Package 'DIFboost'

January 20, 2025

Type Package		
Title Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques		
Version 0.3		
Date 2020-06-11		
Imports mboost, penalized, stabs		
Author Gunther Schauberger		
Maintainer Gunther Schauberger <gunther.schauberger@tum.de></gunther.schauberger@tum.de>		
Description Performs detection of Differential Item Functioning using the method DIFboost as proposed by Schauberger and Tutz (2016) <doi:10.1111 bmsp.12060="">.</doi:10.1111>		
License GPL-2		
LazyLoad yes		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2020-06-11 19:00:18 UTC		

Contents

Index

DIFboost-package	2
DIFboost	3
print.DIFboost	5
simul.data	6
	8

DIFboost-package DIFboost

Description

A package to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schauberger (2015). Model/variable selection is performed using stability selection.

Details

The method assumes the DIFmodel from Tutz and Schauberger (2015) where boosting is used for DIF detection. Computation is based on the functions gamboost and stabsel.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

Schauberger, Gunther and Tutz, Gerhard (2016): *Detection of Differential Item Functioning in Rasch Models by Boosting Techniques*, British Journal of Mathematical and Statistical Psychology, 69(1), 80 - 103

See Also

DIFboost, print.DIFboost

Examples

```
## Not run:
data(simul.data)
Y <- simul.data[,1:10]
X <- simul.data[,11:13]
m1 <- DIFboost(Y = Y, X = X)
print(m1)
```

DIFboost

Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques

Description

A function to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schauberger (2015). Model/variable selection is performed using stability selection.

Usage

DIFboost(Y, X, mstop = 400, trace = TRUE, cutoff = 0.9, B = 500, mc.cores = 1, q = 0.6 * I)

Arguments

Y	Data frame (one row per person, one column per item) containing response. May only contain 0 or 1.
Х	Data frame (one row per person, one column per covariate) containing covariates. Has to be standardized.
mstop	Number of boosting iterations maximally performed in one iteration of the sta- bility selection.
trace	Should the trace of the single boosting steps be printed?
cutoff	Cutoff value for stability selection.
В	Number of subsamples used for stability selection.
mc.cores	Number of cores for parallelized stability selection. For windows machines, parallelization is not possible.
q	Maximum number of base learner to be included in the boosting algorithm for one subsample in stability selection. By default set to 60 percent of the total number of items.

Details

The method assumes the DIFmodel from Tutz and Schauberger (2015) where boosting is used for DIF detection. Computation is based on the functions gamboost and stabsel.

Value

model	Model from inital gamboost fit
dif.mat	Estimates of the item-specific parameter estimates, with zeros for non-DIF items
coefficients	coefficient vector with all estimates from refitted model
theta	Estimated person abilities

beta	Estimated item difficulties
gamma	Estimated item-specific parameters
Р	Number of (valid) persons
I	Number of items
names.y	Names of the items
names.x	Names of the covariates
design.matrix	Design matrix for refitted model
PFER	upper bound for the per-family error rate. For details see stabsel.
lin.pred	linear predictor from refitted model
DIF.items	Which items have been detected to be DIF items?
ref.item	Reference item
phat	selection probabilities for single base learners in stability selection. For details see stabsel
cutoff	cutoff value used for stability selection

Author(s)

Gunther Schauberger <gunther.schauberger@tum> https://www.sg.tum.de/epidemiologie/team/schauberger/

References

Schauberger, Gunther and Tutz, Gerhard (2016): *Detection of Differential Item Functioning in Rasch Models by Boosting Techniques*, British Journal of Mathematical and Statistical Psychology, 69(1), 80 - 103

See Also

print.DIFboost, gamboost, stabsel

Examples

```
## Not run:
data(simul.data)
```

```
Y <- simul.data[,1:10]
X <- simul.data[,11:13]</pre>
```

m1 <- DIFboost(Y = Y, X = X)
print(m1)</pre>

print.DIFboost Print function for DIFboost

Description

Prints the most important output of a DIFboost object.

Usage

S3 method for class 'DIFboost'
print(x, ...)

Arguments

Х	DIFboost object, created by DIFboost
	Further arguments to be passed to the print function.

Author(s)

Gunther Schauberger <gunther.schauberger@tum> https://www.sg.tum.de/epidemiologie/team/schauberger/

References

Schauberger, Gunther and Tutz, Gerhard (2016): *Detection of Differential Item Functioning in Rasch Models by Boosting Techniques*, British Journal of Mathematical and Statistical Psychology, 69(1), 80 - 103

See Also

DIFboost

Examples

```
## Not run:
data(simul.data)
```

```
Y <- simul.data[,1:10]
X <- simul.data[,11:13]
```

m1 <- DIFboost(Y = Y, X = X)
print(m1)</pre>

simul.data

Description

Simulated data set with 100 persons, 10 items and 3 (standardized) covariates. Items 1, 2 and 3 are DIF items.

Usage

data(simul.data)

Format

Item1 , DIF item

- Item2 Item 2, DIF item
- Item3 Item 3, DIF item
- Item4 Item4, non-DIF item
- Item5 Item 5, non-DIF item
- Item6 Item 6, non-DIF item
- Item7 Item7, non-DIF item
- Item8 Item 8, non-DIF item
- Item9 Item9, non-DIF item
- Item10 Item 10, non-DIF item
- CovBin1 Binary covariate (standardized)
- CovBin2 Binary covariate (standardized)
- CovMet Metric covariate (standardized)

Author(s)

Gunther Schauberger <gunther.schauberger@tum> https://www.sg.tum.de/epidemiologie/team/schauberger/

References

Schauberger, Gunther and Tutz, Gerhard (2016): *Detection of Differential Item Functioning in Rasch Models by Boosting Techniques*, British Journal of Mathematical and Statistical Psychology, 69(1), 80 - 103

See Also

DIFboost, print.DIFboost

simul.data

Examples

Not run: data(simul.data) Y <- simul.data[,1:10]</pre>

X <- simul.data[,11:13]
m1 <- DIFboost(Y = Y, X = X)</pre>

print(m1)

Index

* **DIFboost** DIFboost, 3

DIFboost, 2, 3, 5, 6 DIFboost-package, 2

gamboost, 2-4

print, 5
print.DIFboost, 2, 4, 5, 6

simul.data,6
stabsel,2-4