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AAR Attribute-wise agreement rate

Description

The function is used to compute the attribute-wise agreement rate between two sets of attribute
profiles. They need to have the same dimensions.

Usage

AAR(x, y)

Arguments

x One set of attribute profiles

y The other set of attribute profiles

Value

The function returns the attribute-wise agreement rate between two sets of attribute profiles.

bestQperm Column permutation of the estimated Q-matrix

Description

Function bestQperm is used to rearrange the columns of the estimated Q so that the order of the
columns best matches that of the true Q-matrix.

Usage

bestQperm(estQ, trueQ)
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Arguments

estQ The estimated Q-matrix.

trueQ The true Q-matrix.

Value

The function returns a Q-matrix in which the order of the columns best matches that of the true
Q-matrix.

correction.rate Correction rate of a Q-matrix refinement method

Description

This function computes the proportion of corrected q-entries that were originally misspecified in
the provisional Q-matrix. This function is used only when the true Q-matrix is known.

Usage

correction.rate(ref.Q = ref.Q, mis.Q = mis.Q, true.Q = true.Q)

Arguments

ref.Q the J ×K binary Q-matrix obtained from applying the refinement procedure.

mis.Q A J ×K binary provisional Q-matrix.

true.Q The J ×K binary true Q-matrix.

Value

The function returns a value between 0 and 1 indicating the proportion of corrected q-entries in
ref.Q that were originally missepcified in mis.Q.

GNPC Estimation of examinees’ attribute profiles using the GNPC method

Description

Function GNPC is used to estimate examinees’ attribute profiles using the general nonparametric
classification (GNPC) method (Chiu, Sun, & Bian, 2018; Chiu & Koehn, 2019). It can be used with
data conforming to any CDMs.
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Usage

GNPC(
Y,
Q,
initial.dis = c("hamming", "whamming"),
initial.gate = c("AND", "OR", "Mix")

)

Arguments

Y A N × J binary data matrix consisting of the responses from N examinees to J
items.

Q A J × K binary Q-matrix where the entry qjk describing whether the kth at-
tribute is required by the jth item.

initial.dis The type of distance used in the AlphaNP to carry out the initial attribute pro-
files for the GNPC method. Allowable options are "hamming" and "whamming"
representing the Hamming and the weighted Hamming distances, respectively.

initial.gate The type of relation between examinees’ attribute profiles and the items. Al-
lowable relations are "AND", "OR", and "Mix", representing the conjunctive, dis-
junctive, and mixed relations, respectively

Value

The function returns a series of outputs, including

att.est The estimates of examinees’ attribute profiles

class The estimates of examinees’ class memberships

weighted.ideal The weighted ideal responses

weight The weights used to compute the weighted ideal responses

GNPC algorithm

A weighted ideal response η(w), defined as the convex combination of η(c) and η(d), is proposed.
Suppose item j requires K∗

j ≤ K attributes that, without loss of generality, have been permuted
to the first K∗

j positions of the item attribute vector qj . For each item j and Cl, the weighted ideal

response η
(w)
ij is defined as the convex combination η

(w)
ij = wljη

(c)
lj + (1 − wlj)η

(d)
lj where 0 ≤

wlj ≤ 1. The distance between the observed responses to item j and the weighted ideal responses
w

(w)
lj of examinees in Cl is defined as the sum of squared deviations: dlj =

∑
i∈Cl

(yij − η
(w)
lj )2 =∑

i∈Cl
(yij − wljη

(c)
lj − (1− wlj)η

(d)
lj ) Thus, ŵlj can be minimizing dlj : ŵlj =

∑
i∈Cl

(yij−η
(d)
lj )

∥Cl∥(η(c)
lj −η

(d)
lj )

As a viable alternative to η(c) for obtaining initial estimates of the proficiency classes, Chiu et al.
(2018) suggested to use an ideal response with fixed weights defined as η(fw)

lj =
∑K

k=1 αkqjk
K η

(c)
lj +

(1−
∑K

k=1 αkqjk
K )η

(d)
lj



NPC 5

NPC Estimation of examinees’ attribute profiles using the NPC method

Description

The function is used to estimate examinees’ attribute profiles using the nonparametric classification
(NPC) method (Chiu, & Douglas, 2013). It uses a distance-based algorithm on the observed item
responses for classifying examiness. This function estimates attribute profiles using nonparametric
approaches for both the "AND gate" (conjunctive) and the "OR gate" (disjunctive) cognitive diag-
nostic models. These algorithms select the attribute profile with the smallest loss function value
(plain, weighted, or penalized Hamming distance, see below for details) as the estimate. If more
than one attribute profiles have the smallest loss function value, one of them is randomly chosen.

Usage

NPC(
Y,
Q,
gate = c("AND", "OR"),
method = c("Hamming", "Weighted", "Penalized"),
wg = 1,
ws = 1

)

Arguments

Y A matrix of binary responses. Rows represent persons and columns represent
items. 1=correct, 0=incorrect.

Q The Q-matrix of the test. Rows represent items and columns represent attributes.
1=attribute required by the item, 0=attribute not required by the item.

gate A character string specifying the type of gate. It can be one of the following:

"AND" The examinee needs to possess all required attributes of an item in
order to answer it correctly.

"OR" The examinee needs to possess only one of the required attributes of an
item in order to answer it correctly.

method The method of nonparametric estimation.

"Hamming" The plain Hamming distance method
"Weighted" The Hamming distance weighted by inversed item variance
"Penalized" The Hamming distance weighted by inversed item variance and

specified penalizing weights for guess and slip.

wg Additional argument for the "penalized" method. It is the weight assigned to
guessing in the DINA or DINO models. A large value of weight results in a
stronger impact on Hamming distance (larger loss function values) caused by
guessing.
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ws Additional input for the "penalized" method. It is the weight assigned to slipping
in the DINA or DINO models. A large value of weight results in la stronger
impact on Hamming distance (larger loss function values) caused by slipping.

Value

The function returns a series of outputs, including:

alpha.est Estimated attribute profiles. Rows represent persons and columns represent attributes.
1=examinee masters the attribute, 0=examinee does not master the attribute.

est.ideal Estimated ideal response to all items by all examinees. Rows represent persons and
columns represent items. 1=correct, 0=incorrect.

est.class The class number (row index in pattern) for each person’s attribute profile. It can also be
used for locating the loss function value in loss.matrix for the estimated attribute profile for
each person.

n.tie Number of ties in the Hamming distance among the candidate attribute profiles for each per-
son. When we encounter ties, one of the tied attribute profiles is randomly chosen.

pattern All possible attribute profiles in the search space.

loss.matrix The matrix of the values for the loss function (the plain, weighted, or penalized Ham-
ming distance). Rows represent candidate attribute profiles in the same order with the pattern
matrix; columns represent different examinees.

NPC algorithm with three distacne methods

Proficiency class membership is determined by comparing an examinee’s observed item response
vector Y with each of the ideal item response vectors of the realizable 2K = M proficiency classes.
The ideal item responses are a function of the Q-matrix and the attribute vectors characteristic of the
different proficiency classes. Hence, an examinee’s proficiency class is identified by the attribute
vector αm underlying that ideal item response vector which is closest—or most similar—to an
examinee’s observed item response vector. The ideal response to item j is the score that would be
obtained by an examinee if no perturbation occurred.

Let ηi denote the J-dimensional ideal item response vector of examinee i, and the α̂ of an exam-
inee’s attribute vector is defined as the attribute vector underlying the ideal item response vector
that among all ideal item response vectors minimizes the distance to an examinee’s observed item
response vector: α̂ = argminm∈{1,2,...,M} d(yi,ηm)

A distance measure often used for clustering binary data is the Hamming distance that simply counts
the number of disagreements between two vectors: dH(y, η) =

∑J
j=1 |yj − ηj |

If the different levels of variability in the item responses are to be incorporated, then the Ham-
ming distances can be weighted, for example, by the inverse of the item sample variance, which
allows for larger impact on the distance functions of items with smaller variance: dwH(y, η) =∑J

j=1
1

pj(1−pj)
|yj − ηj |

Weighting weighting differently for departures from the ideal response model that would result from
slips versus guesses is also considered: dgs(y, η) =

∑J
j=1 wgI[yj = 1]|yj−ηj |+

∑J
j=1 wsI[yj =

0]|yj − ηj |
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References

Chiu, C. (2011). Flexible approaches to cognitive diagnosis: nonparametric methods and small
sample techniques. Invited session of cognitive diagnosis and item response theory at 2011 Joint
Statistical Meeting.
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Examples

# Generate item and examinee profiles

natt <- 3
nitem <- 4
nperson <- 5
Q <- rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(1, 1, 1))
alpha <- rbind(c(0, 0, 0), c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(1, 1, 1))

# Generate DINA model-based response data
slip <- c(0.1, 0.15, 0.2, 0.25)
guess <- c(0.1, 0.15, 0.2, 0.25)
my.par <- list(slip=slip, guess=guess)
data <- matrix(NA, nperson, nitem)
eta <- matrix(NA, nperson, nitem)
for (i in 1:nperson) {

for (j in 1:nitem) {
eta[i, j] <- prod(alpha[i,] ^ Q[j, ])
P <- (1 - slip[j]) ^ eta[i, j] * guess[j] ^ (1 - eta[i, j])
u <- runif(1)
data[i, j] <- as.numeric(u < P)
}

}

# Using the function to estimate examinee attribute profile
alpha.est.NP.H <- NPC(data, Q, gate="AND", method="Hamming")
alpha.est.NP.W <- NPC(data, Q, gate="AND", method="Weighted")
alpha.est.NP.P <- NPC(data, Q, gate="AND", method="Penalized", wg=2, ws=1)

nperson <- 1 # Choose an examinee to investigate
print(alpha.est.NP.H) # Print the estimated examinee attribute profiles

PAR Pattern-wise agreement rate

Description

The function is used to compute the pattern-wise agreement rate between two sets of attribute pro-
files. They need to have the same dimensions.



8 Q.generate

Usage

PAR(x, y)

Arguments

x One set of attribute profiles

y The other set of attribute profiles

Value

The function returns the pattern-wise agreement rate between two sets of attribute profiles.

Q.generate Generation of Dichotomous Q-Matrix

Description

The function generates a complete Q-matrix based on a pre-specified probability of getting a one.

Usage

Q.generate(K, J, p, single.att = TRUE)

Arguments

K The number of attributes

J The number of items

p The probability of getting a one in the Q-matrix

single.att Whether all the single attribute patterns are included. If T, the completeness of
the Q-matrix is guaranteed.

Value

The function returns a complete dichotomous Q-matrix

Examples

q = Q.generate(3,20,0.5,single.att = TRUE)
q1 = Q.generate(5,30,0.6,single.att = FALSE)
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QR Refine the Q-matrix by Minimizing the RSS

Description

We estimate memberships using the non-parametric classification method (weighted hamming),
and comparisons of the residual sum of squares computed from the observed and the ideal item
responses.

Usage

QR(Y, Q, gate = c("AND", "OR"), max.ite = 50)

Arguments

Y A matrix of binary responses (1=correct, 0=incorrect). Rows represent persons
and columns represent items.

Q The Q-matrix of the test. Rows represent items and columns represent attributes.

gate A string, "AND" or "OR". "AND": the examinee needs to possess all related
attributes to answer an item correctly. "OR": the examinee needs to possess only
one of the related attributes to answer an item correctly.

max.ite The number of iterations to run until all RSS of all items are stationary.

Value

A list containing:

initial.class Initial classification

terminal.class Terminal classification

modified.Q The modified Q-matrix
modified.entries

The modified q-entries

The Q-Matrix Refinment (QR) Method

This function implements the Q-matrix refinement method developed by Chiu (2013), which is also
based on the aforementioned nonparametric classification methods (Chiu & Douglas, 2013). This
Q-matrix refinement method corrects potential misspecified entries of the Q-matrix through com-
parisons of the residual sum of squares computed from the observed and the ideal item responses.

The algorithm operates by minimizing the RSS. Recall that Yij is the observed response and ηij is
the ideal response. Then the RSS of item j for examinee i is defined as

RSSij = (Yij − ηij)
2
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. The RSS of item j across all examinees is therefor

RSSj =

N∑
i=1

(Yij − ηij)
2 =

2k∑
m=1

∑
i∈Cm

(Yij − ηjm)2

where Cm is the latent proficiency-class m, and N is the number of examinees. Chiu(2013) proved
that the expectation of RSSj is minimized for the correct q-vector among the 2K − 1 candidates.
Please see the paper for the justification.

References

Chiu, C. Y. (2013). Statistical Refinement of the Q-matrix in Cognitive Diagnosis. Applied Psycho-
logical Measurement, 37(8), 598-618.

retention.rate Retention rate of a Q-matrix refinement method

Description

This function computes the proportion of correctly specified q-entries in a provisional Q-matrix that
remain correctly specified after a Q-matrix refinement procedure is applied. This function is used
only when the true Q-matrix is known.

Usage

retention.rate(ref.Q = ref.Q, mis.Q = mis.Q, true.Q = true.Q)

Arguments

ref.Q the J ×K binary Q-matrix obtained from applying a refinement procedure.

mis.Q A J ×K binary provisional Q-matrix.

true.Q The J ×K binary true Q-matrix.

Value

The function returns a value between 0 and 1 indicating the proportion of correctly specified q-
entries in mis.Q that remain correctly specified in ref.Q after a Q-matrix refinement procedure is
applied to mis.Q.
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RR Entry-wise and vector-wise recovery rates

Description

Function RR is used to compute the recovery rates for an estimate Q-matrix. In general, it can be
used to compute the agreement rate between two matrices with identical dimensionalities.

Usage

RR(Q1, Q2)

Arguments

Q1 The first Q-matrix.

Q2 The second Q-matrix that has the same dimensionality as Q1.

Value

The function returns

entry.wise The entry-wise recovery rate

item.wise The item-wise recovery rate

TSQE Two-step Q-matrix Estimation Method

Description

The function is used to estimate the Q-matrix based on the data (responses) using the two-step
Q-matrix estimation method.

Usage

TSQE(
Y,
K,
input.cor = c("tetrachoric", "Pearson"),
ref.method = c("QR", "GDI"),
GDI.model = c("DINA", "ACDM", "RRUM", "GDINA"),
cutoff = 0.8

)
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Arguments

Y A N × J binary data matrix consisting of responses from N examinees to J
items

K The number of attributes in the Q-matrix

input.cor The type of correlation used to compute the input for the exploratory factor
analysis. It could be the tetrachoric or Pearson correlation.

ref.method The refinement method use to polish the provisional Q-matrix obtained from the
EFA. Currently available methods include the Q-matrix refinement (QR) method
and the G-DINA discrimination index (GDI).

GDI.model The CDM used in the GDI algorithm to fit the data. Currently available models
include the DINA model, the ACDM, the RRUM, and the G-DINA model

cutoff The cutoff used to dichotomize the entries in the provisional Q-matrix

Value

The function returns the estimated Q-matrix

Estimation Method

The TSQE method merges the Provisional Attribute Extraction (PAE) algorithm with a Q-matrix
refinement-and-validation method including the Q-Matrix Refinement (QR) Method and the G-
DINA Model Discrimination Index (GDI). Specifically, the PAE algorithm relies on classic ex-
ploratory factor analysis (EFA) combined with a unique stopping rule for identifying a provisional
Q-matrix, and the resulting provisional Q-Matrix will be "polished" with a refinement method to
derive the final estimation of Q-matrix.

The Provisional Attribute Extraction (PAE) Algorithm

The initial step of the algorithm is to aggregating the collected Q-Matrix into an inter-item tetra-
choric correlation matrix. The reason for using tetrachoric correlation is that the examinee responses
are binary, so it is more appropriate than the Pearson product moment correlation coefficient. See
Chiu et al. (2022) for details. The next step is to use factor analysis on the item-correlation matrix,
and treat the extracted factors as proxies for the latent attributes. The third step concerns identifying
which specific attributes are required for which item:

(1) Initialize the item index as j = 1.

(2) Let ljk denote the loading of item j on factor k, where k = 1, 2, ...,K.

(3) Arrange the loadings in descending order. Define a mapping function f(k) = t, where t is the
order index. Hence, lj(1) will indicate the maximum loading, while lj(K) will indicate the
minimum loading.

(4) Define

pj(t) =

∑t
h=1 l

2
j(h)∑K

k=1 l
2
jk

as the proportion of the communality of item j accounted for by the first t factors.
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(5) Define
Kj = min{t | pj(t) ≥ λ}

, where λ is the cut-off value for the desired proportion of item variance-accounted-for. Then,
the ordered entries of the provisional q-vector of item j are obtained as

q∗j(t) =

{
1 if t ≤ Kj

0 if t > Kj

.

(6) Identify q∗j = (q∗j1, q
∗
j2, ..., q

∗
jK) by rearranging the ordered entries of the q-vector using the

inverse function k = f−1(t).

(7) Set j = j + 1 and repeat (2) to (6) until j = J . Then denote the provisional Q-matrix as Q∗.

The Q-Matrix Refinment (QR) Method

This function implements the Q-matrix refinement method developed by Chiu (2013), which is also
based on the aforementioned nonparametric classification methods (Chiu & Douglas, 2013). This
Q-matrix refinement method corrects potential misspecified entries of the Q-matrix through com-
parisons of the residual sum of squares computed from the observed and the ideal item responses.

The algorithm operates by minimizing the RSS. Recall that Yij is the observed response and ηij is
the ideal response. Then the RSS of item j for examinee i is defined as

RSSij = (Yij − ηij)
2

. The RSS of item j across all examinees is therefor

RSSj =

N∑
i=1

(Yij − ηij)
2 =

2k∑
m=1

∑
i∈Cm

(Yij − ηjm)2

where Cm is the latent proficiency-class m, and N is the number of examinees. Chiu(2013) proved
that the expectation of RSSj is minimized for the correct q-vector among the 2K − 1 candidates.
Please see the paper for the justification.

The G-DINA Model Discrimination Index (GDI)

The GDI is an extension of de la Torre’s (2008) δ-method, which has a limitation that it cannot be
used with CDMs that devide examinees into more than two groups. In response to the limitation, de
la Torre and Chiu (2016) porposed to select that item attribute vector which maximizes the weighted
variance of the probabilities of a correct response for the different groups defined as

ζ2j =

2Kj∑
l=1

P (αlj)
[
P (Yij = 1 | αlj)− P̄j

]2
where P (αlj) is the posterior probability for the proficiency class αlj , and P̄j =

∑2Kj

l=1 P (αlj)P (Yij =
1 | αlj), where l = 1, 2, ..., 2Kj . De la Torre and Chiu (2016) called ζ2 the GDI, which can be ap-
plied to any CDM that can be reparameterized in terms of the G-DINA model.
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