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Abstract

This vignette gives a an overview of the estimation methods for coskewness and cokur-

tosis matrices contained in PerformanceAnalytics. We focus on explaining the different
assumptions underlying each of the estimators and how to use them in R. The concepts are
shown using the edhec dataset included in the package.
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1 Introduction

The PerformanceAnalytics package was built to evaluate the performance and risk char-
acteristics of financial assets or funds. Two important risk measurement functions are Value-at-
Risk (VaR) and Expected Shortfall (ES). The modified versions, see Zangari (1996) and Boudt
et al. (2008), incorporate departure from normality in the return series. In the univariate setting,
this departure from normality is measured by skewness and kurtosis.

The portfolio third and fourth order central moments depend on the joint third and fourth
order central moments of all underlying assets, these are gathered in the coskewness and cokur-
tosis matrices. Consider the random vector R with mean g and finite fourth order moments,
then the coskewness matrix ® and cokurtosis matrix W are defined by

® =E[(R—-p)(R—p) @ (R-p)],

¥ = E[(R - u)(R—-p) @ (R-p) o (R-p)) M

where ® denotes the Kronecker product.
For any portfolio with portfolio vector w, the third and fourth order central moment are then
given by
E[(w'R - w'p)’] = w'®(w @ w),

E[(w'R - w'p)!] = w'¥(w @ w® w), (2)

which can then be used to compute the standardized skewness and excess kurtosis of the portfo-
lio.

In addition, the contribution of each asset to the modified VaR (mVaR) or modified ES (mES)
of the portfolio depends on the derivative with respect to the weights vector, which is also a
function of the coskewness and cokurtosis matrices measuring the relationships between all
assets.

Hence, the idea of improving the estimation of the higher order comoment matrices is that
eventually we obtain more accurate estimates of mVaR and mES, or any other application in-
volving the higher order comoment matrices.

In the next section we explain the underlying assumptions for all the estimation methods
available in PerformanceAnalytics and demonstrate how to use them on the dataset
edhec included in the package. In Section 3 we show how the different estimation techniques
impacts the mVaR and mES values. It is not our aim however to draw any conclusions about
which method is preferred.

Before starting, load the package and the dataset edhec. Below, the different asset names
are shown, as well as the head and tail for select hedge fund style indices. As you can see, the
data consists of monthly returns.



> data (edhec)
> colnames (edhec)

[1] "Convertible Arbitrage" "CTA Global" "Distressed Secu:
[4] "Emerging Markets" "Equity Market Neutral" "Event Driven"
[7] "Fixed Income Arbitrage" "Global Macro" "Long/Short Equif
[10] "Merger Arbitrage" "Relative Value" "Short Selling"
[13] "Funds of Funds"

> head (edhec/([, c¢(2,4,5,6,8,9,11,12)], n = 3)

CTA Global Emerging Markets Equity Market Neutral Event Driv

1997-01-31 0.0393 0.0791 0.0189 0.02
1997-02-28 0.0298 0.0525 0.0101 0.00
1997-03-31 -0.0021 -0.0120 0.0016 -0.00:
Global Macro Long/Short Equity Relative Value Short Selling
1997-01-31 0.0573 0.0281 0.0180 -0.0166
1997-02-28 0.0175 -0.0006 0.0118 0.0426
1997-03-31 -0.0119 -0.0084 0.0010 0.0778

> tail (edhec([, c(2,4,5,6,8,9,11,12)], n = 3)

CTA Global Emerging Markets Equity Market Neutral Event Driwv

2021-03-31 0.0045 -0.0081 0.0102 0.01
2021-04-30 0.0250 0.0257 0.0147 0.02
2021-05-31 0.0164 0.0209 0.0035 0.01:
Global Macro Long/Short Equity Relative Value Short Selling
2021-03-31 0.0093 0.0075 0.0054 0.002
2021-04-30 0.0233 0.0249 0.0109 0.000
2021-05-31 0.0188 0.0085 0.0067 0.000

This data sometimes has missing values (NaN), as recently observed in the ‘Short Selling‘ style
indice. We choose to handle this by zero imputation, as we have very few. See the edhec docu-
mentation files. This will allow multi-target shrinkage estimators, among other computations to
run smoothly in our examples.

2 Estimation of the Coskewness and Cokurtosis matrices

In this section we cover the three main categories of estimation techniques implemented in
PerformanceAnalytics, plug-in estimation, structured estimation and shrinkage estima-

tion. This is not an exhaustive list and in the last subsection we refer the reader to other possibili-

ties, such as EWMA estimation and MCA estimation (both available in PerformanceAnalytics);
or the GO-GARCH model in rmgarch.



2.1 Plug-in estimation

Consider a sample (71,79, ..., r,) of p-dimensional observations of the return variable R. The
most straightforward way of estimating the coskewness and cokurtosis matrices given in (1)
consists of replacing each expectation by a sample average, i.e. the sample coskewness and
cokurtosis matrices ¢ and ¥ have as elements

(Zijkz —Z Ty — T Tt] _r])(rtk_Fk)a
(€))
Yijiy = — Z T —T3) (1 —T5) (e — Tr) (Ta — 1),

where 7 denotes the sample average. The way to estimate the plug-in sample coskewness and
cokurtosis estimators is as follows

> m3 <- M3.MM(edhec)
> m4 <—- M4.MM(edhec)
> dim(m3)

[1] 13 169
> dim(m4)
[1] 13 2197

The dimension of the matrices is correct, at p x p? for the coskewness matrix and p x p? for the
cokurtosis matrix.

As shown in Equation (2), the portfolio third and fourth order central moment are easily
obtained by left and right multiplication with the weight vector w. In the vignette we consider
the equal weighted portfolio. In code, the moments are computed as

> p <— ncol (edhec)

> w <- rep(l1 / p, p)

> m3port <—- t(w) %$*% m3
> m4port <—- t(w) %x% m4
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Computing the third and fourth order central moment of the portfolio can also be done by di-
rectly using the functions portm3 and portm4 in the PerformanceAnalytics package.
This has the advantage that these functions also accept the reduced form vector with unique
coskewness and cokurtosis elements, as obtained by setting the option as.mat =F in any of
the estimators shown in this vignette, as shown below for the coskewness matrix. Computing
the reduced form has the advantage of a faster computation time because it heavily reduces the
memory burden and avoids unnecessary computations for the portfolio moments, especially in
higher dimensions.



> m3port_2 <—- PerformanceAnalytics:::portm3(w, M3.MM(edhec))
> m3port_3 <- PerformanceAnalytics:::portm3(w, M3.MM(edhec, as.mat = F)
> ¢ (m3port, m3port_2, m3port_3)

[1] -1.55923%9e-06 -1.559239e-06 —-1.559239e-06

One of the properties of the sample estimator is that computing the portfolio third and fourth
order central moment from the plug-in sample coskewness and cokurtosis matrices is equivalent
to directly computing the third and fourth order central moment on the portfolio returns, as
shown below.

> portreturns <- edhec %*% w

> m3port_univ <- mean((portreturns - mean (portreturns))"3)
> mdport_univ <- mean ((portreturns - mean (portreturns)) "4)
>

c(m3port, m3port_univ, mé4port, mé4port_univ)
[1] -1.559239e-06 —-1.559239%9e-06 1.302823e-07 1.302823e-07

This will not be the case for the other estimators used in this vignette, explaining the use for
better estimators of the multivariate coskewness and cokurtosis matrices in order to obtain a
better univariate estimate of the portfolio skewness and kurtosis.

Similar to the difference in 1/n and 1/(n — 1) for covariance estimation, the plug-in sample
coskewness estimator can be bias-corrected by using a different factor in front:

n

gz';zb) = (n— 1)7?71 ) Z(m = Ti)(rey —75) (o — Te)- 4)
t=1

The option is easily selected in M3 .MM by adding unbiased = T to the arguments. Below we
provide a small simulation study demonstrating unbiasedness by estimating the third order cen-
tral moment of a standard Exponential random variable. We do 200 000 replications of sample
size 50. The true value equals 2.

m3 <— M3.MM(edhec, unbiased = TRUE)

set.seed (201706)

x <- matrix(rexp(10000000), nrow = 50)

xc <- x — matrix(colMeans (x), nrow = 50, ncol = 200000, byrow = TRUE)
skews_plugin <- colMeans (xc"3)

mean (skews_plugin)

vV V.V Vv Vv Vv

[1] 1.886832
> mean (skews_plugin) = 5072 / (49 * 48)

[1] 2.005561



2.2 Structured estimation

The basis of structured estimation is to assume a certain data-generating process for the returns.
Under a chosen process, the coskewness and cokurtosis matrices will be constrained structurally,
for example by zero elements or other relations between the different elements. First, we take a
look at the strong assumption of independence, followed by a more realistic multi-factor model.
Additionally, the constant-correlation model proposed in Martellini and Ziemann (2010) is im-
plemented and some additional coskewness structuresare shown at the end.

2.2.1 Independence

Though the assumption of independence might be unrealistic, it nicely demonstrates the ef-
fect that choosing a structure or data-generating process has on the coskewness and cokurtosis
matrices. Define the marginal variances O'Z-Z, then for ¢ < jk < [, under the assumption of
independence,

gbiij = Oa
¢z]k - 07
wiiil = 07
5
Viikk = 03027 ©)
wwkk = 07
wijkl = 07

and similar for permuations of the indices. Hence, only the elements ¢;;;, V;;; and ¥;;xk are
non-zero. Estimating the portfolio third and fourth order central moments by inserting zeros at
the appropriate places and using the sample estimators for the non-zero elements clearly gives
different results than before,

m3 <- M3.struct (edhec, "Indep")

m4 <- M4.struct (edhec, "Indep")

m3port <- PerformanceAnalytics:::portm3(w, m3)
m4port <- PerformanceAnalytics:::portm4 (w, m4)
c (m3port_univ, m3port, m4port_univ, médport)

vV Vv Vv Vv Vv

[1] -1.55923%9e-06 —-9.149033e-09 1.302823e-07 4.740322e-09

This will be the case for all estimators to come. Hence, we will not show the different estimates
each time but summarize them at the end of this section.

An even stronger assumption to make is assuming that the marginal distributions are inde-
pendent and identical, then ¢;;; = ¢, ¥y = ¥ and 07 = o for all 7. The common moments are



estimated by taking the mean over the sample values, 1.e.

(IndepId
u?@ ¥ ) Z qb]]]] )
(6)
¢(Indepld) 1 i(/\2)2
iikk D 95) -

Jj=1

This estimator is available by the option struct = "IndepId" for both the coskewness
and cokurtosis matrices.

> m3 <- M3.struct (edhec, "IndepId")
> m4 <- M4.struct (edhec, "IndepId")

As demonstrated before, the plug-in sample coskewness matrix can be bias-corrected by us-
ing an alternative standardization constant. For the targets. The option to estimate the marginal
third order central moment using the unbiased sample estimators is available by specifying
unbiasedMarg = T as an option in the function M3 . struct.

2.2.2 Factor model

In economics, linear factor models are very popular, e.g. the three-factor Fama-French model
for explaining asset returns (Fama and French (1988)). The data-generating process of a multi-
factor model is defined as follows

R = BF +e¢, (7)

with F' the random vector with factors, B the matrix with factor loadings and e the idiosyncratic
term. Ususally, the components of € are considered independent and independent from the
factors. It is well known that under these assumptions, the covariance matrix of the observed
returns can be decomposed as

Yr=BYXpB + A, (8)

with X the covariance matrix of the factors and A the covariance matrix of the idiosyncratic
term.

A similar decomposition can be made for the coskewness and cokurtosis matrices. Boudt
et al. (2015) derives the following expressions

& =Bdp(B ® B) +Q,

9
Up=BYp(B @ B® B'+T), ©

with @5 and W the coskewness and cokurtosis matrices of the factors and €2 and I' sparse
residual matrices. For their exact definition we refer to Boudt et al. (2015).



Estimation of the factor coskewness and cokurtosis matrices is done by first estimating the
factor loadings B and the residuals € using Ordinary Least Squares (OLS). These estimates
are then combined through Equation (9) with the factor coskewness and cokurtosis matrices
estimated by the plug-in sample estimators. The M3.struct and M4 . struct functions do
this by specifying st ruct = "observedfactor" and providing the factor observations in
f. Below we use the equal-weighted portfolio as the observed factor.

> f <- rowMeans (edhec, na.rm = TRUE)
> m3 <- M3.struct (edhec, "observedfactor", f)
m4 <- M4.struct (edhec, "observedfactor", f)

\%

2.2.3 Constant correlation

The constant correlation model for the covariance matrix, proposed in Elton and Gruber (1973),
assumes that the covariance matrix has off-diagonal terms given by

045 = P/0ii0jj4, (10)

and thus the correlation p between all the assets is equal. Martellini and Ziemann (2010) propose
extended correlation coefficients for third and fourth order dependence between assets. The
constant correlation coskewness and cokurtosis matrices are then constructed by assuming these
extended correlations are constant, similar to the constant correlation covariance matrix. These
estimators are accessible as follows

> m3 <- M3.struct (edhec, "CC")
> m4 <- M4.struct (edhec, "CC")

2.2.4 Additional structured coskewness options

In Section 2.2.2, the coskewness matrix under a multi-factor model was shown. When con-
sidering the more simple model of a one-factor model with an idiosyncratic term following an
elliptical distribution, Simaan (1993) derive a way to estimate the coskewness matrix without
needing the factor observations. All the skewness and coskewness observed in the returns can
be explained by a single underlying factor, since the idiosyncratic term does not contribute to
the overall skewness and coskewness.

> m3 <- M3.struct (edhec, "latentlfactor")

In general, a central-symmetric random variable (in particular elliptically distributed) has
a coskewness matrix consisting of only zeros. This is the reason why the idiosyncratic term
does not contribute to the coskewness matrix in the model of Simaan (1993). This extremely
restricted coskewness matrix is obtained by

> m3 <- M3.struct (edhec, "CS")



2.3 Shrinkage estimation

We introduced the sample estimator in Section 2.1 and several structured estimators in 2.2.
The sample estimators have a small bias (or unbiased), but a larger estimation variance and the
structured estimators usually have a smaller estimation variance, but possibly a large bias. The
bias of the structured models depends on how close the true data-generating process is to the
one you assume it to be. Hence, combining both types of estimators could reduce the total mean
squared error of estimation (MSE).

This is exactly the idea of shrinkage estimation. It was introduced in the literature of co-
variance estimation by Ledoit and Wolf (2003). Martellini and Ziemann (2010) generalized
their approach to estimation of coskewness and cokurtosis matrices. In Boudt et al. (2017),
the authors improve the estimators for the shrinkage intensity proposed in Martellini and Zie-
mann (2010) for the coskewness matrix and extend the methodology to a multi-target shrinkage
setting, as explained later in Section 2.3.2. R

Let @ be the plug-in sample estimator and 7" some structured coskewness estimator. The
true coskewness matrix is denoted by ®. The shrinkage estimator combining the two is a convex
combination of both estimators, i.e.

DED(N) = (1= \)® + AT, (11)

with A € [0, 1]. The value of X is optimized using some criterion. In the literature, minimizing
the MSE is popular, this results in

A = arg min E ||@T () — ®|]?| . (12)
X€(0,1]
The MSE loss function can be estimated consistently, and even in some cases unbiasedly, as
shown in Boudt et al. (2017).

2.3.1 Single-target shrinkage estimation

In shrinkage estimation, the main choice to make is which structured estimator to use. The func-
tions M3 . shrink and M4 . shrink incorporate all the structured estiamtors given in Section
2.2. Besides the estimated coskewness and cokurtois matrices, the functions return the esti-
mated shrinkage intensity and the estimated coefficients of the MSE loss function determining
the shrinkage intensity. For more information about these coefficients we refer to Ledoit and
Wolf (2003) and Boudt et al. (2017).

The different coskewness and cokurtosis single-target shrinkage estimators can be accessed
by

> # target "Indep"
> m3 <- M3.shrink (edhec, 1)SM3sh
> m4 <- M4.shrink (edhec, 1)SM4sh

9



# target "IndepId"

m3 <—- M3.shrink (edhec, 2)SM3sh

m4 <—- M4.shrink (edhec, 2)SM4sh

# target "l-factor"

m3 <- M3.shrink (edhec, 3, f)SM3sh
m4 <- M4.shrink (edhec, 3, f)SM4sh
# target "constant correlation"
m3 <—- M3.shrink (edhec, 4)SM3sh

m4 <—- M4.shrink (edhec, 4)SM4sh

# target "latent 1-factor model of Simaan (1993)"
m3 <- M3.shrink (edhec, 5)SM3sh

# target "central-symmetry"

m3 <— M3.shrink (edhec, 6)SM3sh

VVVVVVVVVVVVYV

We remark that only shrinking towards an observed one-factor model is possible. If T3 is se-
lected and multiple factor observations are provided, then a single-factor model is estimated for
each of the factors and all the single-factor coskewness matrices are used as targets in a multi-
target shrinkage estimator, as detailled in Section 2.3.2. The reason for accessing the targets
estimators by a vector of TRUE /FALSE will become clear in Section 2.3.2.

2.3.2 Multi-target shrinkage estimation

Single-target shrinkage has the nice property that it reduces the MSE of estimation, but requires
the user to choose a single structured estimator. In Boudt et al. (2017) the possibility of using
multiple structured coskewness and cokurtosis estimators at once is explored. The multi-target
shrinkage estimator of the coskewness matrix is then defined as

K K
M () = (1 > /\k> @+ > N, (13)
k=1 k=1

with the vector of shrinkage intensities A again minimizing the MSE between the estimator and
the true coskewness matrix

X = argmin E [||<i><MT>(>\) . <1>||2} . (14)

The optimization is done over all vectors A satisfying A\, > 0 and Zszl A < 1

To use the multi-target estimators, simply select the structured estimators you want to in-
clude. For example, suppose we want to mix the structured estimators "Indep", "observedfactor"
and "CC". This is done by

> m3 <- M3.shrink (edhec, c(1, 3, 4), f)SM3sh
> m4 <- M4.shrink (edhec, c(1, 3, 4), f)SM4sh

10



2.3.3 Unbiased estimatino of the MSE loss function

All the shrinkage estimators shown above use consistent, but biased estimators to estimate the
MSE loss function determining the shrinkage intensities to use. Boudt et al. (2017) derive bias-
corrected estimators for shrinkage estimation of the coskewness matrix with structured matrices
"Indep", "IndepId" and "CS". The bias-corrected estimators improve the MSE compared
to the biased estimators when the sample size is rather small. The option of using the unbi-
ased estimators can be selected by the argument unbiasedMarg = T whenever estimating the
coskewness matrix with M3 . shrink and any combination of the three targets given above. For
example, multi-target shrinkage estimation of the coskewness matrix using bias-corrected esti-
mators for the MSE loss function with all the available structured coskwenss matrices is done
by

> m3 <- M3.shrink(edhec, c(1, 2, 6), unbiasedMSE = T)SM3sh

2.4 Other estimation techniques
2.4.1 EWMA estimators

All the comoment estimators in Sections 2.1, 2.2 and 2.3 implicitely assume independent and
identically distributed observations. However, especially when using portfolio returns, this is
a strong assumption to make. To address the issue of time-variability, using a rolling window
when estimating the moments is a frequently used approach.

An alternative approach popularized by JPMorgan (1996) for covariance estimation is using
exponentially decaying weights. Assume € to denote the excess portfolio returns, thus having a
mean of zero. Then the covariance estimate at time ¢ is updated by the observed excess returns
at time ¢ as

SEWMA) (1 = Nee, + ABEWMA) (15)

with A € (0, 1) the parameter governing how fast the covariance estimate adapts to new obser-
vations.
Straightforward extensions to coskewness and cokurtosis can be defined as

=(1-Neg, @€, + /\<I>(EWMA)

=(1-Neig,®e, @€, + A

\I,(EWMA) (16)

The functions M3 . ewma and M4 . ewma give the option to estimate the EWMA-comoments
when providing a dataset with excess returns R, or updating the last known comoment matrix
with the new observations in 12 using the option 1ast .M3 = T in case of the coskewness matrix
or last .M4 = T for the cokurtosis matrix. The functions take both the full comoment matrices
or the vectors with unique elements as input and return the full matrices by default or the vec-
tors with only the unique elements by adding the option as.mat = F as for all the previously
discussed estimators.

11



> m3 <- M3.ewma (edhec, lambda = 0.97)
> m4 <- M4.ewma (edhec, lambda = 0.97)

In the above code we used the default value of A = 0.97 which is recommended for monthly
returns by JPMorgan (1996).

2.4.2 Moment Component Analysis

A different approach to estimating the comoment matrices can be found in Jondeau and Jur-
czenko (2017). Here the aim is to find a subspace of R” that explains most of observed coskew-
ness or cokurtosis, much like PCA searches for the subspace explaining most of the variance.
To make this formal, the methods seeks the k£ dimensional subspace spanned by the columns of
U obtained by
Us; = argmin |® — U®,,,(U @ U)'||?

v (17)

U, = arg mUin W - UW,,(UcUcU)|?

where the optimization is done over matrices U € RP** such that U'U = I. The matrices

®.., and W, are any valid coskewness and cokurtosis matrices and are part of the optimization

procedure. The optimisation in (17) is equivalent to finding U € RP** such that U'U = I,
maximizing

Us; = argmax |[U'® (U @ U)||?

v (18)

U, = arg max U (U UxU)|?,

By projecting the data onto the subspace spanned by the columns of U, the data is repre-
sented by means of the k principal coskewness / cokurtosis components. As with PCA, these
components can be used to construct estimates of the comoment matrices, ignoring the informa-
tion not embedded in the first £ components. This is done as follows

&,., =Us (Ugc’IS(U3 ® Ug)) (U @ U,
- - (19)

B = Uy (UQ\II(U4 QU ® U4)) U, U, 0 U,).

We remark that the MCA procedure works on any estimates ® and ¥ of the coskewness and
cokurtosis matrices, not only using the sample estimator.
To obtain these estimates for k£ = 3 components, do

> m3 <- M3.MCA (edhec, k = 3)SM3mca
> m4 <- M4.MCA (edhec, k = 3)SM4mca

The MCA functions output the coskewness or cokurtosis matrix, a boolean indicating conver-
gence, the number of iterations the optimization algorithm has gone through and the optimal
U.

12



2.4.3 Other approaches

The other models available in R we are aware of were implemented by Alexios Ghalanos. The
GO-GARCH model of Van der Weide (2002) is available in the rmgarch package, for de-
tails see see Ghalanos (2015). The model allows for explicit extraction of fitted and forecasted
coskewness and cokurtosis matrices. However, the model does not explicitely model the higher
order moments.

Contrary to this, the IFACD model of Ghalanos et al. (2015) does model the coskewness
and cokurtosis matrices explicitely. Though the code is only available for the univariate model
through the package racd, as far as we are aware.

2.5 Summary of estimated portfolio moments

All the methods implemented in PerformanceAnalytics and presented above provide dif-
ferent estimates of the third and fourth order central moments of the portfolio. A summary is
given below:

> summary_momentestimates

m3 (1le-07) m4 (1le-07)
sample -15.59239183 1.30282262
struct Indep -0.09149033 0.04740322
struct IndepInd -0.09149033 0.09623759
struct 1f -15.47136337 1.46863267
struct cc -27.11372899 18.44513281
struct Simaan -8.13421227 NA
shrink Indep -9.00709949 0.87548773
shrink IndepInd -8.99438247 0.90207989
shrink 1f -15.51875113 1.39375468
shrink cC -19.54857944 1.54315415
shrink Simaan -15.55460195 NA
shrink CS -8.93641335 NA
shrink Indep/1f/CC -12.74539554 1.30888169
shrink Indep/IndepId/CS -9.26490284 NA
EWMA -8.85057569 3.33865253
MCA - 1 factor -8.73356469 0.32814264
MCA - 3 factors -15.91419781 1.30490213

As you can see from the results, the shrinkage estimators are usually a compromise between the

values obtained by the sample estimator and the structured estimators.

13



3 Impact on risk measures

When using the risk measures VaR or ES in PerformanceAnalytics there is the option
of providing the coskewness and cokurtosis matrices explicitely. This is especially useful when
we are interested in the risk measure at portfolio level and the component contribution of each
asset.

In the previous section we have demonstrated all available estimation techniques in PerformanceAna
for the coskewness and cokurtosis matrices. The estimated portfolio third and fourth order cen-
tral moments differed largely depending on which approach was used. It is thus logical to look
at the impact this possibly has on the portfolio VaR and portfolio ES.

Though the functions M2 . struct, M2.shrink and M2.ewma provide the structured,
shrinkage and EWMA estimators for the covariance matrix, we will use the sample covariance
matrix cov in the comparison. The reason for this is to isolate the influence of the coskewness
and cokurtosis matrix in this example.

The 95% VaR estimate of the equal-weighted portfolio when using sample estimators is
computed by

> w <— rep(l / ncol (edhec), ncol (edhec))

> p <- 0.95

> m <— colMeans (edhec)

> sigma <- cov (edhec)

> m3 <—- M3.MM(edhec)

> m4 <- M4.MM(edhec)

> VaR95 <- VaR(p = p, method = "modified", portfolio method = "componen
+ weights = w, mu = m, sigma = sigma, m3 = m3, m4 = m4)

> VaR95

SMVaR

[1] 0.01492109

Scontribution
[1] 0.0017255278 0.0003006205 0.0018530585 0.0032292640 0.0005185!
[6] 0.0020168094 0.0010602063 0.0008747133 0.0018608595 0.0008423!
[11] 0.0012362120 -0.0022797885 0.0016826883

Spct_contrib_MvaR
[1] 0.11564358 0.02014736 0.12419059 0.21642285 0.03475055 0.135]
[7] 0.07105423 0.05862263 0.12471341 0.05645694 0.08285000 -0.152°
[13] 0.11277251

and similarly for the 95% ES
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> ES95 <- ES(p = p, method = "modified", portfolio_method = "component"
+ weights = w, mu = m, sigma = sigma, m3 = m3, m4 = m4)
> ES95

SMES
[1] 0.03625114

Scontribution
[1] 0.0059762619 -0.0028081561 0.0052816918 0.0062522301 0.0009068
[6] 0.0058974265 0.0034627291 0.0001339207 0.0036259163 0.0034602
[11] 0.0037776798 -0.0031537633 0.0034381082

Spct_contrib_MES

[1] 0.164857231 -0.077463949 0.145697277 0.172469910 0.025016152
[6] 0.162682530 0.095520570 0.003694249 0.100022144 0.095451544
[11] 0.104208592 -0.086997642 0.094841391

We gather the predicted 95% VaR and ES as in Section 2.5 and summarize the results below,

> rm95

VaR ES
sample 0.01492109 0.03625114
struct - Indep 0.01346559 0.01346559
struct - IndepId 0.01338954 0.01338954
struct - 1f 0.01463852 0.03862755
struct - CC -0.00961889 -0.00961889
shrink - Indep 0.01420925 0.02771503
shrink - IndepId 0.01416508 0.02810111
shrink - 1f 0.01476466 0.03761155
shrink - CC 0.01532341 0.04043059
shrink - Indep/l1f/CC 0.01432918 0.03536423
EWMA 0.01033940 0.01033940
MCA - 1 factor 0.01500212 0.01728611
MCA - 3 factors 0.01498244 0.03633400

Clearly, the constant correlation estimators for the coskewness and cokurtosis matrices are no
good in combination with the sample covariance estimator. When using M2 . st ruct (edhec,
"CC"), then the 95% VaR and ES estimates under the constant correlation estimators becomes
0.00739374 and 0.00739374 respectively, still unable to account for the difference be-
tween VaR and ES.

The differences in estimated risk measures are noticable. We let the reader decide whether
or not the differences are large or small.
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4 Conclusion

This vignette demonstrated how to use all the coskewness and cokurtosis estimators available
in PerformanceAnalytics. We also showed the influence a certain choice of estimator
actually has on the resulting portfolio moments and as a consequence on Value-at-Risk and
Expected Shortfall predictions.

Since the purpose of this vignette is to illustrate the implemented estimators, we do not make
any claim about which estimator is ‘better’ or which values to trust more. This depends on the
application, the type of data and other factors.
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