
Custom Moment and Objective Functions

Ross Bennett

May 17, 2018

Abstract

The purpose of this vignette is to demonstrate how to write and use custom moment

functions and custom objective functions to solve complex optimization problems.

1 Getting Started 1

1.1 Load Packages . 1

1.2 Data . 1

2 Setting the Portfolio Moments 2

3 Custom Moment Functions 3

4 Custom Objective Functions 5

1 Getting Started

1.1 Load Packages

Load the necessary packages.

> library(PortfolioAnalytics)

> library(DEoptim)

1.2 Data

The edhec data set from the PerformanceAnalytics package will be used as data for the following

examples.

> data(edhec)

> # Use the first 4 columns in edhec for a returns object

1

> R <- edhec[, 1:4]

> colnames(R) <- c("CA", "CTAG", "DS", "EM")

> head(R, 5)

CA CTAG DS EM

1997-01-31 0.0119 0.0393 0.0178 0.0791

1997-02-28 0.0123 0.0298 0.0122 0.0525

1997-03-31 0.0078 -0.0021 -0.0012 -0.0120

1997-04-30 0.0086 -0.0170 0.0030 0.0119

1997-05-31 0.0156 -0.0015 0.0233 0.0315

> # Get a character vector of the fund names

> funds <- colnames(R)

2 Setting the Portfolio Moments

The PortfolioAnalytics framework to estimate solutions to constrained optimization problems is

implemented in such a way that the moments of the returns are calculated only once and then used

in lower level optimization functions. The set.portfolio.moments function computes the first,

second, third, and fourth moments depending on the objective function(s) in the portfolio object.

For example, if the third and fourth moments do not need to be calculated for a given objective,

then set.portfolio.moments will try to detect this and not compute those moments. Currently,

set.portfolio.moments implements methods to compute moments based on sample estimates,

higher moments from fitting a statistical factor model based on the work of Kris Boudt (Boudt

et al., 2014), the Black Litterman model (Meucci, 2008b), and the Fully Flexible Framework based

on the work of Attilio Meucci (Meucci, 2008a).

> # Construct initial portfolio with basic constraints.

> init.portf <- portfolio.spec(assets=funds)

> init.portf <- add.constraint(portfolio=init.portf, type="full_investment")

> init.portf <- add.constraint(portfolio=init.portf, type="long_only")

> # Portfolio with standard deviation as an objective

> SD.portf <- add.objective(portfolio=init.portf, type="risk", name="StdDev")

> # Portfolio with expected shortfall as an objective

> ES.portf <- add.objective(portfolio=init.portf, type="risk", name="ES")

Here we see the names of the list object that is returned by set.portfolio.moments.

2

> sd.moments <- set.portfolio.moments(R, SD.portf)

> names(sd.moments)

[1] "mu" "sigma"

> es.moments <- set.portfolio.moments(R, ES.portf)

> names(es.moments)

[1] "mu" "sigma" "m3" "m4"

3 Custom Moment Functions

In many cases for constrained optimization problems, one may want to estimate moments for a

specific use case or further extend the idea of set.portfolio.moments. A user defined custom

moment function can have any arbitrary named arguments. However, arguments named R for the

asset returns and portfolio for the portfolio object will be detected automatically and handled in

an efficient manner. Because of this, it is strongly encouraged to use R for the asset returns object

and portfolio for the portfolio object.

The moment function should return a named list object where the elements represent the

moments:

$mu first moment; expected returns vector

$sigma second moment; covariance matrix

$m3 third moment; coskewness matrix

$m4 fourth moment; cokurtosis matrix

The lower level optimization functions expect an object with the structure described above.

List elements with the names mu, sigma, m3, and m4 are matched automatically and handled in an

efficient manner.

Here we define a function to estimate the covariance matrix using a robust method.

> sigma.robust <- function(R){

+ require(MASS)

+ out <- list()

+ set.seed(1234)

+ out$sigma <- cov.rob(R, method="mcd")$cov

+ return(out)

+ }

3

Now we can use the custom moment function in optimize.portfolio to estimate the solution

to the minimum standard deviation portfolio.

> opt.sd <- optimize.portfolio(R, SD.portf,

+ optimize_method="ROI",

+ momentFUN="sigma.robust")

> opt.sd

PortfolioAnalytics Optimization

Call:

optimize.portfolio(R = R, portfolio = SD.portf, optimize_method = "ROI",

momentFUN = "sigma.robust")

Optimal Weights:

CA CTAG DS EM

0.8492 0.1508 0.0000 0.0000

Objective Measure:

StdDev

0.008598

Here we extract the weights and compute the portfolio standard deviation to verify that the

the robust estimate of the covariance matrix was used in the optimization.

> weights <- extractWeights(opt.sd)

> sigma <- sigma.robust(R)$sigma

> sqrt(t(weights) %*% sigma %*% weights)

[,1]

[1,] 0.008598403

> extractObjectiveMeasures(opt.sd)$StdDev

StdDev

0.008598403

4

4 Custom Objective Functions

A key feature of PortfolioAnalytics is that the name for an objective can be any valid Rfunction.

PortfolioAnalytics was designed to be flexible and modular, and custom objective functions are

a key example of this.

Here we define a very simple function to compute annualized standard deviation for monthly

data that we will use as an objective function.

> pasd <- function(R, weights, sigma, N=36){

+ R <- tail(R, N)

+ tmp.sd <- sqrt(as.numeric(t(weights) %*% sigma %*% weights))

+ sqrt(12) * tmp.sd

+ }

A few guidelines should be followed for defining a custom objective function.

• The objective function must return a single value for the optimizer to minimize.

• It is strongly encouraged to use the following argument names in the objective function:

R for the asset returns

weights for the portfolio weights

These argument names are detected automatically and handled in an efficient manner. Any

other arguments for the objective function can be for the moments or passed in through the

arguments list in the objective.

For our pasd function, we need custom moments function to return a named list with sigma

as an element. We can use the sigma.robust function we defined in the previous section. Here

we construct a portfolio with our pasd function as an objective to minimize.

> # Construct initial portfolio with basic constraints.

> pasd.portf <- portfolio.spec(assets=funds)

> pasd.portf <- add.constraint(portfolio=pasd.portf, type="full_investment")

> pasd.portf <- add.constraint(portfolio=pasd.portf, type="long_only")

> # Portfolio with pasd as an objective

> # Note how we can specify N as an argument

> pasd.portf <- add.objective(portfolio=pasd.portf, type="risk", name="pasd",

+ arguments=list(N=48))

Now we can run the optimization to estimate a solution to our optimization problem.

5

> opt.pasd <- optimize.portfolio(R, pasd.portf,

+ optimize_method="DEoptim",

+ search_size=5000, trace=TRUE, traceDE=0,

+ momentFUN="sigma.robust")

[1] 0.846 0.146 0.004 0.004

> opt.pasd

PortfolioAnalytics Optimization

Call:

optimize.portfolio(R = R, portfolio = pasd.portf, optimize_method = "DEoptim",

search_size = 5000, trace = TRUE, traceDE = 0, momentFUN = "sigma.robust")

Optimal Weights:

CA CTAG DS EM

0.846 0.146 0.004 0.004

Objective Measures:

pasd

0.02988

We now consider an example with a more complicated objective function. Our objective to

maximize the fourth order expansion of the Constant Relative Risk Aversion (CRRA) expected

utility function as in (Boudt et al., 2014).

EUλ(w) = −

λ

2
m(2)(w) +

λ(λ + 1)

6
m(3)(w) −

λ(λ + 1)(λ + 2)

24
m(4)(w)

Here we define a function to compute CRRA estimate. Note how we define the function to use

sigma, m3, and m4 as arguments that will use the output from a custom moment function. We

could compute the moments inside this function, but re-computing the moments potentially tens

of thousands of times (i.e. at each iteration) can be very compute intensive.

> CRRA <- function(R, weights, lambda, sigma, m3, m4){

+ weights <- matrix(weights, ncol=1)

6

+ M2.w <- t(weights) %*% sigma %*% weights

+ M3.w <- t(weights) %*% m3 %*% (weights %x% weights)

+ M4.w <- t(weights) %*% m4 %*% (weights %x% weights %x% weights)

+ term1 <- (1 / 2) * lambda * M2.w

+ term2 <- (1 / 6) * lambda * (lambda + 1) * M3.w

+ term3 <- (1 / 24) * lambda * (lambda + 1) * (lambda + 2) * M4.w

+ out <- -term1 + term2 - term3

+ out

+ }

We now define the custom moment function to compute the moments for the objective function.

> crra.moments <- function(R, ...){

+ out <- list()

+ out$sigma <- cov(R)

+ out$m3 <- PerformanceAnalytics:::M3.MM(R)

+ out$m4 <- PerformanceAnalytics:::M4.MM(R)

+ out

+ }

Finally, we set up the portfolio and run the optimization using our custom moment function

and objective function to maximize CRRA. Note that type="return" is used to maximize an

objective function.

> # Construct initial portfolio with basic constraints.

> crra.portf <- portfolio.spec(assets=funds)

> crra.portf <- add.constraint(portfolio=crra.portf, type="weight_sum",

+ min_sum=0.99, max_sum=1.01)

> crra.portf <- add.constraint(portfolio=crra.portf, type="box",

+ min=0.05, max=0.4)

> # Portfolio with crra as an objective

> # Note how we can specify lambda as an argument

> crra.portf <- add.objective(portfolio=crra.portf, type="return", name="CRRA",

+ arguments=list(lambda=10))

> opt.crra <- optimize.portfolio(R, crra.portf, optimize_method="DEoptim",

+ search_size=5000, trace=TRUE, traceDE=0,

+ momentFUN="crra.moments")

7

[1] 0.33200245 0.38888783 0.21443624 0.05489244

> opt.crra

PortfolioAnalytics Optimization

Call:

optimize.portfolio(R = R, portfolio = crra.portf, optimize_method = "DEoptim",

search_size = 5000, trace = TRUE, traceDE = 0, momentFUN = "crra.moments")

Optimal Weights:

CA CTAG DS EM

0.3320 0.3889 0.2144 0.0549

Objective Measures:

CRRA

-0.0009658

PortfolioAnalytics supports several methods to estimate moments as well as user defined

moment functions. The name of the objective must be the name of a valid Rfunction and

PortfolioAnalytics integrates well with PerformanceAnalytics to utilize several of the risk

measure functions such as StdDev and ES. Because an objective function can be a valid Rfunction,

user defined objective functions are supported. The modular framework of PortfolioAnalytics

allows one to easily define custom moment functions and objective functions as valid Rfunctions

to solve complex and specialized objective functions.

References

K. Boudt, W. Lu, and B. Peeters. Higher order comoments of multifactor models and asset alloca-

tion. June 2014. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2409603.

A. Meucci. Fully flexible views: Theory and practice. Journal of Risk, 21(10):97–102, 2008a. URL

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1213325.

A. Meucci. The black-litterman approach: Original model and extensions. Journal of Risk, August

2008b. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1117574.

8

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2409603
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1213325
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1117574

	Contents
	Getting Started
	Load Packages
	Data

	Setting the Portfolio Moments
	Custom Moment Functions
	Custom Objective Functions

