Package ‘EntropyMCMC(C’

January 20, 2025

Type Package

Title MCMC Simulation and Convergence Evaluation using Entropy and
Kullback-Leibler Divergence Estimation

Version 1.0.4
Date 2019-03-08

Description
Tools for Markov Chain Monte Carlo (MCMC) simulation and performance analysis. Simu-
late MCMC algorithms including adaptive MCMC, evaluate their convergence rate, and com-
pare candidate MCMC algorithms for a same target density, based on entropy and Kullback-
Leibler divergence criteria. MCMC algorithms can be simulated using provided functions, or im-
ported from external codes. This package is based upon work starting with Chau-
veau, D. and Vandekerkhove, P. (2013) <doi:10.1051/ps/2012004> and next articles.

Depends R (>=3.0)

Imports RANN, parallel, mixtools
Suggests Rmpi, snow

License GPL (>=3)

LazyLoad yes

Author Didier Chauveau [aut, cre],
Houssam Alrachid [ctb]

Maintainer Didier Chauveau <didier.chauveau@univ-orleans.fr>
NeedsCompilation yes

Repository CRAN

Date/Publication 2019-03-08 17:22:51 UTC

Contents
EntropyMCMC-package e 2
ACCEPL_IAtio v e e e e e 4
CollectChains e e e 5
Drawlnit e 6
EntropyMCMC e e 7

https://doi.org/10.1051/ps/2012004

2 EntropyMCMC-package

EntropyParallel 9
gaussian_pdf e 14
MCMCCOPIES . . . v v oo e e e e 15
MCMCcopies.clo 17
MCMCCOPIES.INC . .« o o oo v v e e e e e e e e e e e e e 19
normENtropy L L e e e e e e 21
plot KD(MCMC e 22
plotpIMCMC e 23
plottarget3d e e 25
plot_Kblist 25
RWHM chain e e 27
summary.pIMCMC e 29
Index 31

EntropyMCMC-package (A)MCMC Simulation and Convergence Evaluation using Entropy and
Kullback-Leibler Divergence Estimation

Description

Contains functions to analyse (Adaptive) Markov Chain Monte Carlo (MCMC) algorithms, eval-
uate their convergence rate, and compare candidate MCMC algorithms for a same target density,
based on entropy and Kullback-Leibler divergence criteria. MCMC algorithms can be simulated
using provided functions, or imported from external codes. The diagnostics are based on consistent
estimates of entropy and Kulback distance between the density at iteration ¢ and the target density
f, based on iid (parallel) chains.

Details

Package: EntropyMCMC

Type: Package
Version: 1.04
Date: 2019-03-08

License: GPL (>=3)
LazyLoad: yes

Statistical background:

This package allows for simulation of standard or adaptive MCMC samplers for a user-defined
target density, and provides statistical tools to evaluate convergence of MCMC’s and compare per-
formance of algorithms for the same target density (typically against benchmark samplers).

The criteria are graphical and based on plots against iterations (time) ¢, of the Kullback divergence
K(p', f) between the density p' of the MCMC algorithm at time ¢, and the target density f, for
t = 1 up to the number of iterations that have been simulated. This requires estimation of the
entropy of pt,

By [log(p")],

EntropyMCMC-package 3

and of the external entropy
Epe [log(f)].

Consistent estimates are computed based on N iid (parallel) chains, since the N positions of the
chains at iterations ¢ forms a N-iid sample from the density p*.

Computational considerations:

The simulation of iid chains can be performed in this package, which provides a mechanism for
defining (A)MCMC algorithms and building the iid chains required for convergence evaluation.
Each MCMC algorithm is defined by a list with five elements. Each user can define its own MCMC,
starting from the standard MCMC algorithms that are already defined:

* RWHM: a standard Randow-Walk Hastings-Metropolis (HM) algorithm.
e HMIS_norm: an Independence Sampler HM with gaussian proposal

* AMHaario: the Haario (2001) Adaptive Hastings-Metropolis algorithm, provided as an exam-
ple of a standard AMCMC.

e IID_norm: a “fake” MCMC that is just a gaussian IID sampler, used mostly for testing pur-
pose. Simulation of NN iid chains for n iterations using this algorithm just returns N X n
gaussian d-dimensional vectors.

Functions for doing the simulations and the convergence evaluation automatically using these algo-
rithms in their first argument are provided. Two strategies are available:

 Simulation and Kullback estimation separately: A “cube” of N chains for n iterations in
a space of dimension d is first simulated and stored using MCMCcopies or its multicore or
cluser versions, then the entropy and Kullback divergence are estimated from that object using
EntropyMCMC or its multicore version.

* Simulation and Kullback estimation simultaneously: For each iteration ¢, the next step of all
the N chains are generated, then the Entropy and Kullback divergence K (pt, f) are estimated,
and the past of the parallel chains is discarded so that the amount of memory requirement
is kept small, and only entropy-related estimates are stored and returned. Functions for this
strategy are EntropyParallel and its multicore and cluster version.

See the Examples section of plot_Kblist for an illustration of these two methods.
Doing the simulations outside from this package

A third hybrid strategy is also available: the simulation of iid chains can be done using an external
code (in R, C or any language) and imported in the EntropyMCMC package (defining an object of
the appropriate class "p1IMCMC” and structure, see MCMCcopies).

Then the Kullback divergence criterion can be computed using EntropyMCMC or its multicore ver-
sion, and convergence/comparison diagnostics can be displayed using the associated plot method.

About High Performance Computing

The required simulations can be done using singlecore or HCP (multicore computers, snow or
clusters using the parallel or Rmpi pakages). Note that the parallel package using socket cluster
is not available on Windows machines.

Author(s)

accept_ratio

Didier Chauveau, Institut Denis Poisson, University of Orleans, CNRS, Orleans France. https:
//www.idpoisson.fr/chauveau/

Maintainer: Didier Chauveau <didier.chauveau@univ-orleans.fr>

Contributor: Houssam Alrachid

References

e Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419—431. DOIL:
http://dx.doi.org/10.1051/ps/2012004

e Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

accept_ratio

Acceptance ratio for Hastings-Metropolis simulated MCMC chains

Description

Internal function for the package EntropyMCMC, computes the acceptance ratio required in the defi-
nition of any Hastings-Metropolis algorithm.

Usage

accept_ratio(x, y, target, q_pdf, f_param, g_param, symmetric = FALSE)

Arguments

X

y
target

g_pdf

f_param

g_param

symmetric

The current position.
The next (proposal) position.

The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. Target must be a function such
as the multidimensional gaussian target_norm(x, param).

The density of the proposal.

A list holding all the necessary target parameters, consistent with the target def-
inition.

A list holding all the necessary parameters for the proposal density of the MCMC
algorithm mcmec_algo.

If TRUE, the proposal q_pdf is symmetric which simplifies the acceptance ratio
compuatation

https://www.idpoisson.fr/chauveau/
https://www.idpoisson.fr/chauveau/
http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

CollectChains 5

Details

The accept_ratio is used to decide whether to accept or reject a candidate y. The acceptance
ratio indicates how probable the new proposed candidate is with respect to the current candidate
according to the distribution target.

Value
accept_ratio returns a real value alpha, which indicates the computed value of the current
accept_ratio.

Author(s)

Didier Chauveau, Houssam Alrachid.

CollectChains Collect MCMC chains in a single object

Description

Utility function for the package EntropyMCMC.

Usage
CollectChains(s)
Arguments
s An object of class pIMCMC, such as the one returned by MCMCcopies, containing
in particular an array of dimension (n, d, nmc) holding the simulation of n steps
of nmc parallel chains in dimension d.
Details

Concatenates all simulated copies together in one matrix of dimension (n*nmc,d).

Value

Returns a matrix of dimension (nxnmc,d).

Author(s)

Didier Chauveau.

6 DrawlInit

DrawInit Random draws for initialization

Description

Utility function for the package EntropyMCMC, for generating random starting positions for the
parallel Markov chains, used by, e.g., MCMCcopies or EntropyParallel.

Usage
DrawInit(nmc, d, initpdf="rnorm”, ...)
Arguments
nmc Number of parallel chains = initial points.
d Space dimension.
initpdf Random generator. Generators currently implemented are: "rnorm" as the Nor-
mal distribution and "runif" as the uniform distribution.
Parameters passed to initpdf
Value

DrawInit returns a matrix of dimension (nmc,d) where each row is a d-dimensional point.

Note

It is better for mixing properties to use diffuse initial distributions, such as the one proposed here.
However Dirac initial points can also be used, precisely to evaluate the efficiency of a MCMC to
escape from a wrong initial position (e.g., in the tails of the target density).

Author(s)

Didier Chauveau.

See Also

MCMCcopies and MCMCcopies.mc for iid MCMC simulations, EntropyParallel and EntropyParallel.cl
for simultaneous simulation and entropy estimation.

Examples

Ptheta® <- DrawInit(10, 5, initpdf="rnorm”, mean=0, sd=5)

EntropyMCMC 7

EntropyMCMC Kullback and entropy estimation from MCMC simulation output - sin-
gle and multicore versions

Description

These functions return estimates of the entropy of the density p! of a MCMC algorithm at time ¢,
E,:[log(p")], and of the Kullback divergence between p’ and the target density, for ¢ = 1 up to the
number of iterations that have been simulated. The MCMC simulations must be computed before
or externally, and passed as a "pIMCMC" object in the first argument (see details). The target may be
known only up to a multiplicative constant (see details).

EntropyMCMC.mc is a parallel computing version that uses the parallel package to split the task
between the available (virtual) cores on the computer. This version using socket cluster is not
available for Windows computers.

Usage

EntropyMCMC(plmc1, method = "A.Nearest.Neighbor”, k=1, trim = 0.02, eps=0,
all.f = TRUE, verb = FALSE, EntVect = FALSE,
uselogtarget = FALSE, logtarget = NULL)

EntropyMCMC.mc(plmc1, method = "A.Nearest.Neighbor”, k = 1, trim = 0.02, eps=0,
all.f = TRUE, verb = FALSE, EntVect = FALSE, nbcores=detectCores(),
uselogtarget = FALSE, logtarget = NULL)

Arguments

plmci an objects of class pIMCMC (for parallel MCMC), like the output of MCMCcopies,
which contains all the simulations plus target f definition and parameters.

method The method for estimating the entropy E,:[log(p’)]. Methods currently im-
plemented are : "NearestNeighbor" as in Kozachenko and Leonenko (1987),
"k .NearestNeighbor" as in Leonenko et al. (2005), "A.Nearest.Neighbor”
(the default) which is as "k.NearestNeighbor" but uses the RANN package
for (Approximate) fast computation of nearest neighbors, "Gyorfi.trim" sub-
sampling method as defined in Gyorfi and Vander Mulen (1989), plus a tun-
ing parameter trim for trimming the data (see Chauveau and Vandekerkhove
(2011)).

k The k-nearest neighbor index, the default is k = 1.

trim Parameter controlling the percentage of smallest data from one subsample that
is removed, only for method = "Gyorfi.trim".

eps A parameter controlling precision in the "A.Nearest.Neighbor"" method, the
default means no approximation, see the RANN package.

all.f If TRUE (the default) relative entropy is computed over the whole sample. Should
be removed in next version.

verb

EntVect

nbcores

uselogtarget

logtarget

Details

EntropyMCMC

Verbose mode

If FALSE (the default), the entropy is computed only on the kth-nearest neighbor.
If TRUE, the entropy is computed for all j-NN’s for j = 1 to k (the latter being
mostly for testing purposes).

Number of required (virtual) cores, defaults to all as returned by detectCores().

Set to FALSE by default; useful in some cases where log(f(6)) returns -Inf
values in Kullback computations because f(#) itself returns too small values for
some # far from modal regions. In these case using a function computing the
logarithm of the target can remove the infinity values.

The function defining log(f (theta)), NULL by default, required if uselogtarget
equals TRUE. This option and uselogtarget are currently implemented only for
the "A.Nearest.Neighbor"” method, and for the default EntVect = FALSE op-
tion.

Methods based on Nearest Neighbors (NN) should be preferred since these require less tuning
parameters. Some options, as uselogtarget are in testing phase and are not implemented in all the
available methods (see Arguments).

Value

An object of class KbMCMC (for Kullback MCMC), containing:

Kullback
Entp

nmc

dim

algo

target

method

f_param

g_param

Note

A vector of estimated divergences K (p?, f), for t = 1 up to the number of iter-
ations that have been simulated. This is the convergence/comparison criterion.

A vector of estimated entropies E,[log(p")], for ¢ = 1 up to the number of
iterations that have been simulated.

The number of iid copies of each single chain.
The state space dimension of the MCMC algorithm.

The name of the MCMC algorithm that have been used to simulate the copies of
chains, see MCMCcopies.

The target density for which the MCMC algorithm is defined; ususally given
only up to a multiplicative constant for MCMC in Bayesian models. target must
be a function such as the multidimensional gaussian target_norm(x,param)
with argument and parameters passed like in the example below.

The method input parameter (see above).

A list holding all the necessary target parameters, consistent with the target def-
inition.

A list holding all the necessary parameters for the proposal density of the MCMC
algorithm that have been used.

The method "Resubst” is implemented for testing, without theoretical guarantee of convergence.

EntropyParallel 9

Author(s)

Didier Chauveau, Houssam Alrachid.

References

* Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419—431. DOL:
http://dx.doi.org/10.1051/ps/2012004

* Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816—2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

MCMCcopies and MCMCcopies.mc for iid MCMC simulations (single core and multicore), EntropyParallel
and EntropyParallel.cl for simultaneous simulation and entropy estimation (single core and
multicore).

Examples

Toy example using the bivariate gaussian target
with default parameters value, see target_norm_param
n = 150; nmc = 50; d=2 # bivariate example
varg=0.1 # variance of the proposal (chosen too small)
g_param=1list(mean=rep(@,d),v=vargxdiag(d))
initial distribution, located in (2,2), "far” from target center (0,0)
Ptheta® <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)
simulation of the nmc iid chains, singlecore
s1 <- MCMCcopies(RWHM, n, nmc, Ptheta@, target_norm,

target_norm_param, q_param, verb = FALSE)
summary(s1) # method for "plMCMC" object
el <- EntropyMCMC(s1) # computes Entropy and Kullback divergence estimates
par(mfrow=c(1,2))
plot(el) # default plot.plMCMC method, convergence after about 80 iterations
plot(el, Kullback = FALSE) # Plot Entropy estimates over time
abline(normEntropy(target_norm_param), @, col=8, 1lty=2) # true E_f[log(f)]

EntropyParallel Parallel simulation and Entropy estimation of MCMC'’s - single core
and cluster versions

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

10 EntropyParallel

Description

This function simulates “parallel chains” (iid copies) of a MCMC algorithm, i.e. for each “time”
iteration ¢ the next step of all the nmc chains are generated, then the Entropy of the density p? of
the algorithm at iteration ¢, E,:[log(p")], and the Kullback divergence between p’ and the target
density are estimated, based on these nmc steps iid from p'. By default keep.all = FALSE i.e. the
past of the parallel chains is discarded so that the amount of memory requirement is kept small,
and only entropy-related estimates are returned. If keep.all = TRUE, the entire set of chains trajec-
tories is saved in an array of dimensions (n,d,nmc), such as the one returned by MCMCcopies or
MCMCcopies.cl.

A version of this function implementing several HPC (parallel) computing strategies is available
(see details).

Usage

EntropyParallel(mcmc_algo, n = 100, nmc = 10, Ptheta®@, target, f_param, g_param,
method = "A.Nearest.Neighbor"”,k=1, trim = 0.02, keep.all = FALSE,
verb = TRUE, EntVect = FALSE)

EntropyParallel.cl(mcmc_algo, n = 100, nmc = 10, Ptheta®, target, f_param, g_param,
method = "A.Nearest.Neighbor" k=1, eps = @, trim=0.02,
verb=TRUE, EntVect = FALSE, cltype="PAR_SOCK", nbnodes = 4,
par.logf = FALSE, uselogtarget = FALSE, logtarget = NULL)

Arguments

mcmc_algo a list defining an MCMC algorithm in terms of the functions it uses, such as
RWHM, see details below.

n The number of (time) iterations of each single chain to run.

nmc The number of iid copies of each single chain.

Pthetao A (nmc,d) matrix, with the ith row giving a d-dimensional initial theta values
for the ith chain.

target The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. target must be a function such
as the multidimensional gaussian target_norm(x,param) with argument and
parameters passed like in the example below.

f_param A list holding all the necessary target parameters, including the data in an actual
Bayesian model, and consistent with the target definition.

g_param A list holding all the necessary parameters for the proposal density of the MCMC
algorithm memc_algo.

method The method for estimating the entropy E,:[log(p’)]. The methods currently

implemented for this function are "Nearest.Neighbor" as in Kozachenko and
Leonenko (1987), "k.Nearest.Neighbor" as in Leonenko et al. (2005) (the
default in the single core version), and "A.Nearest.Neighbor" which is as
"k.NearestNeighbor" using the RANN package for (Approximate) fast com-
putation of nearest neighbors, instead of R code (the default for the cluster ver-
sion). Other methods such as "Gyorfi.trim" subsampling method as defined

EntropyParallel 11

in Gyorfi and Vander Mulen (1989) are available as well (see Chauveau and
Vandekerkhove (2012)).

k The k-nearest neighbor index, the default is £ = 1.

eps Error bound: default of 0.0 implies exact nearest neighbour search, see the
RANN package.

trim not used in this implementation, only for method="Gyorfi.trim"

keep.all If TRUE, all the simulated chains are stored in a 3-dimensional array of dimen-
sions (n,d, nmc), such as the one returned by MCMCcopies

verb Verbose mode for summarizing output during the simulation.

EntVect If FALSE (the default), the entropy is computed only on the kth-nearest neighbor.

If TRUE, the entropy is computed for all]-NN’s for j = 1 to k (the latter being
mostly for testing purposes).

cltype Character string specifying the type of cluster; currently implemented types are:
"PAR_SOCK" for socket cluster with parallel library, the default; "SNOW_SOCK"
for socket cluster with snow library, and "SNOW_RMPI" for snow MPI cluster
with Rmpi library.

nbnodes The number of nodes or virtual cores requested to run the nmc simulations in
parallel. For the snow version, defaults to all; for the cluster version, defaults to
4.

par.logf if TRUE, then the computation of the log of the target density at each of the nmc

chain locations, needed for the NN procedure is also executed in parallel using
parRapply(). This may speed up the process if the target is complicated i.e.
takes some time to evaluate. If the target is simple enough (like target_norm),
then communications between nodes are slower than computations, in which
case par.logf = FALSE (the default) should be preferred.

uselogtarget Set to FALSE by default; useful in some cases where log(f(6)) returns -Inf
values in Kullback computations because f(#) itself returns too small values for
some 6 far from modal regions. In these case using a function computing the
logarithm of the target can remove the infinity values.

logtarget The function defining log(f (theta)), NULL by default, required if uselogtarget
equals TRUE. This option and uselogtarget are currently implemented only for
the "A.Nearest.Neighbor" method, and for the default EntVect = FALSE option.

Details

About parallel computing:

For the HPC (parallel) version, the computation of the nmc chains next step are done by the cluster
nodes: EntropyParallel.cl is a generic cluster version implementing several types of cluster for
running on a single, multicore computer or on a true cluster using MPI communications. It is under
development and may not work on all platform/OS. For instance the parallel socket cluster version
does not work on Windows machines (see the parallel package documentation). Currently tested
under LINUX, Mac OSX, and a cluster using OpenMPI and Sun Grid Engine.

Note that the parallel computing for this approach is less efficient than the two-steps procedure
consisting in (i) parallel simulation of the iid chains using MCMCcopies.cl to generate the “cube”
of simulated values, and then (ii) entropy and Kullback estimation using EntropyMCMC.mc. This

12 EntropyParallel

is because each node computes only one iteration at a time for the nmc chains here, whereas it
computes all the n iterations once for the nmc chains when the entire cube is saved first. This is a
trade-off between memory and speed.

Note also that the Rmpi option is less efficient than the default option using parallel if you are run-
ning on a single computer. MPI communication are required only for running on a true cluster/grid.

About passing your MCMC algorithm:

The list mcmc_algo must contain the named elements:

* name, the name of the MCMC, such as "RWHM"

* chain, the function for simulation of n steps of a single chain
* step, the function for simulation of 1 step of that algorithm

* g_pdf, the density of the proposal

* g_proposal, the function that simulates a proposal

For examples, see the algorithms currently implemented: RWHM, the Random Walk Hasting-Metropolis
with gaussian proposal; HMIS_norm, an Independence Sampler HM with gaussian proposal; IID_norm,
a gaussian iid sampler which is merely a "fake" MCMC for testing purposes.

Currently only non-adaptive Markov chains or adaptive chains for which the past can be summa-
rized by some sufficient statistics are eligible for this computation forgetting the past of the nmc
chains. Adaptive chains such as AMHaario, the Adaptive-Metropolis (AM) from Haario (2001) are
not yet tested for this function.

Value

An object of class "KbMCMC", containing

Kullback A vector of estimated K (p, f), for t = 1 up to the number of iterations n. This
is the convergence/comparison criterion.

Entp A vector of estimated E,[log(p')], for t = 1 up to the number of iterations that
have been simulated.

nmc The number of iid copies of each single chain.

dim The state space dimension of the MCMC algorithm.

algo The name of the MCMC algorithm that have been used to simulate the copies of

chains, see MCMCcopies.

target The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. target must be a function such
as the multidimensional gaussian target_norm(x,param) with argument and
parameters passed like in this example.

method The method input parameter (see above).

f_param A list holding all the necessary target parameters, consistent with the target def-
nition.

g_param A list holding all the necessary parameters for the proposal density of the MCMC
algorithm that have been used.

prob.accept Estimated rate of acceptation (meaningful for accept/reject-type algorithms).

Ptheta The nmc copies of chains in an array(n,d,nmc) of simulated values, where 1st

value (1,d,nmc) is Ptheta®.

EntropyParallel 13

Author(s)

Didier Chauveau, Houssam Alrachid.

References

e Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419—431. DOI:
http://dx.doi.org/10.1051/ps/2012004

e Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

MCMCcopies, MCMCcopies.mc and MCMCcopies. cl for just simulating the iid chains, and EntropyMCMC
or EntropyMCMC.mc for computing entropy and Kullback estimates from an already simulated set
of iid chains (internally or from external code).

Examples

Toy example using the bivariate gaussian target

same as for MCMCcopies

n = 150; nmc = 50; d=2 # bivariate example

varg=0.1 # variance of the proposal (chosen too small)

g_param=1list(mean=rep(@,d),v=vargxdiag(d))

initial distribution, located in (2,2), "far” from target center (0,0)

Ptheta® <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)

simulations and entropy + Kullback using the singlecore version

el <- EntropyParallel(RWHM, n, nmc, Ptheta®, target_norm,
target_norm_param, g_param, verb = FALSE)

par(mfrow=c(1,2))

plot(el) # default plot.plMCMC method, convergence after about 80 iterations

plot(el, Kullback = FALSE) # Plot Entropy estimates over time

abline(normEntropy(target_norm_param), @, col=8, lty=2) # true E_f[log(f)]

Another example using multicore version, (not available on Windows)

varg=0.05 # variance of the proposal, even smaller

g_param=list(mean=rep(0,d),v=vargxdiag(d))

n=300 # requires more iterations to show convergence

el <- EntropyParallel.cl(RWHM, n, nmc, Ptheta@, target_norm,
target_norm_param, g_param, cltype="PAR_SOCK",
verb = FALSE, nbnodes = 2)

plot(el) # convergence after about 150 iterations

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

14 gaussian_pdf

gaussian_pdf Proposal density evaluation and simulation

Description

Functions for proposal density evaluation and random generation in MCMC algorithms, in the case
where these are Gaussian.

Usage

gaussian_pdf(y, x, param)

gaussian_proposal(x, param)

Arguments

y Candidate for next move, a vector of dimension d

X Current position of a chain, a vector of dimension d

param The proposal parameters, that must contains the d x d variance matrix in param$v.
Details

The Gaussian proposal density ¢(y|x) used in, e.g., random walk Hastings-Metropolis algorithm
RWHM is the multivariate Gaussian N (z,v) density evaluated at point y. Similarly, the Gaussian
proposal (next move) is a random draw y ~ N (z,v) when the chain is at position z.

Value

The value of the density, or the random draw, both in dimension d

Note

These functions are calling multivariate Gaussian density and random generation functions im-
ported from the mixtools package (chosen for efficiency) and wrapped in the format required by
the EntropyMCMC package.

Author(s)

Didier Chauveau.

MCMCcopies 15

MCMCcopies Simulates iid copies of a MCMC algorithm

Description

Simulates nmc iid copies of a MCMC algorithm mcmc_algo for n (time) iterations and returns an
object of class pIMCMC (for parallel MCMC) holding an array of the trajectories and running infor-
mation.

Usage

MCMCcopies(mcmc_algo, n = 100, nmc = 10, Pthetao, target, f_param, q_param, verb = TRUE)

Arguments
mcmc_algo a list defining an MCMC algorithm in terms of the functions it uses, such as
RWHM, see details below.
n The number of (time) iterations of each single chain to run.
nmc The number of iid copies of each single chain.
Pthetao A (nmc x d) matrix, with the ith row giving a d-dimensional initial theta values
for the ith chain.
target The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. Target must be a function such
as the multidimensional gaussian target_norm(x,param) with argument and
parameters passed like in this example.
f_param A list holding all the necessary target parameters, consistent with the target def-
inition.
g_param A list holding all the necessary parameters for the proposal density of the MCMC
algorithm memc_algo.
verb Verbose mode for summarizing output during the simulation.
Details

MCMCcopies sequentially simulates nmc iid copies of the MCMC algorithm passed in the list mcmc_algo,
for n (time) iterations, and returns an object of class p1MCMC holding an array of the trajectories and
running information. The list ncmc_algo must contain the named elements:

* name, the name of the MCMC, such as "RWHM"

* chain, the function for simulation of n steps of a single chain
* step, the function for simulation of 1 step of that algorithm

* g_pdf, the density of the proposal

* g_proposal, the function that simulates a proposal

For examples, see the algorithms currently implemented: RWHM, the Random Walk Hasting-Metropolis
with gaussian proposal; HMIS_norm, an Independence Sampler HM with gaussian proposal; AMHaar io,
the Adaptive-Metropolis (AM) from Haario (2001); IID_norm, a gaussian iid sampler which is
merely a "fake" MCMC for testing purposes.

16 MCMCcopies

Value

MCMCcopies returns a list of class pIMCMC with items:

Ptheta The nmc copies of chains in an array(n,d,nmc) of simulated values, where 1st
value (1,d,nmc) is Ptheta®.
prob.accept The estimated rate of acceptation over all simulations.
algo The MCMC algorithm name i.e. mcmc_algo$name.
target The target density.
f_param The list holding all the target parameters.
g_param The list holding all the proposal density parameters.
Author(s)

Didier Chauveau.

References

* Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419—431. DOL:
http://dx.doi.org/10.1051/ps/2012004

* Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816—2827.

See Also

Two multicore and cluster version MCMCcopies.mc and MCMCcopies. cl, and functions doing simu-
lation and entropy and Kullback estimation simultaneously: EntropyParallel and EntropyParallel.cl

Examples

Toy example using the bivariate gaussian target

with default parameters value, see target_norm_param

n = 150; nmc = 20; d=2 # bivariate example

varg=0.1 # variance of the proposal (chosen too small)

g_param=1list(mean=rep(@,d),v=vargxdiag(d))

initial distribution, located in (2,2), "far” from target center (0,0)

Ptheta® <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)

simulation

s1 <- MCMCcopies(RWHM, n, nmc, Ptheta@, target_norm,
target_norm_param, q_param, verb = FALSE)

summary(s1) # method for "plMCMC" object

par(mfrow=c(1,2))

plot(s1) # just a path of the iid chains, method for "plMCMC" object

hist(s1$Pthetal,1,], col=8) # marginal 1

http://dx.doi.org/10.1051/ps/2012004

MCMCcopies.cl 17

MCMCcopies.cl Parallel simulation of iid copies of a MCMC algorithm - cluster ver-
sions

Description

This function simulates “parallel chains” (iid copies) of a MCMC algorithm for n (time) iterations,
i.e. for each chain k, the whole trajectory of the chain is generated. It returns an object of class
pIMCMC (for parallel MCMC) holding an array of the trajectories and running information. This
functions is similar to MCMCcopies and MCMCcopies.mc except that it uses HPC in a more generic
way, implementing several types of HPC for running on a single, multicore computer or on a true
cluster using MPI communications.

Usage

MCMCcopies.cl(mcmc_algo, n=100, nmc=10, Pthetad, target, f_param, q_param,
cltype="PAR_SOCK", nbnodes=4)

Arguments

mcmc_algo a list defining an MCMC algorithm in terms of the functions it uses, such as
RWHM, see details below.

n The number of (time) iterations of each single chain to run.

nmc The number of iid copies of each single chain.

Ptheta® A (nmcxd) matrix, with the ith row giving a d-dimensional initial theta values
for the ith chain.

target The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. target must be a function such
as the multidimensional gaussian target_norm(x,param) with argument and
parameters passed like in this example.

f_param A list holding all the necessary target parameters, consistent with the target def-
inition.

g_param A list holding all the necessary parameters for the proposal density of the MCMC
algorithm memc_algo.

cltype Character string specifying the type of cluster; currently implemented types are:
"PAR_SOCK" for socket cluster with parallel library, the default; "SNOW_SOCK"
for socket cluster with snow library, and "SNOW_RMPI" for snow MPI cluster
with Rmpi library.

nbnodes The number of nodes or virtual cores requested to run the nmc simulations in

parallel. For the snow version, defaults to all; for the cluster version, defaults to
4.

18 MCMCcopies.cl

Details

MCMCcopies.cl simulates in parallel nmc iid copies of the MCMC algorithm passed in the list
mcmc_algo, for n (time) iterations, and returns an object of class pIMCMC holding an array of the
trajectories and running information.

About parallel computing:

The Rmpi option is less efficient than the default option using parallel if you are running on a single
computer. MPI communication are required only for running on a true cluster/grid.

This generic cluster version implementing several types of cluster for running on a single, multicore
computer or on a true cluster using MPI communications may not work on all platform/OS. For
instance the parallel socket cluster version does not work on Windows machines (see the parallel
package documentation).

About passing your MCMC algorithm:

The list mcmc_algo must contain the named elements:

* name, the name of the MCMC, such as "RWHM"
* chain, the function for simulation of n steps of a single chain

* step, the function for simulation of 1 step of that algorithm

g_pdf, the density of the proposal

* g_proposal, the function that simulates a proposal

For examples, see the algorithms currently implemented: RWHM, the Random Walk Hasting-Metropolis
with gaussian proposal; HMIS_norm, an Independence Sampler HM with gaussian proposal; AMHaar io,
the Adaptive-Metropolis (AM) from Haario (2001); IID_norm, a gaussian iid sampler which is
merely a "fake" MCMC for testing purposes.

Value

MCMCcopies.cl returns a list of class pIMCMC with items:

Ptheta The nmc copies of chains in an array(n,d,nmc) of simulated values, where 1st
value (1,d,nmc) is Ptheta@.

prob.accept The estimated rate of acceptation over all simulations.

algo The MCMC algorithm name i.e. mcmc_algo$name.

target The target density.

f_param The list holding all the target parameters.

g_param The list holding all the proposal density parameters.
Author(s)

Houssam Alrachid and Didier Chauveau.

MCMCcopies.mc 19

References

e Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419—431. DOI:
http://dx.doi.org/10.1051/ps/2012004

e Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

A simpler cluster version MCMCcopies.mc, a single core version MCMCcopies, and functions doing
simulation and entropy and Kullback estimation simultaneously: EntropyParallel and EntropyParallel.cl

Examples

Toy example using the bivariate gaussian target

n = 150; nmc = 20; d=2 # bivariate example
varg=0.1 # variance of the proposal (chosen too small)
g_param=list(mean=rep(@,d),v=varg*diag(d))
initial distribution, located in (2,2), "far” from target center (0,0)
Ptheta® <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)
simulations (may be compared with the singlecore version using system.time)
s1 <- MCMCcopies.cl(RWHM, n, nmc, Ptheta@, target_norm,

target_norm_param, g_param, nbnodes = 2)
summary(s1) # method for "plMCMC" object

see MCMCcopies example for plots

MCMCcopies.mc Simulates iid copies of a MCMC algorithm - multicore version

Description

Simulates nmc iid copies of a MCMC algorithm mcmc_algo for n (time) iterations and returns an
object of class pIMCMC (for parallel MCMC) holding an array of the trajectories and running infor-
mation. This functions is similar to MCMCcopies except that it uses the parallel package (available
in the main distribution, but not for Windows machines) to split the task between the available
virtual cores on the computer.

Usage

MCMCcopies.mc(mcmc_algo, n = 100, nmc = 10, Ptheta@, target, f_param, q_param,
verb = TRUE, nbcores=detectCores())

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

20 MCMCcopies.mc

Arguments
mcmc_algo a list defining an MCMC algorithm in terms of the functions it uses, such as
RWHM, see details below.
n The number of (time) iterations of each single chain to run.
nmc The number of iid copies of each single chain.
Pthetao A (nmcaxd) matrix, with the ith row giving a d-dimensional initial theta values
for the ith chain.
target The target density for which the MCMC algorithm is defined; may be given only
up to a multiplicative constant for most MCMC. target must be a function such
as the multidimensional gaussian target_norm(x,param) with argument and
parameters passed like in this example.
f_param A list holding all the necessary target parameters, consistent with the target def-
inition.
g_param A list holding all the necessary parameters for the proposal density of the MCMC
algorithm memc_algo.
verb Verbose mode for summarizing output during the simulation.
nbcores Number of required (virtual) cores, defaults to all as returned by detectCores().
Details

MCMCcopies.mc, like MCMCcopies, sequentially simulates nmc iid copies of the MCMC algorithm
passed in the list mcmc_algo, for n (time) iterations, and returns an object of class pIMCMC holding
an array of the trajectories and running information. The list mcmc_algo must contain the named
elements:

¢ name, the name of the MCMC, such as "RWHM"

* chain, the function for simulation of n steps of a single chain
* step, the function for simulation of 1 step of that algorithm

* g_pdf, the density of the proposal

* g_proposal, the function that simulates a proposal

For examples, see the algorithms currently implemented: RWHM, the Random Walk Hasting-Metropolis
with gaussian proposal; HMIS_norm, an Independence Sampler HM with gaussian proposal; AMHaar io,
the Adaptive-Metropolis (AM) from Haario (2001); IID_norm, a gaussian iid sampler which is
merely a "fake" MCMC for testing purposes.

Value

MCMCcopies returns a list of class pIMCMC with items:

Ptheta The nmc copies of chains in an array(n,d,nmc) of simulated values, where 1st
value (1,d,nmc) is Ptheta@.

prob.accept The estimated rate of acceptation over all simulations.

algo The MCMC algorithm name i.e. mcmc_algo$name.

target The target density.

f_param The list holding all the target parameters.

g_param The list holding all the proposal density parameters.

normEntropy 21

Author(s)

Didier Chauveau.

References

* Chauveau, D. and Vandekerkhove, P. (2013), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, 419-431. DOL:
http://dx.doi.org/10.1051/ps/2012004

* Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

A more general cluster version MCMCcopies.cl, a single core version MCMCcopies, and func-
tions doing simulation and entropy and Kullback estimation simultaneously: EntropyParallel
and EntropyParallel.cl

Examples

Toy example using the bivariate gaussian target

not working on Windows since socket cluster not implemented
n = 150; nmc = 20; d=2 # bivariate example
varg=0.1 # variance of the proposal (chosen too small)
g_param=1list(mean=rep(@,d),v=vargxdiag(d))
initial distribution, located in (2,2), "far” from target center (0,0)
Ptheta® <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)
simulations (may be compared with the singlecore version using system.time)
s1 <- MCMCcopies.mc(RWHM, n, nmc, Ptheta®@, target_norm,

target_norm_param, q_param, nbcores = 2)
summary(s1) # method for "plMCMC" object

see MCMCcopies example for plots

normEntropy Theoretical value of the entropy for the multivariate gaussian

Description

This function computes the entropy Er[log(f)] of the density of the multivariate gaussian, with
parameters in a list, as it is the case for MCMC target density parameters. This function is used
mostly for benchmarking entropy estimation performed by the package (using, e.g., the iid algo-
rithm IID_norm).

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

22 plot. KbMCMC

Usage

normEntropy(target_param)

Arguments
target_param A list of two elements: the mean target_param$mean and the covariance matrix
target_param$v.
Value

The entropy of the Gaussian with these parameters.

Author(s)

Didier Chauveau.

Examples

d=2 # model dimension

mu=rep(@,d); v = diag(d) # mean and variance
target_param = list(mean=mu, v=v) # parameters
normEntropy(target_param) # the entropy

plot.KbMCMC Plot sequences of estimates of Kullback distance or Entropy against
iterations

Description

This S3 method for plot plots by default sequences of estimates of the Kullback distance K (p, f)
between the (estimated) pdf of the MCMC algorithm at time ¢, p?, and the target density f, fort = 1
up to the number of iterations that have been provided/computed. It can also plot the first term in
the Kullback distance, i.e. the Entropy E,¢ [log(p")]. Its argument is an object of class KbMCMC such
as the one returned by, e.g., EntropyMCMC.

Usage

S3 method for class 'KbMCMC'
plot(x, Kullback = TRUE, lim = NULL, ylim = NULL,

new.plot = TRUE, title = NULL, ...)
Arguments
X An object of class KbMCMC, such as the one returned by EntropyMCMC.
Kullback TRUE to plot the Kullback distance, FALSE to plot the Entropy.
lim for zooming over 1:1im iterations only.

ylim y limits, passed to plot.

plot.pIMCMC 23

new.plot set to FALSE to add the plot to an existing plot.
title The title; if NULL, then a default title is displayed.

Further parameters passed to plot or lines.

Value

The graphic to plot.

Author(s)

Didier Chauveau.

References

e Chauveau, D. and Vandekerkhove, P. (2012), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, (2013) 419-431.
DOI: http://dx.doi.org/10.1051/ps/2012004

* Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816—2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

EntropyMCMC, EntropyMCMC.mc

Examples

See the EntropyMCMC Examples.

plot.plMCMC Plot paths of copies of Markov chains

Description

This function plots 2d-projections of the paths of i.i.d. copies of Markov chains output by an MCMC
algorithm and stored in an object of class pIMCMC (for parallel MCMC) such as the one returned by,
e.g., MCMCcopies or the multicore version MCMCcopies.mc.

Usage

S3 method for class 'pIMCMC'
plot(x, xax = 1, yax = 2, title = NULL, cname = NULL, ...)

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

24

Arguments
X
Xax
yax
title

Chame

Details

plot.pIMCMC

An object of class pIMCMC, such as output from MCMCcopies.
Coordinate for the horizontal axis.

Coordinate for the vertical axis.

The title; if NULL, then a default title is displayed.

Coordinate base name; "var" is the default, so that coordinates are named "varl",
"var2", and so on.

Further parameters except pch which is already used, passed to plot.

This function is currently limited to a 2D projection path of all the i.i.d. chains for the two selected
coordinates. The copies of the Markov chain must be in the 3-dimensional array s$Ptheta.

Value

The graphic to plot.

Author(s)

Didier Chauveau.

References

e Chauveau, D. and Vandekerkhove, P. (2012), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, (2013) 419-431.
DOI: http://dx.doi.org/10.1051/ps/2012004

e Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

¢ Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

MCMCcopies, MCMCcopies.mc, MCMCcopies.cl

Examples

See MCMCcopie Example

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

plottarget3d 25

plottarget3d 3D plot of a two-dimensional MCMC target, or any function

Description

Utility function for the package EntropyMCMC, to visualize a 2-dimensional target of a MCMC
algorithm, mostly for testing purpose. This uses the function persp from package graphics.

Usage
plottarget3d(zft, 1, r, ms, theta, phi, ...)
Arguments
zft a function, typically a 2-dimensional target of a MCMC.
1, r,ms mesh boundaries and size.
theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.
additional graphical parameters.
Value

Returns a 3D plot on a mesh of size (1, r, ms).

Author(s)

Didier Chauveau.

plot_Kblist Plot sequences of Kullback distance estimates for comparison of sev-
eral MCMC algorithms for a same target density

Description

This function draws on a same plot several sequences of estimates of Kullback distances K (p?, f),
i.e. the convergence criterion vs. time (iteration t), for each MCMC algorithm for which the
convergence criterion has been computed.

Usage

plot_Kblist(Kb, which = 1, 1im = NULL, ylim = NULL)

26 plot_Kblist

Arguments
Kb A list of objects of class "KbMCMC", such as the ones returned by EntropyMCMC
or EntropyParallel, or their HPC versions.
which Controls the level of details in the legend added to the plot (see details)
lim for zooming over 1:1im iterations only.
ylim limits on the y axis for zooming, passed to plot.
Details

The purpose of this plot if to compare K MCMC algorithms (typically based on K different simula-
tion strategies or kernels) for convergence or efficiency in estimating a same target density f. For the
kth algorithm, the user has to generate the convergence criterion, i.e. the sequence K (p'(x)k), f)
for t = 1 up to the number of iterations that has been chosen, and where p'(k) is the estimated pdf
of the algorithm at time ¢.

For the legend, which=1 displays the MCMC’s names together with some technical information
depending on the algorithms definition (e.g. the proposal variance for the RWHM algorithm) and
the method used for entropy estimation. The legend for which=2 is shorter, only displaying the
MCMC'’s names together with the number of parallel chains used for each, typically to compare the
effect of that number for a single MCMC algorithm.

Value

The graphic to plot.

Author(s)

Didier Chauveau.

References

e Chauveau, D. and Vandekerkhove, P. (2012), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, (2013) 419-431.
DOI: http://dx.doi.org/10.1051/ps/2012004

¢ Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816-2827.

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

EntropyMCMC, EntropyMCMC. mc

http://dx.doi.org/10.1051/ps/2012004
http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

RWHM_ chain 27

Examples

Toy example using the bivariate centered gaussian target

with default parameters value, see target_norm_param

d=2 # state space dimension

n=300; nmc=100 # number of iterations and iid Markov chains

initial distribution, located in (2,2), "far” from target center (0,0)
Ptheta@ <- DrawInit(nmc, d, initpdf = "rnorm”, mean = 2, sd = 1)

MCMC 1: Random-Walk Hasting-Metropolis
varg=0.05 # variance of the proposal (chosen too small)
g_param=list(mean=rep(@,d),v=vargxdiag(d))

using Method 1: simulation with storage, and *then* entropy estimation
simulation of the nmc iid chains, single core here
s1 <- MCMCcopies(RWHM, n, nmc, Ptheta@, target_norm,
target_norm_param, qg_param)
summary(s1) # method for "plMCMC" object
el <- EntropyMCMC(s1) # computes Entropy and Kullback divergence

MCMC 2: Independence Sampler with large enough gaussian proposal
varg=1; qg_param <- list(mean=rep(@,d),v=varqg*diag(d))

using Method 2: simulation & estimation for each t, forgetting the past
HPC with 2 cores here (using parallel socket cluser, not available on Windows machines)
e2 <- EntropyParallel.cl(HMIS_norm, n, nmc, Ptheta@, target_norm,

target_norm_param, q_param,

cltype="PAR_SOCK", nbnodes=2)

Compare these two MCMC algorithms
plot_Kblist(list(el,e2)) # MCMC 2 (HMIS, red plot) converges faster.

RWHM_chain Simulating MCMC single chains using MCMC algorithms

Description

These functions are used to define the elements $chain of the MCMC algorithms that are (and must
be) implemented as lists in EntropyMCMC. These functions are usually only called by higher-level
functions, see details below.

Usage

RWHM_chain(theta@, it = 100, target, f_param, q_param, g_pdf = gaussian_pdf,
g_proposal = gaussian_proposal)

HMIS_norm_chain(theta@, it = 100, target, f_param, g_param, g_pdf = q_pdf_ISnorm,
g_proposal = q_proposal_ISnorm)

AMHaario_chain(theta@, it = 100, target, f_param, g_param, q_pdf = gaussian_pdf,
g_proposal = gaussian_proposal)

28

RWHM_chain

IID_chain(theta® = NULL, it = 100, target, f_param, g_param = NULL, g_pdf = NULL,

Arguments
it
theta®
target
f_param

g_param

q_pdf
g_proposal

Details

g_proposal = NULL)

the number of iterations to simulate

the initial position of the chain, a d-dim vector

the user-defined target density

the parameters (hyperparameters, data) of the user-defined target density

the parameters of the proposal density, which structure depends on the algorithm
and the proposal density chosen by the user. Defaults are for RWHM: a list with
the mean and covariance matrix of the proposal. For AMHaario: a list that must
contain three elements: v the initial covariance matrix, t0 the iteration of the
end of initial stage with that matrix, and epsi the epsilon parameter (for the
nondegenerate matrix part), see Haario et. al.(2001).

the proposal density

the function simulating the proposal for the next move

Each MCMC algorithm is defined as a list with five elements, see the object RWHM for an exam-
ple. The element $chain must provide the name of the function performing simulation of a single
chain and returning that chain, with arguments that must follow the definition above. Each user
can define its own MCMC starting with the algorithms provided (see also section below). These
functions are thus usually called by higher-level functions like MCMCcopies, EntropyParallel, or
their multicore versions, for simulating copies of MCMC chains in an automatic manner.

* RWHM_chain is used in RWHM, a standard Randow-Walk Hastings-Metropolis algorithm.

* HMIS_norm_chain is used in HMIS_norm, an Independence Sampler HM with gaussian pro-

posal

* AMHaario_chain is used in AMHaario, the Haario Adaptive Hastings-Metropolis algorithm
(Haario 2001), and is provided as an example of a benchmark AMCMC.

e IID_chainisused in IID_norm, a “fake” MCMC that is just a gaussian IID sampler.

Value

A list with elements:

theta
paccept
finalcov

algo

Author(s)

Didier Chauveau.

the simulated chain in an array of ¢t rows and d columns (the dimension)
the empirical acceptance rate
the last covariance matrix

the name of the algorithm (for plot methods)

summary.pIMCMC 29

References
H. Haario, E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm. Bernoulli 7,
223-242.

See Also
The algorithm already implemented, listed in EntropyMCMC-package.

The higher level functions that use these functions for simulation: MCMCcopies, EntropyParallel
and their multicore versions.

summary . p1MCMC Summarizes content of a pIMCMC object holding iid copies of MCMC's

Description

This S3 method for summary summarizes the content of an object of class pIMCMC (for parallel
MCMC) as returned by, e.g., MCMCcopies, containing the trajectories of iid copies of trajectories
from a MCMC algorithm, and its associated kernel, target and proposal densities.

Usage
S3 method for class 'pIMCMC'
summary(object, stats = FALSE, ...)
Arguments
object An object of class pIMCMC as returned by, e.g.,MCMCcopies.
stats print additional summary statistics for the variables over all chains.

additional arguments passed to other methods

Value

Returns the object associated dimensions, the overall rate of acceptation, and descriptive statistics
over the variable coordinates if stats = TRUE.

Author(s)

Didier Chauveau.

References

* Chauveau, D. and Vandekerkhove, P. (2012), Smoothness of Metropolis-Hastings algorithm
and application to entropy estimation. ESAIM: Probability and Statistics, 17, (2013) 419-431.
DOI: http://dx.doi.org/10.1051/ps/2012004

* Chauveau D. and Vandekerkhove, P. (2014), Simulation Based Nearest Neighbor Entropy
Estimation for (Adaptive) MCMC Evaluation, In JSM Proceedings, Statistical Computing
Section. Alexandria, VA: American Statistical Association. 2816—2827.

http://dx.doi.org/10.1051/ps/2012004

30 summary.pIMCMC

* Chauveau D. and Vandekerkhove, P. (2014), The Nearest Neighbor entropy estimate: an ade-
quate tool for adaptive MCMC evaluation. Preprint HAL http://hal.archives-ouvertes.
fr/hal-01068081.

See Also

MCMCcopies, MCMCcopies.mc

Examples

See Example for MCMCcopies

http://hal.archives-ouvertes.fr/hal-01068081
http://hal.archives-ouvertes.fr/hal-01068081

Index

« file
accept_ratio, 4
CollectChains, 5
DrawInit, 6
EntropyMCMC, 7
EntropyParallel, 9
MCMCcopies, 15
MCMCcopies.cl, 17
MCMCcopies.mc, 19
normentropy, 21
plot.KbMCMC, 22
plot.pIMCMC, 23
plot_Kblist, 25
plottarget3d, 25
RWHM_chain, 27
summary . pIMCMC, 29

* gaussian
gaussian_pdf, 14

+ package
EntropyMCMC-package, 2

accept_ratio, 4
AMHaario_chain (RWHM_chain), 27

CollectChains, 5

DrawInit, 6
EntropyMCMC, 3,7, 13, 22, 23, 26
EntropyMCMC-package, 2
EntropyMCMC.mc, 7, 11, 13, 23, 26
EntropyParallel, 3,6, 9,9, 16, 19, 21, 26, 29
EntropyParallel.cl, 6, 9, 16, 19, 21

gaussian_pdf, 14
gaussian_proposal (gaussian_pdf), 14

HMIS_norm_chain (RWHM_chain), 27

IID_chain (RWHM_chain), 27

MCMCcopies, 3, 5, 6, 8-13, 15, 17, 19-21, 23,
24,29, 30

MCMCcopies.cl, 10, 11,13, 16,17, 21, 24

MCMCcopies.mc, 6, 9, 13, 16, 19, 19, 23, 24, 30

normEntropy, 21

parallel, 3,7
plot.KbMCMC, 22
plot.plIMCMC, 23
plot_Kblist, 3,25
plottarget3d, 25

RWHM, 26
RWHM_chain, 27

summary . pIMCMC, 29

	EntropyMCMC-package
	accept_ratio
	CollectChains
	DrawInit
	EntropyMCMC
	EntropyParallel
	gaussian_pdf
	MCMCcopies
	MCMCcopies.cl
	MCMCcopies.mc
	normEntropy
	plot.KbMCMC
	plot.plMCMC
	plottarget3d
	plot_Kblist
	RWHM_chain
	summary.plMCMC
	Index

