Portfolio Optimization with CVaR budgets in

PortfolioAnalytics

Kris Boudt, Peter Carl and Brian Peterson

June 1, 2010

Contents

1 General information 1

2 Setting of the objective function 4
2.1 Weight constraints L 4
2.2 Minimum CVaR objective function 4
2.3 Minimum CVaR concentration objective function 6
2.4 Risk allocation constraints L L L 7

3 Optimization 7
3.1 Minimum CVaR portfolio under an upper 40% CVaR allocation constraint 8
3.2 Minimum CVaR concentration portfolio 12
3.3 Dynamic optimization oL Lo 14

1 General information

Risk budgets are a central tool to estimate and manage the portfolio risk allocation. They decom-
pose total portfolio risk into the risk contribution of each position. Boudt et al. (2010) propose
several portfolio allocation strategies that use an appropriate transformation of the portfolio Con-
ditional Value at Risk (CVaR) budget as an objective or constraint in the portfolio optimization
problem. This document explains how risk allocation optimized portfolios can be obtained under
general constraints in the PortfolioAnalytics package of Boudt et al. (2012).
PortfolioAnalytics is designed to provide numerical solutions for portfolio problems with

complex constraints and objective sets comprised of any R function. It can e.g. construct portfolios

that minimize a risk objective with (possibly non-linear) per-asset constraints on returns and
drawdowns (Carl et al., 2010). The generality of possible constraints and objectives is a distinctive
characteristic of the package with respect to RMetrics fPortfolio of Wuertz et al. (2010). For
standard Markowitz optimization problems, use of fPortfolio rather than PortfolioAnalytics
is recommended.

PortfolioAnalytics solves the following type of problem

hl(w) § 0

n}li)ng(w) s.t. : (1)
hg(w) < 0.

PortfolioAnalytics first merges the objective function and constraints into a penalty augmented

objective function

L(w) = g(w) + penalty Z A max(h;(w),0), (2)

i=1
where \; is a multiplier to tune the relative importance of the constraints. The default values of
penalty and \; (called multiplier in PortfolioAnalytics) are 10000 and 1, respectively.

The minimum of this function is found through the Differential Evolution (DE) algorithm of
Storn and Price (1997) and ported to R by Mullen et al. (2009). DE is known for remarkable
performance regarding continuous numerical problems (Price et al., 2006). It has recently been
advocated for optimizing portfolios under non-convex settings by Ardia et al. (2010) and Yollin
(2009), among others. We use the R implementation of DE in the DEoptim package of Ardia and
Mullen (2009).

The latest version of the PortfolioAnalytics package can be downloaded from R-forge through

the following command:
install.packages("PortfolioAnalytics", repos="http://R-Forge.R-project.org")
Its principal functions are:

e portfolio.spec(assets): the portfolio specification starts with creating a portfolio ob-
ject with information about the assets. The first argument assets is either a number in-
dicating the number of portfolio assets or a vector holding the names of the assets. The

portfolio object is a list holding the constraints and objectives.

e add.constraint(portfolio, type): Constraints are added to the portfolio object by the
function add.constraint. Basic constraint types include leverage constraints that specify
the sum of the weights have to be between min_sum and max_sum and box constraints where

the asset weights have to be between min and max.

e add.objective(portfolio, type, name): New objectives are added to the portfolio ob-
jected with the function add.objective. Many common risk budget objectives and con-

straints are prespecified and can be identified by specifying the type and name.

e constrained_objective(w, R, portfolio): given the portfolio weight and return data, it

evaluates the penalty augmented objective function in (2).

e optimize.portfolio(R, portfolio): this function returns the portfolio weight that solves

the problem in (1). R is the multivariate return series of the portfolio components.

e optimize.portfolio.rebalancing(R, portfolio, rebalance_on, trailing periods): this
function solves the multiperiod optimization problem. It returns for each rebalancing period
the optimal weights and allows the estimation sample to be either from inception or a moving

window.

Next we illustrate these functions on monthly return data for bond, US equity, international
equity and commodity indices, which are the first 4 series in the dataset indexes. The first step is
to load the package PortfolioAnalytics and the dataset. An important first note is that some
of the functions (especially optimize.portfolio.rebalancing) requires the dataset to be a xts

object (Ryan and Ulrich, 2010).

v

library(PortfolioAnalytics)

v

library(DEoptim)

v

library(robustbase)
> data(indexes)

> class(indexes)
[1] "yts" "zoo"

> indexes <- indexes[,1:4]

> head(indexes,2)

US Bonds US Equities Int'l Equities Commodities
1980-01-31 -0.0272 0.0610 0.0462 0.0568
1980-02-29 -0.0669 0.0031 -0.0040 -0.0093

> tail(indexes,?2)

US Bonds US Equities Int'l Equities Commodities
2009-11-30 0.0134 0.0566 0.0199 0.0150
2009-12-31 -0.0175 0.0189 0.0143 0.0086

In what follows, we first illustrate the construction of the penalty augmented objective function.

Then we present the code for solving the optimization problem.

2 Setting of the objective function

2.1 Weight constraints

> # Create the portfolio specification object

v

Wcons <- portfolio.spec(assets = colnames(indexes))

v

Add box constraints

v

Wcons <- add.comnstraint(portfolio=Wcons, type='box', min = 0, max=1)

v

Add the full investment constraint that specifies the weights must sum to 1.

> Wcons <- add.constraint(portfolio=Wcons, type="full_investment")

Given the weight constraints, we can call the value of the function to be minimized. We
consider the case of no violation and a case of violation. By default, normalize=TRUE which means
that if the sum of weights exceeds max_sum, the weight vector is normalized by multiplying it
with sum(weights)/max_sum such that the weights evaluated in the objective function satisfy the

max_sum constraint.

> constrained_objective(w = rep(1/4,4) , R = indexes, portfolio = Wcons)
[1] O
> constrained_objective(w = rep(1/3,4) , R = indexes, portfolio = Wcons)

(11 o

> constrained_objective(w = rep(1/3,4) , R = indexes, portfolio = Wcons,

+ normalize=FALSE)
[1] 3333.333

The latter value can be recalculated as penalty times the weight violation, that is: 10000 x 1/3.

2.2 Minimum CVaR objective function

Suppose now we want to find the portfolio that minimizes the 95% portfolio CVaR subject to the

weight constraints listed above.

> ObjSpec = add.objective(portfolio = Wcons , type="risk",name="CVaR",

+ arguments=1ist (p=0.95), enabled=TRUE)
The value of the objective function is:

> constrained_objective(w = rep(1/4,4) , R = indexes, portfolio = ObjSpec)

[,1]
ES 0.1253199

This is the CVaR of the equal-weight portfolio as computed by the function ES in the PerformanceAnalytics
package of Carl and Peterson (2009)

> library(PerformanceAnalytics)
> out<-ES(indexes, weights = rep(1/4,4),p=0.95,
+ portfolio_method="component")

> out$MES
[1] 0.1253199

All arguments in the function ES can be passed on through arguments. E.g. to reduce the impact
of extremes on the portfolio results, it is recommended to winsorize the data using the option

clean="boudt".

> out<-ES(indexes, weights = rep(1/4,4),p=0.95, clean="boudt",
+ portfolio_method="component")

> out$MES
[1] 0.07124999

For the formulation of the objective function, this implies setting:

> ObjSpec = add.objective(portfolio = Wcons , type="risk",name="CVaR",
+ arguments=1ist (p=0.95,clean="boudt"), enabled=TRUE)

> constrained_objective(w = rep(1/4,4) , R = indexes[,1:4] , portfolio = ObjSpec)

[,1]
ES 0.07124999

An additional argument that is not available for the moment in ES is to estimate the conditional
covariance matrix through the constant conditional correlation model of Bollerslev (1990).

For the formulation of the objective function, this implies setting:

> ObjSpec = add.objective(portfolio = Wcons , type="risk",name="CVaR",
+ arguments=1ist (p=0.95,clean="boudt"),

+ enabled=TRUE, garch=TRUE)

> constrained_objective(w = rep(1/4,4) , R = indexes[,1:4] , portfolio = 0ObjSpec)

[,1]
ES 0.07638512

2.3 Minimum CVaR concentration objective function
Add the minimum 95% CVaR concentration objective to the objective function:

> ObjSpec = add.objective(portfolio = Wcons , type="risk_budget_objective",
+ name="CVaR", arguments=list(p=0.95, clean="boudt"),

+ min_concentration=TRUE, enabled=TRUE)
The value of the objective function is:

> constrained_objective(w = rep(1/4,4) , R = indexes,

+ portfolio = 0ObjSpec, trace=TRUE)

$out

[1] 8.023152

$weights
[1] 0.25 0.25 0.25 0.25

$objective_measures
$objective_measures$CVaR
$objective_measures$CVaR$MES
[1] 0.07124999

$objective_measures$CVaR$contribution
US Bonds US Equities Int'l Equities Commodities
0.000593884 0.020748329 0.024636472 0.025271304

$objective_measures$CVaR$pct_contrib_MES
US Bonds US Equities Int'l Equities Commodities
0.008335215 0.291204659 0.345775103 0.354685023

We can verify that this is effectively the largest CVaR contribution of that portfolio as follows:

> ES(indexes[,1:4],weights = rep(1/4,4),p=0.95,clean="boudt",

+ portfolio_method="component")

$MES
[1] 0.07124999

$contribution
US Bonds US Equities Int'l Equities Commodities
0.000593884 0.020748329 0.024636472 0.025271304

$pct_contrib_MES
US Bonds US Equities Int'l Equities Commodities
0.008335215 0.291204659 0.345775103 0.354685023

2.4 Risk allocation constraints

We see that in the equal-weight portfolio, the international equities and commodities investment
cause more than 30% of total risk. We could specify as a constraint that no asset can contribute
more than 30% to total portfolio risk with the argument max_prisk=0.3. This involves the con-

struction of the following objective function:

> ObjSpec = add.objective(portfolio = Wcons , type="risk_budget_objective",
+ name="CVaR", max_prisk = 0.3,
+ arguments=1ist (p=0.95,clean="boudt"), enabled=TRUE)

> constrained_objective(w = rep(1/4,4) , R = indexes, portfolio = ObjSpec)
[1] 1004.601

This value corresponds to the penalty parameter which has by default the value of 10000 times
the exceedances: 10000 * (0.045775103 + 0.054685023) =~ 1004.601.

3 Optimization

The penalty augmented objective function is minimized through Differential Evolution. Two pa-
rameters are crucial in tuning the optimization: search_size and itermax. The optimization

routine

1. First creates the initial generation of NP = search_size/itermax guesses for the optimal
value of the parameter vector, using the random_portfolios function generating random

weights satisfying the weight constraints.

2. Then DE evolves over this population of candidate solutions using alteration and selection

operators in order to minimize the objective function. It restarts itermax times.

It is important that search_size/itermax is high enough. It is generally recommended that this
ratio is at least ten times the length of the weight vector. For more details on the use of DE

strategy in portfolio allocation, we refer the reader to Ardia et al. (2010).

3.1 Minimum CVaR portfolio under an upper 40% CVaR allocation

constraint

The portfolio object and functions needed to obtain the minimum CVaR portfolio under an upper

40% CVaR allocation objective are the following;:

> # Create the portfolio specification object

v

ObjSpec <- portfolio.spec(assets=colnames(indexes[,1:4]))

v

Add box constraints

v

ObjSpec <- add.constraint(portfolio=0bjSpec, type='box', min = 0, max=1)

v

Add the full investment constraint that specifies the weights must sum to 1.

v

ObjSpec <- add.constraint(portfolio=0bjSpec, type="weight_sum",

+ min_sum=0.99, max_sum=1.01)

v

Add objective to minimize CVaR

v

ObjSpec <- add.objective(portfolio=0bjSpec, type="risk", name="CVaR",

+ arguments=1ist (p=0.95, clean="boudt"))

> # Add objective for an upper 407, CVaR allocation

> ObjSpec <- add.objective(portfolio=0bjSpec, type="risk_budget_objective",
+ name="CVaR", max_prisk=0.4,

+ arguments=1ist (p=0.95, clean="boudt"))

After the call to these functions it starts to explore the feasible space iteratively and is shown
in the output. Iterations are given as intermediate output and by default every iteration will be
printed. We set traceDE=5 to print every 5 iterations and itermax=50 for a maximum of 50

iterations.

> set.seed(1234)

> out <- optimize.portfolio(R=indexes, portfolio=0bjSpec,

+ optimize_method="DEoptim", search_size=2000,

+ traceDE=5, itermax=50, trace=TRUE)

Iteration: 5 bestvalit: 0.035848 bestmemit: 0.658000 0.158000 0.116000 0.064000
Iteration: 10 bestvalit: 0.028150 bestmemit: 0.756000 0.138000 0.004000 0.100000
Iteration: 15 bestvalit: 0.028150 bestmemit: 0.756000 0.138000 0.004000 0.100000

[1] 0.756 0.138 0.004 0.100
> print (out)

>k >k >k 3k 5k 5k 5k ok 5k 5k 5k >k %k >k %k >k >k >k >k >k >k >k 5k %k %k >k %k %k >k %k %k *k >k >k k

PortfolioAnalytics Optimization

>k >k K 3K 3K 3K 3K 3k 5k 5k 3k 5k 5k 5k >k %k %k K 3K 3K 3k 3k 5k 5k %k %k %k >k >k K kK Kk k

Call:
optimize.portfolio(R = indexes, portfolio = ObjSpec, optimize_method = "DEoptim",

search_size = 2000, trace = TRUE, traceDE = 5, itermax = 50)

Optimal Weights:
US Bonds US Equities Int'l Equities Commodities
0.756 0.138 0.004 0.100

Objective Measures:
CVaR
0.02815

contribution :
US Bonds US Equities Int'l Equities Commodities

0.0111598 0.0085767 0.0003021 0.0081110

pct_contrib_MES :
US Bonds US Equities Int'l Equities Commodities
0.39645 0.30468 0.01073 0.28814

If trace=TRUE in optimize.portfolio, additional output from the DEoptim solver is included
in the out object created by optimize.portfolio. The additional elements in the output are

DEoptim_objective_results and DEoutput. The DEoutput element contains output from the

function DEoptim. The DEoptim_objective_results element contains the weights, value of the

objective measures, and other data at each iteration.

> names (out)

[1] "weights" "objective_measures"
[3] "opt_values" "out"
[5] "call" "DEoutput"

[7] "DEoptim_objective_results" "portfolio"
[9] "R" "data_summary"

[11] "elapsed_time" "end_t"

> # View the DEoptim_objective_results information at the last iteration

> out$DEoptim_objective_results[[length(out$DEoptim_objective_results)]]

$out

[1] 0.02814962

$weights
US Bonds US Equities Int'l Equities Commodities

0.756 0.138 0.004 0.100

$init_weights
US Bonds US Equities Int'l Equities Commodities

0.756 0.138 0.004 0.100

$objective_measures
$objective_measures$CVaR
$objective_measures$CVaR$MES
[1] 0.02814962

$objective_measures$CVaR$contribution
US Bonds US Equities Int'l Equities Commodities
0.0111597788 0.0085767265 0.0003020834 0.0081110317

$objective_measures$CVaR$pct_contrib_MES
US Bonds US Equities Int'l Equities Commodities

0.39644509 0.30468356 0.01073135 0.28814000

10

> # Extract stats from the out object into a matrix

> xtract <- extractStats(out)

> dim(xtract)
[1] 721 14

> head(xtract)

CVaR CVaR.contribution.US Bonds CVaR.contribution.US Equities

.DE.portf.1 0.07124999 5.938840e-04 0.0207483285
.DE.portf.2 0.09749781 1.916761e-05 0.0001603107
.DE.portf.3 0.09388837 1.253690e-05 0.0162754659
.DE.portf.4 0.03380412 8.328121e-03 0.0061436422
.DE.portf.5 0.05526181 2.942761e-03 0.0185755215
.DE.portf.6 0.05120182 3.736440e-03 0.0028665731
CVaR.contribution.Int'l Equities CVaR.contribution.Commodities
.DE.portf.1 0.024636472 0.025271304
.DE.portf.2 0.065292849 0.032025487
.DE.portf.3 0.035228789 0.042371581
.DE.portf.4 0.002601326 0.016731032
.DE.portf.5 0.030031465 0.003712064
.DE.portf.6 0.028066972 0.016531838
CVaR.pct_contrib_MES.US Bonds CVaR.pct_contrib_MES.US Equities
.DE.portf.1 0.0083352151 0.291204659
.DE.portf.2 0.0001965953 0.001644249
.DE.portf.3 0.0001335299 0.173349109
.DE.portf.4 0.2463640695 0.181742399
.DE.portf.5 0.0532512549 0.336136675
.DE.portf.6 0.0729747531 0.055985761
CVaR.pct_contrib_MES.Int'l Equities
.DE.portf.1 0.34577510
.DE.portf.2 0.66968526
.DE.portf.3 0.37521993
.DE.portf.4 0.07695293
.DE.portf.5 0.54343976
.DE.portf.6 0.54816352

CVaR.pct_contrib_MES.Commodities out w.US Bonds

11

.DE.portf.1 0.35468502 7.124999e-02 0.250

.DE.portf.2 0.32847390 2.696950e+03 0.016

.DE.portf.3 0.45129743 5.130682e+02 0.030

.DE.portf.4 0.49494060 9.494398e+02 0.702

.DE.portf.5 0.06717231 1.434453e+03 0.442

.DE.portf.6 0.32287596 1.481686e+03 0.504
w.US Equities w.Int'l Equities w.Commodities

.DE.portf.1 0.250 0.250 0.250

.DE.portf.2 0.002 0.646 0.330

.DE.portf.3 0.200 0.374 0.394

.DE.portf.4 0.096 0.032 0.176

.DE.portf.5 0.212 0.276 0.060

.DE.portf.6 0.036 0.284 0.178

It can be seen from the charts that although US Bonds has a higher weight allocation, the

percentage contribution to risk is the lowest of all four indexes.

> plot.new()

> chart.Weights (out)
> plot.new()

> chart.RiskBudget (out, risk.type="pct_contrib", col="blue", pch=18)

3.2 Minimum CVaR concentration portfolio

The functions needed to obtain the minimum CVaR concentration portfolio are the following:

v

Create the portfolio specification object

v

ObjSpec <- portfolio.spec(assets=colnames(indexes))

> # Add box constraints

v

ObjSpec <- add.constraint(portfolio=0bjSpec, type='box', min = 0, max=1)

> # Add the full investment constraint that specifies the weights must sum to 1.

> 0ObjSpec <- add.constraint (portfolio=0bjSpec, type="weight_sum",

+ min_sum=0.99, max_sum=1.01)

> # Add objective for min CVaR concentration

> ObjSpec <- add.objective(portfolio=0bjSpec, type="risk_budget_objective",

+ name="CVaR", arguments=list(p=0.95, clean="boudt"),
+ min_concentration=TRUE)

12

> set.seed(1234)

> out <- optimize.portfolio(R=indexes, portfolio=0bjSpec,

+ optimize_method="DEoptim", search_size=5000,

+ itermax=50, traceDE=5, trace=TRUE)

Iteration: 5 bestvalit: 1.376049 bestmemit: 0.638000 0.156000 0.092000
Iteration: 10 bestvalit: 0.174430 bestmemit: 0.694000 0.111797 0.091575
Iteration: 15 bestvalit: 0.174430 bestmemit: 0.694000 0.111797 0.091575

[1] 0.69400000 0.11179654 0.09157509 0.11045122

This portfolio has the near equal risk contribution characteristic:
> print (out)

>k >k K 3K 3K 3K 3K 3K 5k 5k 3k 5k 5k 5k >k %k %k K 3K 3K 3k 5k 5k 5k %k %k %k >k >k K K Kk Kk k

PortfolioAnalytics Optimization

>k >k >k 3k 5k ok ok ok ok 5k >k >k %k %k >k >k >k >k >k >k >k ok 5k %k >k >k %k %k %k >k *k >k >k >k k

Call:
optimize.portfolio(R = indexes, portfolio = ObjSpec, optimize_method = "DEoptim",

search_size = 5000, trace = TRUE, itermax = 50, traceDE = 5)

Optimal Weights:
US Bonds US Equities Int'l Equities Commodities
0.6940 0.1118 0.0916 0.1105

Objective Measures:
CVaR
0.034

contribution :
US Bonds US Equities Int'l Equities Commodities
0.007626 0.008225 0.008569 0.009583

pct_contrib_MES :
US Bonds US Equities Int'l Equities Commodities
0.2243 0.2419 0.2520 0.2818

13

0.118000
0.110451
0.110451

> # Verify results with ES function
> ES(indexes[,1:4], weights=out$weights, p=0.95, clean="boudt",

+ portfolio_method="component")

$MES
[1] 0.03400227

$contribution
US Bonds US Equities Int'l Equities Commodities
0.007625734 0.008225022 0.008568933 0.009582577

$pct_contrib_MES
US Bonds US Equities Int'l Equities Commodities
0.2242713 0.2418963 0.2520106 0.2818217

The 95% CVaR percent contribution to risk is near equal for all four indexes. The neighbor
portfolios can be plotted to view other near optimal portfolios. Alternatively, the contribution to

risk in absolute terms can plotted by setting risk.type=absolute".

> plot.new()
> chart.RiskBudget (out, neighbors=25, risk.type="pct_contrib",
+ col="blue", pch=18)

3.3 Dynamic optimization

Dynamic rebalancing of the risk budget optimized portfolio is possible through the function
optimize.portfolio.rebalancing. Additional arguments are rebalance_on which indicates
the rebalancing frequency (years, quarters, months). The estimation is either done from in-
ception (trailing_periods=0) or through moving window estimation, where each window has
trailing_periods observations. The minimum number of observations in the estimation sample
is specified by training_period. Its default value is 36, which corresponds to three years for
monthly data.

As an example, consider the minimum CVaR concentration portfolio, with estimation from
inception and monthly rebalancing. Since we require a minimum estimation length of total number

of observations -1, we can optimize the portfolio only for the last two months.

> set.seed(1234)

> out <- optimize.portfolio.rebalancing(R=indexes, portfolio=0bjSpec,

14

+ optimize_method="DEoptim", search_size=5000,

+ rebalance_on="quarters",
+ training_period=nrow(indexes)-12,
+ traceDE=0)

[1] 0.620 0.156 0.108 0.120
[1] 0.646 0.154 0.098 0.092
[1] 0.756 0.074 0.086 0.088
[1] 0.654 0.130 0.080 0.128
[1] 0.6614704 0.1349979 0.1074819 0.1017290

The output of optimize.portfolio.rebalancing in the opt_rebalancing slot is a list of

objects created by optimize.portfolio, one for each rebalancing period.
> names (out)

[1] "portfolio" "R" "call" "elapsed_time"

[5] "opt_rebalancing"

> names (out$opt_rebalancing[[1]])

[1] "weights" "objective_measures" "opt_values"
[4] "out" "call" "portfolio"
[7] "data_summary" "elapsed_time" "end_t"

> out

3k >k K 3K 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k 5k K 3K 3K 3K 3k 3k 5k %k 5k 5k 5k %K %K 3K 3K 5K 5K 5k 3k %k 5k %k >k %k %k X K K 3k 5k >k >k %k k

PortfolioAnalytics Optimization with Rebalancing

>k >k >k 3k 5k ok ok ok 5k 5k >k %k %k %k %k >k >k >k >k 5k 5k 5k %k >k >k %k >k %k >k >k >k >k 5k 5k %k >k %k >k >k %k %k >k >k >k >k >k >k >k >k k

Call:

optimize.portfolio.rebalancing(R = indexes, portfolio = ObjSpec,
optimize_method = "DEoptim", search_size = 5000, traceDE = 0,
rebalance_on = "quarters", training_period = nrow(indexes) -

12)

Number of rebalancing dates: 65

First rebalance date:

15

[1] "2008-12-31"
Last rebalance date:

[1] "2009-12-31"

Annualized Portfolio Rebalancing Return:

[1] 0.0855549

Annualized Portfolio Standard Deviation:

[1] 0.08845085

The summary method provides a brief output of the optimization result along with return and

risk measures.

> opt.summary <- summary (out)

> names (opt. summary)

[1] "weights" "objective_measures" "portfolio_returns"
[4] "annualized_returns" "annualized_StdDev" "downside_risk"
[7] "rebalance_dates" "call" "elapsed_time"

> opt.summary

3k >k K 3K 3K 3K 5K 5k 5k 5k 5k k 5k 5k %k %k K 3K 5K 3K 3k 3k 5k 5k 5k 5k 5k %K %K K 3K 5K 5K 5K 3k %k %k %k >k %k %k X K >k 3k 5k >k >k k k

PortfolioAnalytics Optimization with Rebalancing

>k >k >k 3K 3K 5k 5k 5k 5k 5k >k 5k 5k %k %k >k >k >k 5k 5k 5k 5k %k %k >k >k %k %k >k >k >k >k 5k 5k 5k >k %k >k >k >k %k %k >k >k >k >k >k >k >k k

Call:

optimize.portfolio.rebalancing(R = indexes, portfolio = ObjSpec,
optimize_method = "DEoptim", search_size = 5000, traceDE = 0,
rebalance_on = "quarters", training_period = nrow(indexes) -

12)

First rebalance date:

[1] "2008-12-31"

Last rebalance date:

[1] "2009-12-31"

16

Annualized Portfolio Rebalancing Return:

[1] 0.0855549

Annualized Portfolio Standard Deviation:

[1] 0.08845085

Downside Risk Measures:

portfolio.returns

Semi Deviation 0.0201
Gain Deviation 0.0112
Loss Deviation 0.0200
Downside Deviation (MAR=10%) 0.0206
Downside Deviation (Rf=0%) 0.0169
Downside Deviation (0%) 0.0169
Maximum Drawdown 0.0802
Historical VaR (95%) -0.0406
Historical ES (95%) -0.0438
Modified VaR (95%) -0.0395
Modified ES (95%) -0.0448

The optimal weights for each rebalancing period can be extracted fron the object with extractWeights

and are charted with chart.Weights.
> extractWeights (out)

US Bonds US Equities Int'l Equities Commodities

2008-12-31 0.6200000 0.1560000 0.1080000 0.120000
2009-03-31 0.6460000 0.1540000 0.0980000 0.092000
2009-06-30 0.7560000 0.0740000 0.0860000 0.088000
2009-09-30 0.6540000 0.1300000 0.0800000 0.128000
2009-12-31 0.6614704 0.1349979 0.1074819 0.101729

> plot.new()

> chart.Weights(out, colorset=bluemono)

Also, the value of the objective function at each rebalancing date is extracted with extractObjectiveMeasures.

> head(extractObjectiveMeasures (out))

17

2008-12-31
2009-03-31
2009-06-30
2009-09-30
2009-12-31

2008-12-31
2009-03-31
2009-06-30
2009-09-30
2009-12-31

2008-12-31
2009-03-31
2009-06-30
2009-09-30
2009-12-31

2008-12-31
2009-03-31
2009-06-30
2009-09-30
2009-12-31

CVaR CVaR.contribution.US Bonds CVaR.contribution.US Equities

0.03772064
0.03606833
0.02979731
0.03553141
0.03618981

0.005118650
0.006181662
0.010068267
0.006630314
0.006684286

0.011545837
0.012266178
0.005031174
0.009709958
0.010419902

CVaR.contribution.Int'l Equities CVaR.contribution.Commodities

0.010430206
0.009897081
0.007528834
0.007576726
0.0105617437

0.010625951
0.007723408
0.007169032
0.011614414
0.008568184

CVaR.pct_contrib_MES.US Bonds CVaR.pct_contrib_MES.US Equities

CVaR.pct_contrib_MES.Int'l Equities

0.1356989
0.1713875
0.3378918
0.1866043
0.1847008

0.3060880
0.3400817
0.1688466
0.2732781
0.2879236

0.2765119
0.2743981
0.2526683
0.2132402
0.2906188

The first and last observation from the estimation sample:

> out$opt_rebalancing[[1]]$data_summary

$first

1980-01-31

$last

2008-12-31

US Bonds US Equities Int'l Equities Commodities

-0.0272

0.0462

0.0568

US Bonds US Equities Int'l Equities Commodities

0.0313

0.0568

> out$opt_rebalancing[[2]]$data_summary

18

-0.1537

CVaR.pct_contrib_MES.Commodities

0.2817012
0.2141327
0.2405933
0.3268774
0.2367568

$first
US Bonds US Equities Int'l Equities Commodities
1980-01-31 -0.0272 0.061 0.0462 0.0568

$last
US Bonds US Equities Int'l Equities Commodities
2009-03-31 0.0128 0.0805 0.06 0.0431

The component contribution to risk at each rebalance date can be charted with chart.RiskBudget.

The component contribution to risk in absolute or percentage.

> plot.new()

> chart.RiskBudget (out, match.col="CVaR", risk.type="percentage", col=bluemono)

> plot.new()

> chart.RiskBudget (out, match.col="CVaR", risk.type="absolute", col=bluemono)

Of course, DE is a stochastic optimizer and typically will only find a near-optimal solution
that depends on the seed. The function optimize.portfolio.parallel in PortfolioAnalytics
allows to run an arbitrary number of portfolio sets in parallel in order to develop "confidence bands"

around your solution. It is based on Revolution’s foreach package (Computing, 2009).

References

D. Ardia and K. Mullen. DFEoptim: Differential Evolution Optimization in R, 2009. URL https:
//CRAN.R-project.org/package=DEoptim. R package version 2.00-04.

D. Ardia, K. Boudt, P. Carl, K. Mullen, and B. Peterson. Differential evolution (deoptim) for

non-convex portfolio optimization. Mimeo, 2010.

T. Bollerslev. Modeling the coherence in short-run nominal exchange rates: A multivariate gener-

alized ARCH model. Review of Economics and Statistics, 72:498-505, 1990.

K. Boudt, P. Carl, and B. G. Peterson. Portfolio optimization with conditional value-at-risk

budgets, Jan. 2010.

K. Boudt, P. Carl, and B. G. Peterson. PortfolioAnalytics: Portfolio analysis, including nu-
meric methods for optimization of portfolios, 2012. URL https://github.com/braverock/

PortfolioAnalytics. R package version 0.8.2-1.1.0.

19

P. Carl and B. G. Peterson. PerformanceAnalytics: Econometric tools for performance and risk
analysis in R, 2009. URL https://github.com/braverock/PerformanceAnalytics. R package
version 1.0.0-1.5.2.

P. Carl, B. G. Peterson, and K. Boudt. Business objectives and complex portfolio optimization. Pre-
sentation at R/Finance 2010. Available at: http://www.rinfinance.com/agenda/2010/Carl+

Petersont+Boudt_Tutorial.pdf, 2010.

R. Computing. foreach: Foreach looping construct for R, 2009. URL https://CRAN.R-project.
org/package=foreach. R package version 1.3.0.

K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. DEoptim: An R package for global

optimization by differential evolution, Dec. 2009.

K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical Approach
to Global Optimization. Springer-Verlag, Berlin, Germany, second edition, Dec. 2006. ISBN
3540209506.

J. A. Ryan and J. M. Ulrich. ats: Fatensible Time Series, 2010. URL https://CRAN.R-project.

org/package=xts. R package version 0.7-0.

R. Storn and K. Price. Differential evolution — a simple and efficient heuristic for global optimization

over continuous spaces. Journal of Global Optimization, 11(4):341-359, 1997. ISSN 0925-5001.

Wuertz, Diethelm, Chalabi, Yohan, Chen, William, Ellis, and Andrew. Portfolio Optimization with
R/Rmetrics. Rmetrics Association & Finance Online, www.rmetrics.org, April 2010. R package

version 2110.79.

G. Yollin. R tools for portfolio optimization. In Presentation at R/Finance conference 2009, 2009.

20

