, using the function covRobMM in the RobStatTM package

2. custom.covRob.Rocke, using the function covRobRocke in the RobStatTM package
3. custom.covRob.Mcd, using the function covMcd in the robustbase package

4. custom.covRob.TSGS, using the function TSGS in the GSE package.

The above “custom” functions were are made possible by existence of a very useful “custom moments”
functionality in PortfolioAnalytics, which is described in the Vignette “Custom Moment and Objective
Functions” by Ross Bennett (2018), available on CRAN at https://cran.r-project.org/package=Portfoli
oAnalytics/index.html. In the context of a returns mean vector and covariance matrix, the latter are
thought of as the moments of orders one and two, loosely speaking the “mean” and “variance”.

It is important to keep in mind that the methods described herein for using robust covariance matrix
estimators, implicitly including corresponding robust mean vector estimators, may be used for other
important covariance matrix estimators, such as shrinkage covariance matrix estimators, and covariance
matrix estimators for unequal asset returns histories.

In Section 2 below, we show how to load the R packages and data needed for this Vignette, and how to
specify and compute a classic fully invested global minimum variance long-only portfolio (GmvLO). In
Section 3 we discuss the details of the above four custom robust covariance matrix estimator functions,
and describe how to use them in calls to the PortfolioAnalytics optimize.portfolio function. In Section
4 we present cumulative gross returns back-tests of robust GmvLO portfolios based on each of the four
types of robust covariance matrix estimators. Section 5 briefly describes how users can write their own
simple custom robust covariance matrix estimator functions, which they may wish to use for their own
special purposes.

Sections 3 and 4 show clearly that performance improvements to classic GmvLO portfolios based on
sample mean and sample covariance estimators, can be obtained using robust covariance matrix estimator
based GmvLO portfolios. These results are motivation for future in-depth empirical studies of robust
constrained MinVar portfolios using PortfolioAnalytics.

https://cran.r-project.org/package=PortfolioAnalytics/index.html
https://cran.r-project.org/package=PortfolioAnalytics/index.html

2 Compute Classic GmvLO Portfolio Weights

2.1 Load Packages and Data
First, you load the packages needed for this Vignette with the code:

library(PCRA)
library(PortfolioAnalytics)
library(CVXR)

library(xts)

where it is assumed that the user has already installed those CRAN package on their computer.

In this vignette, we will use weekly returns for either 10 or 30 small capitalization CRSP® stocks, which
are freely available as part of the stocksCRSP data set contained in the PCRA package.! The time period
used here is the seven year period from January 6, 2006 to December 28, 2012.

stocksCRSPweekly <- getPCRAData("stocksCRSPweekly")

dateRange <- ¢("2006-01-01", "2012-12-31")

stockItems <- c("Date", "TickerLast", "CapGroupLast", "Return", "MktIndexCRSP")

returnsAll <- selectCRSPandSPGMI("weekly",
dateRange = dateRange,
stockItems = stockItems,
factorItems = NULL,
subsetType = "CapGroupLast",
subsetValues = "SmallCap",
outputType = "xts")

returns <- returnsAll[,1:30]

MARKET <- returnsAll[, 107]

returns10 <- returnsAl1[140:300, 21:30]

range (index (returns))

[1] "2006-01-06" "2012-12-28"

range (index (returns10))

[1] "2008-09-05" "2011-09-30"

In order to get a feeling for the data, we plot below the weekly time series of the MARKET, followed by a
time series plot of the last 10 of the 30 stocks in returns, for the entire time period from 2006-01-06 to
2012-12-28.

tsPlotMP (MARKET)

LCRSP® is the acronym for the Center for Research in Security Prices, LLC.

RETURNS (%)

0.1

Q
o
|

-0.1

T T T T
2006 2008 2010 2012

Figure 1. Weekly MARKET Returns from 2006-01-06 to 2012-12-28.

The MARKET time series reflects the volatility and disruption of the financial crisis which began late 2007
and early 2008, exploded in late 2008, and slowly subsided toward the end of 2009, with various lessor
after-shocks lasting through 2011.

tsPlotMP(returns[, 21:30])

RETURNS (%)

2006 2008 2010 2012
0.2 - | | | |

0.2
-§.2 = -0.2

BGG

0.0]

O
m
_ 0.10 9,
88—§~MMMMWMMMquw~ ono:§~MW%wNWW%WMMM~
0.2 {u 002 57
[PV [v e
0.0 4ol : Jx
-0.2 42 —0.2 7
0.4 1 0.2 :a
—0.4 = 02 4=
02 Jo 2
00 18| wniipfhmscaies | 00 18] el
-0.2 49 0.2

T T T T T T T T
2006 2008 2010 2012

Figure 2. Weekly‘ Returns of 10 Smallcap Stocks from 2006-01-06 to 2012-12-28.

We plotted only the last 10 of the 30 stocks in returns just for the sake of a reasonably small plot size.?
It is evident that the volatility and non-stationarity of the MARKET returns persist to various degrees in
those 10 stocks.

In the back-tests of Section 4 we use all 30 stocks in returns for the full time period. But for purposes
of introducing and evaluating the various robust portfolios based on several different robust covariance
matrices in Section 3, we use those same 10 stocks as in the above figure, but only for the shorter time
period 2008-09-05 to 2011-09-30.

tsPlotMP (returns10)
2009 2010 2011
| | |
0.2 0.2 -
_(D —
0.0 o|- 0.0 42|
-@Z:m -0.2
o5 1= 0.10 H¢,
s 0043/ 0.00 {=|-
S -0.2- —odg_m
0 02w =10
Z -0 0.0 x|~
2 0242 0.2 7
W 044, 0.2 4>
0.0 45| 0.0 7|
04 2 -0.2 49
02 40 0.2 1
0.0 |- 0.0 38|
-0.2 - -0.2 -

T T T
2009 2010 2011

Figure 3. Weekly Returns of 10 Smallcap Stocks from 2008-09-05 to 2011-09-30.

2.2 Compute Classic GmvLO Weights

The mathematical formulation of a GmvLO portfolio is:

min w'Cw
w
st. ew=1 (1)
w >0

where w is the portfolio weights vector, C is the sample covariance matrix of the returns, and e is a
column vector of 1’s.

You create the basic GmvLO portfolio specification object pspec with the following code.

2The reader may experiment with plots of larger numbers of stocks with the code for this Vignette, which will be available
in the Demo folder of the current release of PortfolioAnalytics.

funds <- colnames(returns10)

pspec <- portfolio.spec(funds)

pspec <- add.constraint(pspec, type="full_investment")
pspec <- add.constraint(pspec, type="long_only")
pspec <- add.objective(pspec, type="risk", name="var"

Then you compute the classic GmvLO portfolio weights and the standard deviation (StdDev) of the
portfolio, based on the sample mean vector and sample covariance matrix, and store the result in the
object opt with the code line:

opt <- optimize.portfolio(returnslO, pspec, optimize_method = "CVXR")

Here the optional argument optimize_method = "CVXR" specifies use of an optimization solver from the
package CVXR. For a given portfolio optimization problem it is often possible to specify any one of
a number of different types of solver type, with some default solver. The default solver for minimum
variance portfolios is the OSQP solver https://osqp.org/. For the solvers that may be used with CVXR
see https://cvxr.rbind.io/, and for details on how to specify a CVXR solver in PortfolioAnalytics, see the
Vignette “CVXR for PortfolioAnalytics” by Xinran Zhao.

Use of the function class() with the argument opt, reveals that the class of the opt object is
optimize.portfolio.CVXR, and use of the following code line results in the standard print method for
an object of that class:

opt

i kokokokokokskokok ok kskok ok ok skok ok ok sk sk ok ok ok sk ok ok ek sk ok

PortfolioAnalytics Optimization

i korkokokokskskokokokokskokok ok skskok ok ok sk skok sk ok sk skok ok ok ok

##

Call:

optimize.portfolio(R = returnsl0, portfolio = pspec, optimize_method = "CVXR")
##

Optimal Weights:

#i# BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
0.0000 0.0284 0.0000 0.7517 0.0000 0.0083 0.0000 0.1940 0.0000 0.0175
##

Objective Measures:

StdDev

0.03474

The above display is not generally very useful since it takes up a lot of space, and does not provide the
portfolio mean return and Sharpe ratio. Instead, you can use the convenience function opt.outputMvo
which extracts the MVO portfolio weights and standard deviation, and computes the portfolio mean
return and Sharpe ratio, and returns those values in a list. We use it here just to compactly display the
GmvLO portfolio weights and its Sharpe ratio.

outCovClassic <- opt.outputMvo(opt, returnslO, digits = 3, frequency = "weekly")
(WtsCovClassic <- outCovClassic$Wgts)

BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
0.000 0.028 0.000 0.752 0.000 0.008 0.000 0.194 0.000 0.018

We will provide the same kind of displays as above for the robust MVO portfolios in the next Section.

https://osqp.org/
https://cvxr.rbind.io/

3 Robust GmvLO Portfolios

We refer to an MVO portfolios that use a robust covariance matrix estimator as a Robust MVO Portfolio.
In this section we display the four custom functions for estimating a robust covariance matrix, and show
how to use them in the optimize.portfolio function via its optional argument momentFUN =, to compute
a robust GmvLO portfolio. Although the focus here is on GmvLO portfolios, the robust covariance matrix
functions can be used in other types of constrained MVO portfolios.

3.1 Custom covRob.MM Estimator

The first method to compute robust estimators is based on the RobStatTM package function covRob,
which was designed to work well for portfolios with less than 10 assets. Details about this estimator are
provided in (Maronna20197).

Here is the function, for which additional details may be found using help(custom.covRob.MM):

custom.covRob.MM <- function(R, ...){
out <- list()
if (hasArg(tol)) tol = match.call(expand.dots = TRUE)$tol else tol = le-4
if (hasArg(maxit)) maxit = match.call(expand.dots = TRUE)$maxit else maxit = 50
robustCov <- RobStatTM::covRobMM(X=R, tol=tol, maxit=maxit)
out$sigma <- robustCov$cov
out$mu <- robustCov$center
return(out)

}

Here is how to use the function in optimize.portfolios, with different optional argument parame-
ters than the default values, and store the resulting portfolio weights and Sharpe ratio for later comparisons:

opt <- optimize.portfolio(returnslO, pspec, optimize_method = "CVXR",
momentFUN = "custom.covRob.MM",
maxit = 100, tol = 1le-5)
outCovRobMM <- opt.outputMvo(opt, returnsiO, digits = 3, frequency = "weekly")
(WtsCovRobMM <- outCovRobMM$Wgts)

BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
0.000 0.080 0.027 0.418 0.000 0.062 0.000 0.403 0.000 0.010

3.2 Custom covRob.Rocke Estimator

This custom estimator is based on the RobStatTM package function covRobRocke, which was
designed to work well for portfolios with 10 or more assets. Details about this estimator are pro-
vided in (Maronna20197?). Here is the function, for which additional details may be found using
help(customr.covRob.Rocke):

custom.covRob.Rocke <- function(R, ...){
out <- list()
if (hasArg(tol)) tol = match.call(expand.dots = TRUE)$tol else tol = le-4
if (hasArg(maxit)) maxit = match.call(expand.dots = TRUE)$maxit else maxit = 50
if (hasArg(initial)) initial = match.call(expand.dots = TRUE)$initial else initial = 'K'
if (hasArg(maxsteps)) maxsteps = match.call(expand.dots = TRUE)$maxsteps else maxsteps =
if (hasArg(propmin)) propmin = match.call(expand.dots = TRUE)$propmin else propmin = 2
if (hasArg(gs)) gs = match.call(expand.dots = TRUE)$qs else gs = 50

5

robustCov <- RobStatTM::covRobRocke(X = R, initial = initial,
maxsteps = maxsteps, ropmin = propmin,
gs = gs, tol = tol, maxit = maxit)

out$sigma <- robustCov$cov
out$mu <- robustCovcenter
return(out)

}

Here is how to use the function custom.covRobRocke in optimize.portfolio, with different optional
argument parameters than the default values, and store the resulting portfolio weights and Sharpe ratio
for later comparisons:

opt <- optimize.portfolio(returnslO, pspec, optimize_method = "CVXR",

momentFUN = "custom.covRob.Rocke",

tol = le-5, maxit =100, maxsteps = 7)
outCovRobRocke <- opt.outputMvo(opt, returnsiO, digits = 3, frequency = "weekly")
(WtsCovRobRocke <- outCovRobRocke$Wgts)

BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
0.000 0.086 0.027 0.437 0.000 0.051 0.000 0.389 0.000 0.010

3.3 Custom covRob.Mcd Estimator

This custom estimator is based on the robustbase package function covMcd, which is a highly developed and
well-documented robust covariance matrix estimator. The Mcd in covMcd stands for Minimum Covariance
Determinant (MCD). This robust covariance matrix estimator uses a sophisticated fast algorithm to
search for h observations out of n whose classical covariance matrix has the smallest possible determinant.
See (RousseeuwDriessen19997). Then the raw MCD estimates of location and scatter are computed
based on the sample mean vector and sample covariance matrix of those h points. Then covMecd uses
a “refinement step” to compute the final robust covariance matrix and mean vector. For more details
concerning the covMcd function and its parameters, and its “fast” computation, please see the Reference
Manual and the Vignette “covMed-Generalizing the FastMCD” downloadable from the CRAN robustbase
package at https://cran.r-project.org/package=robustbase/index.html.

Here is the custom.covRob.Mcd function:

custom.covRob.Mcd <- function(R, ...){

if (hasArg(control)) control = match.call(expand.dots = TRUE)$control else control = MycovRobMcd()
if (hasArg(alpha)) alpha = match.call(expand.dots = TRUE)$alpha else alpha = control$alpha

if (hasArg(nsamp)) nsamp = match.call(expand.dots = TRUE)$nsamp else nsamp = control$nsamp

if (hasArg(nmini)) nmini = match.call(expand.dots = TRUE)$nmini else nmini = control$nmini

if (hasArg(kmini)) kmini = match.call(expand.dots = TRUE)$kmini else kmini = control$kmini

if (hasArg(scalefn)) scalefn=match.call(expand.dots=TRUE)$scalefn else scalefn=control$scalefn

if (hasArg(maxcsteps)) maxcsteps = match.call(expand.dots = TRUE)$maxcsteps

else maxcsteps = control$maxcsteps

if (hasArg(initHsets)) initHsets = match.call(expand.dots = TRUE)$initHsets
else initHsets = control$initHsets

if (hasArg(seed)) seed=match.call(expand.dots=TRUE)$seed else seed=control$seed

https://cran.r-project.org/package=robustbase/index.html

if (hasArg(tolSolve)) tolSolve=match.call(expand.dots=TRUE)$tolSolve else tolSolve=control$tolSolve
if (hasArg(wgtFUN)) wgtFUN=match.call(expand.dots=TRUE)$wgtFUN else wgtFUN=control$wgtFUN

if (hasArg(use.correction)) use.correction = match.call(expand.dots = TRUE)$use.correction
else use.correction = control$use.correction

robustMCD <- robustbase::covMcd(x = R, alpha = alpha,
nsamp = nsamp, nmini = nmini,
kmini = kmini, seed = seed,
tolSolve = tolSolve, scalefn = scalefn,
maxcsteps = maxcsteps,
initHsets = initHsets,
wgtFUN = wgtFUN, use.correction = use.correction)

return(list(mu = robustMCD$center, sigma = robustMCD$cov))

}

The above function allows you to substitute any of the many default parameters with your alter-
native choices. For example, you can use the following code to compute a robust MVO portfolio
with the custom.covRob.Mcd estimator, based on the choice of 0.75 for alpha and the choice 600 for nsamp.

opt <- optimize.portfolio(returnslO, pspec, optimize_method = "CVXR",

momentFUN = "custom.covRob.Mcd",

alpha = 0.75, nsamp = 600)
outCovRobMcd <- opt.outputMvo(opt, returnslO, digits = 3, frequency = "weekly")
(WtsCovRobMcd <- outCovRobMcd$Wgts)

BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
0.000 0.050 0.007 0.315 0.000 0.098 0.000 0.528 0.000 0.001

A challenge in using custom.covRob.Mcd is that it has a large set of optional argument parameter choices.
In some studies one may want to use several or many different sets of such parameters, and in that case
the following MycovRobMcd “helper” function can be useful.

MycovRobMcd <- function(alpha = 1/2, nsamp = 500, nmini = 300, kmini = 5,
scalefn = "hrv2012", maxcsteps = 200,
seed = NULL, tolSolve = le-14,
wgtFUN = "Ol.original", beta, use.correction = TRUE
)
if (missing(beta) || !is.numeric(beta))

beta <- 0.975

return(list(alpha = alpha, nsamp = nsamp,
nmini = as.integer(nmini), kmini = as.integer(kmini),
seed = as.integer(seed),
tolSolve = tolSolve, scalefn = scalefn,
maxcsteps = as.integer(maxcsteps),
wgtFUN = wgtFUN, beta = beta,
use.correction = use.correction))

3

So for example, you could use MycovMcd to specify the choices 0.75 for alpha and 600 for nsamp, and
then use it for the optimize.portfolio argument control = as follows.

covMcd.params <- MycovRobMcd(alpha = 0.75, nsamp = 600)

opt <- optimize.portfolio(returns, pspec, optimize_method = "CVXR",
momentFUN = "custom.covRob.Mcd",
control = covMcd.params)

3.4 Custom covRob. TSGS Estimator

The importance of the custom covRob.TSGS estimator is that it is designed to be able to deal with both
of the following two distinct types of outliers. The first type of outliers are Cross-Section Outliers (CSO),
which occur for most of the assets in portfolio at at the same time. For example, in 1987, a global severe
stock market crash, known as Black Monday, drastically reduced the returns of most of the assets, which
can thus be viewed as a CSO’s. The second type of outliers are Independent Outliers in Assets (I0A),
which occur independently, or uncorrelated, across assets. These types of outliers are sometimes referred
to as “cell-wise contamination” in the robust statistic literature. Details concerning these two types of
outliers, and robust methods for dealing with them in MVO portfolio optimization are discussed in Martin
(2013).

The acronym TSGS stands for 2-step Generalized S-estimators and this TSGS robust covariance matrix
estimator function is contained in the package GSE which is designed to robustly estimate a covariance
matrix with NA’s. The first step of TSGS is to filter out the large IOA outliers and replace them with
NA’s. The second step is to deal with the NA’s while down-weighting high-dimensional CSO outliers that
are not detected in step 1. For details see Agostinelli (2015).

Here is the custom.covRob.TSGS function:

custom.covRob.TSGS <- function(R, ...){
if (hasArg(control)) control=match.call(expand.dots=TRUE)$control else control=MycovRobTSGS()
if (hasArg(filter)) filter=match.call(expand.dots=TRUE)$filter else filter=control$filter

if (hasArg(partial.impute)) partial.impute = match.call(expand.dots = TRUE)S$partial.impute
else partial.impute = control$partial.impute

if (hasArg(tol)) tol = match.call(expand.dots=TRUE)$tol else tol=control$tol

if (hasArg(maxiter)) maxiter=match.call(expand.dots=TRUE)$maxiter else maxiter=control$maxiter
if (hasArg(loss)) loss = match.call(expand.dots = TRUE)$loss else loss = control$loss

if (hasArg(init)) init = match.call(expand.dots = TRUE)$init else init = control$init

tsgsRob <- GSE::TSGS(x = R, filter = filter,

partial.impute = partial.impute, tol = tol,
maxiter = maxiter, method = loss,
init = init)
return(list(mu = tsgsRobOmu, sigma = tsgsRob@S))
}
opt <- optimize.portfolio(returnsl0, pspec, optimize_method = "CVXR",

momentFUN = "custom.covRob.TSGS")
outCovRobTSGS <- opt.outputMvo(opt, returnslO, digits = 3, frequency = "weekly")
(WtsCovRobTSGS <- outCovRobTSGS$Wgts)

BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB

10

0.000 0.047 0.023 0.388 0.000 0.019 0.000 0.523 0.000 0.000

Just as in the case of the custom. covRob.Mcd function, for which there is the helper function MycovRobMcd,
some users wish to use the following auxiliary function that helps with TSGS parameter setting.

MycovRobTSGS <- function(filter = c("UBF-DDC","UBF","DDC",6"UF"),
partial.impute = FALSE, tol = le-4, maxiter = 150,
loss = c("bisquare","rocke"),
init = c("emve", "qc", "huber", "imputed", "emve_c")){

filter <- match.arg(filter)
loss <- match.arg(loss)

init <- match.arg(init)

return(list(filter = filter, partial.impute = partial.impute,
tol = tol, maxiter = as.integer(maxiter),
loss = loss,init))

3.5 Comparison of the Classic and Robust GmvLO Portfolios

The following table compares the portfolio weights of the covClassic, covRobMM, covRobRocke,
covRobMeced, and covRobTSGS robust GmvLO portfolios. All five of these portfolios are highly
concentrated in the two stocks with tickers BMS and CASY.

dat <- data.frame(rbind(WtsCovClassic, WtsCovRobMM, WtsCovRobRocke,
WtsCovRobMcd, WtsCovRobTSGS))
print.data.frame(dat)

#i# BGG BIG BMI BMS BOBE BRC CAL CASY CATO CBB
WtsCovClassic 0 0.028 0.000 0.752 0 0.008 0 0.194 0 0.018
WtsCovRobMM 0 0.080 0.027 0.418 0 0.062 0 0.403 0 0.010
WtsCovRobRocke 0 0.086 0.027 0.437 0 0.051 0 0.389 0 0.010
WtsCovRobMcd 0 0.050 0.007 0.315 0 0.098 0 0.528 0 0.001
WtsCovRobTSGS 0 0.047 0.023 0.388 0 0.019 0 0.523 0 0.000

The large differences in WtsCovClassic weights values for the stocks BMS and CASY, relative to weights
values for the four robust covariance, is striking. In view of the time series plots of the BMS and CASY
returns in Figure 3, it appears that these differences are due to the influence of returns outliers on classic
sample covariance matrix.

The following table compares the classic and robust GmvLO portfolios Annualized Mean Returns,
Standard Deviations and Sharpe Ratios.

dat.mat <- rbind(outCovClassic[2:4], outCovRobMM[2:4], outCovRobRockel[2:4],
outCovRobMcd[2:4], outCovRobTSGS[2:4])
dat <- as.data.frame(dat.mat)
row.names(dat) <- c("GmvLOcovClassic", "GmvLOcovRobMM", "GmvLOcovRobRocke",
"GmvLOcovRobMcd", "GmvLOcovRobTSGS")
print.data.frame(dat)

Mean StdDev SR

11

GmvLOcovClassic 0.107 0.25 0.428
GmvLOcovRobMM 0.132 0.266 0.494
GmvLOcovRobRocke 0.131 0.265 0.495
GmvLOcovRobMcd 0.145 0.28 0.518
GmvLOcovRobTSGS 0.148 0.277 0.536

The covClassic based portfolio has the smallest SR (Sharpe Ratio), with noticeably larger and nearly
equal SR’s for the covRobMM and covRobRocke based GmvLO portfolios, and increasingly larger SR
values for the covRobMecd and covRobTSGS based GmvLO portfolios. A perusal of the Mean and StdDev
columns of the table show that while the StdDev values increase slowly going down the column, the Mean
values increase more rapidly, which results in the increase in values going down the SR column.

4 Robust GmvLO Portfolio Backtests

In this section we conduct backtests of the classic GvmLO portfolio, and the three robust GMvLO
portfolios based on the covRobRocke, covRobMecd and covRobTSGS robust covariance matrix estimators,
using the function optimize.portfolio.rebalancing in PortfolioAnalytics. The training period for the
backtests is 100 weeks, and the portfolio is rebalanced weekly. To show the backtest results for different
robust covariance matrix estimators in a simple way, we created the function shown below to compute and
plot the results. The function has a parameter called plot to control which robust estimator is used in the
backtest: 1 is for the default choice covRob.Rocke, 2 is for the choicecovRob.Mcd, and 3 is for covRob. TSGS.

The computing times of the covClassic, covRobRocke, covRobMecd and covRobTSGS robust portfolio
backtests, on a DELL XPS 17 with 6 cores, up to 5.0 GHz, 12MB cache were: 46 seconds, 2.0 minutes, 55
seconds, and 2.4 mintues, respectively.
Plot function
robPlot <- function(GMV, MARKET, plot=1){

Optimize Portfolio at Monthly Rebalancing and 5-Year Training

if(plot == 1){

momentEstFun = 'custom.covRob.Rocke'
name = "GmvLOCovRobRocke"

}else if(plot == 2){
momentEstFun = 'custom.covRob.Mcd'
name = "GmvLOCovMcd"

Yelse if(plot == 3){
momentEstFun = 'custom.covRob.TSGS'
name = "GmvLOTSGS"

Yelse{
print("plot should be 1, 2 or 3")
return()

3

bt.gmv.rob <- optimize.portfolio.rebalancing(returns, pspec,
optimize_method = "CVXR",
rebalance_on = "weeks",
training_period = 100,
momentFUN = momentEstFun)

Extract time series of portfolio weights
wts.gmv.rob <- extractWeights(bt.gmv.rob)

12

Compute cumulative returns of portfolio
GMV.rob <- Return.rebalancing(returns, wts.gmv.rob)

Combine GMV.LO and MARKET cumulative returns
ret.comb <- na.omit(merge(GMV.rob, GMV, MARKET, all=F))
names (ret.comb) <- c(name, "GmvLO", "MARKET")

plot <- backtest.plot(ret.comb, colorSet = c("darkgreen", "black",
"red"), ltySet = c(1,2,3))

return(list(ret = ret.comb, plot = plot))

4.1 covRob.Rocke GmvLO Backtest

We use default settings of the custom. covRob.Rocke function for this backtest. From the plot, we can see
that during year 2008, when the well-known finance crisis occurred, the classic GmvLO portfolio with the
standard sample covariance matrix estimator, and the custom.covRob.Rocke MVO portfolio have similar
performances based on weekly returns for the prior two years. However,the robust portfolio based on
custom. covRob.Rocke outperforms the one based on the standard sample covariance matrix after the crisis
with regard to both gross cumulative return and the worst drawdown. This is due to the fact that the robust
covariance matrix down-weights influential outliers, rejecting sufficiently large outliers, which prevents to
robust MVO portfolio from being adversely influenced by the outliers which occur during the financial crisis.

bt.gmv <- optimize.portfolio.rebalancing(returns, pspec,
optimize_method = "CVXR",
rebalance_on="weeks",
training_period = 100)

Warning: executing %dopar’, sequentially: no parallel backend registered

Extract time sertes of portfolio weights
wts.gmv <- extractWeights(bt.gmv)

Compute cumulative returns of portfolio
GMV <- Return.rebalancing(returns, wts.gmv)

res.covRob <- robPlot(GMV=GMV, MARKET=MARKET, plot=1)
res.covRob$plot

13

Cumulative Returns 2007-12-07 / 2012-12-28

1.6 1.6
—— GmvLOCovRobRocke
14 =~ = GmvLO anyl 14
MARKET " AU e
/ W4
12 o Al /y \"\, Y 1.2
1.0 ..“. .’ “.“‘ ..""‘.“'- ’ 1.0
08 i 08
0.6 "‘.o"‘," - 0.6
0.0 Drawdown . 0.0
-0.1 1
-0.2
-0.3
-0.4
-0.5
Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec

2007 2008 2008 2009 2009 2010 2010 2011 2011 2012 2012

The shaded area in the above plot indicates the longest drawdown of the covRob.Rocke GmvLO
portfolio, which outperforms the covClassic GmvLO portfolio optimization in this
longest drawdown. The followingtable.Drawdownsfunction, with optional argumenttop =1°,
computes the statistics of the longest drawdown of the covRob.Rocke GmvLO portfolio, and in particular
shows that the length of this drawdown is 57 weeks.

table.Drawdowns (res.covRobretGmvLOCovRobRocke, top=1)

From Trough To Depth Length To Trough Recovery
1 2008-08-22 2009-03-06 2009-09-18 -0.4038 57 29 28

By way of comparison, the following use of table.Drawdowns computes the statistics of the longest
drawdown of the covClassic GmvLO portfolio, whose drawdown length is the much longer 68 weeks.

table.Drawdowns (res.covRobretGmvL0, top=1)

From Trough To Depth Length To Trough Recovery
1 2008-08-22 2009-03-06 2009-12-04 -0.4576 68 29 39

Of course the greater than 3 years 176 week drawdown of the MARKET, computed below, is vastly worse
than that of both the covClassic and covRobRocke GmvLO portfolios.

table.Drawdowns (res.covRobretMARKET, top=1)

From Trough To Depth Length To Trough Recovery
1 2007-12-14 2009-03-06 2011-04-22 -0.5336 176 65 111

14

4.2 covRob.Mcd GmvLO Backtest

We use alpha = 0.5 for this estimator, which results in a breakdown point of close to, but slightly less
than 0.5. From the plots below, we see that the resulting robust MVO portfolio performs better than the
robust MVO portfolio based on covRob.Rocke.

set.seed(1234)
res.covMcd = robPlot(GMV=GMV, MARKET=MARKET, plot=2)
res.covMcd$plot

Cumulative Returns 2007-12-07 / 2012-12-28

1% — GmvLOCovMcd Lo
14~ E/InAql\'\/’?OET PR
12 '..'«“‘A 12
. e

Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec
2007 2008 2008 2009 2009 2010 2010 2011 2011 2012 2012

In this case, use of the table.Drawdowns function shows that the longest covRobMcd GmvLO portfolio
has the same 57 week duration as the covRobRocke GmvLO portfolio.

longest drawdown for robust based portfolio
table.Drawdowns (res.covMcdretGmvLOCovMcd, top=1)

From Trough To Depth Length To Trough Recovery
1 2008-08-22 2009-03-06 2009-09-18 -0.4121 57 29 28

4.3 covRob. TSGS GmvLO

For custom.covRob.TSGS, we use the default settings Similar to covRob, optimized portfolios with
standard sample covariance matrix and T'SGS estimators have similar performance before the end of 2008.
Furthermore, the TSGS based portfolio shows a better cumulative return after year 2008.

res.TSGS = robPlot (GMV=GMV, MARKET=MARKET, plot=3)
res.TSGS$plot

15

Cumulative Returns 2007-12-07 / 2012-12-28

14 —— GmvLOTSGS
- - GmvLO

MARKET t
1.2 1.2
1.0 N N
0.8 0.8
0.6 - 0.6
0.0 Drawdown . . 0.0
-0.1 1
-0.2
-0.3
-0.4
-0.5
Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec

2007 2008 2008 2009 2009 2010 2010 2011 2011 2012 2012

The code line below reveals that longest drawdown for covRob.TSGS based portfolio lasts 68 weeks, rather
worse than for the covRobRocke and covRobMcd GmvLO portfolios.

longest drawdown for robust based portfolio
table.Drawdowns (res.TSGSretGmvLOTSGS, top=1)

From Trough To Depth Length To Trough Recovery
1 2008-08-22 2009-03-06 2009-12-04 -0.4353 68 29 39

5 Writing Your Own Custom Covariance Matrix Function

There are any one of the following reasons, among others, why you may want to write your own custom
covariance matrix function:

1. You want to frequently compute a variety of constrained MVO portfolios using one of the 4 types
of robust covariance matrices discussed in Section 3, for a particular set of non-default optional
argument values.

2. You want to use a robust covariance matrix for MVO portfolio construction that is not one of the
above 4 types, but is available in some R package.

3. You want to use a shrinkage covariance method that is available in another R package, or in some R
function.

The key for doing so is that the return of the function must be a list containing the mean vector object
named mu and and the covariance matrix object named sigma. The following two sections provide simple
examples of the first two cases above.

5.1 A User Custom Function for the covRobRocke Estimator

Here is the function using non-default values for maxit = and maxsteps =:

16

user.covRob.Rocke <- function(R){
out <- list()
robustCov <- RobStatTM::covRobRocke(X = R, maxit = 200, maxsteps = 10)
out$sigma <- robustCov$cov
out$mu <- robustCov$center
return(out)

}

Then the function user.covRob.Rocke would be used for example in portfolio.optimize as follows
(try it out):

opt <- optimize.portfolio(returns, pspec,
optimize_method = "CVXR",
momentFUN = "user.covRob.Rocke")

5.2 A User Custom Function for covRobOGK in robustbase

The user function covRob0OGK presented below computes portfolio assets pairwise robust covariance matrix
estimates. This method was originally introduced by (GnanadesikanKettenring19727?), and improved
with an “orthogonalizing step” by (MaronnaZamar20027). For details, see the covRob0GK page in the
robustbase Reference Manual at https://cran.r-project.org/package=robustbase/index.html. Here is the
user function based on the robustbase function covOGK with default argument values:

user.covRob.0GK <- function(R){
robustCov <- robustbase::covOGK(x = R)
return(list(mu = robustCov$center, sigma = robustCov$cov))

}

Then the function user.covRob.0GK would be used for example in portfolio.optimize as follows (try
it out):

opt <- optimize.portfolio(returns, pspec, optimize_method = "CVXR",
momentFUN = "user.covMcd.0GK")

5.3 Print the Value of Moment Settings

This is how you see the numerical values of the mean vector mu and the covariance matrix sigma. Even if
you don’t provide any momentFUN=, this command will print out the default moment setting values for
you.

opt$moment_values

$momentFun

[1] "custom.covRob.TSGS"

##

$mu

[1] -0.0005193308 0.0014613728 -0.0035289253 0.0007576777 -0.0033464762 0.0009911580 -0.0011553
##

$sigma

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.0040763786 0.0013090397 0.0017309318 0.0011847546 0.0018318186 0.0019243653 0.0031897096 0.
[2,] 0.0013090397 0.0021727762 0.0007747888 0.0006712464 0.0010882947 0.0008294012 0.0018021058 0.

17

https://cran.r-project.org/package=robustbase/index.html

[3,] 0.0017309318 0.0007747888 0.0020800312 0.0007578735 0.0012178132 0.0011930676
[4,] 0.0011847546 0.0006712464 0.0007578735 0.0009619914 0.0008591836 0.0007976439
[5,] 0.0018318186 0.0010882947 0.0012178132 0.0008591836 0.0017978093 0.0011716479
[6,] 0.0019243653 0.0008294012 0.0011930676 0.0007976439 0.0011716479 0.0022411980
[7,] 0.0031897096 0.0018021058 0.0018812388 0.0014177725 0.0021712513 0.0022244449
[8,] 0.0009314466 0.0004238248 0.0004131787 0.0003445779 0.0005588212 0.0003809158
[9,] 0.0018996619 0.0010464272 0.0011667203 0.0007917387 0.0011848044 0.0012585869
[10,] 0.0021299916 0.0008284009 0.0014139384 0.0007589050 0.0013154664 0.0013665916
Acknowledgements

The PortfolioAnalytics custom robust covariance matrix estimators R code discussed in Section 3, along
with some other code in this Vignette, was written by Yifu Kang while he was a student in the University

of Washington Department of Applied Mathematics Computational Finance and Risk Management M.S.

degree program (MS-CFRM). Yifu’s work reported here was funded by a 2022 Google Summer of Code
(GSoC 2022) project. University of Washington Applied Mathematics faculty members Doug Martin and
Steve Murray were Kang’s Mentors for this project.

Steve Murray discovered the existence of the Custom Moments functionality of PortfolioAnalytics, and
suggested that Yifu pursue implementation of robust covariance matrix estimators in PortfolioAnalytics
with that functionality.

Another MS-CFRM student, Xinran Zhao, who was funded by a different PortfolioAnalytics GSoC
2022 project, assisted Yifu on PortfolioAnalytics implementation of his custom robust covariance matrix
functions.

Finally, this project could not have been completed without the help of Brian Peterson, who is an Author
and the Maintainer of the PortfolioAnalytics package on CRAN.

References

Agostinelli, Yohai, Claudio. 2015. “Robust Estimation of Multivariate Location and Scatter in the
Presence of Cellwise and Casewise Contamination.” Test: An Official Journal of the Spanish Society
of Statistics and Operations Research.

Martin, R. Douglas. 2013. “Robust Covariances: Common Risk Versus Specific Risk Outliers.” R-finance
Conference 2013.

18

.0018812388
.0014177725
.0021712513
.0022244449
.0069335616
.0009693145
.0022467678
.0017440089

O OO O OO oo

	Introduction
	Compute Classic GmvLO Portfolio Weights
	Load Packages and Data
	Compute Classic GmvLO Weights

	Robust GmvLO Portfolios
	Custom covRob.MM Estimator
	Custom covRob.Rocke Estimator
	Custom covRob.Mcd Estimator
	Custom covRob.TSGS Estimator
	Comparison of the Classic and Robust GmvLO Portfolios

	Robust GmvLO Portfolio Backtests
	covRob.Rocke GmvLO Backtest
	covRob.Mcd GmvLO Backtest
	covRob.TSGS GmvLO

	Writing Your Own Custom Covariance Matrix Function
	A User Custom Function for the covRobRocke Estimator
	A User Custom Function for covRobOGK in robustbase
	Print the Value of Moment Settings

	Acknowledgements
	References

