Package ‘COMIX’

February 5, 2026
Type Package

Title Coarsened Mixtures of Hierarchical Skew Kernels
Version 1.0.2

Description Bayesian fit of a Dirichlet Process Mixture with hierarchical multivariate skew nor-
mal kernels and coarsened posteriors. For more informa-
tion, see Gorsky, Chan and Ma (2024) <doi:10.1214/22-BA1356>.

License CCO
Encoding UTF-8

Imports Rcpp (>=0.12.18), dplyr, ggplot2, stringr, coda, tidyr,
rlang, methods

Suggests sn, R.rsp

LinkingTo Rcpp, ReppArmadillo, ReppEigen, ReppNumerical
RoxygenNote 7.3.3

VignetteBuilder R.rsp

NeedsCompilation yes

Author S. Gorsky [aut, cre],
C. Chan [ctb],
L. Ma [ctb]

Maintainer S. Gorsky <sgorsky@umass.edu>
Repository CRAN
Date/Publication 2026-02-05 06:40:02 UTC

Contents

acfParams
calibrate L. e e e
calibrateNoDISt e e e e e
COMIX . . v v o e i e
effectiveSampleSize oL
gewekeParams oL
heidelParams e

https://doi.org/10.1214/22-BA1356

2 acfParams
plotEffectiveSampleSize 17
plotGewekeParams L 18
plotHeidelParams L 20
plotTracePlots e 22
relabelChain e 23
summarizeChain L 25
tidyChain e 28
transform_params L e 29

Index 31

acfParams The function computes (and by default plots) estimates of the auto-
covariance or autocorrelation function for the different parameters of
the model. This is a wrapper for coda::acf.

Description

The function computes (and by default plots) estimates of the autocovariance or autocorrelation
function for the different parameters of the model. This is a wrapper for coda::acf.

Usage

acfParams(

res,

params = C(”W”, ”Xi”, "Xi@", ”psi”, ”G", ”E”, ”eta”),
only_non_trivial_clusters = TRUE,

lag.max = NULL,

type = c("correlation”, "covariance"”, "partial”),
plot = TRUE,
)
Arguments
res An object of class COMIX or tidyChainCOMIX.
params A character vector naming the parameters to compute and plot the autocorrela-

tion plots for.

only_non_trivial_clusters

Logical, if TRUE only compute and/or plot the autocorrelation for the clusters
that are estimated to be non-empty.

lag.max maximum lag at which to calculate the autocorrelation. See more details at ?acf.

type Character string giving the type of autocorrelation to be computed. See more

details at ?acf.

plot Logical. If TRUE (the default) the autocorrelation is plotted.

Other arguments passed to acf.

calibrate 3

Value

An acfParamsCOMIX object which is a named list, with a named element for each requested parame-
ter. Each element is an object of class acf (from the coda package). # @examples library(COMIX)
Number of observations for each sample (row) and cluster (column): njk <- matrix(c(150, 300,
250, 200), nrow = 2, byrow = TRUE)

Dimension of data: p <- 3

Scale and skew parameters for first cluster: Sigmal <- matrix(0.5, nrow = p, ncol = p) + diag(0.5,
nrow = p) alphal <- rep(0, p) alphal[1] <- -5 # location parameter for first cluster in first sample:
xil1 <- rep(0, p) # location parameter for first cluster in second sample (aligned with first): xi21 <-
rep(0, p)

Scale and skew parameters for second cluster: Sigma2 <- matrix(-1/3, nrow = p, ncol = p) +
diag(1 + 1/3, nrow = p) alpha2 <- rep(0, p) alpha2[2] <- 5 # location parameter for second cluster in
first sample: xil2 <- rep(3, p) # location parameter for second cluster in second sample (misaligned
with first): xi22 <- rep(4, p)

Sample data: set.seed(1) Y <- rbind(sn::rmsn(njk[1, 1], xi = xill, Omega = Sigmal, alpha =
alphal), sn::rmsn(njk[1, 2], xi = xil2, Omega = Sigma2, alpha = alpha2), sn::rmsn(njk[2, 1], xi =
xi21, Omega = Sigmal, alpha = alphal), sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha =
alpha2))

C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]))

prior <- list(zeta = 1, K = 10) pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage
pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation # Fit the model:
res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues: res_relab <- relabelChain(res) effssz <- ef-
fectiveSampleSize(res_relab, "w") # Or: tidy_chain <- tidyChain(res_relab, "w") acf_w <- acf-
Params(tidy_chain, "w"

(see vignette for a more detailed example)

calibrate This function aligns multiple samples so that their location parameters
are equal.

Description

This function aligns multiple samples so that their location parameters are equal.

Usage

calibrate(x, reference.group = NULL)

4 calibrate

Arguments

X An object of class COMIX.

reference.group
An integer between 1 and the number of groups in the data (1ength(unique(C))).
Defaults to NULL. If NULL, the samples are aligned so that their location param-
eters are set to be at the estimated group location parameter. If an integer, the
samples are aligned so that their location parameters are the same as the location
parameter of sample reference.group.

Value

A named list of 3:

* Y_cal: a nrow(x$datas$yY) x ncol(x$data$Y) matrix, a calibrated version of the original
data.

e calibration_distribution: an xpmcnsave x ncol(x$datas$Y) x nrow(x$datas$y) ar-
ray storing the difference between the estimated sample-specific location parameter and the
group location parameter for each saved step of the chain.

e calibration_median: a nrow(x$data$¥) x ncol(x$data$Y) matrix storing the median
difference between the estimated sample-specific location parameter and the group location
parameter for each saved step of the chain. This matrix is equal to the difference between the
uncalibrated data (x$data$Y) and the calibrated data (Y_cal).

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p<-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xill <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(@, p)

Scale and skew parameters for second cluster:

calibrateNoDist

Sigma2 <- matrix(-1/3, nrow = p, ncol = p)

alpha2 <- rep(0, p)
alpha2[2] <- 5

location parameter for second cluster in

xil2 <- rep(3, p)

location parameter for second cluster in

xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi =
sn::rmsn(njk[1, 2], xi =
sn::rmsn(njk[2, 1], xi =
sn::rmsn(njk[2, 2], xi =
)

xi11, Omega

xi12, Omega
xi21, Omega
xi22, Omega

+ diag(1 + 1/3, nrow = p)

first sample:

second sample

Sigmal,
Sigma2,
Sigmal,
Sigma2,

alpha
alpha
alpha
alpha

C <- c(rep(1, rowSums(njk)[1]1), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn
pmc <- list(naprt = 5, nburn
Fit the model:

res <- comix(Y, C, pmc = pmc,

= 200, nsave

= 2, nsave

(misaligned with first):

= alphal),
= alpha2),
= alphal),
= alpha2)

200) # Reasonable usage

prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

Generate calibrated data:

cal <- calibrateNoDist(res_relab)

Compare raw and calibrated data: (see plot in vignette)

par(mfrow=c(1, 2))

5) # Minimal usage for documentation

plot(Y, col = C, xlim = range(Y[,1]), ylim = range(Y[,21))

Get posterior estimates for the model parameters:

res_summary <- summarizeChain(res_relab)
Check for instance, the cluster assignment labels:

table(res_summary$t)
Indeed the same as
colSums(njk)

Or examine the skewness parameter for the non-trivial clusters:

res_summary$alphal , unique(res_summary$t)]

And compare those to
cbind(alphal, alpha2)

(see vignette for a more detailed example)

6 calibrateNoDist

calibrateNoDist This function aligns multiple samples so that their location parameters
are equal.

Description

This function aligns multiple samples so that their location parameters are equal.

Usage

calibrateNoDist(x, reference.group = NULL)

Arguments

X An object of class COMIX.

reference.group
An integer between 1 and the number of groups in the data (length(unique(C))).
Defaults to NULL. If NULL, the samples are aligned so that their location param-
eters are set to be at the estimated group location parameter. If an integer, the
samples are aligned so that their location parameters are the same as the location
parameter of sample reference. group.

Value
A named list of 2:

e Y_cal: a nrow(x$data$yY) x ncol(x$data$yY) matrix, a calibrated version of the original
data.

e calibration_median: a nrow(x$data$¥) x ncol(x$data$Y) matrix storing the median
difference between the estimated sample-specific location parameter and the group location
parameter for each saved step of the chain. This matrix is equal to the difference between the
uncalibrated data (x$data$Y) and the calibrated data (Y_cal).

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p<-3

calibrateNoDist

Scale and skew parameters for first cluster:
Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)
alphal[1] <- -5

location parameter for first cluster in first sample:

xill <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):

xi21 <- rep(0, p)

Scale and skew parameters for second cluster:
Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)
alpha2[2] <- 5

location parameter for second cluster in

xi12 <- rep(3, p)

location parameter for second cluster in

Xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi =
sn::rmsn(njk[1, 2], xi =
sn::rmsn(njk[2, 1], xi =
sn::rmsn(njk[2, 2], xi =
)

xil1, Omega

xi12, Omega
xi21, Omega
xi22, Omega

first sample:

second sample

Sigmal,
Sigma2,
Sigmal,
Sigma2,

alpha
alpha
alpha
alpha

C <= c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[2]1))

prior <- list(zeta =1, K = 10)

pmc <- list(naprt = 5, nburn

Fit the model:

res <- comix(Y, C, pmc = pmc,

200, nsave

(misaligned with first):

= alphal),
= alpha2),
= alphal),
= alpha2)

200) # Reasonable usage
pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation

prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

Generate calibrated data:

cal <- calibrateNoDist(res_relab)

Compare raw and calibrated data: (see plot in vignette)

par(mfrow=c(1, 2))

plot(Y, col = C, xlim = range(Y[,1]1), ylim = range(Y[,2]))

Get posterior estimates for the model parameters:

res_summary <- summarizeChain(res_relab)
Check for instance, the cluster assignment labels:

table(res_summary$t)
Indeed the same as
colSums(njk)

8 comix
Or examine the skewness parameter for the non-trivial clusters:
res_summary$alphal , unique(res_summary$t)]
And compare those to
cbind(alphal, alpha2)
(see vignette for a more detailed example)
comix This function generates a sample from the posterior of COMIX.
Description
This function generates a sample from the posterior of COMIX.
Usage
comix(Y, C, prior = NULL, pmc = NULL, state = NULL, ncores = 2)
Arguments
Y Matrix of the data. Each row represents an observation.
C Vector of the group label of each observation. Labels must be integers starting
from 1.
prior A list giving the prior information. If unspecified, a default prior is used. The

list includes the following parameters:

zeta: Coarsening parameter. A number between O and 1. zeta = 1: sample
from standard posterior; zeta < 1: sample from power posterior. The lower
zeta is, the more flexible the kernels become.

K: Maximal number of mixture components.

eta_prior Parameters for gamma prior for concentration parameter of the
stick breaking process prior for the weights.

m@: Number of degrees of freedom for the inverse Wishart prior for Sigma,
the covariance matrix of the kernels.

Lambda: Mean parameter for the inverse Wishart prior for Sigma, the co-
variance matrix of the kernels.

b@: Mean parameter for the multivariate normal distribution that is the prior
for the group mean parameter xi0.

B@: Covariance parameter for the multivariate normal distribution that is
the prior for the group mean parameter xi0.

e0: Number of degrees of freedom for the inverse Wishart prior for Ey, the
covariance matrix of the multivariate normal from which ¢ ;. are drawn.
E@: Mean parameter for the inverse Wishart prior for Ej, the covariance
matrix of the multivariate normal from which ¢; are drawn.

merge_step: Introduce step to merge mixture components with small KL
divergence. Default is merge_step = TRUE.

comix 9

* merge_par: Parameter controlling merging radius. Default is merge_par =
0.1.

pmc A list giving the Population Monte Carlo (PMC) parameters:

* npart: Number of PMC particles.
* nburn: Number of burn-in steps
* nsave: Number of steps in the chain after burn-in.

* nskip: Thinning parameter, number of steps to skip between saving steps
after burn-in.

* ndisplay: Display status of chain after every ndisplay steps.
state A list giving the initial cluster labels:

* t: An integer vector, same length as the number of rows of Y, with cluster
labels between 1 and K.

ncores The number of CPU cores to utilize in parallel. Defaults to 2.

Value

An object of class COMIX, a list of 4:
chain, a named list:

— t: an nsave x nrow(Y) matrix with estimated cluster labels for each saved step of the
chain and each observation in the data Y.

— z: ansave X nrow(Y) matrix with estimated values of the latent z; ; variable for the
parameterization of the multivariate skew normal distribution used in the sampler for
each saved step of the chain and each observation in the data Y.

— W:an length(unique(C)) X K x

— nsave: array storing the estimated sample- and cluster-specific weights for each saved
step of the chain.

— xi:anlength(unique(C)) x (ncol(Y) x K) x nsave array storing the estimated sample-
and cluster-specific multivariate skew normal location parameters of the kernel for each
saved step of the chain.

— x10: an ncol(Y) X K x

— nsave: array storing the estimated cluster-specific group location parameters for each
saved step of the chain.

— psi: an ncol(Y) x K X nsave array storing the estimated cluster-specific skew param-
eters of the kernels in the parameterization of the multivariate skew normal distribution
used in the sampler for each saved step of the chain.

— G: an ncol(Y) x (ncol(Y) xK) X nsave array storing the estimated cluster-specific
multivariate skew normal scale matrix (in row format) of the kernel used in the sampler
for each saved step of the chain.

— E: an ncol(Y) x (ncol(Y) xK) X nsave array storing the estimated covariance ma-
trix (in row format) of the multivariate normal distribution from which the sample- and
cluster-specific location parameters are drawn for each saved step of the chain.

— eta: ansave X 1 matrix storing the estimated Dirichlet Process Mixture concentration
parameter for each saved step of the chain.

10 comix

— Sigma: anncol(Y) x (ncol(Y) x K) X nsave array storing the estimated cluster-specific
multivariate skew normal scale matrix (in row format) of the kernel for each saved step
of the chain.

— alpha: an ncol(Y) x K x nsave array storing the estimated cluster-specific skew pa-
rameters of the kernel’s multivariate skew normal distribution for each saved step of the
chain.

* data, a named list that includes the matrix of the data Y and C the vector of the group label of
each observation.

* prior and pmc, the lists, as above, that were provided as inputs to the function.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xi11 <- rep(0, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <= rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
Xxi22 <- rep(4, p)

Sample data:
set.seed(1)
Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),

effectiveSampleSize 11

sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)

)
C <= c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

Generate calibrated data:
cal <- calibrateNoDist(res_relab)

Compare raw and calibrated data: (see plot in vignette)
par(mfrow=c(1, 2))
plot(Y, col = C, xlim = range(Y[,1]1), ylim = range(Y[,2]))

Get posterior estimates for the model parameters:
res_summary <- summarizeChain(res_relab)

Check for instance, the cluster assignment labels:
table(res_summary$t)

Indeed the same as

colSums(njk)

Or examine the skewness parameter for the non-trivial clusters:
res_summary$alphal , unique(res_summary$t)]

And compare those to

cbind(alphal, alpha2)

(see vignette for a more detailed example)

effectiveSampleSize This function creates an object that summarizes the effective sample
size for the parameters of the model.

Description

This function creates an object that summarizes the effective sample size for the parameters of the
model.

Usage

nyasn

effectiveSampleSize(res, params = c("w", "xi", "xiQ",

n

pSi", "G”, ”E”, ”eta”))

12 effectiveSampleSize

Arguments
res An object of class COMIX or tidyChainCOMIX.
params A character vector naming the parameters to compute the effective sample size
for.
Value

An effectiveSampleSizeCOMIX object which is a named list, with a named element for each
requested parameter. Each element is a data frame that includes the effective sample size for the

parameter.
Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@0.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xi11 <- rep(Q, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <- rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
Xi22 <- rep(4, p)

Sample data:
set.seed(1)
Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),

gewekeParams 13

sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)

)
C <= c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

effssz <- effectiveSampleSize(tidy_chain, "w")

(see vignette for a more detailed example)

gewekeParams This function creates an object that summarizes the Geweke conver-
gence diagnostic.

Description

This function creates an object that summarizes the Geweke convergence diagnostic.

Usage
gewekeParams (
res,
params = C(“W“, “Xi“, "Xi@", llpsi”, HGH, ”EII’ Ile.tall)y
fracl = 0.1,
frac2 = 0.5,
probs = c(0.025, 0.975)
)
Arguments
res An object of class COMIX or tidyChainCOMIX.
params A character vector naming the parameters to compute the Geweke diagnostic
for.
fracl Double, fraction to use from beginning of chain.
frac2 Double, fraction to use from end of chain.
probs A vector of 2 doubles, probabilities denoting the limits of a confidence interval

for the convergence diagnostic.

14 gewekeParams

Value

An gewekeParamsCOMIX object which is a named list, with a named element for each requested
parameter. Each element is a data frame that includes the Geweke diagnostic and result of a station-
arity test for the parameter.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xil1l <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xil12 <- rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]1))

heidelParams 15

prior <- list(zeta =1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

gwk <- gewekeParams(tidy_chain, "w")

(see vignette for a more detailed example)

heidelParams This function creates an object that summarizes the Heidelberg-Welch
convergence diagnostic.

Description

This function creates an object that summarizes the Heidelberg-Welch convergence diagnostic.

Usage
heidelParams(
res,
params = C(HWH’ ”Xi”, "Xi@”, Hpsill’ ”GH, ”E”, "eta"),
eps = 0.1,
pvalue = 0.05
)
Arguments
res An object of class COMIX or tidyChainCOMIX.
params A character vector naming the parameters to compute the Heidelberg-Welch
diagnostic for.
eps Target value for ratio of halfwidth to sample mean.
pvalue Significance level to use.
Value

An heidelParamsCOMIX object which is a named list, with a named element for each requested
parameter. Each element is a data frame that includes the Heidelberg-Welch diagnostic and results
of a stationarity test for the parameter.

16 heidelParams

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xil1l <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xil12 <- rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[1]1), rep(2, rowSums(njk)[2]1))

prior <- list(zeta =1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

plotEffectiveSampleSize 17

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

hd <- heidelParams(tidy_chain, "w")

(see vignette for a more detailed example)

plotEffectiveSampleSize
This function creates plots for the effective sample size for the param-
eters of the model.

Description

This function creates plots for the effective sample size for the parameters of the model.

Usage

plotEffectiveSampleSize(effssz, param)

Arguments
effssz An object of class effectiveSampleSizeCOMIX as created by the function effectiveSampleSize.
param Character, naming the parameter to create a plot of effective sample sizes.

Value

A ggplot2 plot containing the effective sample size plot.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:
Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

18 plotGewekeParams

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xi11 <- rep(@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <= rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

effssz <- effectiveSampleSize(tidy_chain, "w")
plotEffectiveSampleSize(effssz, "w")

(see vignette for a more detailed example)

plotGewekeParams This function creates plots for the Geweke diagnostic and results of
test of stationarity for the parameters of the model.

Description

This function creates plots for the Geweke diagnostic and results of test of stationarity for the
parameters of the model.

plotGewekeParams 19

Usage

plotGewekeParams(gwk, param)

Arguments
gwk An object of class gewekeParamsCOMIX as created by the function gewekeParams.
param Character, naming the parameter to create a plot of the Geweke diagnostic for.
Value

A ggplot2 plot containing the Geweke diagnostic plot.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p<-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xill <- rep(@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(Q, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

Xil2 <- rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
Xxi22 <- rep(4, p)

Sample data:
set.seed(1)
Y <-

rbind(

20 plotHeidelParams

x
-
1

sn::rmsn(njk[1, 1], xi11, Omega = Sigmal, alpha = alphal),

sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),

sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),

sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[1]1), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

gwk <- gewekeParams(tidy_chain, "w")
plotGewekeParams (gwk, "w")

(see vignette for a more detailed example)

plotHeidelParams This function creates plots for the Heidelberg-Welch diagnostic and
results of test of stationarity for the parameters of the model.

Description

This function creates plots for the Heidelberg-Welch diagnostic and results of test of stationarity for
the parameters of the model.

Usage

plotHeidelParams(hd, param)

Arguments
hd An object of class heidelParamsCOMIX as created by the function heidelParams.
param Character, naming the parameter to create a plot of the Heidelberg-Welch diag-
nostic for.
Value

A ggplot2 plot containing the Heidelberg-Welch diagnostic plot.

plotHeidelParams

Number of observations for each sample (row) and cluster (column):

Examples
library(COMIX)
njk <-

matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:
Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)
alphal[1] <- -5

location parameter for first cluster in first sample:

xil1l <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):

xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:
Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)
alpha2[2] <- 5

location parameter for second cluster in

xil12 <- rep(3, p)

location parameter for second cluster in

xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi =
sn::rmsn(njk[1, 2], xi =
sn::rmsn(njk[2, 1], xi =
sn::rmsn(njk[2, 2], xi =
)

x111, Omega

xi12, Omega
xi21, Omega
x122, Omega

first sample:

second sample

Sigmal,
Sigma2,
Sigmal,
Sigma2,

alpha

alpha =
= alphal),
= alpha2)

alpha
alpha

C <- c(rep(1, rowSums(njk)[1]1), rep(2, rowSums(njk)[2]1))

prior <- list(zeta =1, K = 10)

pmc <- list(naprt = 5, nburn
pmc <- list(naprt = 5, nburn
Fit the model:

res <- comix(Y, C, pmc = pmc,

= 200, nsave

= 2, nsave

(misaligned with first):

= alphal),

alpha2),

200) # Reasonable usage

prior = prior)

5) # Minimal usage for documentation

21

22 plotTracePlots

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

effssz <- effectiveSampleSize(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")

hd <- heidelParams(tidy_chain, "w")
plotHeidelParams(hd, "w")

(see vignette for a more detailed example)

plotTracePlots This function creates trace plots for different parameters of the MCMC
chain.

Description

This function creates trace plots for different parameters of the MCMC chain.

Usage

plotTracePlots(res, param)

Arguments

res An object of class COMIX or tidyChainCOMIX.

param Character, naming the parameter to create a trace plot for.
Value

A ggplot?2 plot containing the trace plot.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:
Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

relabelChain 23

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xi11 <- rep(@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <= rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)
plotTracePlots(res_relab, "w")

Or:

tidy_chain <- tidyChain(res_relab, "w")
plotTracePlots(tidy_chain, "w")

(see vignette for a more detailed example)

relabelChain This function relabels the chain to avoid label switching issues.

Description

This function relabels the chain to avoid label switching issues.

24 relabelChain

Usage

relabelChain(res)
Arguments

res An object of class COMIX.
Value

An object of class COMIX where res$chain$t is replaced with the new labels.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(0, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xil1l <- rep(0@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <- rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
Xi22 <- rep(4, p)

Sample data:
set.seed(1)
Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),

summarizeChain 25

sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)

)
C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]1))

prior <- list(zeta =1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

Generate calibrated data:
cal <- calibrateNoDist(res_relab)

Compare raw and calibrated data: (see plot in vignette)
par(mfrow=c(1, 2))
plot(Y, col = C, xlim = range(Y[,11), ylim = range(Y[,2]))

Get posterior estimates for the model parameters:
res_summary <- summarizeChain(res_relab)

Check for instance, the cluster assignment labels:
table(res_summary$t)

Indeed the same as

colSums(njk)

Or examine the skewness parameter for the non-trivial clusters:
res_summary$alphal , unique(res_summary$t)]

And compare those to

cbind(alphal, alpha2)

(see vignette for a more detailed example)

summarizeChain This function provides post-hoc estimates of the model parameters.

Description

This function provides post-hoc estimates of the model parameters.

Usage

summarizeChain(res)

Arguments

res An object of class COMIX.

26

Value

summarizeChain

A named list:

xi@: a ncol(res$datas$y¥) x res$prior$K matrix storing the posterior mean of the group
location parameter.

psi: a ncol(res$data$Y) x res$prior$K matrix storing the posterior mean of the multi-
variate skew normal kernels skewness parameter (in the parameterization used in the sampler).

alpha: ancol(res$data$yY) x res$prior$K matrix storing the posterior mean of the multi-
variate skew normal kernels skewness parameter.

W:a length(unique(res$data$C)) x res$prior$K matrix storing the posterior mean of the
mixture weights for each sample and cluster.

xi: an length(unique(res$data$C)) x ncol(res$datas$y) x res$priors$K array storing
the the posterior mean of the multivariate skew normal kernels location parameter for each
sample and cluster.

Sigma: an ncol(res$datas$yY) x ncol(res$data$yY) x res$prior$K array storing the the
posterior mean of the scaling matrix of the multivariate skew normal kernels for each cluster.

G: an ncol(res$datas$yY) x ncol(res$datas$Y) x res$priors$K array storing the the poste-
rior mean of the scaling matrix of the multivariate skew normal kernels for each cluster (in the
parameterization used in the sampler).

E: an ncol(res$data$Y) x ncol(res$datas$yY) x res$prior$K array storing the the pos-
terior mean of the covariance matrix of the multivariate normal distributions for each cluster
form which the sample specific location parameters are drawn.

meanvec: an length(unique(res$data$C)) x ncol(res$datasyY) x res$prior$K array
storing the the posterior mean of the multivariate skew normal kernels mean parameter for
each sample and cluster.

meanvec®: a ncol(res$datas$Y) X res$prior$K matrix storing the posterior mean of the
group mean parameter.

t: Vector of length nrow(x$data$Y). Each element is the mode of the posterior distribution
of cluster labels.

eta: scalar, the mean of the posterior distribution of the estimated Dirichlet Process Mixture
concentration parameter.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE

)

summarizeChain

Dimension of data:
p<-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@0.5, nrow = p)

alphal <- rep(0, p)
alphal[1] <- -5

location parameter for first cluster in first sample:

xil1l <- rep(@, p)

location parameter for first cluster in second sample (aligned with first):

xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(0, p)
alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <- rep(3, p)

location parameter for second cluster in second sample

Xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal,
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2,
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal,
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2,
)

alpha
alpha
alpha
alpha

C <= c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[2]1))

prior <- list(zeta =1, K = 10)

(misaligned with first):

= alphal),
= alpha2),
= alphal),
= alpha2)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage
pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation

Fit the model:
res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:

res_relab <- relabelChain(res)

Generate calibrated data:
cal <- calibrateNoDist(res_relab)

Compare raw and calibrated data: (see plot in vignette)

par(mfrow=c(1, 2))

plot(Y, col = C, xlim = range(Y[,1]1), ylim = range(Y[,2]))

Get posterior estimates for the model parameters:
res_summary <- summarizeChain(res_relab)

Check for instance, the cluster assignment labels:

table(res_summary$t)

27

28 tidyChain

Indeed the same as
colSums(njk)

Or examine the skewness parameter for the non-trivial clusters:
res_summary$alphal , unique(res_summary$t)]

And compare those to

cbind(alphal, alpha2)

(see vignette for a more detailed example)

tidyChain This function creates tidy versions of the stored chain. This object can
then be used as input for the other diagnostic functions in this package.

Description

This function creates tidy versions of the stored chain. This object can then be used as input for the
other diagnostic functions in this package.

Usage

tidyChain(
res,
params = C(”t", ”W", ”Xi”, ”Xi@”, "psi", HG”’ HEH,

)

n n

eta”, "Sigma", "alpha")
Arguments

res An object of class COMIX.

params A character vector naming the parameters to tidy.

Value

A tidyChainCOMIX object: a named list of class whose length is the length of params. Each element
of the list contains a tibble with a tidy version of the samples from the MCMC chain.

Examples
library(COMIX)
Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE

transfor m_params

Dimension of data:
p <-3

Scale and skew parameters for first cluster:

Sigmal <- matrix(@.5, nrow = p, ncol = p) + diag(@.5, nrow = p)

alphal <- rep(@, p)

alphal[1] <- -5

location parameter for first cluster in first sample:

xi11 <= rep(@, p)

location parameter for first cluster in second sample (aligned with first):
xi21 <- rep(0@, p)

Scale and skew parameters for second cluster:

Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p)

alpha2 <- rep(9, p)

alpha2[2] <- 5

location parameter for second cluster in first sample:

xi12 <= rep(3, p)

location parameter for second cluster in second sample (misaligned with first):
Xi22 <- rep(4, p)

Sample data:
set.seed(1)

Y <-
rbind(
sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2),
sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigmal, alpha = alphal),
sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2)
)

C <- c(rep(1, rowSums(njk)[11), rep(2, rowSums(njk)[21))

prior <- list(zeta = 1, K = 10)

pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage

pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation
Fit the model:

res <- comix(Y, C, pmc = pmc, prior = prior)

Relabel to resolve potential label switching issues:
res_relab <- relabelChain(res)

tidy_chain <- tidyChain(res_relab)

(see vignette for a more detailed example)

transform_params Convert between parameterizations of the multivariate skew normal
distribution.

Description

Convert between parameterizations of the multivariate skew normal distribution.

30 transform_params

Usage

transform_params(Sigma, alpha)

Arguments

Sigma A scale matrix.

alpha A vector for the skew parameter.
Value

A list:

* delta: areparameterized skewness vector, a transformed version of alpha.

* omega: a diagonal matrix of the same dimensions as Sigma, the diagonal elements are the
square roots of the diagonal elements of Sigma.

* psi: another reparameterized skewness vector, utilized in the sampler.

* G: areparameterized version of Sigma, utilized in the sampler.

Examples

library(COMIX)

Scale and skew parameters:

Sigma <- matrix(@.5, nrow = 4, ncol = 4) + diag(@.5, nrow = 4)
alpha <- c(0, 0, 0, 5)

transformed_parameters <- transform_params(Sigma, alpha)

Index

acfParams, 2

calibrate, 3
calibrateNoDist, 5
comix, 8

effectiveSampleSize, 11
gewekeParams, 13
heidelParams, 15

plotEffectiveSampleSize, 17
plotGewekeParams, 18
plotHeidelParams, 20
plotTracePlots, 22

relabelChain, 23
summarizeChain, 25

tidyChain, 28
transform_params, 29

31

	acfParams
	calibrate
	calibrateNoDist
	comix
	effectiveSampleSize
	gewekeParams
	heidelParams
	plotEffectiveSampleSize
	plotGewekeParams
	plotHeidelParams
	plotTracePlots
	relabelChain
	summarizeChain
	tidyChain
	transform_params
	Index

